WO2023243071A1 - 換気システムおよびこれを備えた空気調和システム - Google Patents

換気システムおよびこれを備えた空気調和システム Download PDF

Info

Publication number
WO2023243071A1
WO2023243071A1 PCT/JP2022/024272 JP2022024272W WO2023243071A1 WO 2023243071 A1 WO2023243071 A1 WO 2023243071A1 JP 2022024272 W JP2022024272 W JP 2022024272W WO 2023243071 A1 WO2023243071 A1 WO 2023243071A1
Authority
WO
WIPO (PCT)
Prior art keywords
ventilation
concentration
threshold
control device
control
Prior art date
Application number
PCT/JP2022/024272
Other languages
English (en)
French (fr)
Inventor
拓摩 東
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/024272 priority Critical patent/WO2023243071A1/ja
Priority to JP2024528053A priority patent/JPWO2023243071A1/ja
Publication of WO2023243071A1 publication Critical patent/WO2023243071A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow

Definitions

  • the present disclosure relates to a ventilation system that performs indoor ventilation based on CO 2 concentration, and an air conditioning system equipped with the same.
  • the concentration threshold is set to a ventilation reference value that requires ventilation. For this reason, ventilation begins only after the CO 2 concentration reaches the ventilation standard value, and given that ventilation control requires that the indoor CO 2 concentration be kept below the ventilation standard value, there is still room for improvement. There is.
  • the rate of increase in the CO 2 concentration becomes equal to or higher than the concentration change rate threshold, and ventilation is started. be done. For this reason, in the technology of Patent Document 1, even if the CO 2 concentration is temporarily increased so as not to exceed the ventilation standard value, ventilation is stopped when the rate of increase in the CO 2 concentration exceeds the concentration change rate threshold. It will start. In other words, the technique disclosed in Patent Document 1 has a problem in that wasteful ventilation is performed.
  • the present disclosure solves the above-mentioned problems, and aims to provide a ventilation system that can perform appropriate ventilation according to the indoor CO 2 concentration situation, and an air conditioning system equipped with the same. purpose.
  • the ventilation system includes a CO 2 concentration detection device that detects indoor CO 2 concentration, a ventilation device that performs indoor ventilation, and a ventilation system in which the CO 2 concentration is lower than a ventilation reference value that is a reference value that requires ventilation. a first control mode that puts the ventilation device into operation when the first concentration threshold value is also lower, and the CO 2 concentration is estimated to exceed the ventilation standard value based on the CO 2 concentration and the rate of increase in the CO 2 concentration ; a second control mode that puts the ventilation device into operation when the It operates in control mode.
  • An air conditioning system includes the ventilation system described above.
  • the ventilation system and air conditioning system according to the present disclosure stably reduce the indoor CO 2 concentration below the ventilation standard value by operating in the first control mode, compared to when the first concentration threshold is set to the ventilation standard value. can do. Furthermore, by operating in the second control mode, the ventilation system can avoid wasteful ventilation in the case of a temporary increase in CO 2 concentration that does not exceed the ventilation reference value. In this way, the ventilation system can perform appropriate ventilation according to the indoor CO 2 concentration situation using the first control mode and the second control mode.
  • FIG. 2 is an explanatory diagram of a usage pattern of the ventilation system according to the first embodiment.
  • 1 is a block diagram of a ventilation system according to Embodiment 1.
  • FIG. 5 is a control flowchart in the ventilation system according to Embodiment 1.
  • FIG. 2 is a diagram showing changes in CO 2 concentration and changes in CO 2 concentration change rate in the ventilation system according to Embodiment 1.
  • FIG. 3 is a state transition diagram of the ventilation device in the ventilation system according to the first embodiment.
  • FIG. 6 is an explanatory diagram of a usage pattern of a modification of the ventilation system according to the first embodiment.
  • FIG. 2 is a diagram showing the configuration of an air conditioning system according to a second embodiment.
  • FIG. 1 is an explanatory diagram of a usage pattern of the ventilation system 10 according to the first embodiment.
  • the ventilation system 10 of the first embodiment includes a ventilation control device 1, a CO 2 concentration detection device 2 that detects the indoor CO 2 concentration , and a ventilation device 3 that ventilates the room in which the CO 2 concentration detection device 2 is installed. It is equipped with.
  • the ventilation control device 1 is a device that controls the ventilation device 3 based on the detection result of the CO 2 concentration detection device 2.
  • the CO 2 concentration detection device 2 is composed of a concentration detection sensor, and is a device that detects the CO 2 concentration at certain time intervals (for example, every minute) and transmits the detection results to the ventilation control device 1 .
  • the ventilation device 3 is a device that can ventilate the room, and includes an exhaust fan that exhausts indoor air to the outside, an intake fan that sucks outdoor air into the room, and the like.
  • the configuration of the ventilation device 3 is not limited to a configuration including an exhaust fan and an intake fan, but may be any device that can ventilate the room.
  • the ventilation device 3 is equipped with an operation switch 3a, and the user can manually drive and stop the ventilation device 3 by operating the operation switch 3a, or the ventilation control device 1 can automatically start and stop the ventilation device 3. Stopping can also be controlled.
  • the operation switch 3a is not limited to a configuration provided in the ventilation device 3, but may be configured such that an operation section 13 (see FIG. 2), which will be described later, of the ventilation control device 1 is provided with the same function as the operation switch 3a.
  • FIG. 2 is a block diagram of the ventilation system 10 according to the first embodiment.
  • the ventilation control device 1 includes a control section 11, a storage section 12, and an operation section 13.
  • the control section 11 is constituted by a microprocessor unit, and includes a CPU, a RAM, a ROM, etc., and a control program and the like are stored in the ROM.
  • the control unit 11 controls the entire ventilation system according to a control program.
  • the control section 11 is not limited to a microprocessor unit.
  • the control unit 11 may be configured with something that can be updated, such as firmware.
  • the control unit 11 may be a program module that is executed by a command from a CPU (not shown) or the like.
  • the storage unit 12 stores various threshold values and the like, which will be described later.
  • the storage unit 12 includes a ROM, a RAM, and the like.
  • the operation unit 13 is a part where operation inputs are performed by the user.
  • the operation unit 13 is configured of, for example, at least a button, a touch panel, a display panel, or the like, and is a part that receives a user's instruction operation and outputs the content of the instruction operation to the control unit 11.
  • the operation unit 13 includes a setting unit 13a in which priorities between manual operation mode and automatic operation mode are set.
  • the manual operation mode is a mode in which the ventilation device 3 is controlled based on the operation of the operation switch 3a.
  • the automatic operation mode is a mode in which the ventilation device 3 is controlled based on the CO 2 concentration detected by the CO 2 concentration detection device 2 and the rate of increase in the CO 2 concentration.
  • the ventilation control device 1 controls the ventilation device 3 by selecting a manual operation mode or an automatic operation mode according to the priority set in the setting section 13a. In the following, the operation of the ventilation system 10 will be described assuming that the automatic operation mode is selected.
  • the ventilation control device 1 further includes a CO 2 concentration detection device communication unit 14 that communicates with the CO 2 concentration detection device 2, a ventilation device communication unit 15 that communicates with the ventilation device 3, and an external communication unit such as a smartphone or a tablet.
  • An external device communication section 16 that communicates with the device 4 is provided.
  • Communication 5a between the CO 2 concentration detection device communication unit 14 and the CO 2 concentration detection device 2, communication 5b between the ventilation device communication unit 15 and the ventilation device 3, and communication 5c between the external device communication unit 16 and the external device 4 are as follows. , done wirelessly or by wire.
  • the ventilation control device 1 is configured to be incorporated into, for example, a remote control.
  • the CO 2 concentration detection device 2 includes a CO 2 concentration detection section 22 composed of a CO 2 sensor, and a CO 2 concentration detection device communication section 14 of the ventilation control device 1 that transmits the detection results detected by the CO 2 concentration detection section 22. and an inter-ventilation control device communication section 21 for transmitting data to the ventilation control device.
  • FIG. 1 shows an example in which the CO 2 concentration detection device 2 is an independent device installed separately from the ventilation control device 1 and the ventilation device 3, it may also be provided in the ventilation control device 1 or the ventilation device 3. .
  • the installation position of the CO 2 concentration detection device 2 is not particularly limited.
  • a first concentration threshold value for example, 900 ppm
  • a ventilation reference value for example, 1000 ppm
  • the following two index values are preset in order to avoid unnecessary ventilation in the case of a temporary increase in CO 2 concentration that does not exceed the ventilation reference value.
  • the ventilation control device 1 has a second concentration threshold (for example, 800 ppm) that is lower than the first concentration threshold, and a concentration change rate threshold that is a threshold for the rate of change in CO 2 concentration. (for example, 50 ppm/min).
  • the ventilation control device 1 has a first control mode and a second control mode.
  • the first control mode is a mode in which the ventilation device 3 is controlled based only on the CO 2 concentration.
