WO2021139654A1 - 电池、电池模组、电池包及电动车 - Google Patents

电池、电池模组、电池包及电动车 Download PDF

Info

Publication number
WO2021139654A1
WO2021139654A1 PCT/CN2021/070341 CN2021070341W WO2021139654A1 WO 2021139654 A1 WO2021139654 A1 WO 2021139654A1 CN 2021070341 W CN2021070341 W CN 2021070341W WO 2021139654 A1 WO2021139654 A1 WO 2021139654A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
cell assembly
electrode
assembly
present application
Prior art date
Application number
PCT/CN2021/070341
Other languages
English (en)
French (fr)
Inventor
周燕飞
张中林
张越
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2021139654A1 publication Critical patent/WO2021139654A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the field of battery technology, in particular to a battery, a battery module, a battery pack, and an electric vehicle.
  • a heating device is provided between two adjacent batteries in series.
  • the heating device can transfer heat to the outer shell of the battery, and then transfer the heat to the inner cell through the shell. This way has heat conductivity efficiency. The low problem cannot effectively improve the power supply capacity of the battery.
  • This application aims to solve at least one of the technical problems existing in the prior art. For this reason, this application proposes a battery, which has the advantage of strong power supply capability.
  • the battery according to the embodiment of the present application includes: a housing; at least one layer of battery cell assembly, the at least one layer of battery cell assembly is arranged in the housing, the battery assembly includes a plurality of electrode core groups, and each layer has A plurality of the pole core groups of the battery cell assembly are connected in series, and when the battery cell assembly is of multiple layers, the multiple layers of the battery core assembly are electrically connected; a heating plate, the heating plate is arranged on the shell The body is thermally connected to the battery core assembly.
  • the heating plate in the casing of the battery, and the heating plate is thermally connected to the cell assembly, when the heating plate heats the cell assembly, it is no longer necessary to conduct heat conduction through the shell. Realize the direct heating of the battery cell assembly, thereby improving the heating efficiency of the battery cell assembly, effectively reducing the internal resistance of the battery under low temperature conditions, and thereby improving the power supply capacity of the battery.
  • multiple pole core groups are connected in series, which can also realize the high voltage output of the battery, so as to meet the user's high voltage demand for the battery.
  • the plurality of pole core groups of the cell assembly are arranged along a first direction
  • the pole core group includes a first electrode lead-out member and a second electrode lead-out member for drawing current
  • the first electrode lead-out member and the second electrode lead-out member are respectively arranged on both sides of the pole core group along the first direction and along the first direction.
  • the housing includes a body and a cover plate, the cover plates are two, and the two cover plates are provided at opposite ends of the body to close the internal space of the body.
  • One of the cover plates is provided with an electrode terminal for drawing current.
  • the cover plate provided with the electrode terminals is also provided with a communication terminal, the communication terminal is electrically connected to each of the pole core groups, and the housing is also provided with In the power supply line for supplying power to the heating plate, the power supply line is electrically connected with the communication terminal.
  • the battery core assembly is provided with multiple layers, and the heating sheet is disposed between the two adjacent layers of the battery core assembly.
  • the battery cell assembly is an even-numbered layer, and two adjacent layers of the battery core assembly are connected in series.
  • the cell assembly further includes a plurality of insulating films, and the plurality of insulating films respectively wrap a plurality of the pole core groups in a one-to-one correspondence.
  • the application also proposes a battery module, which includes the above-mentioned battery.
  • the battery module according to the embodiment of the present application includes the above-mentioned battery.
  • the heating plate by arranging a heating plate in the housing of the battery, and the heating plate is thermally connected to the cell assembly, the heating plate no longer needs to conduct heat conduction through the housing when heating the cell assembly.
  • This can realize the direct heating of the battery cell assembly, thereby improving the heating efficiency of the battery cell assembly, effectively reducing the internal resistance of the battery under low temperature conditions, and thereby improving the power supply capacity of the battery.
  • multiple pole core groups are connected in series, which can also realize the high voltage output of the battery, so as to meet the user's high voltage demand for the battery.
  • This application also proposes a battery pack that includes the above-mentioned battery module or the above-mentioned battery.
  • the battery pack according to the embodiment of the present application includes the above-mentioned battery module or the above-mentioned battery.
  • the heating sheet by arranging a heating sheet in the battery casing, and the heating sheet is thermally connected to the cell assembly, the heating sheet no longer needs to conduct heat conduction through the shell when heating the cell assembly. It can realize the direct heating of the battery cell assembly, thereby improving the heating efficiency of the battery cell assembly, effectively reducing the internal resistance of the battery under low temperature conditions, and thereby improving the power supply capacity of the battery.
  • the series connection of multiple pole groups can also realize the high voltage output of the battery, which can meet the user's high voltage demand for the battery.
  • the application also proposes an electric vehicle, which includes the above-mentioned battery pack.
  • the electric vehicle according to the embodiment of the present application includes the above-mentioned battery pack.
  • the heating plate in the housing of the battery, and the heating plate is thermally connected to the cell assembly, the heating plate no longer needs to conduct heat conduction through the housing when heating the cell assembly. It can realize the direct heating of the battery cell assembly, thereby improving the heating efficiency of the battery cell assembly, effectively reducing the internal resistance of the battery under low temperature conditions, and thereby improving the power supply capacity of the battery.
  • the series connection of multiple pole groups can also realize the high voltage output of the battery, so as to meet the user's high voltage demand for the battery.
  • Figure 1 is a partial perspective view of a battery according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a partial structure of a battery according to an embodiment of the present application, in which the casing is not shown;
  • Figure 3 is an enlarged view of A in Figure 2;
  • Figure 4 is a top view of the battery in Figure 2;
  • Figure 5 is an enlarged view of B in Figure 4.
  • Fig. 6 is a rear view of the battery in Fig. 2.
