WO2021139330A1 - 一种柔性电致变发射率器件及制备方法 - Google Patents

一种柔性电致变发射率器件及制备方法 Download PDF

Info

Publication number
WO2021139330A1
WO2021139330A1 PCT/CN2020/124386 CN2020124386W WO2021139330A1 WO 2021139330 A1 WO2021139330 A1 WO 2021139330A1 CN 2020124386 W CN2020124386 W CN 2020124386W WO 2021139330 A1 WO2021139330 A1 WO 2021139330A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metal
flexible
working electrode
gel electrolyte
Prior art date
Application number
PCT/CN2020/124386
Other languages
English (en)
French (fr)
Inventor
刘东青
李铭洋
程海峰
彭亮
彭任富
Original Assignee
国防科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国防科技大学 filed Critical 国防科技大学
Priority to US17/418,870 priority Critical patent/US20220075236A1/en
Publication of WO2021139330A1 publication Critical patent/WO2021139330A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H3/00Camouflage, i.e. means or methods for concealment or disguise
    • F41H3/02Flexible, e.g. fabric covers, e.g. screens, nets characterised by their material or structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1506Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1506Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode
    • G02F1/1508Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode using a solid electrolyte
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/157Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • G02F2001/1555Counter electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/11Function characteristic involving infrared radiation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/48Variable attenuator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the invention relates to the technical field of electro-variable emissivity devices, in particular to a flexible electro-variable emissivity device and a preparation method.
  • thermal infrared adaptive camouflage technology eliminates, reduces, changes or simulates the difference in the radiation characteristics of the two atmospheric windows (3 ⁇ 5 ⁇ m and 7.5 ⁇ 13 ⁇ m) of the thermal infrared between the target and the background, which is effective for thermal infrared detection. means.
  • adaptive thermal infrared camouflage technology can be divided into thermal infrared adaptive camouflage technology based on surface temperature control and thermal infrared adaptive camouflage technology based on surface emissivity control.
  • Thermal infrared adaptive camouflage technology based on surface temperature control mainly includes two ways to directly raise and lower the temperature of the surface of the object through thermoelectric materials, and to control the temperature of the surface of the object by injecting liquids of different temperatures into the microfluidic system.
  • the thermal infrared adaptive camouflage technology based on surface emissivity control mainly includes three types: ion intercalation/deintercalation of oxides, ion doping of conductive polymers, ion doping of multilayer graphene, or phase change of temperature control materials. Way to achieve emissivity changes. However, there are various curved surfaces or places that need to be bent on general military equipment or military personnel who need to be camouflaged. Therefore, the development of flexible thermal infrared adaptive camouflage technology can expand its application range and enhance military objectives. The camouflage effect.
  • the existing thermal infrared adaptive camouflage technology is either difficult to achieve flexibility, or infrared modulation ability is limited under flexible conditions.
  • the present invention provides a flexible electro-variable emissivity device and a preparation method, which are used to overcome the defects in the prior art that it is difficult to achieve compatibility between flexibility and strong infrared modulation capability, and realize that the device can operate in two atmospheres in the middle and far infrared bands under flexible conditions.
  • the window (3 ⁇ 5 ⁇ m and 7.5 ⁇ 13 ⁇ m) band has a high infrared emissivity control range.
  • the present invention proposes a flexible electrovariable emissivity device, which includes a working electrode, a gel electrolyte layer and a counter electrode from top to bottom;
  • the working electrode includes a flexible polymer film and a metal film.
  • the flexible polymer film is a surface-modified film and/or a film with a transition layer plated on its underside.
  • the metal film is deposited on the On the surface modified film or the transition layer;
  • the electrolyte layer includes a porous diaphragm and an electrolyte, the electrolyte is infiltrated in the porous diaphragm; the electrolyte includes an electrochromic material containing metal ions and a solvent, and the metal ions are metals capable of reversible electrodeposition and dissolution.
  • the metal of the metal ion is different from the metal for the metal thin film.
  • the present invention also provides a method for preparing a flexible electrovariable emissivity device, which includes the following steps:
  • S5 Stack the side of the working electrode obtained from S2 with the metal film deposited on the side of the gel electrolyte layer obtained from S3, and stack the side of the counter electrode obtained from S4 with the conductive layer deposited on the side of the gel electrolyte layer obtained from S3.
  • One side is stacked, and the edge of the stacked structure is sealed to obtain an electro-variable emissivity device based on metal electrodeposition.
  • the present invention has the following beneficial effects:
  • the working principle of the flexible electrochromic emissivity device is as follows: the electrochromic material containing metal ions in the gel electrolyte layer makes it possible to apply a negative deposition voltage (-2.0 ⁇ -3.0V) to the working electrode of the device At this time, the metal ions in the electrochromic material are reduced to simple metal and deposited on the surface of the metal film of the working electrode to form a metal film, which realizes the infrared absorption and infrared transmission of the plasma of the working electrode.
  • the device provided by the present invention due to the existence of the metal thin film, makes the sum of the absorption part and the part transmitted by infrared radiation in the working electrode account for more than 50% of the total spectral response of the working electrode in this waveband, and the device is in the mid-to-far infrared
  • the two atmospheric windows (3 ⁇ 5 ⁇ m and 7.5 ⁇ 13 ⁇ m) have a high infrared emissivity control range, and the change of emissivity can reach 0.5; in addition, due to the high transparency of the flexible polymer film over the entire infrared band
  • the device has an emissivity control amount of about 0.5 in the entire 2.5-25 ⁇ m band; the transition layer is to improve the cycle stability of the device; the flexible polymer film acts as a support for the substrate, and the metal film plays a conductive role.
  • the layer serves to bond the polymer film and the metal film.