  • the first control mode is a mode in which the ventilation device 3 is brought into operation when the CO 2 concentration is equal to or higher than the first concentration threshold.
  • the second control mode is a mode in which the ventilation device 3 is put into operation when the CO 2 concentration is estimated to exceed the ventilation reference value based on the CO 2 concentration and the rate of increase in the CO 2 concentration.
  • the second control mode is a mode in which the ventilator 3 is put into operation when the CO 2 concentration is equal to or higher than the second concentration threshold and the CO 2 concentration change rate is equal to or higher than the concentration change rate threshold.
  • the ventilation control device 1 has a first control mode and a second control mode, and operates in the first control mode or the second control mode based on the detection result of the CO 2 concentration detection device 2.
  • the first concentration threshold, the second concentration threshold, and the concentration change rate threshold are stored in the storage unit 12.
  • the concentration change rate threshold is determined, for example, as in (1) or (2) below and stored in the storage unit 12.
  • the concentration change rate threshold may be determined by the user and input into the operation unit 13 and stored in the storage unit 12, or may be determined by the control unit 11 or the external device 4 and stored in the storage unit 12. .
  • the concentration change rate threshold is determined depending on the size of the room.
  • a concentration change rate threshold value corresponding to the size of the room is stored in advance in the storage unit 12, and the user inputs the room size into the operation unit 13 at the time of construction to determine the corresponding concentration change rate.
  • the threshold value is stored in the storage unit 12.
  • the concentration change rate threshold is determined based on the conditions when the CO 2 concentration exceeded the ventilation reference value in the past. Specifically, for example, the concentration change rate threshold is determined as follows from past logged CO 2 concentration data.
  • the control unit 11 or the external device 4 determines the maximum value of the rate of change in the CO 2 concentration from when the CO 2 concentration becomes equal to or higher than the second concentration threshold until it reaches the first concentration threshold, and when the CO 2 concentration becomes the first concentration.
  • the maximum value of the rate of change in CO 2 concentration from when it exceeds the threshold until it reaches the ventilation reference value is determined, and when the former is greater, the maximum value is determined as a new concentration change rate threshold.
  • FIG. 3 is a control flowchart in the ventilation system 10 according to the first embodiment.
  • the ventilation control device 1 drives the ventilation device 3 to be in an operating state (step S2). This step S2 is performed when the CO 2 concentration ⁇ the first concentration threshold, and therefore corresponds to the operation in the first control mode. If the ventilation control device 1 determines that the CO 2 concentration detected by the CO 2 concentration detection device 2 is not equal to or higher than the first concentration threshold (step S1: NO), then the ventilation control device 1 determines that the CO 2 concentration detected by the CO 2 concentration detection device 2 is not equal to or higher than the second concentration threshold. It is determined whether there is one (step S3).
  • step S3 NO
  • step S3: YES the ventilation control device 1 determines that the CO 2 concentration change rate is equal to or higher than the preset concentration change rate threshold. It is determined whether the number is above (step S5).
  • the rate of change in CO 2 concentration is, for example, the rate of change in CO 2 concentration over the last minute, and is obtained by subtracting the CO 2 concentration one minute ago from the current CO 2 concentration.
  • step S5 determines in step S5 that the CO 2 concentration change rate is equal to or higher than the concentration change rate threshold (step S5: YES)
  • step S6 puts the ventilation device 3 into an operating state (step S6).
  • This step S6 is performed when the second concentration threshold value ⁇ CO2 concentration ⁇ first concentration threshold value and the CO2 concentration change rate ⁇ concentration change rate threshold value, and thus corresponds to the operation in the second control mode.
  • FIG. 4 is a diagram showing changes in CO 2 concentration and changes in CO 2 concentration change rate in ventilation system 10 according to the first embodiment.
  • FIG. 4 also shows state changes between the operating state and the stopped state of the ventilation device 3.
  • FIG. 4(a) is a graph showing changes in CO 2 concentration [ppm].
  • FIG. 4(b) is a graph showing changes in the CO 2 concentration change rate [ppm/min].
  • FIG. 4(c) is a timing diagram showing changes between the operating state and the stopped state of the ventilation device 3.
  • FIG. 5 is a state transition diagram of the ventilation device 3 in the ventilation system 10 according to the first embodiment. For the state transition of the ventilator 3 in FIG. 5, please refer to the description of FIG. 4 below as appropriate.
  • the ventilation device 3 changes from the stopped state to the operating state (second control mode) and starts ventilation of the room.
  • the ventilation control device 1 of the first embodiment has a second control mode, and in a situation where the indoor CO 2 concentration may exceed the ventilation standard value at time t1 before time t2.
  • the ventilator 3 is put into operation after determining that something is wrong.
  • the ventilation system 10 can prevent the CO 2 concentration from exceeding the ventilation standard value, as shown in (a).
  • arc-shaped arrows indicate that each operating state to which this arrow is attached, ⁇ operating state (first control mode),'' ⁇ operating state (second control mode),'' and ⁇ stopped state,'' continues.
  • the conditions for its continuation are written in the balloon. Specifically, the "operating state (first control mode)" is continued when “CO 2 concentration ⁇ first concentration threshold”. Further, the “operating state (second control mode)” is continued when “second concentration threshold value ⁇ CO2 concentration ⁇ first concentration threshold value, and CO2 concentration change rate ⁇ concentration change rate threshold value”.
  • the "stopped state” means "CO 2 concentration ⁇ second concentration threshold, or (second concentration threshold ⁇ CO 2 concentration ⁇ first concentration threshold, and concentration change rate threshold ⁇ CO 2 concentration change rate)". It will be continued at some point.
  • ventilation system 10 may be modified as follows.
  • the ventilation system 10 may combine the following modifications as appropriate.
  • the ventilation control device 1 sets the rotation speed of the fan to the first rotation speed in the first control mode, and sets the fan rotation speed to the second rotation speed smaller than the first rotation speed in the second control mode.
  • the first rotation speed is set to, for example, the maximum rotation speed on the device. That is, the ventilation control device 1 performs gentle ventilation when the CO 2 concentration is above the second concentration threshold and below the first concentration threshold, and maximizes the ventilation amount when the CO 2 concentration is above the first concentration threshold.
  • the ventilation control device 1 separately sets a second concentration change threshold that is faster than the concentration change speed threshold. In the second control mode, when the rate of increase in CO 2 concentration is faster than the second concentration change threshold, the ventilation system 10 controls the first Maximize ventilation as if above the concentration threshold.
  • the ventilation system 10 of the first embodiment includes a CO 2 concentration detection device 2 that detects indoor CO 2 concentration, and a ventilation device 3 that performs indoor ventilation.
  • the ventilation system 10 further includes a first control mode in which the ventilation device 3 is put into operation when the CO 2 concentration is equal to or higher than a first concentration threshold value that is lower than a ventilation reference value that is a reference value that requires ventilation; a second control mode that puts the ventilation device 3 into operation when the CO 2 concentration is estimated to exceed a preset ventilation reference value based on the CO 2 concentration and the rate of increase in the CO 2 concentration; 1 and.
  • the ventilation control device 1 operates in the first control mode or the second control mode based on the CO 2 concentration and the rate of increase in the CO 2 concentration.
  • the ventilation system 10 is able to stably reduce the indoor CO 2 concentration below the ventilation standard value by operating in the first control mode, compared to the case where the first concentration threshold is set to the ventilation standard value. Can be done. Further, the ventilation system 10 can avoid wasteful ventilation when a temporary increase in CO 2 concentration that does not exceed the ventilation reference value occurs due to operation in the second control mode. In this way, the ventilation system 10 can perform appropriate ventilation in accordance with the indoor CO 2 concentration situation by appropriately controlling the ventilation timing.
  • the ventilation control device 1 stops the ventilation device 3 when the CO 2 concentration is less than the second concentration threshold. Further, when the CO 2 concentration falls below the first concentration threshold while operating in the first control mode, the ventilation control device 1 changes the ventilation device 3 from the operating state to the stopped state.
  • the ventilation system 10 allows the user to determine the priority between the manual operation mode and the automatic operation mode.
  • the ventilation system 10 includes a plurality of CO 2 concentration detection devices 2, and the ventilation control device 1 includes a CO 2 concentration detection device 2 that is placed near an area where there are many people indoors, among the plurality of CO 2 concentration detection devices 2. is specified, and the first control mode and the second control mode are controlled based on the specified detection result of the CO 2 concentration detection device 2.
  • the ventilation system 10 can control the indoor ventilation amount based on the CO 2 concentration in the area where many people are indoors.
  • the ventilation system 10 is used alone, but in the second embodiment, the ventilation system 10 is incorporated into an air conditioning system 200. In this manner, ventilation system 10 may be used alone or may be incorporated within air conditioning system 200.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ventilation (AREA)