  • Electrode terminal 13 positive electrode 131, negative electrode 132,
  • the battery 100 includes: a casing 1, a battery cell assembly 2 and a heater 3.
  • the battery cell assembly 2 is provided in the housing 1.
  • the casing 1 has a protective effect on the battery cell assembly 2, and the casing 1 can separate external dust or liquid from the battery core assembly 2, thereby ensuring the safety and reliability of the operation of the battery core assembly 2.
  • the battery cell assembly 2 is provided with at least one layer.
  • the multilayer battery core assemblies are electrically connected. It is understandable that one-layer battery cell assembly 2, two-layer battery cell assembly 2, three-layer battery cell assembly 2, four-layer battery cell assembly 2 or more battery core assemblies 2 can be selected according to the needs of users. It can better meet the user's needs for the storage capacity of the battery 100.
  • the battery cell assembly 2 may have two layers.
  • the two-layer battery cell assembly 2 is arranged in a layered manner, thereby not only improving the regularity of the arrangement of the two-layer battery cell assembly 2 but also reducing the space occupied by the two-layer battery cell assembly 2, which is beneficial to the miniaturization of the battery 100.
  • the cell assembly 2 is a multilayer, and the multilayer cell assemblies 2 are electrically connected.
  • the battery cell assembly 2 includes a plurality of pole core groups 21, and each pole core group 21 includes at least one pole core 211. It is understandable that each layer of battery cell assembly 2 may include two pole core groups 21, three pole core groups 21, four pole core groups 21 or more pole core groups 21, which can satisfy different user requirements. Voltage demand. Specifically, each pole core group 21 may include one pole core 211, two pole cores 211, three pole cores 211, or more pole cores 211.
  • the pole core 211 in the present application is a pole core 211 commonly used in the battery field, and the pole core 211 and the pole core group 21 are internal components of the casing 1 of the battery 100 and cannot be understood as the battery 100 itself.
  • the pole core 211 may be formed by winding, or may be formed by lamination.
  • the pole core 211 includes at least a positive electrode sheet, a separator, a negative electrode sheet, and an electrolyte.
  • the pole core 211 generally refers to a component that is not completely sealed. Therefore, the battery 100 mentioned in the present application is a single battery 100, which cannot be simply understood as a battery module or a battery 100 group because it includes a plurality of pole cores 211.
  • the pole core set 21 may be composed of a single pole core 211, or may include at least two pole cores 211, and at least two pole cores 211 are connected in parallel to form the pole core set 21.
  • a plurality of electrode core groups 21 of each layer of battery cell assembly 2 are connected in series, which can realize the high voltage of the battery 100 and reduce the manufacturing process and cost.
  • it is usually necessary to connect two or more batteries in series.
  • the power connection between two adjacent batteries in series needs to be connected by an additional power connector, which leads to more battery installation structures, which not only increases the cost, but also causes the overall weight of the power battery pack to increase; at the same time, The installation structure occupies a lot of internal space of the battery pack, resulting in a decrease in the overall capacity of the power battery pack.
  • multiple external power connectors need to be provided for power connection, the internal resistance is increased, and the internal consumption of the power battery pack in use is increased.
  • the series connection of the pole core groups 21 in the present application can be a series connection between adjacent pole core groups 21, and the specific way of realization can be that the current extraction components on the adjacent pole core groups 21 are directly connected, or it can be The electrical connection is achieved through additional conductive components, that is, two adjacent pole core groups 21 can be directly electrically connected or indirectly electrically connected.
  • the cell assembly 2 is provided with two layers, and each layer of the cell assembly 2 includes six pole core groups 21, and the six pole core groups 21 are in the length direction of the housing 1 (as shown in FIG. The left and right directions shown in 1) are spaced apart and connected in series, and each pole core group 21 includes one pole core 211.
  • the heating plate 3 is arranged in the housing 1 and is thermally connected to the cell assembly 2.
  • the heating plate 3 has the function of heating and raising the temperature.
  • the heating plate 3 can heat the cell assembly 2 to increase the temperature of the cell assembly 2 so as to reduce the internal resistance of the battery 100 and thereby improve the power supply capacity of the battery 100.
  • the heating sheet 3 and the battery cell assembly 2 are both arranged in the housing 1, and the heating sheet 3 and the battery cell assembly 2 are in a thermally conductive connection.
  • the heating sheet 3 heats the battery cell assembly 2, it is no longer necessary to conduct heat conduction through the housing 1, thereby realizing direct heating of the battery cell assembly 2, thereby improving the heating efficiency of the battery cell assembly 2, and then quickly To reduce the resistance of the battery 100 under low temperature conditions.
  • the heating plate 3 is integrated inside the battery 100. Compared with arranging the heating plate 3 outside the battery 100, the structure is simpler, and it is not affected by other adjacent assembly parts outside the battery 100, and is safer and more reliable.
  • the thermally conductive connection may be direct contact, or may be connected through a thermally conductive material.
  • the heating sheet 3 and the cell assembly 2 are thermally connected through a thermally conductive adhesive.
  • the heating plate 3 directly contacts the pole core assembly, so that the heat loss is smaller and the heat transfer efficiency is higher.
  • the heating sheet 3 is no longer needed when heating the cell assembly 2 Conduct heat conduction through the housing 1, thereby realizing direct heating of the cell assembly 2, thereby improving the heating efficiency of the cell assembly 2, and effectively reducing the internal resistance of the battery 100 under low temperature conditions, thereby improving the battery 100 Power supply capacity.
  • the multiple pole core groups 21 are connected in series, which can also realize the high-voltage output of the battery 100, so as to meet the user's high-voltage requirements for the battery 100.
  • the multiple pole core groups 21 of the battery cell assembly 2 are arranged along a first direction (the left and right directions as shown in FIG. 1), and the pole core groups 21 include A first electrode lead-out piece and a second electrode lead-out piece for drawing current, the first electrode lead-out piece and the second electrode lead-out piece are respectively arranged on both sides of the electrode core group 21 along the first direction.
  • the first direction is the length direction of the battery 100.
  • first electrode lead-out piece and a second electrode on each pole core group 21