  • the stability and firmness of the metal thin film working electrode are improved, the uniformity of the device and the cycle stability are improved, so that the device can achieve a higher uniformity of infrared emissivity changes; finally, the operation of the device
  • the flexible polymer film is used as the substrate in the electrode to replace the existing rigid substrate, so that the prepared device has better flexibility and a wider application range.
  • the preparation method of the flexible electrovariable emissivity device provided by the present invention has simple process and short preparation period, and can be used for industrial production.
  • Fig. 1 is a structural diagram of a flexible electro-variable emissivity device provided by embodiment 1;
  • FIG. 2 is a detailed structure diagram of the flexible electrovariable emissivity device provided in Embodiment 1; FIG.
  • Figure 3 is a graph showing the relationship between the thickness of the ultra-thin platinum film deposited on the modified polypropylene film and the sheet resistance of the working electrode;
  • Figure 4a shows the relationship between the thickness of the ultra-thin platinum film deposited on the modified polypropylene film and the infrared transmittance of the working electrode
  • Figure 4b shows the relationship between the thickness of the ultra-thin platinum film deposited on the modified polypropylene film and the infrared reflectivity of the working electrode
  • Figure 4c is a graph showing the relationship between the thickness of the ultra-thin platinum film deposited on the modified polypropylene film and the infrared absorption rate of the working electrode;
  • Figure 4d shows the thickness of the ultra-thin platinum film deposited on the modified polypropylene film and the average infrared transmittance, average infrared reflectance, average plasma infrared absorption, and average infrared infrared of the modified polypropylene film in the 3-14 ⁇ m band of the working electrode.
  • Example 5 is a graph of infrared reflectance measured by a Fourier infrared spectrometer of the flexible electrovariable emissivity device provided in Example 1 with the increase of the deposition time of the metal film in the electrolyte;
  • Fig. 6 is a thermal imaging diagram of the flexible electro-variable emissivity device provided by the present embodiment attached to a curved cup with the increase of the deposition time of the metal film in the electrolyte under the infrared camera of the 7.5-13 ⁇ m wavelength band.
  • the drugs/reagents used are all commercially available.
  • the present invention provides a flexible electro-variable emissivity device, which includes a working electrode, a gel electrolyte layer and a counter electrode from top to bottom;
  • the working electrode includes a flexible polymer film and a metal film.
  • the flexible polymer film is a surface-modified film and/or a film with a transition layer plated on its underside.
  • the metal film is deposited on the On the surface modified film or the transition layer;
  • the electrolyte layer includes a porous diaphragm and an electrolyte, the electrolyte is infiltrated in the porous diaphragm; the electrolyte includes an electrochromic material containing metal ions and a solvent, and the metal ions are metals capable of reversible electrodeposition and dissolution.
  • the metal of the metal ion is different from the metal for the metal thin film.
  • the metals in the gel electrolyte are preferably non-noble metals.
  • Non-noble metals are more active, especially metals of groups IB, IIB, and IIIA to VA. These metals have high exchange current density and good reversibility, and can achieve reversible electrodeposition and dissolution. .
  • the surface-modified film is a film with oxygen-containing functional groups introduced on the surface or plated with a transition layer through plasma treatment to increase the bonding force between the inert metal film and the film.
  • the electrolyte also includes an electrochemical regulator and an auxiliary agent to realize the reversible electrochemical deposition of the metal and increase the conductivity of the electrolyte.
  • the electrochromic material containing metal ions contains a salt of electrodepositable metal ions; the metal ions can be silver, bismuth, copper, tin, cadmium, mercury, indium, lead, antimony, aluminum, zinc and alloy ions thereof
  • the electrochromic material containing metal ions can be silver nitrate, silver tetrafluoroborate, silver perchlorate and copper chloride, etc.; the reversible electrodeposition reaction of metal ions in the electrochromic material is used to realize the working electrode Conversion between high and low emissivity states;
  • the electrochemical regulator is a salt containing metal ions, and the electric potential required for the reduction of the metal ions is lower than the electric potential required for the reduction of the metal ions in the metal ion-containing electrochromic material; the electrochemical regulation
  • the agent is preferably copper salt and iron salt, such as copper chloride, decamethylferrocene, ferrocene decamethyltetrafluoroborate, 6-(tri-tert-butylferrocene)hexyl)triethyltetrafluoro Ammonium borate, etc.; it is beneficial to charge transfer to make the reversible electrodeposition reaction more complete;
  • the electric potential required for the reduction of the metal ions is slightly lower than the electric potential required for the reduction of the metal ions in the metal ion-containing electrochromic material, preferably within 1V, so as to make the reversible electrodeposition reaction more complete.
  • the auxiliary agent is one of chloride, iodide, bromide, pyridine and imidazole, such as tetrabutylammonium bromide, 1-octyl-3-methylimidazole bromide, lithium bromide, 1-butyl -3-methylimidazole nitrate, 1-butyl-3-methylimidazole hexafluorophosphate, 2,2'-bipyridine, 1,10-phenanthroline, polyethylene glycol thiourea halide, etc.
  • Adding additives is to reduce the rate of reversible electrodeposition reaction and make the metal deposition more dense;
  • the solvent is one of water, organic solvent, ionic liquid, polyionic liquid and eutectic solvent.
  • the flexible polymer film is at least one of polyethylene, polypropylene, polyimide, polyester, polyvinylidene fluoride, polytetrafluoroethylene, polystyrene, and polyvinyl chloride. Choosing a suitable flexible polymer film not only ensures the flexibility of the final product, but also ensures that the final product has an emissivity control amount of about 0.5 in the entire 2.5-25 ⁇ m band (due to the high transparency of the flexible polymer film over the entire infrared band) Sex).
  • the transition layer is at least one of oxide, nitride, fluoride, semiconductor element and metal element.