Abstract

換気システムは、室内のCO2濃度を検出するCO2濃度検出装置と、室内の換気を行う換気装置と、CO2濃度が、換気を必要とする基準値である換気基準値よりも低い第一濃度閾値以上である場合に換気装置を運転状態にする第一制御モードと、CO2濃度およびCO2濃度の上昇速度に基づいてCO2濃度が換気基準値を超えると推定される場合に換気装置を運転状態にする第二制御モードと、を有する換気制御装置と、を備え、換気制御装置は、CO2濃度およびCO2濃度の上昇速度に基づいて第一制御モードまたは第二制御モードの動作を行う。

Description

換気システムおよびこれを備えた空気調和システム
 本開示は、CO濃度に基づいて室内の換気を行う換気システムおよびこれを備えた空気調和システムに関する。
 従来の技術は、室内のCO濃度が予め設定した濃度閾値以上である時、またはCO濃度の上昇速度が濃度変化速度閾値以上である時に換気を開始するものであった(例えば、特許文献1参照)。
特開2000-88320号公報
 特許文献1の技術では、濃度閾値が換気を必要とする換気基準値に設定されている。このため、CO濃度が換気基準値に達してから換気が開始されることになり、換気制御上、室内のCO濃度を換気基準値以下に保つことが求められることからすると、改善の余地がある。また、特許文献1の技術では、同一室内等において人数が急激に増加する等してCO濃度が急峻に増加した場合、CO濃度の上昇速度が濃度変化速度閾値以上となって換気が開始される。このため、特許文献1の技術では、CO濃度が換気基準値を超えないような一時的な濃度上昇であっても、CO濃度の上昇速度が濃度変化速度閾値以上になることで換気が開始されてしまう。つまり、特許文献1の技術では、無駄な換気が行われるという問題があった。
 本開示は、上記のような課題を解決するものであり、室内のCO濃度の状況に見合った適切な換気を行うことが可能な換気システムおよびこれを備えた空気調和システムを提供することを目的とする。
 本開示に係る換気システムは、室内のCO濃度を検出するCO濃度検出装置と、室内の換気を行う換気装置と、CO濃度が、換気を必要とする基準値である換気基準値よりも低い第一濃度閾値以上である場合に換気装置を運転状態にする第一制御モードと、CO濃度およびCO濃度の上昇速度に基づいてCO濃度が換気基準値を超えると推定される場合に換気装置を運転状態にする第二制御モードと、を有する換気制御装置と、を備え、換気制御装置は、CO濃度およびCO濃度の上昇速度に基づいて第一制御モードまたは第二制御モードの動作を行うものである。
 本開示に係る空気調和システムは、上記の換気システムを備えたものである。
 本開示に係る換気システムおよび空気調和システムは、第一制御モードの動作によって、第一濃度閾値が換気基準値に設定される場合に比べて室内のCO濃度を安定して換気基準値以下にすることができる。また、換気システムは、第二制御モードの動作によって、CO濃度が換気基準値を超えないような一時的な濃度上昇の場合の無駄な換気を避けることができる。このように、換気システムは、第一制御モードおよび第二制御モードによって室内のCO濃度の状況に見合った適切な換気を行うことができる。
実施の形態1に係る換気システムの利用形態の説明図である。 実施の形態1に係る換気システムのブロック図である。 実施の形態1に係る換気システムにおける制御フローチャートである。 実施の形態1に係る換気システムにおけるCO濃度の変化とCO濃度変化速度の変化とを示す図である。 実施の形態1に係る換気システムにおける換気装置の状態遷移図である。 実施の形態1に係る換気システムの変形例の利用形態の説明図である。 実施の形態2に係る空気調和システムの構成を示す図である。
実施の形態1.
 図1は、実施の形態1に係る換気システム10の利用形態の説明図である。実施の形態1の換気システム10は、換気制御装置1と、室内のCO濃度を検出するCO濃度検出装置2と、CO濃度検出装置2が設置された室内の換気を行う換気装置3と、を備えている。
 換気制御装置1は、CO濃度検出装置2の検出結果に基づいて換気装置3を制御する装置である。CO濃度検出装置2は、濃度検出センサで構成され、ある時間毎(例えば、1分間毎)にCO濃度を検出し、検出結果を換気制御装置1に送信する装置である。
 換気装置3は、室内の換気を行うことが可能な装置であり、室内の空気を室外に排出する排気ファンおよび室外の空気を室内に吸入する吸気ファンなどを備えたものである。換気装置3の構成は排気ファンおよび吸気ファンを備えた構成に限られたものではなく、室内の換気を行うことが可能な装置であればよい。また、換気装置3は、操作スイッチ3aを備え、操作スイッチ3aの操作によりユーザーが手動で換気装置3の駆動および停止を切り替えることもできるし、換気制御装置1により自動で換気装置3の駆動および停止を制御することもできる。操作スイッチ3aは、換気装置3に備える構成に限らず、換気制御装置1の後述の操作部13(図2参照)に操作スイッチ3aと同一の機能を持たせた構成としてもよい。
 図2は、実施の形態1に係る換気システム10のブロック図である。換気制御装置1は、制御部11と、記憶部12と、操作部13と、を備えている。制御部11は、マイクロプロセッサユニットにより構成され、CPU、RAMおよびROM等を備えており、ROMには制御プログラム等が記憶されている。制御部11は、制御プログラムにしたがって換気システム全体を制御する。制御部11は、マイクロプロセッサユニットに限定するものではない。例えば、制御部11は、ファームウェア等の更新可能なもので構成されていてもよい。また、制御部11は、プログラムモジュールであって、図示しないCPU等からの指令により、実行されるものでもよい。
 記憶部12は、後述の各種閾値等を記憶するものである。記憶部12は、ROMおよびRAM等を含む。操作部13は、ユーザーからの操作入力が行われる部分である。操作部13は、例えば少なくともボタン、タッチパネルまたは表示パネル等から構成され、ユーザーの指示操作を受け付けて、当該指示操作の内容を制御部11に出力する部分である。操作部13は、手動操作モードと自動操作モードとの優先度が設定される設定部13aを有する。手動操作モードは、操作スイッチ3aの操作に基づいて換気装置3を制御するモードである。自動操作モードは、CO濃度検出装置2で検出されたCO濃度およびCO濃度の上昇速度に基づいて換気装置3を制御するモードである。換気制御装置1は、設定部13aに設定された優先度に応じて手動操作モードまたは自動操作モードを選択して換気装置3の制御を行う。以下では、自動操作モードが選択されているものとして換気システム10の動作を説明する。
 換気制御装置1はさらに、CO濃度検出装置2との通信を行うCO濃度検出装置間通信部14と、換気装置3との通信を行う換気装置通信部15と、スマートフォンおよびタブレット等の外部機器4との通信を行う外部機器通信部16と、を備えている。CO濃度検出装置間通信部14とCO濃度検出装置2との通信5a、換気装置通信部15と換気装置3との通信5b、および外部機器通信部16と外部機器4との通信5cは、無線または有線で行われる。換気制御装置1は、例えばリモコン等に組み込まれて構成されている。
 CO濃度検出装置2は、COセンサで構成されたCO濃度検出部22と、CO濃度検出部22で検出された検出結果を換気制御装置1のCO濃度検出装置間通信部14に送信する換気制御装置間通信部21と、を備えている。なお、図1では、CO濃度検出装置2が換気制御装置1および換気装置3とは別置きの独立した装置の例を示したが、換気制御装置1または換気装置3に設けられても良い。CO濃度検出装置2の設置位置は特に制限されない。
 ここで、実施の形態1における換気制御について説明する。実施の形態1における換気制御では、換気を必要とする基準値である換気基準値(例えば、1000ppm)よりも低い第一濃度閾値(例えば900ppm)が予め設定されている。また、実施の形態1における換気制御では、CO濃度が換気基準値を超えないような一時的な濃度上昇の場合の無駄な換気を避けるため、次の2つの指標値が予め設定されている。すなわち、換気制御装置1には、第一濃度閾値の他に、第一濃度閾値よりもさらに低い第二濃度閾値(例えば、800ppm)と、CO濃度の変化速度の閾値である濃度変化速度閾値(例えば、50ppm/min)とが設定されている。