  • the first electrode lead-out part and the second electrode lead-out part can realize the series connection between two adjacent electrode core groups 21, and the connection difficulty is relatively low, and the connection efficiency is relatively high.
  • one of the first electrode lead-out piece and the second electrode lead-out piece is the positive lug of the electrode core set 21, and the other of the first electrode lead-out piece and the second electrode lead-out piece is The negative ear of the pole core set 21, when two adjacent pole core sets 21 are connected in series, the first electrode lead-out piece of one pole core set 21 and the second electrode lead-out piece of the other pole core set 21 can be connected in series .
  • the pole core set 21 contains a plurality of pole cores 211
  • the first electrode lead-out component may be a lead-out component formed by compounding and welding the positive lugs.
  • the two-electrode lead-out component may be a lead-out component formed by compounding and welding the negative electrode lugs; alternatively, the first electrode lead-out component may be a lead-out component formed by compounding and welding the negative electrode lugs, and the second electrode leading-out component may be a positive electrode.
  • first and second of the first electrode lead-out component and the second electrode lead-out component are only used for name distinction, and are not used to limit the number.
  • the housing 1 includes a body 11 and a cover plate 12. There are two cover plates 12, and the two cover plates 12 are provided at opposite ends of the body 11 to close the body 11 In the internal space, one of the two cover plates 12 is provided with an electrode terminal 13 for drawing current.
  • the two ends of the main body 11 each have an open opening, and two cover plates 12 are respectively provided on the two ends of the main body 11 to block the open opening, so as to isolate the internal space of the main body 11 from the external space.
  • the structure of the main body 11 and the cover plate 12 is relatively simple, thereby simplifying the complexity of the structure of the housing 1, reducing the manufacturing difficulty of the housing 1, improving the production efficiency of the housing 1, and reducing the production cost of the housing 1.
  • the main body 11 and the two cover plates 12 can be three independent parts, and the main body 11 and the two cover plates 12 can be manufactured separately, thereby reducing the processing difficulty of the housing 1. Improve the production efficiency of the housing 1.
  • the main body 11 and one of the two cover plates 12 are integrally formed parts. As a result, the assembly process can be reduced, the assembly efficiency can be improved, and the structural strength of the housing 1 can be improved, and the reliability of the connection of the housing 1 can be ensured.
  • the electrode terminal 13 includes a positive electrode 131 and a negative electrode 132 (in conjunction with FIG. 3).
  • the positive electrode 131 and the negative electrode 132 may be connected to an external circuit to realize charging and discharging of the battery 100.
  • the positive electrode 131 and the negative electrode 132 can be connected to an external power source, so that the battery 100 can be charged.
  • the positive electrode 131 and the negative electrode 132 may be connected to a power consuming element (for example, a motor) through a circuit, so as to provide power support for the power consuming element.
  • the cover plate 12 provided with the electrode terminals 13 is also provided with a communication terminal 14.
  • the communication terminal 14 is electrically connected to each electrode core group 21, and the housing 1
  • the communication terminal 14 can be used to detect the status information of each pole core group 21 (for example, voltage, temperature, etc.).
  • the power supply line includes multiple sets of communication pins, and the multiple sets of communication pins are provided in the communication terminal 14, wherein the multiple sets of communication pins include those electrically connected to the positive electrode of the heater 3 The positive pin and the negative pin electrically connected to the negative electrode of the heating plate 3.
  • the battery 100 in the related technology uses independent batteries 100 in series/parallel to form a battery module or battery pack, so that the battery 100 can be connected outside of each battery 100.
  • Each battery 100 is sampled, and if multiple pole groups 21 are arranged in series in the casing 1 of the battery 100, the working condition of each pole group 21 cannot be monitored when sampling outside of the battery 100;
  • each pole core set 21 inside the housing 1 can be sampled to monitor the state of each pole core set 21 to ensure the battery 100 Security and stability.
  • the communication terminal 14 is provided on the main body 11 or the cover plate 12 opposite to the cover plate 12 provided with the electrode terminals 13. In this way, the communication terminal 14 can be provided on the body 11 or the cover plate 12 opposite to the cover plate 12 provided with the electrode terminals 13 according to the environment in which the battery 100 has been applied in its model and size.
  • the communication terminal 14 is provided on the main body 11.
  • the cell assembly 2 is provided with multiple layers, and a heating sheet 3 is provided between two adjacent layers of cell assemblies 2. It can be understood that the heat generated on both sides of the heating plate 3 is absorbed and utilized by the cell assembly 2, so that the heat utilization rate of the heating plate 3 can be improved. In addition, only one heating plate 3 is needed to heat the two-layer battery cell assembly 2, thereby reducing the number of heating plates 3 used, which is beneficial to reduce the thickness of the battery 100, and thus the miniaturization of the battery 100 can be achieved. .
  • the battery cell assembly 2 is an even-numbered layer, and two adjacent layers of the battery core assembly 2 are connected in series. It can be understood that the battery cell assembly 2 may have 2 layers, 4 layers, 6 layers or more. By connecting two adjacent layers of cell assemblies 2 in series, a predetermined voltage can be provided, and the series connection is relatively simple, and at the same time, the occupied internal space can be reduced.
  • the battery cell assembly 2 is an even-numbered layer, two adjacent layers of the battery core assembly 2 are connected in series, and the positive and negative poles of the two adjacent layers of the electrode core assembly 21 are arranged oppositely.
  • the application is not limited to this, and the battery cell assembly 2 may also have an odd number of layers.
  • the cell assembly 2 has three layers, and the first layer cell assembly 2 is connected in parallel with the second layer cell assembly 2 and then connected in series with the third layer cell assembly 2.
  • the cell assembly 2 has three layers, the pole core set 21 of the first layer and the pole core set 21 of the second layer have the same arrangement of positive and negative poles, and the pole core of the third layer The positive and negative poles of the group 21 are arranged opposite to the positive and negative poles of the electrode core groups of the first and second layers.