  • the transition layer is used to bond the polymer film and the metal film to improve the cycle stability and uniformity of the device.
  • the oxide is one of SiO 2 , Cr 2 O 3 , TiO 2 , Al 2 O 3 , Fe 2 O 3, ZnO, HfO 2 , Ta 2 O 5 and ZrO 2 ; the nitride Is Si 3 N 4 ; the fluoride is BaF 2 , CaF 2 or MgF 2 ; the semiconductor element is Si or Ge; the metal element is one of titanium, chromium and nickel. Choosing a suitable transition layer makes the performance of the obtained device more excellent.
  • the metal in the metal thin film is ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), platinum (Pt), yttrium (Y), zirconium (Zr)
  • Ru ruthenium
  • Rh rhodium
  • Pr palladium
  • Ox osmium
  • Ir iridium
  • Pt platinum
  • Y yttrium
  • Zr zirconium
  • Mo molybdenum
  • Tc technetium
  • Hf hafnium
  • Ta tantalum
  • Re rhenium
  • Au gold
  • the thickness of the flexible polymer film is 5-100 ⁇ m; the thickness of the transition layer is less than 100 nm; the thickness of the metal film is 2-30 nm; and the thickness of the gel electrolyte is 10-300 ⁇ m.
  • the thickness of the flexible polymer film is controlled to make the device flexible. Controlling the thickness of the transition layer is to make the device have good variable emissivity performance. Controlling the thickness of the metal film is to control the size of the sheet resistance of the working electrode, and to control the ratio of the absorbing part and the part that is transmitted by infrared radiation in the working electrode, so as to achieve the absorption and infrared radiation in the working electrode in the 3.0 ⁇ 14.0 ⁇ m band.
  • the sum of the transmitted parts of the radiation accounts for more than 50% of the total spectral response of the working electrode in this band.
  • the thickness of the metal thin film is controlled to reduce costs.
  • the gel electrolyte layer provides certain mechanical support for the entire device, and avoids the blistering phenomenon that may be caused by the direct use of liquid electrolyte, and at the same time can absorb the infrared light passing through the working electrode; and the working electrode and the counter electrode The distance between the two is 10 ⁇ 300 ⁇ m, in order to make the infrared light transmitted through the working electrode be completely absorbed by the gel electrolyte layer.
  • the sheet resistance of the working electrode is 10-400 ⁇ / ⁇ .
  • the sheet resistance of the working electrode affects the conductivity of the working electrode, thereby affecting the conduction inside the device.
  • the counter electrode includes a base and a conductive layer, and the conductive layer is disposed on the upper side of the base.
  • the counter electrode is a commonly used counter electrode, which is easy to obtain and will not be corroded by the electrolyte.
  • the conductive layer is to promote the conduction inside the device.
  • the conductive layer is preferably indium tin oxide (ITO), which has excellent conductivity.
  • ITO indium tin oxide
  • the substrate is a flexible film to enhance the flexibility of the final device.
  • the porous membrane is a flexible, ion-conducting porous material, including filter paper, polyethylene, polypropylene, nylon, polyvinylidene fluoride, polysulfone, polyether ether ketone, and polyester. Choosing a suitable porous membrane can not only affect the flexibility of the final product, but also promote the flow of ions.
  • the present invention also provides a method for preparing a flexible electrovariable emissivity device, which includes the following steps:
  • S5 Stack the side of the working electrode obtained from S2 with the metal film deposited on the side of the gel electrolyte layer obtained from S3, and stack the side of the counter electrode obtained from S4 with the conductive layer deposited on the side of the gel electrolyte layer obtained from S3.
  • One side is stacked, and the edge of the stacked structure is sealed to obtain an electro-variable emissivity device based on metal electrodeposition.
  • the S1 is specifically:
  • a transition layer with a thickness of less than 100nm is directly plated on one side of the flexible polymer film
  • the flexible polymer film is treated with oxygen plasma first, and then a transition layer with a thickness of less than 100 nm is plated on one side of the treated film.
  • the S2 is specifically:
  • a metal film is deposited on the transition layer side of the modified film with oxygen-containing functional groups introduced on the surface to obtain a working electrode.
  • the S5 before assembling, in order to make the electrical contact in the device uniform, first use conductive silver paint or conductive tape to coat the periphery of the working electrode and the counter electrode, and then use epoxy resin and polyimide tape Sealing the conductive silver paint or conductive tape to prevent direct contact between the conductive silver paint or conductive tape and the gel electrolyte;
  • the edges of the stacked structure are sealed with epoxy resin and polyimide tape to prevent electrolyte leakage.
  • This embodiment proposes a flexible electro-variable emissivity device, as shown in FIG. 1 and FIG. 2, which sequentially includes a working electrode, a gel electrolyte layer, and a counter electrode from top to bottom;
  • the working electrode includes a polypropylene film and a metal film, the polypropylene film is a surface-modified film, and the metal film is deposited on the surface-modified film;
  • the electrolyte layer includes a porous diaphragm and an electrolyte, the electrolyte is infiltrated in the porous diaphragm; the electrolyte includes an electrochromic material containing metal ions and a solvent, and the metal ions are metals capable of reversible electrodeposition and dissolution.
  • the metal of the metal ion is different from the metal for the metal thin film.
  • the modified polypropylene film is a polypropylene film with oxygen-containing functional groups introduced on the surface, with a thickness of 30 ⁇ m;
  • the metal film is a platinum (Pt) film with a thickness of 10nm;
  • the gel electrolyte in the gel electrolyte layer is made of nitric acid Silver (electrochromic material containing metal ions), copper chloride (electrochemical regulator), tetrabutylammonium bromide (auxiliary), polyvinyl alcohol solution (solvent) and dimethyl sulfoxide (solvent) are mixed
  • the thickness is 150 ⁇ m.
