WO2021139649A1 - 电池, 电池模组, 电池包以及电动车 - Google Patents

电池, 电池模组, 电池包以及电动车 Download PDF

Info

Publication number
WO2021139649A1
WO2021139649A1 PCT/CN2021/070319 CN2021070319W WO2021139649A1 WO 2021139649 A1 WO2021139649 A1 WO 2021139649A1 CN 2021070319 W CN2021070319 W CN 2021070319W WO 2021139649 A1 WO2021139649 A1 WO 2021139649A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
electrode
piece
cell assembly
pole core
Prior art date
Application number
PCT/CN2021/070319
Other languages
English (en)
French (fr)
Inventor
张中林
周燕飞
张越
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP21738443.7A priority Critical patent/EP4086979A1/en
Priority to KR1020227027238A priority patent/KR20220124770A/ko
Priority to US17/791,136 priority patent/US20230052047A1/en
Priority to JP2022542271A priority patent/JP2023509216A/ja
Publication of WO2021139649A1 publication Critical patent/WO2021139649A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/524Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/526Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application belongs to the field of batteries, and specifically relates to a battery, a battery module, a battery pack, and an electric vehicle.
  • the performance of the battery is particularly important, and the battery capacity determines the overall battery life.
  • the connection between two adjacent batteries in series often requires additional power connectors for power connection, which leads to more battery installation structures, which not only increases the cost, but also causes the power battery pack to be more expensive.
  • the overall weight increases; at the same time, the installation structure occupies more internal space of the battery pack, resulting in a decrease in the overall capacity of the power battery pack.
  • the internal resistance of the battery pack increases, which increases the internal consumption of the power battery pack in use, reduces the endurance of the power battery pack, and reduces the user experience .
  • This application aims to solve at least one of the technical problems existing in the prior art. For this reason, this application proposes a battery that has high capacity and high voltage, has strong endurance, saves shell materials, and has better economic benefits.
  • the battery according to the embodiment of the present application includes: a casing; an M-layer cell assembly, the M-layer cell assembly is arranged in the shell, M ⁇ 2, the M-layer cell assembly is stacked, the M-layer cell assembly is electrically connected, and the battery
  • the core assembly includes a plurality of pole core groups, and the plurality of pole core groups in each layer of the cell assembly are connected in series.
  • the battery of the embodiment of the present application by arranging M layers of battery cell components in a shell, M ⁇ 2, it is realized that multiple pole cores are arranged in a shell, and the multiple pole cores are integrated together, which can make the battery With high capacity or high voltage, it can not only improve battery life, but also save shell materials, reduce the manufacturing process difficulty and production cost of the entire battery, and at the same time, because multiple pole cores are compactly arranged in the same shell , Which can save space and improve space utilization while improving battery life.
  • an electrode terminal for drawing current is provided on the housing, and the electrode terminal includes a first electrode terminal and a second electrode terminal, and the first electrode terminal and the second electrode terminal are located on the same side of the housing.
  • the housing includes a body and a cover plate. There are two cover plates. The two cover plates are provided at opposite ends of the body to close the internal space of the body. One of the two cover plates is provided with There are electrode terminals.
  • M is an even number, and two adjacent layers of battery cell assemblies are connected in series.
  • the plurality of pole core groups of the battery cell assembly are arranged in sequence along the first direction, the multilayer battery cell assembly has ends disposed opposite to each other in the first direction, and two adjacent battery core assemblies pass The two-pole core groups at the same end are connected in series.
  • a plurality of electrode core groups of the battery cell assembly are arranged in sequence along the first direction, the electrode core group includes a first electrode lead-out member and a second electrode lead-out member for drawing current, and the first electrode leads The component and the second electrode lead-out component are respectively arranged on both sides of the pole core group along the first direction.
  • a plurality of electrode core groups in the battery cell assembly are connected in series through a first connector, and two adjacent layers of battery cell assemblies are connected in series through a second connector.
  • At least one of the first connecting piece and the second connecting piece includes: a metal connecting piece, two ends of the metal connecting piece are respectively connected to two adjacent pole core groups; an insulation protection piece, an insulation The protective piece is sleeved on the metal connecting piece.
  • the electrode core set includes a first electrode lead-out piece and a second electrode lead-out piece for drawing current, the first electrode lead-out piece is configured as a negative lead-out piece, and the second electrode lead-out piece is configured as a positive electrode.
  • the metal connecting piece includes a copper connecting piece and an aluminum connecting piece connected with the copper connecting piece. The copper connecting piece is connected with the first electrode lead-out piece, the aluminum connecting piece is connected with the second electrode lead-out piece, and the insulation protection piece is coated with the copper connection The connection point between the piece and the aluminum connector.
  • the battery cell assembly further includes a plurality of insulating films, and the plurality of insulating films respectively wrap a plurality of electrode core groups in a one-to-one correspondence.
  • This application also proposes a battery module, including the above-mentioned battery.
  • the battery module according to the present application includes the above-mentioned battery.
  • the battery module according to the embodiment of the present application can improve the endurance of the battery module and at the same time make it possible to obtain a battery module with the same capacity and voltage.
  • the number of batteries in the module can be reduced, thereby reducing the conductive parts between the batteries, thereby reducing the cost of the battery module, and reducing the space and volume occupied by the conductive parts in the battery module.
  • the reduction of components reduces the internal resistance of the battery module, thereby enhancing the battery module's endurance.
  • This application also proposes a battery pack, which includes the above-mentioned battery or the above-mentioned battery module.
  • the battery pack according to the embodiment of the present application includes the above-mentioned battery or the above-mentioned battery module.
  • the battery pack according to the embodiment of the present application can improve the endurance of the battery pack and at the same time make it possible to obtain a battery module of the same capacity and voltage.
  • the number of battery modules in the battery pack can be reduced, thereby reducing the power connections between the battery modules, thereby reducing the production cost of the battery pack, simplifying the production process of the battery pack, and reducing the power in the battery pack.
  • the volume of the space occupied by the connector, and the reduction of the power connector reduces the internal resistance of the battery pack, which reduces the internal consumption of the battery pack during use, thereby improving the battery pack’s endurance.
  • the application also proposes an electric vehicle, which includes the battery pack described above.
  • the electric vehicle according to the embodiment of the present application includes the battery pack described above.
  • the electric vehicle according to the embodiment of the present application can make the internal structure of the electric vehicle more compact, and at the same time can reduce the internal consumption of the battery pack during use, improve the battery pack’s endurance, and thereby improve the electric vehicle’s performance.
  • Use experience achieve the effect of saving energy and saving use cost, and then improve the user experience.
  • Figure 1 is a perspective view of a battery according to an embodiment of the present application.
  • Figure 2 is a perspective view of a battery according to an embodiment of the present application.
  • Figure 3 is a top view of a battery according to an embodiment of the present application.
  • Figure 4 is a partial cross-sectional view of a battery according to an embodiment of the present application.
  • Fig. 5 is a perspective view of a partial structure of a battery according to an embodiment of the present application.
  • Fig. 6 is a perspective view of a metal connection member and an insulation protection member of a battery according to an embodiment of the present application.
  • Housing 10 body 11, first electrode terminal 12, second electrode terminal 13, first end cover 14, second end cover 15,
  • the battery 1 As shown in FIGS. 1 to 5, the battery 1 according to the embodiment of the present application includes: a casing 10 and an M-layer cell assembly 20.
  • the battery 1 is used to provide power for the operation of electronic equipment, for example, an electric vehicle.
  • the M-layer cell assembly 20 is disposed in the housing 10, and M ⁇ 2. It can be understood that M is an integer. For example, M can be 2, or 3, or 4, which is not exhaustive here.
  • the M-layer cell assemblies 20 are stacked and arranged, and the M-layer cell assemblies 20 are electrically connected. For example, the two-layer cell assemblies 20 are stacked; for example, the three-layer cell assemblies 20 are stacked and so on.
  • the cell assembly 20 includes a plurality of pole core groups 21, the pole core set 21 includes at least one pole core 212, and the plurality of pole core sets 21 in each layer of the cell assembly 20 are connected in series.
  • the stacked arrangement of the multi-layer cell assemblies 20 may be that the multi-layer cell assemblies 20 are connected in series; the multi-layer cell assemblies 20 may be connected in parallel; and it may also be partially connected in series and partially connected in parallel.
  • the number of pole core groups 21 in each layer of cell assembly 20 may be all the same, or all may be different, or may be partly the same or partly different.
  • the battery 1 includes a two-layer battery cell assembly 20, the two-layer battery cell assemblies 20 can be connected in series, and the number of the electrode core groups 21 in the two-layer battery cell assembly 20 can be the same or different.
  • the battery 1 includes a two-layer battery cell assembly 20, the two-layer battery cell assemblies 20 can be connected in parallel, and the number of the pole core groups 21 in the two-layer battery cell assembly 20 can be the same or different.
  • the battery 1 includes a 3-layer battery cell assembly 20.
  • the 3-layer battery cell assemblies 20 can be connected in series.
  • the number of electrode core groups 21 in each layer of the 3-layer battery cell assembly 20 can be the same, or the number of electrode core groups 21 in each layer can be the same.