  • the battery cell assembly 2 further includes a plurality of insulating films, and the plurality of insulating films respectively wrap the plurality of electrode core groups 21 in a one-to-one correspondence. It is understandable that an insulating film is provided outside each electrode core group 21, and electrolyte can be injected into the insulating film, so that no electrolyte is shared between each electrode core group 21, no internal short circuit occurs, and the electrolyte Will not decompose due to potential difference.
  • the insulating film has a certain degree of insulation and corrosion resistance to the electrolyte.
  • the material of the insulating film is not particularly limited, as long as it can be insulated and does not react with the electrolyte.
  • the material of the insulating film may include polypropylene. (PP) or polyethylene (PE) film.
  • each pole core group 21 when each pole core group 21 is wrapped with an insulating film, the heating sheet 3 is in direct contact with the insulating film or a thermal conductive glue is arranged between the two.
  • the battery 100 includes two layers of cell assemblies 2, and each layer of cell assembly 2 includes a plurality of electrode core groups 21, and each layer of cell
  • the plurality of pole core sets 21 of the assembly 2 are connected in series by a plurality of first connectors 41, and the two pole core sets 21 of the same end in the two-layer cell assembly 2 are connected by the second connector 42 to make the two-layer cell assembly 2Connected in series.
  • the multiple pole core groups 21 connected in series can maximize the power storage capacity of the battery cell assembly 2 and thereby can store more electrical energy.
  • the first connecting piece 41 and the second connecting piece 42 can realize the serial connection of the multiple pole core groups 21, and the first connecting piece 41 and the second connecting piece 42 can reduce the complexity of the connection structure of the multiple pole core groups 21, Therefore, the reliability of the connection of the plurality of pole core groups 21 and the efficiency of connection and assembly can be improved.
  • the battery 100 includes two layers of cell assemblies 2, and each layer of cell assemblies 2 includes a plurality of pole core sets 21, and the number of pole core sets 21 in the two layers of cell assemblies 2 is the same and There is a one-to-one correspondence.
  • the two pole core groups 21 corresponding to each other in the two-layer battery cell assembly 2 are connected in parallel and connected in series with the remaining pole core groups 21 in parallel. Among them, the parallel connection of the two pole core groups 21 can increase the energy storage of the battery 100.
  • the heating plate 3 includes a plurality of spaced apart sub-heating plates 3, and the plurality of sub-heating plates 3 are in one-to-one correspondence with the plurality of pole core groups 21 in each layer of the cell assembly 2, and the sub heating plates 3 are located in the two-layer cell assembly 2. One-to-one correspondence between the two pole core groups 21.
  • the multiple sub-heating sheets 3 can be used to heat the multiple pole core groups 21 respectively, so that the multiple pole core groups 21 can be heated separately.
  • only the corresponding sub-heating plate 3 can be replaced without replacing the entire heating plate 3, thereby reducing the difficulty and cost of subsequent detection and maintenance of the heating plate 3.
  • the two cover plates 12 are both welded and connected to the body 11.
  • the welding connection has the advantages of simple process and easy connection.
  • the two cover plates 12 and the body 11 can be tightly connected through the welding connection.
  • the cost can also be reduced.
  • the main body 11 is an integral piece. Therefore, the structure of the one-piece part can not only ensure the stability of the structure and performance of the main body 11, but also facilitate the molding and simple manufacturing, but also eliminates redundant assembly parts and connection procedures, greatly improves the assembly efficiency of the main body 11, and ensures the main body 11
  • the reliability of the connection in addition, the overall strength and stability of the integrated structure is higher, the assembly is more convenient, and the service life is longer.
  • the housing 1 is an aluminum piece.
  • the aluminum part can provide better protection for the inner cell assembly 2, and at the same time, the aluminum part also provides a good heat conduction function.
  • the aluminum part has the advantage of light weight, which is beneficial to reduce the overall weight of the battery 100.
  • the battery module according to the embodiment of the present application includes the battery 100 described above.
  • the battery module includes a first housing and a battery 100. There may be multiple batteries 100, and the multiple batteries 100 are contained in the first housing.
  • the heating sheet 3 by arranging the heating sheet 3 in the housing 1 of the battery 100, and the heating sheet 3 is thermally connected to the cell assembly 2, the heating sheet 3 does not heat the cell assembly 2 any more. It is necessary to conduct heat conduction through the housing 1 so that direct heating of the cell assembly 2 can be achieved, thereby improving the heating efficiency of the cell assembly 2, and effectively reducing the internal resistance of the battery 100 under low temperature conditions, thereby improving the battery 100 power supply capacity.
  • the multiple pole core groups 21 are connected in series, which can also realize the high-voltage output of the battery 100, so as to meet the user's high-voltage requirements for the battery 100.
  • the battery pack according to the embodiment of the present application includes the above-mentioned battery module or the above-mentioned battery 100.
  • the battery pack includes a second housing and a battery module, and there may be multiple battery modules, and the multiple battery modules are accommodated in the second housing.
  • the heating sheet 3 is no longer needed when heating the cell assembly 2 Conduct heat conduction through the housing 1, thereby realizing direct heating of the cell assembly 2, thereby improving the heating efficiency of the cell assembly 2, and effectively reducing the internal resistance of the battery 100 under low temperature conditions, thereby improving the battery 100 Power supply capacity.
  • the multiple pole core groups 21 are connected in series, which can also realize the high-voltage output of the battery 100, so as to meet the user's high-voltage requirements for the battery 100.
  • the electric vehicle according to the embodiment of the present application includes the above-mentioned battery pack.
  • the heating sheet 3 is no longer needed when heating the cell assembly 2 Conduct heat conduction through the housing 1, thereby realizing direct heating of the cell assembly 2, thereby improving the heating efficiency of the cell assembly 2, and effectively reducing the internal resistance of the battery 100 under low temperature conditions, thereby improving the battery 100 Power supply capacity.
  • the multiple pole core groups 21 are connected in series, which can also realize the high-voltage output of the battery 100, so as to meet the user's high-voltage requirements for the battery 100.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • first and second may explicitly or implicitly include one or more of these features.
  • plural means two or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池(100)、电池模组、电池包及电动车,其中,电池(100)包括:壳体(1);至少一层电芯组件(2),至少一层电芯组件(2)设在壳体(1)内,电芯组件(2)包括多个极芯组(21),每层电芯组件(2)的多个极芯组(21)串联连接,当电芯组件(2)为多层时,多层电芯组件(2)之间电连接;加热片(3),加热片(3)设在壳体(1)内且与电芯组件(2)导热连接。