  • Figure 3 shows the relationship between the thickness of the ultra-thin platinum film deposited on the modified polypropylene film and the sheet resistance of the working electrode. It can be seen from the figure that the sheet resistance of the working electrode decreases as the thickness of the platinum film increases Therefore, a suitable platinum film thickness should be selected to obtain a suitable sheet resistance of the working electrode. When the thickness of the platinum film is 10nm, the sheet resistance of the working electrode is 150 ⁇ / ⁇ .
  • Figure 4a shows the relationship between the thickness of the ultra-thin platinum film deposited on the modified polypropylene film and the infrared transmittance of the working electrode. It can be seen from the figure that as the thickness of the ultra-thin platinum film increases, the infrared transmittance of the working electrode The rate gradually decreases, indicating that the platinum film can play a role in preventing the transmission of infrared light;
  • Figure 4b shows the relationship between the thickness of the ultra-thin platinum film deposited on the modified polypropylene film and the infrared reflectivity of the working electrode. It can be seen from the figure that as the thickness of the ultra-thin platinum film increases, the infrared reflectivity of the working electrode gradually Increase, indicating that the ultra-thin platinum film has infrared light reflection;
  • Figure 4c shows the relationship between the thickness of the ultra-thin platinum film deposited on the modified polypropylene film and the infrared absorption rate of the working electrode.
  • the infrared absorption rate of the working electrode is It first increases and then decreases, indicating that the platinum film has an absorption effect on infrared light, and the platinum film has a better absorption effect on infrared light when the thickness of the platinum film is appropriate;
  • Figure 4d shows the thickness of the ultra-thin platinum film deposited on the modified polypropylene film and the average infrared transmittance, average infrared reflectance, and average plasma infrared absorption of the working electrode in the 3-14 ⁇ m band (that is, the infrared absorption of the platinum film ) And the ratio of the average infrared absorption of the modified polypropylene film to the total spectral response of the working electrode in the 3-14 ⁇ m band.
  • the average infrared transmittance of the working electrode in the 3-14 ⁇ m band is The average infrared reflectance is very low, and the average plasma infrared absorption is also at a low level; with the increase of the thickness of the platinum film, the average infrared transmittance of the working electrode in the 3-14 ⁇ m band gradually decreases, and The average infrared reflectivity gradually increases, the average plasma infrared absorption increases significantly, and the average infrared transparent substrate infrared absorption does not change due to the increase in the thickness of the platinum film.
  • Figure 4d shows that the modified polypropylene film substrate has infrared light absorption and its effect on infrared light absorption is not affected by the platinum film deposited on the surface. At the same time, the modified polypropylene film substrate has high infrared transmittance and low infrared reflectance. ;
  • the platinum film can prevent the transmission of infrared light, and the platinum film prevents the transmission of infrared light mainly through the reflection of infrared light and the absorption of infrared light.
  • Fig. 5 is a graph of the infrared reflectance of the flexible electro-variable emissivity device provided by this embodiment measured under a Fourier infrared spectrometer as the deposition time increases. As can be seen from the figure, as the deposition time increases, the infrared emissivity gradually Increase the emissivity to achieve electro-gradual adjustment.
  • Fig. 6 is a thermal imaging diagram of the flexible electro-variable emissivity device provided by this embodiment on a curved cup. As the deposition time increases, the device is thermally imaged under an infrared camera with a wavelength of 7.5 to 13 ⁇ m. It can be seen from the figure that the flexible electrical The variable emissivity device can achieve a good electrovariable emissivity effect on the curved surface.
  • This embodiment also provides a method for manufacturing the above-mentioned flexible electro-variable emissivity device, which includes the following steps:
  • Oxygen plasma treatment is performed on the polypropylene film to obtain a modified polypropylene film with oxygen-containing functional groups introduced on the surface;
  • S5 Stack the side of the working electrode obtained from S2 with the platinum film deposited on the side of the gel electrolyte layer obtained from S3, and the side of the counter electrode obtained from S4 with the indium tin oxide deposited on the side with the gel electrolyte layer obtained from S3.
  • One side is stacked, and the edge of the stacked structure is sealed with epoxy resin and polyimide tape to obtain a flexible electro-variable emissivity device.
  • conductive silver paint or conductive tape Before assembling, in order to make the electrical contact in the device uniform, first use conductive silver paint or conductive tape to coat the periphery of the working electrode and counter electrode, and then seal the conductive silver paint or conductive tape with epoxy resin and polyimide tape. Adhesive tape to prevent direct contact between the conductive silver paint or conductive tape and the gel electrolyte.
  • This embodiment proposes a flexible electro-variable emissivity device, which includes a working electrode, a gel electrolyte layer, and a counter electrode from top to bottom;
  • the working electrode includes a polyester film and a metal film, one side of the polyester film is plated with a transition layer, and the metal film is deposited on the transition layer;
  • the electrolyte layer includes a porous diaphragm and an electrolyte, the electrolyte is infiltrated in the porous diaphragm; the electrolyte includes an electrochromic material containing metal ions and a solvent, and the metal ions are metals capable of reversible electrodeposition and dissolution.
  • the metal of the metal ion is different from the metal for the metal thin film.
  • the thickness of the polyester film is 5 ⁇ m; the metal film is a ruthenium (Ru) film with a thickness of 2 nm; the gel electrolyte in the gel electrolyte layer is made of silver nitrate (electrochromic material containing metal ions), Ferrocene tetrafluoroborate (electrochemical regulator) and 1-butyl-3-methylimidazole nitrate (auxiliary and solvent) are mixed (0.5mmol/L silver nitrate, 0.1mmol/L ten 100 mL of ferrocene methyltetrafluoroborate and 1-butyl-3-methylimidazole nitrate were heated and stirred to prepare an electrolyte) with a thickness of 10 ⁇ m.