  • the number of pole core groups 21 in the two-layer cell assembly 20 is the same, and the number of pole core sets 21 in the other layer of cell assembly 20 is different from the number of pole core sets 21 in the remaining two-layer cell assemblies 20.
  • the battery 1 includes a 3-layer battery cell assembly 20, and the 3-layer battery cell assemblies 20 are connected in parallel.
  • the number of the electrode core groups 21 in each layer of the 3-layer battery cell assembly 20 may be the same, or it may be 2 layers of the 3-layer battery cells.
  • the number of pole core groups 21 in the core assembly 20 is the same, and the number of pole core sets 21 in the other one-layer cell assembly 20 is different from the number of pole core sets 21 in the remaining two-layer cell assemblies 20.
  • the battery 1 includes a three-layer cell assembly 20, wherein the two-layer cell assembly 20 is connected in parallel with another layer of the cell assembly 20 in series, and the number of the pole core sets 21 in each layer of the three-layer cell assembly 20 may be equal.
  • the number of pole core groups 21 in the 2-layer cell assembly 20 in the 3-layer is the same, and the number of pole core sets 21 in the 1-layer cell assembly 20 is the same as that in the remaining 2-layer cell assemblies 20
  • the number of pole core groups 21 is different.
  • the battery 1 includes 4 layers of battery cell assemblies 20, which can be connected in series with the 4 layers of battery core assemblies 20.
  • the number of electrode core groups 21 in each layer of battery assembly 20 can be the same, or it can be in 4 layers.
  • the number of pole core groups 21 in the 2-layer cell assembly 20 is the same, and the number of pole core sets 21 in the 2-layer cell assembly 20 can be the same or different, and it can also be a 3-layer cell assembly in a 4-layer
  • the number of pole core groups 21 in 20 is the same, and the number of pole core groups 21 in the other one-layer cell assembly 20 is different from the other three layers. Or if this application is not exhaustive, no special restrictions, just take this as an example.
  • the number of pole core groups 21 in each layer of the multilayer cell assembly 20 can be the same, which not only improves the regularity of the arrangement of the multilayer cell assembly 20, but also improves the space utilization of the housing 10, This is beneficial to the miniaturization of the battery 1. But this application is not restricted.
  • the casing 10 can be a metal casing or a composite material casing.
  • it is an aluminum casing, which can make the casing 10 lighter in weight and moderate in structural strength. It is more economical, but this application is not limited.
  • the pole core 212 mentioned in this application is a pole core 212 commonly used in the field of power batteries, and the pole core 212 and the pole core group 21 are internal components of the casing 10 of the battery 1, and cannot be understood as Battery 1 itself.
  • the pole core 212 may be formed by winding, or may be formed by lamination.
  • the pole core 212 includes at least a positive electrode sheet, a separator, a negative electrode sheet, and an electrolyte.
  • the pole core 212 generally refers to a component that is not completely sealed. Therefore, the battery 1 mentioned in the present application is a single battery, which cannot be simply understood as a battery module or a battery pack because it includes a plurality of pole cores 212.
  • one pole core set 21 may include one pole core 212, or the pole core set 21 may include at least two pole cores 212 and at least two pole cores 212 are connected in parallel to form a pole core set 21.
  • one pole core group 21 may also include three pole cores 212 or more pole cores 212, which is not exhaustive in this application. It can be understood that, when each layer of cell assembly 20 includes multiple pole core groups 21, the number of pole cores 212 in each pole core group 21 may be the same, or may be different, or may be partially the same. different.
  • series connection of the pole core groups 21 in the present application can be a series connection between adjacent pole core groups 21, and the specific way of implementation can be that the current extraction components on the adjacent pole core groups 21 are directly connected, or through additional The conductive components are electrically connected, that is, two adjacent pole core groups 21 may be directly electrically connected or indirectly electrically connected.
  • the battery cell assembly 20 is provided with two layers, and each layer of the battery cell assembly 20 includes six pole core groups 21, and the six pole core groups 21 are spaced in the length direction of the housing 10 and connected in series.
  • each pole core group 21 includes a pole core 212.
  • the battery 1 of the embodiment of the present application by arranging the M-layer cell assembly 20 in a casing 10, M ⁇ 2, it is realized that a plurality of pole cores 212 are arranged in a case 10 and the plurality of pole cores 212 are integrated Together, the battery 1 can be made with high capacity or high voltage. In addition, it can improve the battery 1’s endurance while saving materials for the casing 10, reducing the manufacturing process difficulty and production cost of the entire battery 1. At the same time, due to multiple poles The core 212 is compactly arranged in the same casing 10, which can improve the endurance of the battery 1 while saving space and improving space utilization.
  • the housing 10 is provided with electrode terminals for drawing current.
  • the electrode terminals include a first electrode terminal 12 and a second electrode terminal 13, and the first electrode terminal 12 and the second electrode terminal 13 are located in the housing. 10 on the same side.
  • the first electrode terminal 12 and the second electrode terminal 13 are connected to an external device to provide power for the operation of the external device.
  • the first electrode terminal 12 may be a positive electrode terminal
  • the second electrode terminal 13 may be a negative electrode terminal
  • the first electrode terminal 12 may be a negative electrode terminal
  • the second electrode terminal 13 may be a positive electrode terminal.
  • the first electrode terminal 12 and the second electrode terminal 13 are arranged on the same side of the casing 10.
  • the battery 1 When the battery 1 is suitable for use in a battery module, it is beneficial to the arrangement of the conductive members between the batteries 1 in the battery module. ; When the battery 1 is suitable for use in a battery pack, it is beneficial to the arrangement of the power connections between the batteries 1 in the battery pack.
  • the housing 10 includes a main body 11 and a cover plate.
  • the two cover plates are provided at opposite ends of the main body 11 to close the internal space of the main body 11.
  • One of the two cover plates is provided with an electrode terminal.
  • the two cover plates are named the first end cover plate 14 and the second end cover plate 15 respectively.
  • An electrode terminal is provided on the first end cover plate 14 or an electrode terminal is provided on the second end cover plate 15. In this way, the positive and negative electrode terminals are arranged on one cover plate, thereby saving cost.
  • the body 11 is formed in a ring shape, and the two ends of the body 11 are open, so that the cell assembly 20 can be installed in the annular cavity formed by the body 11.
  • the first end cover 14 is provided on the body 11.
  • the second end cover 15 is provided on the main body 11 to close the open opening at the other end of the main body 11.
  • first end cover 14, the second end cover 15 and the body 11 may be integrally formed, thereby reducing assembly procedures, improving assembly efficiency, and improving the structural strength of the housing 10.
  • first end cover 14 and the main body 11 are integrally formed, and the second end cover 15 and the main body 11 are separately processed and then connected; or the first end cover 14 and the second end cover 15 And the main body 11 is separately processed and then connected, so that the processing difficulty of the housing 10 can be reduced, and the production efficiency of the housing 10 can be improved.
  • the first end cover 14 is provided with electrode terminals and the cell assembly 20 in the battery 1 has an odd number of layers, that is, when M is an odd number, it may be that the two layers of the cell assembly 20 are connected in parallel. It is connected in series with the battery cell assemblies 20 of the remaining layers, for example, when there are three layers, two of the battery core assemblies 20 may be connected in parallel and then connected in series with another layer of battery core assemblies 20. It may also be that the M-1 layer cell assembly 20 is connected in series with one layer of cell assembly 20 after being connected in parallel. This application is not exhaustive and does not make any special restrictions, but just take this as an example.
  • M is an even number, and two adjacent layers of cell assemblies 20 are connected in series.
  • the first electrode terminal 12 and the second electrode terminal 13 are both provided on the first end cover 14 or the second end cover 15, so that the battery 1 can achieve high voltage output.
  • two adjacent layers of battery cell assemblies 20 are connected in parallel, thereby enabling the battery 1 to achieve high-capacity output.
  • the pole core group 21 has two layers, and the first electrode terminal 12 and the second electrode terminal 13 are both provided on the first end cover 14.
  • the second end cover 15 and the main body 11 are integrally formed, and the first end cover 14 and the main body 11 are separately processed and then connected, thereby reducing the processing steps and saving man-hours. In turn, the production cost is reduced. But this application is not limited to this.
  • the plurality of pole core groups 21 of the battery cell assembly 20 are sequentially arranged along a first direction, where the first direction is the left-right direction as shown in FIG. 1. It should be noted that the first direction is the length direction of the battery 1.
  • the multi-layer battery cell assembly 20 has ends disposed opposite to each other along the first direction, and adjacent two-layer battery core assemblies 20 are connected in series through the two-pole core group 21 located at the same end. As a result, the difficulty of connecting the adjacent two-layer cell assemblies 20 is reduced, the connection distance between the adjacent two-layer cell assemblies 20 is shortened, and the connection efficiency is relatively improved, thereby achieving the purpose of reducing costs.
  • the multiple pole core groups 21 of the battery cell assembly 20 are sequentially arranged along a first direction, where the first direction is the left-right direction as shown in FIG. 1.
  • the pole core assembly 21 includes a first electrode lead-out piece and a second electrode draw-out piece for drawing current.
  • the first electrode lead-out piece and the second electrode lead-out piece are respectively arranged on both sides of the pole core set 21 along the first direction.
  • the first direction is the length direction of the battery 1.
  • the arrangement of the multiple pole core groups 21 of the battery cell assembly 20 in the first direction means that the multiple pole core groups 21 in the same layer of the battery cell assembly 20 are sequentially arranged in the first direction. .