 換気制御装置1は、第一制御モードと、第二制御モードと、を有する。第一制御モードは、CO濃度のみに基づいて換気装置3を制御するモードである。第一制御モードは、具体的には、CO濃度が第一濃度閾値以上である場合に換気装置3を運転状態にするモードである。第二制御モードは、CO濃度およびCO濃度の上昇速度に基づいて、CO濃度が換気基準値を超えると推定される場合に換気装置3を運転状態にするモードである。第二制御モードは、具体的には、CO濃度が第二濃度閾値以上、かつ、CO濃度変化速度が濃度変化速度閾値以上である場合に換気装置3を運転状態にするモードである。換気制御装置1は、第一制御モードと第二制御モードとを有し、CO濃度検出装置2の検出結果に基づいて第一制御モードまたは第二制御モードの動作を行う。
 第一濃度閾値、第二濃度閾値および濃度変化速度閾値は、記憶部12に記憶されている。濃度変化速度閾値は、例えば以下の(1)または(2)のようにして決定されて記憶部12に記憶される。濃度変化速度閾値は、ユーザーが決定して操作部13へ入力することで記憶部12に記憶されてもよいし、制御部11または外部機器4が決定して記憶部12に記憶されてもよい。
 (1)濃度変化速度閾値は、部屋の大きさに応じて決定される。この場合、例えば、部屋の大きさに応じた濃度変化速度閾値を予め記憶部12に保持しておき、施工時にユーザーが部屋の大きさを操作部13へ入力することにより、対応の濃度変化速度閾値が記憶部12に記憶される。
 (2)濃度変化速度閾値は、過去にCO濃度が換気基準値を超えた時の条件に基づき決定される。具体的には例えば、濃度変化速度閾値は、過去にロギングしたCO濃度のデータより、以下のように決定される。制御部11または外部機器4は、CO濃度が第二濃度閾値以上となってから第一濃度閾値に達するまでの間におけるCO濃度の変化速度の最大値と、CO濃度が第一濃度閾値以上となってから換気基準値に達するまでの間におけるCO濃度の変化速度の最大値とを求め、前者の方が大きい時に、その最大値を新たな濃度変化速度閾値として決定する。
 図3は、実施の形態1に係る換気システム10における制御フローチャートである。換気制御装置1は、CO濃度検出装置2で検出したCO濃度が第一濃度閾値以上の場合(ステップS1:YES)、換気装置3を駆動して運転状態とする(ステップS2)。このステップS2は、CO濃度≧第一濃度閾値の場合に行われるため、第一制御モードの動作に相当する。換気制御装置1は、CO濃度検出装置2で検出したCO濃度が第一濃度閾値以上ではないと判断した場合(ステップS1:NO)、続いて、CO濃度が第二濃度閾値以上であるかを判断する(ステップS3)。
 換気制御装置1は、CO濃度が第二濃度閾値以上ではないと判断した場合(ステップS3:NO)、換気装置3を停止状態とする(ステップS4)。一方、換気制御装置1は、ステップS3においてCO濃度が第二濃度閾値以上であると判断した場合(ステップS3:YES)、続いて、CO濃度変化速度が予め設定された濃度変化速度閾値以上であるかを判断する(ステップS5)。CO濃度変化速度は、例えば直近1分間のCO濃度変化速度であり、現在のCO濃度から1分前のCO濃度を減算したものである。CO濃度変化速度の計算は換気制御装置1の制御部11によって行われ、記憶部12に記憶されている。換気制御装置1は、ステップS5においてCO濃度変化速度が濃度変化速度閾値以上ではないと判断した場合(ステップS5:NO)、換気装置3を停止状態とする(ステップS4)。
 一方、換気制御装置1は、ステップS5において、CO濃度変化速度が濃度変化速度閾値以上であると判断した場合(ステップS5:YES)、換気装置3を運転状態とする(ステップS6)。このステップS6は、第二濃度閾値≦CO濃度<第一濃度閾値、かつ、CO濃度変化速度≧濃度変化速度閾値の場合に行われるので、第二制御モードの動作に相当する。
 換気制御装置1は、上記のステップS1~ステップS6の処理を例えば1分間隔である制御タイミングごとに繰り返し行う。ステップS2の「換気装置:運転状態」、ステップS6の「換気装置:運転状態」は、前回の制御タイミングで換気装置が運転していなければ、換気装置3を運転開始することを意味し、前回の制御タイミングで換気装置3が運転していれば、換気装置3の運転を継続することを意味する。また、ステップS4の「換気装置:停止状態」は、前回の制御タイミングで換気装置3が運転していれば、換気装置3を運転停止することを意味し、前回の制御タイミングで換気装置3が運転停止していれば、運転停止を継続することを意味する。
 図4は、実施の形態1に係る換気システム10におけるCO濃度の変化とCO濃度変化速度の変化とを示す図である。図4には、換気装置3の運転状態と停止状態との状態変化も併せて示している。図4(a)は、CO濃度[ppm]の変化を示したグラフである。図4(b)は、CO濃度変化速度[ppm/min]の変化を示したグラフである。図4(b)において、CO濃度変化速度が正値の場合はCO濃度が上昇していることを示し、CO濃度変化速度が負値の場合はCO濃度が下降していることを示している。図4(c)は、換気装置3の運転状態と停止状態との変化を示したタイミング図である。図5は、実施の形態1に係る換気システム10における換気装置3の状態遷移図である。図5における換気装置3の状態遷移は、以下の図4の説明と併せて適宜参照されたい。
 時刻t0から時刻t1までの間、(a)に示すようにCO濃度は第二濃度閾値未満であり、(c)に示すように換気装置3は停止状態にある。
 時刻t1において、(a)に示すようにCO濃度が第二濃度閾値以上となり、かつ、(b)に示すようにCO濃度変化速度が濃度変化速度閾値(ここでは、50ppm/min)以上であるため、換気装置3は停止状態から運転状態(第二制御モード)に変化し、室内の換気を開始する。
 時刻t2において、(a)に示すようにCO濃度が第一濃度閾値以上となることで、換気装置3は運転状態を継続する。なお、運転モードは第二制御モードから第一制御モードに変更されている。
 時刻t2から時刻t3の間、(a)に示すようにCO濃度が第一濃度閾値以上であるため、換気装置3は運転状態(第一制御モード)を継続する。
 時刻t3において、(a)に示すようにCO濃度が第一濃度閾値未満に低下する。このため、時刻t3において、換気装置3は運転状態(第一制御モード)から停止状態に変化する。なお、時刻t3において、CO濃度は第二濃度閾値以上であるものの、CO濃度変化速度が濃度変化速度閾値未満である。このため、換気制御装置1が運転状態(第一制御モード)から運転状態(第二制御モード)に移行することはなく、換気装置3は停止状態となる。つまり、第一制御モードで動作中にCO濃度が第一濃度閾値未満に低下した場合、換気装置3は運転状態(第一制御モード)から停止状態に変化する。換気装置3が時刻t3で停止状態となることで、(a)に示すようにCO濃度が下降から上昇に転じている。
 時刻t4では、(a)に示すようにCO濃度が再び第一濃度閾値以上となることで、(c)に示すように換気装置3が停止状態から運転状態(第一制御モード)に変化し、再び室内の換気を開始する。これにより、CO濃度が低下している。
 時刻t5では、(a)に示すようにCO濃度が第一濃度閾値未満に下がることで、換気装置3は運転状態から停止状態に変化する。
 ここで、換気制御装置1は、CO濃度変化速度が濃度変化速度閾値未満であるとき、換気装置3の運転状態と停止状態との切り替え(以下、ON/OFFという)制御を、第一濃度閾値を判断基準として行っている。具体的には、このON/OFF制御は図4において時刻t3から時刻t5の間が該当する。このように、ON/OFF制御が第一濃度閾値を判断基準として行われると、換気装置3の動作が短時間でON/OFFを繰り返すハンチングを行う可能性がある。このため、換気制御装置1は、次のような制御をしてもよい。