  • silver nitrate electrorochromic material containing metal ions
  • Ferrocene tetrafluoroborate electrochemical regulator
  • 1-butyl-3-methylimidazole nitrate auxiliary and solvent
  • the sheet resistance of the working electrode is 100 ⁇ / ⁇ .
  • This embodiment proposes a flexible electro-variable emissivity device, which includes a working electrode, a gel electrolyte layer, and a counter electrode from top to bottom;
  • the working electrode includes a modified polyvinyl chloride film and a metal film, the lower side of the modified polyvinyl chloride film is plated with a transition layer, and the metal film is deposited on the transition layer;
  • the electrolyte layer includes a porous diaphragm and an electrolyte, the electrolyte is infiltrated in the porous diaphragm; the electrolyte includes an electrochromic material containing metal ions and a solvent, and the metal ions are metals capable of reversible electrodeposition and dissolution.
  • the metal of the metal ion is different from the metal for the metal thin film.
  • the modified polyvinyl chloride film is a polyvinyl chloride film with oxygen-containing functional groups introduced on the surface, with a thickness of 100 ⁇ m;
  • the metal film is a gold (Au) film with a thickness of 30 nm;
  • the gel electrolyte in the gel electrolyte layer It is a mixture of silver tetrafluoroborate, decamethylferrocene, 1,10-phenanthroline, polyvinyl alcohol and dimethyl sulfoxide, with a thickness of 300 ⁇ m.
  • the sheet resistance of the working electrode is 80 ⁇ / ⁇ .

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Laminated Bodies (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

本发明公开一种柔性电致变发射率器件及其制备方法,从上到下依次包括工作电极、凝胶电解质层和对电极;工作电极包括柔性聚合物薄膜和金属薄膜,柔性聚合物薄膜为经过表面改性的薄膜和/或为在其下侧镀制有过渡层的薄膜,金属薄膜沉积在所述经过表面改性的薄膜上或过渡层上;电解质层包括多孔隔膜和电解质,电解质浸润在多孔隔膜中;电解质包括含金属离子的电致变色材料和溶剂,金属离子为能够实现可逆电沉积和溶解的金属离子且所述金属离子的金属与所述金属薄膜用金属不同;该制备方法包括分别制备工作电极、凝胶电解质层、对电极和组装。本发明提供的器件具有柔性且变化均匀;本发明提供的制备方法工艺简单,制备周期短,可用于工业化生产。

Description

一种柔性电致变发射率器件及制备方法 技术领域
本发明涉及电致变发射率器件技术领域,尤其是一种柔性电致变发射率器件及制备方法。
背景技术
随着光电科学技术的迅猛发展,军事伪装目标面临着可见光、红外、雷达等多波段监测侦察的威胁。红外成像技术由于具有隐蔽性好,夜视距离远,抗干扰能力强,适用性广等优点,使其广泛应用于军事领域,对军事目标构成了严重威胁。通过热红外自适应伪装技术,消除、减小、改变或模拟目标与背景之间在热红外的两个大气窗口(3~5μm和7.5~13μm)辐射特性的差别,是应对热红外探测的有效手段。