  • each pole core set 21 needs to be connected in series.
  • the first electrode lead-out piece and the second electrode lead-out piece can realize the series connection between two adjacent electrode core groups 21, and the connection difficulty is relatively low, and the connection efficiency is relatively high.
  • the first electrode lead-out member and the second electrode lead-out member refer to the positive electrode ear and the negative electrode ear on the electrode core, but the application is not limited thereto.
  • the first electrode lead-out member and the second electrode lead-out member may be the positive electrode ear and the negative electrode ear of the electrode core 212, respectively.
  • the first electrode lead-out member may be a positive pole lead-out terminal formed by compounding and welding the anode lugs of the plurality of pole cores 212
  • the second electrode lead-out member may be formed by The negative electrode lugs of the plurality of pole cores 212 are combined and welded together to form a negative electrode lead-out end.
  • the first electrode lead-out member may be a negative lead-out end formed by welding the negative lugs of a plurality of pole cores 212 together, and the second electrode lead-out member may be formed by compounding and welding the positive lugs of a plurality of pole cores 212 together. Positive terminal.
  • first and second of the first electrode lead-out member and the second electrode lead-out member are only used for name distinction, and are not used to limit the number.
  • the multiple pole core groups 21 of the battery cell assembly 20 are sequentially arranged along a first direction, where the first direction is the left-right direction as shown in FIG. 1.
  • the pole core set 21 includes a first electrode lead-out piece and a second electrode draw-out piece for drawing current.
  • the first electrode lead-out piece and the second electrode lead-out piece are arranged on both sides of the pole core set 21 along the first direction.
  • the multilayer cell assembly 20 has a first end and a second end opposite to each other along the first direction.
  • the first electrode terminal 12 and the second electrode terminal 13 are provided on the same cover plate, that is, at the first end at the same time. Or at the second end position.
  • the adjacent two-layer cell assemblies 20 are connected in series through the two-pole core group 21 at the first end or the two-pole core group 21 at the second end 22. It can be understood that at this time, the arrangement direction of the first electrode lead-out piece and the second electrode lead-out piece in each layer of the cell assembly 20 is the same as that of the first electrode lead-out piece and the second electrode in the adjacent layer of the cell assembly 20.
  • the lead-out elements are arranged in opposite directions. For example, when M is two layers, the first electrode lead-out elements and the second electrode lead-out elements in the cell assembly 20 of one layer are arranged in the same direction as those in the cell assembly 20 of the other layer.
  • the arrangement directions of the first electrode lead-out piece and the second electrode lead-out piece are opposite.
  • M is an odd number
  • the arrangement direction of the components is opposite.
  • M is 3
  • the arrangement directions of the first electrode lead-out parts and the second electrode lead-out parts in two adjacent layers of cell assemblies 20 are the same, which is the same as that of the other layer of cell assemblies 20.
  • the first electrode lead-out part and the second electrode lead-out part are arranged in opposite directions.
  • the plurality of pole core groups 21 in the battery cell assembly 20 are connected in series through the first connector 30, thereby realizing that the plurality of pole core sets 21 are connected in series, and the two adjacent layers of battery cell assemblies 20 are connected in series.
  • the second connecting member 40 is connected in series, thereby realizing the series connection of the multilayer battery cell assembly 20.
  • both the first connecting member 30 and the second connecting member 40 can conduct electricity, and the specific structure is set according to actual needs.
  • At least one of the first connecting piece 30 and the second connecting piece 40 includes: a metal connecting piece a and an insulation protection piece b.
  • the two ends of the metal connecting piece a are connected to two adjacent ones respectively.
  • the pole core set 21 is connected, thereby realizing that the two pole core sets 21 are connected in series, and the insulation protection member b is sleeved on the metal connection piece a, which can improve the structural strength of the metal connection piece a, and at the same time, it can play a role in insulation safety. , To reduce the possibility of leakage of the metal connector a.
  • the pole core set 21 includes a first electrode lead-out piece and a second electrode lead-out piece for drawing current, the first electrode lead-out piece is configured as a negative lead-out piece, and the second electrode lead-out piece
  • the metal connector a includes a copper connector a1 and an aluminum connector a2.
  • the copper connector a1 is connected to the first electrode lead-out part
  • the aluminum connector a2 is connected to the second electrode lead-out part
  • One end of a1 is connected with one end of the aluminum connecting piece a2, and the insulation protection piece b covers the joint between the copper connecting piece a1 and the aluminum connecting piece a2.
  • the current universal pole core 212 is usually configured with a copper structure at the negative terminal.
  • the second electrode terminal is the positive terminal.
  • the current universal pole core 212 has a positive terminal.
  • the end is an aluminum structural part, because the surface of the aluminum structural part is provided with an oxide layer at a high potential, so that the positive lead terminal is not easily oxidized.
  • the other end of the copper connecting piece a1 is connected to the copper structure of one of the two adjacent pole core groups 21, and the other end of the aluminum connecting piece a2 is connected to the aluminum structure of the other of the two adjacent pole cores 212,
  • the metal connecting piece a is provided, so that the structure of the metal connecting piece a and the existing pole core 212 can be matched, so that the connection reliability between the metal connecting piece a and the pole core 212 is higher.
  • the copper connecting piece a1 and the aluminum connecting piece a2 are welded and connected, thereby realizing the connection of two adjacent pole cores 212 in series.
  • the insulation protection piece b is sleeved on the metal connection piece a through a dipping process, a heat shrinking process, a spraying process or a hot melt process, thereby reducing the possibility of the insulation protection piece b falling off the metal connection piece a.
  • the gap between the insulation protection piece b and the metal connection piece a is reduced to a greater extent.
  • the housing 10 is a metal housing 10, the possibility of electric leakage of the metal connection piece a contacting the housing 10 is reduced.
  • the number of pole cores 212 in each layer of pole core group 21 is the same, so that the utilization rate of the space in the housing 10 can be increased to a greater extent.
  • the cell assembly 20 further includes a plurality of insulating films, and the plurality of insulating films respectively wrap the plurality of electrode core groups 21 in a one-to-one correspondence.
  • the pole core assembly 21 and the casing 10 can be insulated, and the possibility of a short circuit inside the battery 1 can be reduced.
  • each electrode core group 21 is provided with an insulating film, and electrolyte can be injected into the insulating film, so that the electrolyte is not shared between the electrode core groups 21, which reduces the possibility of short circuit inside the battery 1, and the electrolyte is also Will not decompose due to potential difference.
  • the insulating film needs to have a certain degree of insulation and corrosion resistance to the electrolyte.
  • the material of the insulating film is not particularly limited, as long as it can be insulated and does not react with the electrolyte.
  • the material of the insulating film may include polypropylene (PP) Or polyethylene (PE) film.
  • the battery module according to the embodiment of the present application includes the battery 1 described above.
  • the housing 10 is further provided with a communication terminal, the communication terminal is electrically connected to each pole core group 21, and the communication terminal can be used to detect the status information of each pole core group 21 (for example, Voltage, temperature, etc.).
  • Safety and stability is an extremely important part of the battery 1.
  • the battery 1 in the related technology uses independent batteries 1 in series/parallel to form a battery module or battery pack, so that each battery 1 can be performed on the outside of each battery 1.
  • each pole core set 21 cannot be monitored when sampling outside of the battery 1; 21 are electrically connected to the communication terminals, and each pole core group 21 inside the casing 10 can be sampled to monitor the state of each pole core group 21 to ensure the safety and stability of the battery 1.
  • the battery module according to the embodiment of the present application can improve the endurance of the battery module and at the same time make it possible to obtain a battery module of the same capacity and voltage.
  • the number of batteries 1 in the battery module can be reduced, thereby reducing the conductive parts between the batteries, thereby reducing the cost of the battery module, and reducing the space and volume occupied by the conductive parts in the battery module.
  • the reduction of the conductive parts reduces the internal resistance of the battery module, thereby improving the endurance of the battery module.
  • the battery pack according to the embodiment of the present application includes the above-mentioned battery or the above-mentioned battery module.
  • the battery pack according to the embodiment of the present application can improve the endurance of the battery pack and at the same time make it possible to obtain a battery module of the same capacity and voltage.
  • the number of battery modules in the battery pack can be reduced, thereby reducing the power connections between the battery modules, thereby reducing the production cost of the battery pack, simplifying the production process of the battery pack, and reducing the power in the battery pack.
  • the volume of the space occupied by the connector, and the reduction of the power connector reduces the internal resistance of the battery pack, which reduces the internal consumption of the battery pack during use, thereby improving the battery pack’s endurance.
  • the electric vehicle according to the embodiment of the present application includes the battery pack described above.
  • the electric vehicle according to the embodiment of the present application can make the internal structure of the electric vehicle more compact, and at the same time can reduce the internal consumption of the battery pack during use, improve the battery pack’s endurance, and thereby improve the electric vehicle’s performance.
  • Use experience achieve the effect of saving energy and saving use cost, and then improve the user experience.