 換気制御装置1は、換気装置3を運転状態から停止状態に切り替えるための判断を行う閾値を、第一濃度閾値に代えて第二濃度閾値とする。具体的には、図4の例で説明すると、換気制御装置1は、例えば時刻t5で換気装置3を運転状態から停止状態に切り替えているが、時刻t5で切り替えず、CO濃度が第二濃度閾値未満となった時刻t5以降で、換気装置3を運転状態から停止状態に切り替える。その後の動作は上記説明と同じであるが、CO濃度が第二濃度閾値未満となった直後に、室内の人数増加等により第二濃度閾値以上になっても、それまでCO濃度が低下傾向であったことを考慮するとCO上昇速度が濃度変化速度閾値以上にはなりにくい。このため、換気装置3のON/OFFが短期間で繰り返されることはない。
 以上説明したように、換気制御装置1は、第一制御モードを有し、CO濃度が換気基準値よりも低い第一濃度閾値以上の場合に換気を開始する。このため、換気システム10は、第一濃度閾値が換気基準値に設定される場合に比べて、室内のCO濃度を安定して換気基準値以下にすることができる。
 また、換気制御装置1が、仮に第一制御モードのみを有しており、第二制御モードを有していない場合、換気装置3は、CO濃度が第一濃度閾値以上となる時刻t2で運転状態となる。換気装置3が時刻t2で運転状態となることで、室内のCO濃度変化速度は低下するものの、換気が追いつかず、(a)の点線Aに示すように、CO濃度が換気基準値を超えてしまう。
 これに対し、実施の形態1の換気制御装置1は、第二制御モードを有し、時刻t2よりも前の時刻t1で、室内のCO濃度が換気基準値を超える可能性のある状況であることを見極めて換気装置3を運転状態としている。これにより、換気システム10は、(a)に示すようにCO濃度が換気基準値を超えないようにできる。
 また、換気システム10は、単にCO濃度変化速度が濃度変化速度閾値以上となることで換気装置3を運転状態にして換気を開始するのではなく、さらにCO濃度が第二濃度閾値以上であることで換気を開始する。このため、換気システム10は、室内のCO濃度が換気基準値を超えないような一時的な濃度上昇の場合の無駄な換気を避けることができる。その結果、換気システム10は、不要なタイミングで換気装置3を運転することによる室温の不要な変化および不要な電力消費を抑えることができる。
 ここで、図5について補足する。図5において、円弧状の矢印は、この矢印が付された各運転状態である「運転状態(第一制御モード)」、「運転状態(第二制御モード)」および「停止状態」が継続されることを示しており、その継続条件が吹き出し部分に記載されている。具体的には、「運転状態(第一制御モード)」は、「CO濃度≧第一濃度閾値」であるとき継続される。また、「運転状態(第二制御モード)」は、「第二濃度閾値≦CO濃度<第一濃度閾値、かつ、CO濃度変化速度≧濃度変化速度閾値」であるとき継続される。また、「停止状態」は、「CO濃度<第二濃度閾値、または、(第二濃度閾値≦CO濃度<第一濃度閾値、かつ、濃度変化速度閾値<CO濃度変化速度)」であるとき継続される。
 なお、換気システム10は、以下のような変形を加えても良い。換気システム10は、以下の変形例を適宜組み合わせてもよい。
 換気装置3は、上記では、換気量が一定のものを想定していたが、ファンの回転数を変更して換気量が変更できるものでもよい。換気装置3が換気量を変更できるものである場合、換気システム10は、次のように運転を変えてもよい。
(1)換気制御装置1は、第1制御モードでファンの回転数を第1回転数にし、第2制御モードで第1回転数よりも小さい第2回転数にする。第1回転数は、具体的には例えば装置上の最大回転数に設定される。つまり、換気制御装置1は、CO濃度が第二濃度閾値以上、第一濃度閾値未満では緩やかに換気し、CO濃度が第一濃度閾値以上では換気量を最大にする。
(2)上記(1)の場合において、換気制御装置1は、上記濃度変化速度閾値よりも速い第2濃度変化閾値を別途設定しておく。そして、換気システム10は、上記第2制御モードにおいて、CO濃度の上昇速度が第2濃度変化閾値よりも速い場合、CO濃度が第二濃度閾値以上、第一濃度閾値未満でも、第一濃度閾値以上の場合と同様に、換気量を最大にする。
 換気制御装置1は、記憶部12に予め設定されたデフォルトの第一濃度閾値および第二濃度閾値を以下のように運転状況に応じて補正してもよい。
(1)換気制御装置1は、室内の人数を取得し、人数が予め設定された人数閾値以上の場合、早めに換気装置3が運転開始されるように、第一濃度閾値および第二濃度閾値を、記憶部12に記憶されたデフォルト値から低下させる補正を行う。また、換気制御装置1は、人数検知装置17で検知された人数が人数閾値未満に下がると、第一濃度閾値および第二濃度閾値を元に戻す。なお、換気制御装置1における室内の人数の取得は、例えば、換気システム10とは別置きの人感センサ18(後述の図6参照)から、無線通信または有線通信により取得すればよい。別置きの人感センサとしては、例えば、室内の空調を行う室内機(図示せず)に設けられた焦電センサが挙げられる。人感センサ18は、他に例えば、室内の入口に設置された赤外線センサで構成され、室内に入室および退出する人の数をカウントして室内の人数を取得するようにしてもよい。
(2)換気制御装置1は、CO濃度が第二濃度閾値以上になる前に、CO上昇速度が濃度変化速度閾値よりも速い第2濃度変化閾値以上となった場合、第一濃度閾値および第二濃度閾値をデフォルト値から一時的に下げて早めに換気を開始するようにしてもよい。
(3)換気装置3は、換気装置3内に備えたフィルタの目詰まりおよびファンの劣化などが生じると、同じ回転数でも、換気量が低下する。換気装置3の換気量が低下すると、換気制御装置1で同じ制御をしてもCO濃度が換気基準値を超えてしまうことが考えられる。例えば、CO濃度の上昇速度が上昇したわけでもないのに、CO濃度が換気基準値を超えてしまう場合、または、室内の人数が多いわけでもないのに、CO濃度が換気基準値を超えてしまう場合などは、換気量の低下が原因と推定できる。
 このような換気装置3の劣化に伴う換気量の低下がある場合、換気制御装置1は、早めに換気が開始されるように、第一濃度閾値および第二濃度閾値をデフォルト値よりも下げるとともに、表示装置に換気を推奨する旨の表示を行う。表示装置は、操作部13が表示パネルである場合、操作部13が表示装置を兼ねればよい。また、表示装置は、換気を推奨する場合に点灯するLEDなどの表示ランプで構成されてもよい。
 具体的な制御としては、換気制御装置1は、換気装置3の劣化に伴う換気量の低下を検知した場合、第一濃度閾値および第二濃度閾値をデフォルト値よりも低下させる補正を行う。換気制御装置1は、換気装置3の劣化に伴う換気量の低下が解消された場合、第一濃度閾値および第二濃度閾値を元に戻す。換気装置3の劣化に伴う換気量の低下が解消された場合とは、フィルタ清掃が行われたことのユーザーの操作があった場合、または、ユーザーの操作がなくても換気に余裕が生じフィルタ清掃が行われた場合が該当する。
 換気装置3の劣化に伴う換気量の低下の検知は、例えば換気制御装置1が換気装置3の作動時間を積算し、積算作動時間が予め設定した設定時間を超えたことを、換気装置3の劣化に伴う換気量の低下と検知するようにしてもよい。これは、換気装置3が設定時間を超えるまで作動していると、フィルタに目詰まりが生じているのが自然であり、目詰まりによる換気量の低下が生じていると見なす意図である。また、換気装置3の劣化に伴う換気量の低下の検知は、例えば、フィルタの目詰まりを検知するセンサで行うようにしても良い。
 なお、上記(1)、(2)および(3)における第一濃度閾値および第二濃度閾値の下げ幅は特に限定するものではなく、任意に設定できる。第一濃度閾値および第二濃度閾値の下げ幅は、予め設定されてもよいし、ユーザーが操作部13から入力するようにしてもよい。
 なお、室内には、人が少ない箇所と、人が密集している箇所と、が存在する場合がある。このような場合、人が密集している箇所のCO濃度を用いて上記制御を行うことが考えられる。そこで、換気システム10は、以下の図6の構成としてもよい。