根据史蒂芬-玻尔兹曼定律,自适应热红外伪装技术可以分为基于表面温度控制的热红外自适应伪装技术和基于表面发射率调控的热红外自适应伪装技术。基于表面温度控制的热红外自适应伪装技术主要包括通过热电材料直接对物体表面进行升温和降温和通过将不同温度的液体注入微流控系统来控制物体表面的温度两种方式。而基于表面发射率调控的热红外自适应伪装技术主要包括通过离子嵌入/脱嵌氧化物,通过离子掺杂导电聚合物,通过离子掺杂多层石墨烯或者通过温度调控材料相变这三种方式来实现发射率的变化。然而,一 般的军事设备上或者是需要伪装的军事人员身上都存在各种曲面或者是需要弯折的地方,因此开发出柔性的热红外自适应伪装技术可以扩展其应用的范围,并提升军事目标的伪装效果。
目前现有的热红外自适应伪装技术要么难以实现柔性,要么在柔性条件下红外调制能力有限。
发明内容
本发明提供一种柔性电致变发射率器件及制备方法,用于克服现有技术中难以实现柔性与强的红外调制能力的兼容等缺陷,实现在柔性条件下器件在中远红外波段两个大气窗口(3~5μm和7.5~13μm)波段具有较高的红外发射率调控范围。
为实现上述目的,本发明提出一种柔性电致变发射率器件,从上到下依次包括工作电极、凝胶电解质层和对电极;
所述工作电极包括柔性聚合物薄膜和金属薄膜,所述柔性聚合物薄膜为经过表面改性的薄膜和/或为在其下侧镀制有过渡层的薄膜,所述金属薄膜沉积在所述经过表面改性的薄膜上或过渡层上;
所述电解质层包括多孔隔膜和电解质,所述电解质浸润在所述多孔隔膜中;所述电解质包括含金属离子的电致变色材料和溶剂,所述金属离子为能够实现可逆电沉积和溶解的金属离子且所述金属离子的金属与所述金属薄膜用金属不同。
为实现上述目的,本发明还提出一种柔性电致变发射率器件制备方法,包括以下步骤:
S1:对柔性聚合物薄膜进行表面改性和/或在所述薄膜一侧镀制过渡层;
S2:在经表面改性的柔性聚合物薄膜的一侧沉积金属薄膜,得到 工作电极;
或者,
在柔性聚合物薄膜或表面改性的柔性聚合物薄膜的过渡层侧沉积金属薄膜,得到工作电极;
S3:配制凝胶电解质,并用所述凝胶电解质浸润多孔隔膜,得到凝胶电解质层;
S4:在基体的一侧直接沉积导电层,得到对电极;
S5:将S2得到的工作电极沉积有金属薄膜的一侧与S3得到的凝胶电解质层一侧叠置,将S4得到的对电极沉积有导电层的一侧与S3得到的凝胶电解质层另一侧叠置,并封住叠置结构的边缘,得到基于金属电沉积的电致变发射率器件。
与现有技术相比,本发明的有益效果有:
1、本发明提供的柔性电致变发射率器件工作原理为:凝胶电解质层中含金属离子的电致变色材料使得在对器件的工作电极施加负的沉积电压(-2.0~-3.0V)时使电致变色材料中的金属离子被还原成金属单质而沉积到工作电极金属薄膜表面从而形成一层金属膜,实现将工作电极的等离子体红外吸收的光谱部分和红外可透过的光谱部分转变为红外反射,从而使器件从高发射状态转变为低反射状态;另外,通过对工作电极施加正向的溶解电压(0.2~1.5V),使得沉积在工作电极金属薄膜表面的金属膜被快速溶解,从而使器件返回至高发射的状态。
本发明提供的器件,由于金属薄膜的存在使得工作电极中吸收部分和被红外辐射所透过的部分之和占该工作电极在这个波段内总光谱响应的50%以上,且该器件在中远红外波段两个大气窗口(3~5μm和7.5~13μm)波段具有很高的红外发射率调控范围,发射率的变化量 均能达到0.5;此外,由于柔性聚合物薄膜在整个红外波段上的高透明性,使得该器件在整个2.5~25μm波段都具有0.5左右的发射率调控量;过渡层是为了提高器件的循环稳定性能;柔性聚合物薄膜作为基底起支撑作用,金属薄膜起导电作用,而过渡层起粘结聚合物薄膜和金属薄膜的作用。同时,由于提高了金属薄膜工作电极的稳定性和牢固性,使器件的均匀性提高和循环稳定性提高,从而使得该器件能实现较高的红外发射率变化均匀性;最后,该器件的工作电极中采用柔性聚合物薄膜为基底来替换现有的刚性基底,使得制得的器件具有较好的柔性,适用范围更广。
2、本发明提供的柔性电致变发射率器件制备方法工艺简单,制备周期短,可用于工业化生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为实施例1提供的柔性电致变发射率器件结构图;
图2为实施例1提供的柔性电致变发射率器件的细节结构图;
图3为沉积在改性聚丙烯薄膜上的超薄铂薄膜厚度与工作电极方块电阻之间的关系图;
图4a为沉积在改性聚丙烯薄膜上的超薄铂薄膜厚度与工作电极红外透过率之间的关系图;
图4b为沉积在改性聚丙烯薄膜上的超薄铂薄膜厚度与工作电极 红外反射率之间的关系图;
图4c为沉积在改性聚丙烯薄膜上的超薄铂薄膜厚度与工作电极红外吸收率之间的关系图;
图4d为沉积在改性聚丙烯薄膜上的超薄铂薄膜厚度与工作电极在3~14μm波段的平均红外透过率、平均红外反射率、平均等离子体红外吸收和平均改性聚丙烯薄膜红外吸收占3~14μm波段工作电极光谱总响应的比率关系图;
图5为实施例1提供的柔性电致变发射率器件随着电解质中金属薄膜的沉积时间的增加在傅里叶红外光谱仪下测量的红外反射率曲线图;
图6为将本实施例提供的柔性电致变发射率器件贴于曲面的杯子上,随着电解质中金属薄膜的沉积时间的增加在该器件在7.5~13μm波段红外相机下的热成像图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在 本发明要求的保护范围之内。
无特殊说明,所使用的药品/试剂均为市售。