Description

电池、电池模组、电池包及电动车
相关申请的交叉引用
本申请基于申请号为202020067151.X,申请日为2020年01月10日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电池技术领域,尤其是涉及一种电池、电池模组、电池包及电动车。
背景技术
电芯在低温冷启动工况下工作时,电芯内部的温度相对较低,造成内部电阻较大,电芯的供电能力较弱。相关技术中,相邻两个串联的电池之间设有加热装置,加热装置可以将热量传递到电池的外壳体上,然后在通过壳体传递给内部的电芯,这种方式的存在导热效率低下的问题,无法有效的提升电池的供电能力。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种电池,所述电池具有供电能力强的优点。
根据本申请实施例的电池,包括:壳体;至少一层电芯组件,所述至少一层电芯组件设在所述壳体内,所述电芯组件包括多个极芯组,每层所述电芯组件的多个所述极芯组串联连接,当所述电芯组件为多层时,多层所述电芯组件之间电连接;加热片,所述加热片设在所述壳体内且与所述电芯组件导热连接。
根据本申请实施例的电池,通过在电池的壳体内设置加热片,且加热片与电芯组件导热连接,加热片在对电芯组件加热时,不再需要通过壳体进行导热,由此可以实现对电芯组件的直接加热,从而提升了对电芯组件的加热效率,有效的减少了低温条件下电池内部的电阻,进而可以提升电池的供电能力。此外,多个极芯组串联连接,还可以实现电池的高电压输出,从而可以满足用户对电池的高电压需求。
根据本申请的一些实施例,所述电芯组件的多个所述极芯组沿第一方向排布,所述极芯组包括用于引出电流的第一电极引出件和第二电极引出件,所述第一电极引出件和第二电极引出件沿所述第一方向沿所述第一方向分别设于所述极芯组的两侧。
根据本申请的一些实施例,所述壳体包括本体和盖板,所述盖板为两个,两个所述盖板 设于本体相对的两端以封闭所述本体的内部空间,两个所述盖板中的其中一个上设有用于引出电流的电极端子。
在本申请的一些实施例中,设置有所述电极端子的所述盖板上还设置有通讯端子,所述通讯端子与每个所述极芯组均电连接,所述壳体内还设有用于给所述加热片供电的供电线路,所述供电线路与所述通讯端子电连接。
根据本申请的一些实施例,所述电芯组件设有多层,相邻的两层所述电芯组件之间设有所述加热片。
在本申请的一些实施例中,所述电芯组件为偶数层,相邻的两层所述电芯组件之间串联连接。
根据本申请的一些实施例,所述电芯组件还包括多个绝缘膜,多个所述绝缘膜分别一一对应包裹多个所述极芯组。
本申请还提出了一种电池模组,所述电池模组包括上述电池。
根据本申请实施例的电池模组,包括上述电池。
根据本申请实施例的电池模组,通过在电池的壳体内设置加热片,且加热片与电芯组件导热连接,加热片在对电芯组件加热时,不再需要通过壳体进行导热,由此可以实现对电芯组件的直接加热,从而提升了对电芯组件的加热效率,有效的减少了低温条件下电池内部的电阻,进而可以提升电池的供电能力。此外,多个极芯组串联连接,还可以实现电池的高电压输出,从而可以满足用户对电池的高电压需求。
本申请还提出了一种电池包,所述电池包包括上述电池模组或包括上述电池。
根据本申请实施例的电池包,包括上述电池模组或包括上述电池。
根据本申请实施例的电池包,通过在电池的壳体内设置加热片,且加热片与电芯组件导热连接,加热片在对电芯组件加热时,不再需要通过壳体进行导热,由此可以实现对电芯组件的直接加热,从而提升了对电芯组件的加热效率,有效的减少了低温条件下电池内部的电阻,进而可以提升电池的供电能力。此外,多个极芯组串联连接,还可以实现电池的高电压输出,从而可以满足用户对电池的高电压需求
本申请还提出了一种电动车,所述电动车包括上述电池包。
根据本申请实施例的电动车,包括上述电池包。
根据本申请实施例的电动车,通过在电池的壳体内设置加热片,且加热片与电芯组件导热连接,加热片在对电芯组件加热时,不再需要通过壳体进行导热,由此可以实现对电芯组件的直接加热,从而提升了对电芯组件的加热效率,有效的减少了低温条件下电池内部的电阻,进而可以提升电池的供电能力。此外,多个极芯组串联连接,还可以实现电池的高电压 输出,从而可以满足用户对电池的高电压需求。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的电池的局部透视图;
图2是根据本申请实施例的电池的局部结构示意图,其中壳体未视出;
图3是图2中A处的放大图;
图4是图2中的电池的俯视图;
图5是图4中B处的放大图;
图6是图2中的电池的后视图。
附图标记:
电池100,
壳体1,本体11,
盖板12,
电极端子13,正电极131,负电极132,
通讯端子14,
电芯组件2,极芯组21,
极芯211,
加热片3,
第一连接件41,第二连接件42。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述根据本申请实施例的电池100。
如图1和图2所示,根据本申请实施例的电池100,包括:壳体1、电芯组件2和加热片3。
具体地,如图1和图2所示,电芯组件2设在壳体1内。壳体1对电芯组件2具有保护作用,壳体1可以将外部的灰尘或者液体与电芯组件2间隔开,由此可以保证电芯组件2工作的安全性和可靠性。
如图1和图2所示,电芯组件2至少设有一层,当电芯组件2为多层时,多层电芯组件之间电连接。可以理解的是,可以根据用户的需要选择设置一层电芯组件2、两层电芯组件2、三层电芯组件2、四层电芯组件2或者更多层电芯组件2,由此可以更好的满足用户对电池100的蓄电能力的需要。例如,电芯组件2可以为两层。两层电芯组件2层叠设置,由此不仅可以提升两层电芯组件2排列的规整性,还可以减少两层电芯组件2占用的空间,有利于实现电池100的小型化。具体地,在本申请的一个示例中,电芯组件2为多层,多层电芯组件2之间电连接。
如图1和图2所示,电芯组件2包括多个极芯组21,每个极芯组21包括至少一个极芯211。可以理解的是,每层电芯组件2可以包括两个极芯组21、三个极芯组21、四个极芯组21或者更多个极芯组21,由此可以满足不同用户对不同电压的需求。具体地,每个极芯组21可以包括一个极芯211、两个极芯211、三个极芯211或者更多极芯211。
需要说明的是,本申请中的极芯211为电池领域常用的极芯211,极芯211以及极芯组21为电池100的壳体1内部的组成部分,而不能被理解为电池100本身。极芯211可以是卷绕形成的,也可以是叠片的方式制成的。一般情况下,极芯211至少包括正极片、隔膜和负极片以及电解液,极芯211一般是指未完全密封的组件。因而,本申请提到的电池100为单体电池100,不能因其包含多个极芯211,而将其简单的理解为电池模组或电池100组。在本申请中,极芯组21可以是由一个单独的极芯211构成,也可以包括至少两个极芯211,且至少两个极芯211并联连接,构成极芯组21。
此外,如图1和图2所示,每层电芯组件2的多个极芯组21串联连接,可以实现电池100的高电压,并减小制造工艺和成本。而在相关技术中,为了实现电池的高电压,通常需要将两个或两个以上的电池进行串联。然而,相邻两个串联的电池之间在相接处需要通过额外设置动力连接件进行动力连接,从而导致电池安装结构较多,不仅成本提高,而且导致动力电池包的整体重量上升;同时,安装结构占用了电池包较多的包体内部空间,造成动力电池包整体容量降低。另外,因需要设置多个外置动力连接件进行动力连接,导致内阻增加,提高了动力电池包在使用中的内耗。