 図6は、実施の形態1に係る換気システムの変形例の利用形態の説明図である。換気システム10は、CO濃度検出装置2を複数備える。各CO濃度検出装置2は室内に分散して設置されている。そして、換気制御装置1は、複数のCO濃度検出装置2のうち、室内において人数が多い領域の近くに配置されたCO濃度検出装置2を特定し、その特定したCO濃度検出装置2の検知結果に基づいて上記制御を行う。また、室内には、換気システム10とは別置きの人感センサ18が配置されている。
 人感センサ18は、例えば人などの熱源から発せられる赤外線を検知する焦電センサで構成されている。焦電センサは、図示省略するが、上下方向に一列に並んで配置された複数の焦電素子を有するセンサ部を有する。焦電センサは、センサ部を回転移動させて室内を走査し、室内のどのエリアに人が何人いるかを検知する。人感センサ18の検出結果は、無線または有線の通信により換気制御装置1に送信される。なお、人感センサ18は焦電センサに限られたものではなく、室内における人の位置および人数を特定できるものであればよい。
 換気システム10は、例えば以下のようにして、室内において人数が多い領域の近くに配置されたCO濃度検出装置2を特定する。換気システム10は、各CO濃度検出装置2の位置情報を、無線で構成した通信5aの無線強度に基づいて特定する。換気制御装置1は、無線強度に基づいて特定した各CO濃度検出装置2の位置情報と、人感センサ18で検知した人検知情報と、に基づいて各CO濃度検出装置2の周辺の人数を把握する。換気制御装置1は、人数が最も多い領域の近くに配置されたCO濃度検出装置2を特定する。人数が最も多い領域の近くに配置されたCO濃度検出装置2の特定方法は、上記の無線強度に基づく方法に限られたものではない。例えば、各CO濃度検出装置2の位置情報の特定は、各CO濃度検出装置について室内の配置位置が予め決められており、CO濃度検出装置の識別番号から配置位置を特定できるようにしてもよい。
 本実施の形態1の換気システム10は、室内のCO濃度を検出するCO濃度検出装置2と、室内の換気を行う換気装置3と、を備える。換気システム10はさらに、CO濃度が、換気を必要とする基準値である換気基準値よりも低い第一濃度閾値以上である場合に換気装置3を運転状態にする第一制御モードと、CO濃度およびCO濃度の上昇速度に基づいてCO濃度が予め設定された換気基準値を超えると推定される場合に換気装置3を運転状態にする第二制御モードと、を有する換気制御装置1と、を備える。換気制御装置1は、CO濃度およびCO濃度の上昇速度に基づいて第一制御モードまたは第二制御モードの動作を行う。
 上記構成により、換気システム10は、第一制御モードの動作によって、第一濃度閾値が換気基準値に設定される場合に比べて、室内のCO濃度を安定して換気基準値以下にすることができる。また、換気システム10は、第二制御モードの動作によって、CO濃度が換気基準値を超えないような一時的なCO濃度の上昇が生じる場合の無駄な換気を避けることができる。このように、換気システム10は、換気タイミングを適切に制御することにより、室内のCO濃度の状況に見合った適切な換気を行うことができる。
 第二制御モードは、CO濃度が第一濃度閾値よりも低い第二濃度閾値以上、かつ、CO濃度の変化速度が予め設定された濃度変化速度閾値以上である場合に換気装置3を運転状態にするモードである。
 上記構成により、換気システム10は、CO濃度が換気基準値を超えないような一時的なCO濃度の上昇が生じる場合の無駄な換気を避けることができる。
 換気制御装置1は、CO濃度が第二濃度閾値未満のとき換気装置3を停止状態にする。また、換気制御装置1は、第一制御モードで動作中にCO濃度が第一濃度閾値未満に低下した場合、換気装置3を運転状態から停止状態に変更する。
 上記構成により、換気システム10は、CO濃度が換気基準値を超えない場合の無駄な換気を避けることができる。
 換気制御装置1は、ユーザーが濃度変化速度閾値を入力する操作部13を備え、濃度変化速度閾値は、ユーザーが操作部13へ入力して決定される。
 上記構成により、換気システム10は、濃度変化速度閾値をユーザーの操作部13への入力により設定できる。
 換気システム10は、換気装置3の駆動および停止を切り替える操作スイッチ3aを備え、操作スイッチ3aの操作により換気装置3の駆動および停止を手動で切り替えられる。
 上記構成により、換気システム10は、換気装置3を手動で操作することもできる。
 換気システム10は、ユーザーによって操作され、手動操作モードと自動操作モードとの優先度が設定される設定部13aを備える。換気制御装置1は、自動操作モードの優先度が手動操作モードの優先度よりも高い場合、CO濃度およびCO濃度の上昇速度に基づいて換気装置3を制御し、手動操作モードの優先度が自動操作モードの優先度よりも高い場合、操作スイッチ3aの操作に基づいて換気装置3を制御する。
 上記構成により、換気システム10は、手動操作モードと自動操作モードとの優先度をユーザーによって決めることができる。
 換気制御装置1は、室内の人数を取得し、人数が予め設定された人数閾値以上の場合、第一濃度閾値および第二濃度閾値を低下させる補正を行い、人数が人数閾値未満に下がると、第一濃度閾値および第二濃度閾値を元に戻す。
 上記構成により、換気システム10は、室内の人数が人数閾値以上の場合、早めに換気装置3を運転状態にできる。
 換気制御装置1は、換気装置3の劣化に伴う換気量の低下が検知された場合、第一濃度閾値および第二濃度閾値を低下させ、換気装置3の劣化に伴う換気量の低下が解消された場合、第一濃度閾値および第二濃度閾値を元に戻す。
 上記構成により、換気システム10は、換気装置3が劣化した場合にCO濃度が換気基準値を超えてしまうことを抑制できる。
 換気システム10は、CO濃度検出装置2を複数備え、換気制御装置1は、複数のCO濃度検出装置2のうち、室内において人数が多い領域の近くに配置されたCO濃度検出装置2を特定し、その特定したCO濃度検出装置2の検知結果に基づいて第一制御モードおよび第二制御モードの制御を行う。
 上記構成により、換気システム10は、室内において人数が多い領域のCO濃度に基づいて室内の換気量を制御できる。
実施の形態2.
 実施の形態2は、実施の形態1の換気システム10を備えた空気調和システムに関する。
 図7は、実施の形態2に係る空気調和システム200の構成を示す図である。空気調和システム200は、実施の形態1の換気システム10と、空気調和機100と、を備えている。空気調和機100は、室内機101と室外機102とを備えている。室内機101と室外機102とは接続配管103および接続配管104によって接続されている。空気調和機100は、室内機101と室外機102とに接続配管103および接続配管104によって冷媒を循環させて室内の空調を行う。
 空気調和システム200は、空気調和システム全体を制御する制御装置1aを有している。制御装置1aは、実施の形態1の換気制御装置1を含んで構成されている。
 上記実施の形態1では、換気システム10が単独で使用される構成であったが、実施の形態2では、換気システム10が空気調和システム200内に組み込まれた構成である。このように、換気システム10は、単独使用してもよいし、空気調和システム200内に組み込まれてもよい。
 1 換気制御装置、1a 制御装置、2 CO濃度検出装置、3 換気装置、3a 操作スイッチ、4 外部機器、5a CO濃度検出装置間通信部とCO濃度検出装置との通信、5b 換気装置通信部と換気装置との通信、5c 外部機器通信部と外部機器との通信、10 換気システム、11 制御部、12 記憶部、13 操作部、13a 設定部、14 CO濃度検出装置間通信部、15 換気装置通信部、16 外部機器通信部、18 人感センサ、21 換気制御装置間通信部、22 CO濃度検出部、100 空気調和機、101 室内機、102 室外機、103 接続配管、104 接続配管、200 空気調和システム。