本发明提出一种柔性电致变发射率器件,从上到下依次包括工作电极、凝胶电解质层和对电极;
所述工作电极包括柔性聚合物薄膜和金属薄膜,所述柔性聚合物薄膜为经过表面改性的薄膜和/或为在其下侧镀制有过渡层的薄膜,所述金属薄膜沉积在所述经过表面改性的薄膜上或过渡层上;
所述电解质层包括多孔隔膜和电解质,所述电解质浸润在所述多孔隔膜中;所述电解质包括含金属离子的电致变色材料和溶剂,所述金属离子为能够实现可逆电沉积和溶解的金属离子且所述金属离子的金属与所述金属薄膜用金属不同。
凝胶电解质中的金属优选为非贵金属,非贵金属较活泼,尤其为ⅠB、ⅡB、ⅢA~VA族金属,这些金属交换电流密度大,可逆性较好,能够很好地实现可逆电沉积和溶解。
所述经过表面改性的薄膜为通过等离子体处理在表面引入了含氧官能团或镀制了过渡层的薄膜,以增加惰性金属薄膜与薄膜之间的结合力。
所述电解质还包括电化学调节剂和助剂,以实现金属可逆电化学沉积、增加电解质的导电性能。
所述含金属离子的电致变色材料包含可电沉积金属离子的盐;所述金属离子可以为银,铋,铜,锡,镉,汞,铟,铅,锑,铝,锌及其合金离子等;所述含金属离子的电致变色材料可以为硝酸银、四氟硼酸银、高氯酸银和氯化铜等;通过电致变色材料中金属离子的可逆电沉积反应,以实现工作电极高、低发射率状态之间的转换;
所述电化学调节剂为为含有金属离子的盐,且所述金属离子还原 所需的电势低于所述含金属离子的电致变色材料中金属离子还原所需的电势;所述电化学调节剂优选铜盐和铁盐,如氯化铜、十甲基二茂铁、十甲基四氟硼酸二茂铁盐、6-(三叔丁基二茂铁基)己基)三乙基四氟硼酸铵等;有利于电荷转移,以使可逆电沉积反应更加充分;
优选地,所述金属离子还原所需的电势略低于所述含金属离子的电致变色材料中金属离子还原所需的电势,优选相差1V以内,以使可逆电沉积反应更加充分。
所述助剂为氯化物、碘化物、溴化物、吡啶和咪唑中的一种,如四丁基溴化铵、溴化-1-辛基-3-甲基咪唑、溴化锂、1-丁基-3-甲基咪唑硝酸盐、1-丁基-3-甲基咪唑六氟磷酸盐、2,2'-联吡啶、1,10-菲咯啉、聚乙烯乙二醇硫脲卤化物等,加入助剂是为了降低可逆电沉积反应速率,使金属沉积得更致密;
所述溶剂为水、有机溶剂、离子液体、聚离子液体和低共熔溶剂中的一种。
优选地,所述柔性聚合物薄膜为聚乙烯、聚丙烯、聚酰亚胺、聚酯、聚偏氟乙烯、聚四氟乙烯、聚苯乙烯和聚氯乙烯中的至少一种。选择合适的柔性聚合物薄膜,既保证最终产品的柔韧性,又保证最终产品的在整个2.5~25μm波段都具有0.5左右的发射率调控量(由于柔性聚合物薄膜在整个红外波段上的高透明性)。
优选地,所述过渡层为氧化物、氮化物、氟化物、半导体单质和金属单质中的至少一种。过渡层用于粘结聚合物薄膜和金属薄膜,以提高器件的循环稳定性和均匀性。
优选地,所述氧化物为SiO 2、Cr 2O 3、TiO 2、Al 2O 3、Fe 2O 3、ZnO、HfO 2、Ta 2O 5和ZrO 2中的一种;所述氮化物为Si 3N 4;所述氟化物为BaF 2、CaF 2或MgF 2;所述半导体单质为Si或Ge;所述金属单质为钛、铬和 镍中的一种。选择合适的过渡层使得得到的器件性能更优异。
优选地,所述金属薄膜中的金属为钌(Ru)、铑(Rh)、钯(Pd)、锇(Os)、铱(Ir)、铂(Pt)、钇(Y)、锆(Zr)、铌(Nb)、钼(Mo)、锝(Tc)、铪(Hf)、钽(Ta)、钨(W)、铼(Re)和金(Au)中的一种。选择以惰性贵金属为原料,以提高器件性能稳定性能。
优选地,所述柔性聚合物薄膜的厚度为5~100μm;所述过渡层的厚度小于100nm;所述金属薄膜的厚度为2~30nm;所述凝胶电解质的厚度为10~300μm。控制柔性聚合物薄膜的厚度是为了使器件具有柔性。控制过渡层的厚度是为了使器件具有好的变发射率性能。控制金属薄膜的厚度是为了控制工作电极的方块电阻的大小,以及控制工作电极中吸收部分和被红外辐射所透过部分的比例,以实现在3.0~14.0μm波段工作电极中吸收部分和被红外辐射所透过的部分之和占该工作电极在这个波段内总光谱响应的50%以上。此外,控制金属薄膜的厚度以降低成本。凝胶电解质层为整个器件提供了一定的机械支持,并避免了直接采用液体电解质可能导致的起泡现象,同时还能将透过工作电极的红外光吸收;而将工作电极和对电极之间的间距控制在10~300μm,是为了使透过工作电极的红外光被凝胶电解质层吸收完全。
优选地,所述工作电极的方块电阻为10~400Ω/□。工作电极的方块电阻影响工作电极的电导率,从而影响器件内部的导电。
优选地,所述对电极包括基体和导电层,所述导电层设置在所述基体上侧。所述对电极为常用的对电极,易于获得,且不会被电解质腐蚀。导电层是为了促进器件内部的导电。
导电层优选为氧化铟锡(ITO),其导电性能优异。
优选地,所述基体为柔性薄膜,以增强最终器件的柔性。
优选地,所述多孔隔膜为柔性、能导通离子的多孔材料,包括滤纸、聚乙烯、聚丙烯、尼龙、聚偏氟乙烯、聚砜、聚醚醚酮和聚酯。选择合适的多孔隔膜既能不影响最终产品的柔性,又能促进离子的流动。
本发明还提出一种柔性电致变发射率器件制备方法,包括以下步骤:
S1:对柔性聚合物薄膜进行表面改性和/或在所述薄膜一侧镀制过渡层;
S2:在经表面改性的柔性聚合物薄膜的一侧沉积金属薄膜,得到工作电极;
或者,
在柔性聚合物薄膜或表面改性的柔性聚合物薄膜的过渡层侧沉积金属薄膜,得到工作电极;