Abstract

一种电池(1), 电池模组, 电池包以及电动车, 电池(1)包括: 壳体(10); M层电芯组件(20), M层电芯组件(20)设在壳体(10)内, M≥2, M层电芯组件(20)层叠设置, M层电芯组件(20)电连接, 电芯组件(20)包括多个极芯组(21), 每层电芯组件(20)中的多个极芯组(21)串联连接。

Description

电池、电池模组、电池包以及电动车
相关申请的交叉引用
本申请基于申请号为202020059425.0,申请日为2020年1月10日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请属于电池领域,具体而言涉及一种电池、电池模组、电池包以及电动车。
背景技术
随着科技的发展,各种电子设备、电动工具等得到广泛的应用,作为核心部件,电池的性能显得尤为重要,电池的容量决定了整体的续航。相关技术中,相邻的两个串联的电池之间在相接处往往需要通过额外设置动力连接件进行动力连接,从而导致电池的安装结构较多,不仅使得成本增加,而且导致动力电池包的整体重量上升;同时,安装结构占用了电池包较多的包体内部空间,造成动力电池包整体容量降低。另外,因需要设置多个外置动力连接件进行动力连接,导致电池包内阻增加,提高了动力电池包在使用中的内耗,降低了动力电池包的续航能力,从而降低了用户的使用体验。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种电池,所述电池具备高容量和高电压,续航能力强,同时节约壳体材料,经济效益更好。
根据本申请实施例的电池,包括:壳体;M层电芯组件,M层电芯组件设在壳体内,M≥2,M层电芯组件层叠设置,M层电芯组件电连接,电芯组件包括多个极芯组,每层电芯组件中的多个极芯组串联连接。
根据本申请实施例的电池,通过在一个壳体中设置M层电芯组件,M≥2,从而实现在一个壳体中设置多个极芯,将多个极芯集成在一起,能够使得电池具备高容量或者高电压,此外能够在提升电池的续航能力的同时,节约壳体用料,降低整个电池的制造工艺难度和生产成本,同时由于多个极芯紧凑地设于同一个壳体中,能够在提升电池的续航能力的同时节约所占空间,提升空间利用率。
根据本申请的一些实施例,壳体上设有用于引出电流的电极端子,电极端子包括第一电极端子和第二电极端子,第一电极端子和第二电极端子位于壳体的同一侧。
根据本申请的一些实施例,壳体包括本体和盖板,盖板为两个,两个盖板设于本体相对的两端以封闭本体的内部空间,两个盖板中的其中一个上设有电极端子。
根据本申请的一些实施例,M为偶数,相邻的两层电芯组件之间串联连接。
根据本申请的一些实施例,电芯组件的多个极芯组沿第一方向依次排布,多层电芯组件具有沿第一方向相对设置的端部,相邻的两层电芯组件通过位于同一端部的两极芯组串联连接。
根据本申请的一些实施例,电芯组件的多个极芯组沿第一方向依次排布,极芯组包括用于引出电流的第一电极引出件和第二电极引出件,第一电极引出件和第二电极引出件沿第一方向分别设于极芯组的两侧。
根据本申请的一些实施例,电芯组件中的多个极芯组之间通过第一连接件串联连接,相邻的两层电芯组件之间通过第二连接件串联连接。
根据本申请的一些实施例,第一连接件和第二连接件中的至少一个包括:金属连接件,金属连接件的两端分别与相邻的两个极芯组连接;绝缘防护件,绝缘防护件套设在金属连接件上。
根据本申请的一些实施例,极芯组包括用于引出电流的第一电极引出件和第二电极引出件,第一电极引出件被构造成负极引出件,第二电极引出件被构造成正极引出件,金属连接件包括铜连接件和与铜连接件连接的铝连接件,铜连接件与第一电极引出件连接,铝连接件与第二电极引出件连接,绝缘防护件包覆铜连接件和铝连接件的连接处。
根据本申请的一些实施例,电芯组件还包括多个绝缘膜,多个绝缘膜分别一一对应包裹多个极芯组。
本申请还提出了一种电池模组,包括上述所述的电池。
根据本申请的电池模组,包括上述的所述的电池。
根据本申请实施例的电池模组,包括上述具备高容量或者高电压的电池,能够在提升电池模组的续航能力的同时,使得在想获取同样容量和电压的电池模组的前提下,电池模组内电池的数量可以减少,从而减少了电池之间相连处的导通件,进而降低了电池模组的成本,同时减少了电池模组中导通件所占空间体积,同时由于导通件的减少使得电池模组的内阻减小,从而提升了电池模组的续航能力。
本申请还提出了一种电池包,包括上述所述的电池或者上述所述的电池模组。
根据本申请实施例的电池包,包括上述所述的电池或者上述所述的电池模组。
根据本申请实施例的电池包,包括上述所述的电池或者上述所述的电池模组,能够提升电池包的续航能力的同时,使得在想获取同样容量和电压的电池模组的前提下,电 池包内电池模组的数量可以减少,从而减少了电池模组之间相连处的动力连接件,进而降低了电池包的生产成本以及简化了电池包的生产工艺,同时减少了电池包中动力连接件所占空间体积,同时由于动力连接件的减少使得电池包的内阻减小,降低了电池包在使用过程中的内耗,从而提升了电池包的续航能力。
本申请还提出了一种电动车,包括上述所述的电池包。
根据本申请实施例的电动车,包括根据上述所述的电池包。
根据本申请实施例的电动车,包括上述所述的电池包,能够使得电动车内部结构更加紧凑,同时能够降低电池包在使用过程中的内耗,提升电池包的续航能力,从而提升电动车的使用体验,达到节约能源,节约使用成本的效果,进而提升用户的使用体验。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是根据本申请实施例的电池的透视图;
图2是根据本申请实施例的电池的立体图;
图3是根据本申请实施例的电池的俯视图;
图4是根据本申请实施例的电池的局部剖视图;
图5是根据本申请实施例的电池的部分结构的立体图;
图6是根据本申请实施例的电池的金属连接件和绝缘防护件的立体图。
附图标记:
电池1,
壳体10,本体11,第一电极端子12,第二电极端子13,第一端部盖板14,第二端部盖板15,
电芯组件20,极芯组21,极芯212,
第一连接件30,第二连接件40,金属连接件a,铜连接件a1,铝连接件a2,绝缘防护件b。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下面参考图1-图6描述根据本发明实施例的电池1。
如图1-图5所示,根据本申请实施例的电池1,包括:壳体10和M层电芯组件20。电池1用以为电子设备的运行提供电源,例如,电动车。
具体地,M层电芯组件20设在壳体10内,M≥2,可以理解的是,M为整数,例如M可以是2也可以是3还可以是4,此处不作穷举。M层电芯组件20层叠设置,M层电芯组件20电连接,例如,2层电芯组件20层叠设置;再如3层电芯组件20层叠设置等。电芯组件20包括多个极芯组21,极芯组21包括至少一个极芯212,每层电芯组件20中的多个极芯组21串联连接。
可以理解的是,多层电芯组件20层叠设置可以是多层电芯组件20依次串联;可以是多层电芯组件20并联;还可以是部分串联,部分并联。本申请不作限制。每层电芯组件20中的极芯组21的数量可以全部相同,也可以全部不同,还可以是部分相同,部分不同。
例如,电池1包括2层电芯组件20,2层电芯组件20可以依次串联,2层电芯组件20中的极芯组21的数量可以相同也可以不同。或者电池1包括2层电芯组件20,2层电芯组件20可以并联,2层电芯组件20中的极芯组21的数量可以相同也可以不同。