Claims (11)

  1.  室内のCO濃度を検出するCO濃度検出装置と、
     前記室内の換気を行う換気装置と、
     前記CO濃度が、換気を必要とする基準値である換気基準値よりも低い第一濃度閾値以上である場合に前記換気装置を運転状態にする第一制御モードと、前記CO濃度および前記CO濃度の上昇速度に基づいて前記CO濃度が前記換気基準値を超えると推定される場合に前記換気装置を運転状態にする第二制御モードと、を有する換気制御装置と、を備え、
     前記換気制御装置は、前記CO濃度および前記CO濃度の上昇速度に基づいて前記第一制御モードまたは前記第二制御モードの動作を行う換気システム。
  2.  前記第二制御モードは、前記CO濃度が前記第一濃度閾値よりも低い第二濃度閾値以上、かつ、前記CO濃度の変化速度が予め設定された濃度変化速度閾値以上である場合に前記換気装置を運転状態にするモードである請求項1記載の換気システム。
  3.  前記換気制御装置は、前記CO濃度が前記第二濃度閾値未満のとき前記換気装置を停止状態にする請求項2記載の換気システム。
  4.  前記換気制御装置は、前記第一制御モードで動作中に前記CO濃度が前記第一濃度閾値未満に低下した場合、前記換気装置を運転状態から停止状態に変更する請求項2または請求項3記載の換気システム。
  5.  前記換気制御装置は、ユーザーが前記濃度変化速度閾値を入力する操作部を備え、前記濃度変化速度閾値は、ユーザーが前記操作部へ入力して決定される請求項2~請求項4のいずれか一項に記載の換気システム。
  6.  前記換気装置の駆動および停止を切り替える操作スイッチを備え、前記操作スイッチの操作により前記換気装置の駆動および停止を手動で切り替えられる請求項1~請求項5のいずれか一項に記載の換気システム。
  7.  ユーザーによって操作され、手動操作モードと自動操作モードとの優先度が設定される設定部を備え、
     前記換気制御装置は、
     前記自動操作モードの優先度が前記手動操作モードの優先度よりも高い場合、前記CO濃度および前記CO濃度の上昇速度に基づいて前記換気装置を制御し、
     前記手動操作モードの優先度が前記手動操作モードの優先度よりも高い場合、前記操作スイッチの操作に基づいて前記換気装置を制御する請求項6記載の換気システム。
  8.  前記換気制御装置は、
     前記室内の人数を取得し、前記人数が予め設定された人数閾値以上の場合、前記第一濃度閾値および前記第二濃度閾値を低下させる補正を行い、
     前記人数が前記人数閾値未満に下がると、前記第一濃度閾値および前記第二濃度閾値を元に戻す請求項2~請求項5、および請求項2に従属する請求項6~請求項7のいずれか一項に記載の換気システム。
  9.  前記換気制御装置は、
     前記換気装置の劣化に伴う換気量の低下が検知された場合、前記第一濃度閾値および前記第二濃度閾値を低下させ、
     前記換気装置の劣化に伴う換気量の低下が解消された場合、前記第一濃度閾値および前記第二濃度閾値を元に戻す請求項2~請求項5、および請求項2に従属する請求項6~請求項8のいずれか一項に記載の換気システム。
  10.  前記CO濃度検出装置を複数備え、
     前記換気制御装置は、複数の前記CO濃度検出装置のうち、前記室内において人数が多い領域の近くに配置された前記CO濃度検出装置を特定し、その特定した前記CO濃度検出装置の検知結果に基づいて前記第一制御モードおよび前記第二制御モードの制御を行う請求項1~請求項9のいずれか一項に記載の換気システム。
  11.  請求項1~請求項10のいずれか一項に記載の換気システムを備えた空気調和システム。
PCT/JP2022/024272 2022-06-17 2022-06-17 換気システムおよびこれを備えた空気調和システム WO2023243071A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/024272 WO2023243071A1 (ja) 2022-06-17 2022-06-17 換気システムおよびこれを備えた空気調和システム
JP2024528053A JPWO2023243071A1 (ja) 2022-06-17 2022-06-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024272 WO2023243071A1 (ja) 2022-06-17 2022-06-17 換気システムおよびこれを備えた空気調和システム