需要说明的是,本申请中极芯组21的串联方式可以为相邻极芯组21间串联连接,实现的具体方式可以为相邻极芯组21上的电流引出部件直接连接,也可以是通过额外的导电部件实现电连接,即,相邻两个极芯组21之间可以直接电连接,也可以间接电 连接。
具体地,在本申请的一个示例中,电芯组件2设有两层,每层电芯组件2包括六个极芯组21,六个极芯组21在壳体1的长度方向(如图1所示的左右方向)间隔且串联连接,每个极芯组21包括一个极芯211。
如图1和图2所示,加热片3设在壳体1内且与电芯组件2导热连接。加热片3具有加热升温的作用,利用加热片3可以对电芯组件2的加热,使电芯组件2的温度升高,从而减少电池100内部的电阻,进而可以提升电池100的供电能力。
可以理解的是,加热片3与电芯组件2均设在壳体1内,且加热片3与电芯组件2存在导热连接的关系。加热片3在对电芯组件2加热时,不再需要通过壳体1进行导热,由此可以实现对电芯组件2的直接加热,从而提升了对电芯组件2的加热效率,进而可以快速的降低电池100在低温条件下的电阻。此外,加热片3集成于电池100内部,相对于在电池100外部布置加热片3,结构更简单,不受电池100外界其它相邻装配零件的影响,更安全可靠。
其中,导热连接可以是直接接触,也可以通过导热材料连接。例如,在本申请的一个示例中,加热片3与电芯组件2通过导热胶导热连接。在本申请的一个示例中,加热片3直接与极芯组接触,由此热损失更小,热传递效率更高。
根据本申请实施例的电池100,通过在电池100的壳体1内设置加热片3,且加热片3与电芯组件2导热连接,加热片3在对电芯组件2加热时,不再需要通过壳体1进行导热,由此可以实现对电芯组件2的直接加热,从而提升了对电芯组件2的加热效率,有效的减少了低温条件下电池100内部的电阻,进而可以提升电池100的供电能力。此外,多个极芯组21串联连接,还可以实现电池100的高电压输出,从而可以满足用户对电池100的高电压需求。
根据本申请的一些实施例,如图1和图2所示,电芯组件2的多个极芯组21沿第一方向(如图1所示的左右方向)排布,极芯组21包括用于引出电流的第一电极引出件和第二电极引出件,第一电极引出件和第二电极引出件沿第一方向分别设于极芯组21的两侧。其中,第一方向为电池100的长度方向。
可以理解的是,多个极芯组21在串联连接时,需要将每个极芯组21的相对独立的电路串联,通过在每个极芯组21上设置第一电极引出件和第二电极引出件,利用第一电极引出件和第二电极引出件可以实现相邻两个极芯组21之间的串联连接,而且连接难度相对较低,连接效率相对较高。
具体地,在本申请的一个示例中,第一电极引出件和第二电极引出件中的一个为极 芯组21的正极耳,第一电极引出件和第二电极引出件中的另一个为极芯组21的负极耳,相邻两个极芯组21在串联连接时,可以将其中一个极芯组21的第一电极引出件和另一个极芯组21的第二电极引出件串联连接。
在本申请的另一个示例中,如图2和图3所示,极芯组21含有多个极芯211,第一电极引出部件可以是由正极耳复合并焊接在一起形成的引出部件,第二电极引出部件可以是由负极耳复合并焊接在一起形成的引出部件;或者,第一电极引出部件可以是由负极耳复合并焊接在一起形成的引出部件,第二电极引出部件可以是由正极耳复合并焊接在一起形成的引出部件。
需要说明的是,第一电极引出部件和第二电极引出部件的“第一”和“第二”仅用于名称区分,并不用于限定数量。
根据本申请的一些实施例,如图1所示,壳体1包括本体11和盖板12,盖板12为两个,两个盖板12设于本体11相对的两端以封闭本体11的内部空间,两个盖板12中的其中一个上设有用于引出电流的电极端子13。
可以理解的是,本体11的两端分别具有一个敞开口,两个盖板12分别设在本体11的两端以封堵敞开口,以实现将本体11的内部空间与外部空间隔离开。其中,本体11和盖板12的结构较为简单,由此,可以简化壳体1结构的复杂度,降低壳体1的制造难度,提升壳体1的生产效率,减少壳体1的生产成本。
具体地,在本申请的一个示例中,本体11和两个盖板12可以为三个独立的部件,本体11和两个盖板12可以分开制造,由此可以降低壳体1的加工难度,提升壳体1的生产效率。在本申请的另一个实施例中,本体11和两个盖板12中的一个为一体成型件。由此,可以减少装配工序,提高装配效率,同时还可以提升壳体1的结构强度,保证壳体1连接的可靠性。
在本申请的一个示例中,如图1和图3所示,电极端子13包括正电极131和负电极132(结合图3)。可以理解的是,正电极131和负电极132可以与外部电路连接,以实现电池100的充放电。例如,在本申请的一个示例中,正电极131和负电极132可以与外部的电源连接,从而可以实现对电池100的充电。在本申请的另一个示例中,正电极131和负电极132可以通过电路与耗电元件(例如电机)连接,从而为耗电元件的提供电力支持。
在本申请的一些实施例中,如图1所示,设置有电极端子13的盖板12上还设置有通讯端子14,通讯端子14与每个极芯组21均电连接,壳体1内还设有用于给加热片3供电的供电线路,供电线路与通讯端子14电连接。通讯端子14可以用于检测每个极芯 组21的状态信息(例如,电压、温度等)。通过将电极端子13和通讯端子14设置在一个盖板12上,可以提升连接线路分布的整洁性,进而可以提升电池100与外部线路连接的可靠性和安全性。
此外,通过在通讯端子14设置用于给加热片3供电的供电线路,由此不再需要在盖板12上单独布置供电线路,使得电池100的线路更简洁、高效,同时也更为可靠。当然本申请不限于此,供电线路也可以单独布置在盖板12上。
例如,在本申请的一个示例中,如图3所示,供电线路包括多组通讯针脚,多组通讯针脚设在通讯端子14内,其中多组通讯针脚包括与加热片3的正极电连接的正针脚和与加热片3的负极电连接的负针脚。
需要说明的是,安全稳定是电池100极为重要的一环;其中,相关技术中的电池100采用独立的电池100串/并联形成电池模组或电池包,从而可以在每个电池100的外部对每个电池100进行采样,而如果将多个极芯组21串联设置在电池100的壳体1内时,在电池100的外部采样时无法监测到每个极芯组21的工作状况;在本申请中,通过设置与每个极芯组21均电连接通讯端子14,可以对壳体1内部的每一个极芯组21进行采样,以监控到每一个极芯组21的状态进而确保电池100的安全稳定。
当然本申请不限于此,通讯端子14设在本体11或者与设有电极端子13的盖板12相对的盖板12上。由此,可以根据电池100的型号、尺寸已经应用的环境将通讯端子14设在本体11或者与设有电极端子13的盖板12相对的盖板12。
例如,在本申请的一个示例中,通讯端子14设在本体11上。
根据本申请的一些实施例,电芯组件2设有多层,相邻的两层电芯组件2之间设有加热片3。可以理解的是,加热片3两面产生的热量均被电芯组件2吸收利用,由此可以提升加热片3的热量利用率。此外,仅需要设置一个加热片3便可以实现对两层电芯组件2的加热,由此可以减少加热片3的使用数量,有利于减小电池100的厚度,从而可以实现电池100的小型化。
在本申请的一些实施例中,如图2和图4所示,电芯组件2为偶数层,相邻的两层电芯组件2之间串联连接。可以理解的是,电芯组件2可以为2层、4层、6层或者更多层。通过将相邻的两层电芯组件2之间串联连接,可以提供预定的电压,而且串联连接也相对简单,同时可以减少占用的内部空间。
例如,在本申请的一个示例中,电芯组件2为偶数层,相邻的两层电芯组件2之间串联连接,且相邻两层极芯组21的正负极排布相反。
当然本申请不限于此,电芯组件2也可以为奇数层。例如,在本申请的一个示例中, 电芯组件2为3层,第一层电芯组件2与第二层电芯组件2并联连接后与第三层电芯组件2串联连接。具体地,在本申请的一个示例中,电芯组件2为三层,第一层的极芯组21和第二层的极芯组21的正负极排布相同,第三层的极芯组21的正负极与第一及第二层的极芯组的正负极排布相反。