再如,电池1包括3层电芯组件20,3层电芯组件20可以依次串联,可以是3层电芯组件20中每层的极芯组21的数量均相同,还可以是3层中的2层电芯组件20中的极芯组21的数量相同,另外一层电芯组件20中的极芯组21的数量与其余2层电芯组件20中的极芯组21的数量不同。或者电池1包括3层电芯组件20,3层电芯组件20并联,可以是3层电芯组件20中每层的极芯组21的数量均相同,还可以是3层中的2层电芯组件20中的极芯组21的数量相同,另外1层电芯组件20中的极芯组21的数量与其余2层电芯组件20中的极芯组21的数量不同。再或者电池1包括3层电芯组件20,其中2层电芯组件20并联之后与另外1层电芯组件20串联,可以是3层电芯组件20中每层的极芯组21的数量均相同,还可以是3层中的2层电芯组件20中的极芯组21的数量相同,另外1层电芯组件20中的极芯组21的数量与其余2层电芯组件20中的极芯组21的数量不同。
再如,电池1包括4层电芯组件20,可以是4层电芯组件20依次串联,可以是每一层电芯组件20中的极芯组21的数量均相同,还可以是4层中的2层电芯组件20中的极芯组21的数量相同,另外2层电芯组件20中的极芯组21的数量可以相同也可以不同,还可以是4层中的3层电芯组件20中的极芯组21的数量相同,另外1层电芯组件20中的极芯组21的数量与其余3层不同。或如本申请不作穷举,不作特殊限制,仅 以此为例。
可以理解的是,多层电芯组件20中的每层中极芯组21的数量可以相同,由此不仅可以提高多层电芯组件20排列的规整性,提升壳体10的空间利用率,从而有利于实现电池1的小型化。但本申请不作限制。
此外,壳体10可以是金属件壳体,也可以是复合材料件壳体,在本申请的一些实施例中,为铝制壳体,由此可以使得壳体10更加轻量化,结构强度适中更具有经济性,但本申请不作限制。
还需要理解的是,本申请中所提到的极芯212为动力电池领域常用的极芯212,极芯212以及极芯组21为电池1的壳体10内部的组成部分,而不能理解为电池1本身。极芯212可以是卷绕形成的,也可以是叠片的方式制成的。一般情况下,极芯212至少包括正极片、隔膜和负极片以及电解液,极芯212一般是指未完全密封的组件。因此,本申请提到的电池1为单体电池,不能因其包括多个极芯212,而将其简单的理解为电池模组或者电池组。
需要说明的是,一个极芯组21可以包括一个极芯212,也可以是极芯组21包括至少两个极芯212且至少两个极芯212并联连接组成一个极芯组21。此外,一个极芯组21还可以包括3个极芯212或者更多的极芯212,本申请不作穷举。由此可以理解的是,当每层电芯组件20包括多个极芯组21时,每个极芯组21中的极芯212的数量可以相同,也可以不同,还可以是部分相同,部分不同。
此外,本申请中极芯组21的串联方式可以为相邻极芯组21间串联连接,实现的具体方式可以为相邻极芯组21上的电流引出部件直接连接,也可以是通过额外的导电部件实现电连接,即,相邻两个极芯组21之间可以直接电连接,也可以间接电连接。
具体地,根据本申请的一个实施例,电芯组件20设有两层,每层电芯组件20包括六个极芯组21,六个极芯组21在壳体10的长度方向间隔且串联连接,每个极芯组21包括一个极芯212。
根据本申请实施例的电池1,通过在一个壳体10中设置M层电芯组件20,M≥2,从而实现在一个壳体10中设置多个极芯212,将多个极芯212集成在一起,能够使得电池1具备高容量或者高电压,此外能够在提升电池1的续航能力的同时,节约壳体10用料,降低整个电池1的制造工艺难度和生产成本,同时由于多个极芯212紧凑地设于同一个壳体10中,能够在提升电池1的续航能力的同时节约所占空间,提升空间利用率。
根据本申请的一些实施例,壳体10上设有用于引出电流的电极端子,电极端子包 括第一电极端子12和第二电极端子13,第一电极端子12和第二电极端子13位于壳体10的同一侧。第一电极端子12和第二电极端子13与外部设备连接用以为外部设备的运行提供电源。其中,第一电极端子12可以是正电极端子,第二电极端子13可以是负电极端子;或者第一电极端子12可以是负电极端子,第二电极端子13可以是正电极端子。如此将第一电极端子12和第二电极端子13设于壳体10的同一侧,当电池1适用于电池模组中时,有利于电池模组内各电池1之间的导通件的布置;当电池1适用于电池包中时,有利于电池包内各电池1之间的动力连接件的布置。
如图3所示,根据本申请的一些实施例,壳体10包括:本体11和盖板,盖板为两个,两个盖板设于本体11相对的两端以封闭本体11的内部空间,两个盖板中的其中一个上设有电极端子。具体地,将两个盖板分别命名为第一端部盖板14以及第二端部盖板15。在第一端部盖板14上设有电极端子,或者第二端部盖板15上设有电极端子。由此实现将正负电极端子设于一个盖板上,由此能够节约成本。
如图3所示,本体11形成为环形,本体11的两端敞开,由此可以实现将电芯组件20安装入本体11形成的环形腔中,第一端部盖板14设在本体11上以封堵本体11的其中一端敞开口,第二端部盖板15设在本体11上以封堵本体11的另一端的敞开口。
需要说明的是,第一端部盖板14、第二端部盖板15以及本体11可以是一体成型,由此,可以减少装配工序,提高装配效率,同时还可以提升壳体10的结构强度,保证壳体10连接的可靠性。或者是第一端部盖板14与本体11一体成型,第二端部盖板15与本体11分别独立加工之后进行连接;再或者是第一端部盖板14、第二端部盖板15以及本体11分别分体加工之后再进行连接,由此可以降低壳体10的加工难度,提升壳体10的生产效率。
可以理解的是,当第一端部盖板14上设有电极端子,而电池1中的电芯组件20为奇数层时即M为奇数时,可以是其中的2层电芯组件20并联之后与其余层数的电芯组件20串联,例如为3层时,可以是其中的2层电芯组件20并联之后与另外的一层电芯组件20串联。还可以是,M-1层电芯组件20并联之后与一层电芯组件20串联,本申请不作穷举,不作特殊限制,仅以此为例。
根据本申请的一些实施例,M为偶数,相邻的两层电芯组件20之间串联连接。
由此使得第一电极端子12和第二电极端子13实现均设在第一端部盖板14上或者第二端部盖板15上,使得电池1能够实现高电压输出。
根据本申请的一些实施例,相邻的两层电芯组件20之间并联连接,由此使得电池1实现高容量输出。
例如,如图5所示,极芯组21为两层,第一电极端子12和第二电极端子13均设在第一端部盖板14上。在本申请的一些实施例中,第二端部盖板15与本体11一体成型,第一端部盖板14与本体11分体加工之后进行连接,由此可以减少加工工序,节约了工时,进而降低了生产成本。但本申请不限于此。
进一步地,电芯组件20的多个极芯组21沿第一方向依次排布,其中,第一方向为如图1所示左右方向。需要说明的是,第一方向为电池1的长度方向。多层电芯组件20具有沿第一方向相对设置的端部,相邻的两层电芯组件20通过位于同一端部的两极芯组21串联。由此使得相邻的两层电芯组件20的连接难度降低,缩短了相邻的两层电芯组件20的连接距离,使得连接效率相对提高,从而达到了降低成本的目的。
根据本申请的一些实施例,电芯组件20的多个极芯组21沿第一方向依次排布,其中,第一方向为如图1所示左右方向。极芯组21包括用于引出电流的第一电极引出件和第二电极引出件,第一电极引出件和第二电极引出件沿第一方向分别设于极芯组21的两侧。需要说明的是,第一方向为电池1的长度方向。还需要说明的是,此处电芯组件20的多个极芯组21沿第一方向依次排布指的是同一层电芯组件20中的多个极芯组21沿第一方向依次排布。