Publications (1)

Publication Number Publication Date
WO2023243071A1 true WO2023243071A1 (ja) 2023-12-21

Family

ID=89192690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024272 WO2023243071A1 (ja) 2022-06-17 2022-06-17 換気システムおよびこれを備えた空気調和システム

Country Status (2)

Country Link
JP (1) JPWO2023243071A1 (ja)
WO (1) WO2023243071A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097547A2 (en) * 2006-02-20 2007-08-30 Lg Electronics Inc. Air conditioning system and method of controlling the same
JP2008533419A (ja) * 2005-03-10 2008-08-21 エアキュイティー,インコーポレイテッド 監視およびビル制御のための混合空気質パラメータ情報をもたらす共通センサを有する多点空気サンプリングシステム
WO2022044801A1 (ja) * 2020-08-31 2022-03-03 パナソニックIpマネジメント株式会社 制御システム、制御方法、及び、プログラム
JP2022071716A (ja) * 2020-10-28 2022-05-16 グローバル電子株式会社 密集対策システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533419A (ja) * 2005-03-10 2008-08-21 エアキュイティー,インコーポレイテッド 監視およびビル制御のための混合空気質パラメータ情報をもたらす共通センサを有する多点空気サンプリングシステム
WO2007097547A2 (en) * 2006-02-20 2007-08-30 Lg Electronics Inc. Air conditioning system and method of controlling the same
WO2022044801A1 (ja) * 2020-08-31 2022-03-03 パナソニックIpマネジメント株式会社 制御システム、制御方法、及び、プログラム
JP2022071716A (ja) * 2020-10-28 2022-05-16 グローバル電子株式会社 密集対策システム

Also Published As

Publication number Publication date
JPWO2023243071A1 (ja) 2023-12-21

Similar Documents

Publication Publication Date Title
US10359747B2 (en) Controlling device, controlling system and controlling method for indoor apparatus
US7832465B2 (en) Affordable and easy to install multi-zone HVAC system
US11092350B1 (en) Multifunction adaptive whole house fan system
JP5932998B2 (ja) 空気調和システム
JP5109732B2 (ja) 空調制御システム
JP5448049B2 (ja) 設備制御システム及び設備制御装置
JP2009092252A (ja) 空気調和機
JP2005226904A (ja) 空気調和装置
JP2014070882A (ja) 空気調和機および空調システム
EP2930444B1 (en) Indoor unit of air conditioner
WO2023243071A1 (ja) 換気システムおよびこれを備えた空気調和システム
JP2014202383A (ja) 空気調和システム
JP2011205413A (ja) 機器制御システム
JP2000074459A (ja) 天井埋込型空気調和機
CN112856595B (zh) 空气处理系统的控制方法和空气处理系统
JP2005233539A (ja) 空気調和機
KR0125742B1 (ko) 공기조화기 및 그 운전제어방법
JP2006125691A (ja) 空気調和システムおよびその制御方法
JP5072641B2 (ja) 換気装置
WO2023209870A1 (ja) 空気調和システム
JP6367657B2 (ja) 空気調和機
JP6415876B2 (ja) 室温制御システム
JP7262666B2 (ja) 換気空気調和システム
JP2001201136A (ja) 空気調和機の制御方法
KR20070062142A (ko) 환기시스템 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946887

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024528053

Country of ref document: JP