根据本申请的一些实施例,电芯组件2还包括多个绝缘膜,多个绝缘膜分别一一对应包裹多个极芯组21。可以理解的是,每个极芯组21外设置有一个绝缘膜,可以向绝缘膜内注入电解液,这样每个极芯组21之间不共用电解液,不会出现内部短路,且电解液不会因为电位差而分解。
其中,绝缘膜具有一定的绝缘性以及耐电解液腐蚀性,绝缘膜的材料不作特殊限制,只要能够绝缘以及不与电解液反应即可,在一些实施例中,绝缘膜的材料可以包括聚丙烯(PP)或聚乙烯(PE)膜。
在本申请的一个示例中,每个极芯组21外包裹有一个绝缘膜时,加热片3与绝缘膜直接接触或者两者之间设置有导热胶。
在本申请的一些实施例中,如图2、图5和图6所示,电池100包括两层电芯组件2,每层电芯组件2均包括多个极芯组21,每层电芯组件2的多个极芯组21通过多个第一连接件41串联连接,两层电芯组件2中相同一端的两个极芯组21通过第二连接件42连接以使两层电芯组件2串联连接。
可以理解的是,串联连接的多个极芯组21可以实现电芯组件2蓄电能力的最大化,由此可以储存更多的电能。利用第一连接件41和第二连接件42可以实现多个极芯组21的串联连接,第一连接件41和第二连接件42可以降低多个极芯组21的连接结构的复杂度,由此可以提升多个极芯组21连接的可靠性和连接装配的效率。
在本申请的一些实施例中,电池100包括两层电芯组件2,每层电芯组件2均包括多个极芯组21,两层电芯组件2中的极芯组21的数量相同且一一对应,两层电芯组件2中一一对应的两个极芯组21并联后与其余并联后的极芯组21串联。其中,两个极芯组21并联可以提升电池100的蓄能量。加热片3包括多个间隔开的子加热片3,多个子加热片3与每层电芯组件2中的多个极芯组21一一对应,且子加热片3位于两层电芯组件2中一一对应的两个极芯组21之间。
可以理解的是,多个子加热片3可以分别用于多个极芯组21的加热,由此可以实现对多个极芯组21的分别加热。此外,当其中一个子加热片3损坏时,可以仅更换对应的子加热片3而不需要将整个加热片3均更换,从而可以降低加热片3后续检测和维修的难度以及成本。
在本申请的一些实施例中,两个盖板12均与本体11焊接连接。焊接连接具有工艺简单和易于连接的优点,通过焊接连接可以实现两个盖板12与本体11的紧密连接。此外,在保证两个盖板12与本体11的连接强度的同时还可以降低成本。
在本申请的一些实施例中,如图1所示,本体11为一体件。由此,一体件的结构不仅可以保证本体11结构、性能的稳定性,并且方便成型、制造简单,而且省去了多余的装配件以及连接工序,大大提高了本体11的装配效率,保证本体11连接的可靠性,再者,一体形成的结构的整体强度和稳定性较高,组装更方便,寿命更长。
根据本申请的一些实施例,如图1所示,壳体1为铝件。铝件可以为内部的电芯组件2提供较好的防护作用,同时铝件还提供良好的导热功能。此外,铝件具有重量轻的优点,有利于降低电池100的整体重量。
下面参考附图描述根据本申请实施例的电池模组。
根据本申请实施例的电池模组,包括上述电池100。
具体地,在本申请一个示例中,电池模组包括第一外壳和电池100,电池100可以为多个,多个电池100容纳在第一外壳内。
根据本申请实施例的电池模组,通过在电池100的壳体1内设置加热片3,且加热片3与电芯组件2导热连接,加热片3在对电芯组件2加热时,不再需要通过壳体1进行导热,由此可以实现对电芯组件2的直接加热,从而提升了对电芯组件2的加热效率,有效的减少了低温条件下电池100内部的电阻,进而可以提升电池100的供电能力。此外,多个极芯组21串联连接,还可以实现电池100的高电压输出,从而可以满足用户对电池100的高电压需求。
下面参考附图描述根据本申请实施例的电池包。
根据本申请实施例的电池包,包括上述电池模组或包括上述电池100。
具体地,在本申请一个示例中,电池包包括第二外壳和电池模组,电池模组可以为多个,多个电池模组容纳在第二外壳内。
根据本申请实施例的电池包,通过在电池100的壳体1内设置加热片3,且加热片3与电芯组件2导热连接,加热片3在对电芯组件2加热时,不再需要通过壳体1进行导热,由此可以实现对电芯组件2的直接加热,从而提升了对电芯组件2的加热效率,有效的减少了低温条件下电池100内部的电阻,进而可以提升电池100的供电能力。此外,多个极芯组21串联连接,还可以实现电池100的高电压输出,从而可以满足用户对电池100的高电压需求。
下面参考附图描述根据本申请实施例的电动车。
根据本申请实施例的电动车,包括上述电池包。
根据本申请实施例的电动车,通过在电池100的壳体1内设置加热片3,且加热片3与电芯组件2导热连接,加热片3在对电芯组件2加热时,不再需要通过壳体1进行导热,由此可以实现对电芯组件2的直接加热,从而提升了对电芯组件2的加热效率,有效的减少了低温条件下电池100内部的电阻,进而可以提升电池100的供电能力。此外,多个极芯组21串联连接,还可以实现电池100的高电压输出,从而可以满足用户对电池100的高电压需求。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种电池,其特征在于,包括:
    壳体;
    至少一层电芯组件,所述至少一层电芯组件设在所述壳体内,所述电芯组件包括多个极芯组,每层所述电芯组件的多个所述极芯组串联连接,当所述电芯组件为多层时,多层所述电芯组件之间电连接;
    加热片,所述加热片设在所述壳体内且与所述电芯组件导热连接。
  2. 根据权利要求1所述的电池,其特征在于,所述电芯组件的多个所述极芯组沿第一方向排布,所述极芯组包括用于引出电流的第一电极引出件和第二电极引出件,所述第一电极引出件和第二电极引出件沿所述第一方向分别设于所述极芯组的两侧。
  3. 根据权利要求1或2所述的电池,其特征在于,所述壳体包括本体和盖板,所述盖板为两个,两个所述盖板设于本体相对的两端以封闭所述本体的内部空间,两个所述盖板中的其中一个上设有用于引出电流的电极端子。
  4. 根据权利要求3所述的电池,其特征在于,设置有所述电极端子的所述盖板上还设置有通讯端子,所述通讯端子与每个所述极芯组均电连接,所述壳体内还设有用于给所述加热片供电的供电线路,所述供电线路与所述通讯端子电连接。
  5. 根据权利要求1-4中任一项所述的电池,其特征在于,所述电芯组件设有多层,相邻的两层所述电芯组件之间设有所述加热片。
  6. 根据权利要求5所述的电池,其特征在于,所述电芯组件为偶数层,相邻的两层所述电芯组件之间串联连接。
  7. 根据权利要求1-6中任一项所述的电池,其特征在于,所述电芯组件还包括多个绝缘膜,多个所述绝缘膜分别一一对应包裹多个所述极芯组。
  8. 一种电池模组,其特征在于,包括根据权利要求1-7中任一项所述的电池。
  9. 一种电池包,其特征在于,包括根据权利要求1-7中任一项所述的电池或根据权利要求8所述的电池模组。
  10. 一种电动车,其特征在于,包括根据权利要求9所述的电池包。
PCT/CN2021/070341 2020-01-10 2021-01-05 电池、电池模组、电池包及电动车 WO2021139654A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020067151.XU CN211208629U (zh) 2020-01-10 2020-01-10 电池、电池模组、电池包及电动车
CN202020067151.X 2020-01-10