可以理解的是,多个极芯组21在串联连接时,需要将每个极芯组21串联,通过在每个极芯组21上设置第一电极引出件和第二电极引出件,利用第一电极引出件和第二电极引出件可以实现相邻两个极芯组21之间的串联连接,而且连接难度相对较低,连接效率相对较高。可以理解的是,在一些实施例中,第一电极引出件和第二电极引出件指的是极芯上的正极耳和负极耳,但本申请不限于此。
例如,当一个极芯组21中仅包括一个极芯212时,第一电极引出件和第二电极引出件可以分别为极芯212的正极耳和负极耳。当一个极芯组21中包括多个极芯212时,第一电极引出件可以是由多个极芯212的正极耳复合并焊接在一起形成的正极引出端,第二电极引出件可以是由多个极芯212的负极耳复合并焊接在一起形成的负极引出端。或者是,第一电极引出件可以是多个极芯212的负极耳焊接在一起形成的负极引出端,第二电极引出件可以是由多个极芯212的正极耳复合并焊接在一起形成的正极引出端。
需要说明的是,第一电极引出件和第二电极引出件的“第一”和“第二”仅用于名称区分,并不用于限定数量。
根据本申请的一些实施例,电芯组件20的多个极芯组21沿第一方向依次排布,其中,第一方向为如图1所示左右方向。极芯组21包括用于引出电流的第一电极引出件和第二电极引出件,第一电极引出件和第二电极引出件设于极芯组21沿第一方向的两 侧。多层电芯组件20具有沿第一方向相对设置的第一端部和第二端部,第一电极端子12和第二电极端子13设于同一盖板上,即同时设于第一端部或者第二端部位置处。当M为偶数时,相邻的两层电芯组件20通过位于第一端部的两极芯组21或位于第二端部22的两极芯组21串联连接。可以理解的是,此时,每层电芯组件20中的第一电极引出件和第二电极引出件的排布方向与相邻层电芯组件20中的第一电极引出件和第二电极引出件的排布方向相反,例如,当M为2层时,一层电芯组件20中的第一电极引出件和第二电极引出件的排布方向与另外一层电芯组件20中的第一电极引出件和第二电极引出件的排布方向相反。当M为奇数时,至少有一层电芯组件20中的第一电极引出件和第二电极引出件的排布方向与其相邻层电芯组件20中的第一电极引出件和第二电极引出件的排布方向相反,例如M为3时,其中相邻两层电芯组件20中的第一电极引出件和第二电极引出件的排布方向相同,与另外一层电芯组件20中的第一电极引出件和第二电极引出件的排布方向相反。
进一步地,电芯组件20中的多个极芯组21之间通过第一连接件30串联连接,由此实现将多个极芯组21串联起来,相邻的两层电芯组件20之间通过第二连接件40串联连接,由此实现将多层电芯组件20串联起来。其中,第一连接件30和第二连接件40都能够导电,具体结构根据实际需要设置。
进一步地,如图6所示,第一连接件30和第二连接件40中的至少一个包括:金属连接件a和绝缘防护件b,金属连接件a的两端分别与相邻的两个极芯组21连接,由此实现将两个极芯组21串联起来,绝缘防护件b套设在金属连接件a上,能够提高金属连接件a的结构强度,同时能够起到绝缘安全的作用,降低金属连接件a漏电的可能性。
进一步地,如图5和图6所示,极芯组21包括用于引出电流的第一电极引出件和第二电极引出件,第一电极引出件被构造成负极引出件,第二电极引出件被构造成正极引出件,金属连接件a包括铜连接件a1和铝连接件a2,铜连接件a1与第一电极引出件连接,铝连接件a2与第二电极引出件连接,铜连接件a1的一端与铝连接件a2的一端连接,绝缘防护件b包覆铜连接件a1和铝连接件a2的连接处。现在通用的极芯212的结构通常设置负极引出端为铜结构件,由于铜结构件设于低电位不容易嵌锂,第二电极引出件为正极引出端,现在通用的极芯212的正极引出端为铝结构件,由于铝结构件表面有氧化层设于高电位处使得正极引出端不容易被氧化。铜连接件a1的另一端与相邻两个极芯组21中的一个的铜结构件连接,铝连接件a2的另一端与相邻两个极芯212中的另一个的铝结构件连接,由此设置金属连接件a,可以使得金属连接件a与现有的极芯212的结构相匹配,使得金属连接件a与极芯212的连接可靠性更高。
进一步地,铜连接件a1和铝连接件a2焊接连接,由此实现将相邻的两个极芯212串联起来。
进一步地,绝缘防护件b通过浸塑工艺、热缩工艺、喷涂工艺或热熔工艺套设在金属连接件a上,由此能够降低绝缘防护件b从金属连接件a上脱落的可能性,更大程度地降低绝缘防护件b与金属连接件a之间的间隙,当壳体10为金属壳体10时,降低金属连接件a接触到壳体10漏电的可能性。
根据本申请的一些实施例,每层极芯组21中极芯212的数量相同,由此能够更大限度地提高壳体10内空间的利用率。
根据本申请的一些实施例,电芯组件20还包括多个绝缘膜,多个绝缘膜分别一一对应包裹多个极芯组21。由此可以使得极芯组21与壳体10之间绝缘,降低电池1内部出现短路的可能性。此外,每个极芯组21外设置有绝缘膜,可以向绝缘膜内注入电解液,这样极芯组21之间不共用电解液,降低了电池1内部出现短路的可能性,同时电解液也不会因为电位差而分解。其中,绝缘膜需要具有一定的绝缘性以及耐电解液腐蚀性,绝缘膜的材料不作特殊限制,只要能够绝缘以及不与电解液反应即可,例如,绝缘膜的材料可以包括聚丙烯(PP)或聚乙烯(PE)膜。
根据本申请实施例的电池模组,包括上述所述的电池1。
在本申请的一些实施例中,壳体10上还设置有通讯端子,通讯端子与每个极芯组21均电连接,通讯端子可以用于检测每个极芯组21的状态信息(例如,电压、温度等)。安全稳定是电池1极为重要的一环;其中,相关技术中的电池1采用独立的电池1串/并联形成电池模组或电池包,从而可以在每个电池1的外部对每个电池1进行采样,而如果将多个极芯组21串联设置在电池1的壳体10内时,在电池1的外部采样时无法监测到每个极芯组21的工作状况;设置与每个极芯组21均电连接通讯端子,可以对壳体10内部的每一个极芯组21进行采样,以监控到每一个极芯组21的状态进而确保电池1的安全稳定。
根据本申请实施例的电池模组,包括上述具备高容量或者高电压的电池1,能够在提升电池模组的续航能力的同时,使得在想获取同样容量和电压的电池模组的前提下,电池模组内电池1的数量可以减少,从而减少了电池之间相连处的导通件,进而降低了电池模组的成本,同时减少了电池模组中导通件所占空间体积,同时由于导通件的减少使得电池模组的内阻减小,从而提升了电池模组的续航能力。
根据本申请实施例的电池包,包括上述所述的电池或者上述所述的电池模组。
根据本申请实施例的电池包,包括上述所述的电池或者上述所述的电池模组,能够 提升电池包的续航能力的同时,使得在想获取同样容量和电压的电池模组的前提下,电池包内电池模组的数量可以减少,从而减少了电池模组之间相连处的动力连接件,进而降低了电池包的生产成本以及简化了电池包的生产工艺,同时减少了电池包中动力连接件所占空间体积,同时由于动力连接件的减少使得电池包的内阻减小,降低了电池包在使用过程中的内耗,从而提升了电池包的续航能力。
根据本申请实施例的电动车,包括根据上述所述的电池包。
根据本申请实施例的电动车,包括上述所述的电池包,能够使得电动车内部结构更加紧凑,同时能够降低电池包在使用过程中的内耗,提升电池包的续航能力,从而提升电动车的使用体验,达到节约能源,节约使用成本的效果,进而提升用户的使用体验。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (13)

  1. 一种电池,其特征在于,包括:
    壳体;
    M层电芯组件,所述M层电芯组件设在所述壳体内,M≥2,所述M层电芯组件层叠设置,所述M层电芯组件电连接,所述电芯组件包括多个极芯组,每层所述电芯组件中的多个所述极芯组串联连接。
  2. 根据权利要求1所述的电池,其特征在于,所述壳体上设有用于引出电流的电极端子,所述电极端子包括第一电极端子和第二电极端子,所述第一电极端子和第二电极端子位于所述壳体的同一侧。
  3. 根据权利要求2所述的电池,其特征在于,所述壳体包括本体和盖板,所述盖板为两个,两个所述盖板设于本体相对的两端以封闭所述本体的内部空间,两个盖板中的其中一个上设有所述电极端子。
  4. 根据权利要求1-3中任一项所述的电池,其特征在于,所述M为偶数,相邻的两层所述电芯组件之间串联连接。
  5. 根据权利要求4所述的电池,其特征在于,所述电芯组件的多个所述极芯组沿第一方向依次排布,所述电芯组件具有沿所述第一方向相对设置的端部,相邻的两层所述电芯组件通过位于同一端部的两极芯组串联连接。
  6. 根据权利要求1-5中任一项所述的电池,其特征在于,所述电芯组件的多个所述极芯组沿第一方向依次排布,所述极芯组包括用于引出电流的第一电极引出件和第二电极引出件,所述第一电极引出件和第二电极引出件沿所述第一方向分别设于所述极芯组的两侧。
  7. 根据权利要求1-6中任一项所述的电池,其特征在于,所述电芯组件中的多个所述极芯组通过第一连接件串联连接,相邻的两层所述电芯组件通过第二连接件串联连接。
  8. 根据权利要求7所述的电池,其特征在于,所述第一连接件和所述第二连接件中的至少一个包括:
    金属连接件,所述金属连接件的两端分别与相邻的两个所述极芯组连接;
    绝缘防护件,所述绝缘防护件套设在所述金属连接件上。
  9. 根据权利要求8所述的电池,其特征在于,所述极芯组包括用于引出电流的第 一电极引出件和第二电极引出件,所述第一电极引出件被构造成负极引出件,所述第二电极引出件被构造成正极引出件,所述金属连接件包括铜连接件和与铜连接件连接的铝连接件,所述铜连接件与所述第一电极引出件连接,所述铝连接件与所述第二电极引出件连接,所述绝缘防护件包覆所述铜连接件和所述铝连接件的连接处。
  10. 根据权利要求1-9中任一项所述的电池,其特征在于,所述电芯组件还包括多个绝缘膜,多个所述绝缘膜分别一一对应包裹多个所述极芯组。
  11. 一种电池模组,其特征在于,包括根据权利要求1-10中任一项所述的电池。
  12. 一种电池包,其特征在于,包括根据权利要求1-10任一项所述的电池或根据权利要求11所述的电池模组。
  13. 一种电动车,其特征在于,包括根据权利要求12所述的电池包。
PCT/CN2021/070319 2020-01-10 2021-01-05 电池, 电池模组, 电池包以及电动车 WO2021139649A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21738443.7A EP4086979A1 (en) 2020-01-10 2021-01-05 Battery, battery module, battery pack, and electric vehicle
KR1020227027238A KR20220124770A (ko) 2020-01-10 2021-01-05 배터리, 배터리 모듈, 배터리 팩, 및 전기 차량
US17/791,136 US20230052047A1 (en) 2020-01-10 2021-01-05 Battery, battery module, battery pack, and electric vehicle
JP2022542271A JP2023509216A (ja) 2020-01-10 2021-01-05 電池、電池モジュール、電池パック及び電気自動車