Publications (1)

Publication Number Publication Date
WO2021139654A1 true WO2021139654A1 (zh) 2021-07-15

Family

ID=71888633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070341 WO2021139654A1 (zh) 2020-01-10 2021-01-05 电池、电池模组、电池包及电动车

Country Status (2)

Country Link
CN (1) CN211208629U (zh)
WO (1) WO2021139654A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211208629U (zh) * 2020-01-10 2020-08-07 比亚迪股份有限公司 电池、电池模组、电池包及电动车
CN114361630A (zh) * 2020-09-27 2022-04-15 比亚迪股份有限公司 一种电池、电池包和电动车
US20240213583A1 (en) * 2022-12-27 2024-06-27 Rivian Ip Holdings, Llc Structural battery cells and packs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960989A (zh) * 2017-04-26 2017-07-18 北京新能源汽车股份有限公司 电池系统以及具有其的电动汽车
CN107170925A (zh) * 2017-04-26 2017-09-15 北京新能源汽车股份有限公司 电池单体、电池包及具有其的车辆
CN109428137A (zh) * 2017-08-30 2019-03-05 宁德时代新能源科技股份有限公司 二次电池及电池模组
CN110518174A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN110518156A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种锂离子电池、电池模组、电池包及汽车
CN211208629U (zh) * 2020-01-10 2020-08-07 比亚迪股份有限公司 电池、电池模组、电池包及电动车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960989A (zh) * 2017-04-26 2017-07-18 北京新能源汽车股份有限公司 电池系统以及具有其的电动汽车
CN107170925A (zh) * 2017-04-26 2017-09-15 北京新能源汽车股份有限公司 电池单体、电池包及具有其的车辆
CN109428137A (zh) * 2017-08-30 2019-03-05 宁德时代新能源科技股份有限公司 二次电池及电池模组
CN110518174A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN110518156A (zh) * 2019-10-23 2019-11-29 比亚迪股份有限公司 一种锂离子电池、电池模组、电池包及汽车
CN211208629U (zh) * 2020-01-10 2020-08-07 比亚迪股份有限公司 电池、电池模组、电池包及电动车

Also Published As

Publication number Publication date
CN211208629U (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
WO2021139654A1 (zh) 电池、电池模组、电池包及电动车
WO2020252803A1 (zh) 单体电池、动力电池包和车辆
WO2021139649A1 (zh) 电池, 电池模组, 电池包以及电动车
WO2010150489A1 (ja) 蓄電ユニット
JP7312276B2 (ja) 電池モジュール、動力電池パック及び車両
CN211017177U (zh) 电池模组
CN115884451A (zh) 加热膜、电池、用电装置、制造方法以及制造设备
CN113113692A (zh) 电池、电池模组、电池包及电动车
CN214505609U (zh) 一种电池组件及电池模组
CN112117426B (zh) 单体电池、动力电池包和车辆
JP2013008649A (ja) リチウムイオン電池及びモジュール
CN112117424B (zh) 单体电池、动力电池包和车辆
CN108550750B (zh) 加热温度可控的电池包及电池包系统
WO2021159994A1 (zh) 电池、电池模组、电池包及电动车
CN112117425A (zh) 单体电池、动力电池包和车辆
CN213401318U (zh) 用于电池的加热单元、电池及用电装置
CN212695222U (zh) 通过极片散热的锂离子电池
CN110249478A (zh) 用于电池模块的集流系统、电池模块和车辆
KR20230082218A (ko) 이차전지모듈
CN113140831A (zh) 一种电池组件及电池模组
CN113611958A (zh) 一种电芯及其制造方法
CN219371116U (zh) 一种电池模组及电池包
WO2023050923A1 (zh) 电池单体、电池及用电装置
CN218070120U (zh) 单体电芯、电池模组以及用电设备
CN218274900U (zh) 一种电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21738549

Country of ref document: EP

Kind code of ref document: A1