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020059425.0U CN211208560U (zh) 2020-01-10 2020-01-10 电池、电池模组、电池包以及电动车
CN202020059425.0 2020-01-10

Publications (1)

Publication Number Publication Date
WO2021139649A1 true WO2021139649A1 (zh) 2021-07-15

Family

ID=71852223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070319 WO2021139649A1 (zh) 2020-01-10 2021-01-05 电池, 电池模组, 电池包以及电动车

Country Status (6)

Country Link
US (1) US20230052047A1 (zh)
EP (1) EP4086979A1 (zh)
JP (1) JP2023509216A (zh)
KR (1) KR20220124770A (zh)
CN (1) CN211208560U (zh)
WO (1) WO2021139649A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211208560U (zh) * 2020-01-10 2020-08-07 比亚迪股份有限公司 电池、电池模组、电池包以及电动车
CN114361629B (zh) * 2020-09-27 2023-08-08 比亚迪股份有限公司 一种电池、电池包和电动车
CN114267915B (zh) * 2021-11-29 2023-04-18 三一重工股份有限公司 电池箱和车辆
CN114976444A (zh) * 2022-06-28 2022-08-30 安徽舟之航电池有限公司 一种电池系统用城墙模组

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518156A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种锂离子电池、电池模组、电池包及汽车
CN110518174A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN211208560U (zh) * 2020-01-10 2020-08-07 比亚迪股份有限公司 电池、电池模组、电池包以及电动车

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6315269B2 (ja) * 2014-08-22 2018-04-25 株式会社デンソー 密閉型電池モジュール及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518156A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种锂离子电池、电池模组、电池包及汽车
CN110518174A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN211208560U (zh) * 2020-01-10 2020-08-07 比亚迪股份有限公司 电池、电池模组、电池包以及电动车

Also Published As

Publication number Publication date
CN211208560U (zh) 2020-08-07
KR20220124770A (ko) 2022-09-14
JP2023509216A (ja) 2023-03-07
EP4086979A1 (en) 2022-11-09
US20230052047A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
WO2021139649A1 (zh) 电池, 电池模组, 电池包以及电动车
EP4087000A1 (en) Battery, battery module, battery pack, and automobile
JP5256231B2 (ja) 2次電池及び2次電池モジュール
KR101695868B1 (ko) 전극 블록, 적층 전지 및 적층 전지의 조립 방법
WO2022051915A1 (zh) 电极组件、电化学装置及电子装置
KR101106429B1 (ko) 이차 전지
CN215989120U (zh) 方形电池单体、电池及用电设备
TW201222935A (en) Battery module
CN219303812U (zh) 电池单体、电池及用电装置
WO2021139654A1 (zh) 电池、电池模组、电池包及电动车
CN112838333A (zh) 一种电池、电池模组、电池包和汽车
CN112117426B (zh) 单体电池、动力电池包和车辆
CN113113692A (zh) 电池、电池模组、电池包及电动车
WO2023134480A1 (zh) 电极组件、电池单体、电池及用电设备
JP7420940B2 (ja) 電池、電池モジュール、電池パック及び電気自動車
CN114361732A (zh) 电化学装置及电子设备
CN114361661A (zh) 一种方壳电芯及电池模组
JP2005340016A (ja) フィルム外装電気デバイスモジュールおよび組電池システム
CN218498316U (zh) 电芯
CN219759677U (zh) 卷芯及具有该卷芯的电芯
CN217788474U (zh) 电池和电子设备
CN220544175U (zh) 圆柱电池、电池包以及车辆
WO2022193935A1 (zh) 一种电池和电子设备
CN114094285B (zh) 一种单侧极柱长电池及电能存储装置
CN219534819U (zh) 一种双负极耳锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022542271

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227027238

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021738443

Country of ref document: EP

Effective date: 20220802