S3:配制凝胶电解质,并用所述凝胶电解质浸润多孔隔膜,得到凝胶电解质层;
S4:在基体的一侧直接沉积导电层,得到对电极;
S5:将S2得到的工作电极沉积有金属薄膜的一侧与S3得到的凝胶电解质层一侧叠置,将S4得到的对电极沉积有导电层的一侧与S3得到的凝胶电解质层另一侧叠置,并封住叠置结构的边缘,得到基于金属电沉积的电致变发射率器件。
优选地,所述S1具体为:
对柔性聚合物薄膜进行氧等离子体处理,获得表面引入了含氧官能团的改性薄膜;
或者为:
在柔性聚合物薄膜一侧直接镀制一层厚度小于100nm的过渡层;
或者为:
先对柔性聚合物薄膜进行氧等离子体处理,然后在经过处理的薄膜一侧镀制一层厚度小于100nm的过渡层。
所述S2具体为:
在表面引入了含氧官能团的改性薄膜一侧沉积金属薄膜,得到工作电极;
或者为:
在柔性聚合物薄膜一侧的过渡层侧沉积金属薄膜,得到工作电极;
或者为:
在表面引入了含氧官能团的改性薄膜一侧的过渡层侧沉积金属薄膜,得到工作电极。
优选地,所述S5中,在组装前,为了使器件内电接触均匀,先使用导电银漆或导电胶带涂覆于工作电极和对电极的周边,然后用环氧树脂和聚酰亚胺胶带密封所述导电银漆或导电胶带,防止所述导电银漆或导电胶带与凝胶电解质直接接触;
所述叠置结构的边缘采用环氧树脂和聚酰亚胺胶带密封,防止电解液泄漏。
实施例1
本实施例提出一种柔性电致变发射率器件,如图1和图2所示,从上到下依次包括工作电极、凝胶电解质层和对电极;
所述工作电极包括聚丙烯薄膜和金属薄膜,所述聚丙烯薄膜为经过表面改性的薄膜,所述金属薄膜沉积在所述经过表面改性的薄膜上;
所述电解质层包括多孔隔膜和电解质,所述电解质浸润在所述多孔隔膜中;所述电解质包括含金属离子的电致变色材料和溶剂,所述金属离子为能够实现可逆电沉积和溶解的金属离子且所述金属离子 的金属与所述金属薄膜用金属不同。
本实施例中,改性聚丙烯薄膜为表面引入了含氧官能团的聚丙烯薄膜,厚度为30μm;金属薄膜为铂(Pt)薄膜,厚度为10nm;凝胶电解质层中的凝胶电解质由硝酸银(含金属离子的电致变色材料)、氯化铜(电化学调节剂)、四丁基溴化铵(助剂)、聚乙烯醇溶液(溶剂)和二甲亚砜(溶剂)混合而成,厚度为150μm。
图3为沉积在改性聚丙烯薄膜上的超薄铂薄膜厚度与工作电极方块电阻之间的关系图,从图可知,工作电极的方块电阻的值随着铂薄膜厚度的增大而减小,因此应该选择合适的铂薄膜厚度以获得合适的工作电极方块电阻,在铂薄膜厚度为10nm时,工作电极方块电阻为150Ω/□。
图4a为沉积在改性聚丙烯薄膜上的超薄铂薄膜厚度与工作电极红外透过率之间的关系图,从图可知,随着超薄铂薄膜厚度的增加,工作电极的红外透过率逐渐减小,说明铂薄膜能够起到阻止红外光透过的作用;
图4b为沉积在改性聚丙烯薄膜上的超薄铂薄膜厚度与工作电极红外反射率之间的关系图,从图可知,随着超薄铂薄膜厚度的增加,工作电极的红外反射率逐渐增加,说明超薄铂薄膜具有红外光反射作用;
图4c为沉积在改性聚丙烯薄膜上的超薄铂薄膜厚度与工作电极红外吸收率之间的关系图,从图可知,随着超薄铂薄膜厚度的增加,工作电极的红外吸收率是呈先增加后降低的,说明铂薄膜对红外光具有吸收作用,且在铂薄膜的厚度合适时铂薄膜对红外光的吸收作用更佳;
图4d为沉积在改性聚丙烯薄膜上的超薄铂薄膜厚度与工作电极 在3~14μm波段的平均红外透过率、平均红外反射率、平均等离子体红外吸收(即铂薄膜对红外的吸收)和平均改性聚丙烯薄膜红外吸收占3~14μm波段工作电极光谱总响应的比率关系图,从图可知,在铂薄膜厚度为3nm时,工作电极在3~14μm波段的平均红外透过率很高,而平均红外反射率很低,且平均等离子体红外吸收也处于较低水平;随着铂薄膜厚度的增加,工作电极在3~14μm波段的平均红外透过率是逐渐降低的,而平均红外反射率逐渐增加,平均等离子体红外吸收显著的增加,而平均红外透明基片红外吸收不因铂薄膜厚度的增加而变化。图4d说明改性聚丙烯薄膜基底具有红外光吸收的作用且其对红外光吸收的作用不受表面沉积的铂薄膜影响,同时改性聚丙烯薄膜基底的红外透过率高而红外反射率低;铂薄膜能够起到阻止红外光透过的作用,而铂薄膜阻止红外光透过主要是通过对红外光反射和对红外光吸收而实现的。
图5为本实施例提供的柔性电致变发射率器件随着沉积时间增加在傅里叶红外光谱仪下测量的红外反射率曲线图,从图可知,随着沉积时间的增加,红外发射率逐渐升高,可实现发射率的电致渐变调节。
图6为将本实施例提供的柔性电致变发射率器件贴于曲面的杯子上,随着沉积时间增加在该器件在7.5~13μm波段红外相机下的热成像图,从图可知,柔性电致变发射率器件在曲面表面可以实现很好的电致变发射率效果。
本实施例还提供一种上述柔性电致变发射率器件的制备方法,包括以下步骤:
S1:对聚丙烯薄膜进行氧等离子体处理,获得表面引入了含氧官能团的改性聚丙烯薄膜;
S2:通过电子束蒸发系统,在改性聚丙烯薄膜的一侧直接沉积铂薄膜,得到工作电极;
S3:将0.5mmol/L硝酸银(AgNO 3)、0.1mmol/L氯化铜(CuCl 2)、2.5mmol/L四丁基溴化铵(tetrabutylammonium bromide)、5~15wt.%聚乙烯醇(Polyvinyl Alcohol,Mw=89000-98000)和100mL二甲亚砜(dimethyl sulfoxide)加热搅拌配制凝胶电解质,并用所述凝胶电解质浸润滤纸,得到凝胶电解质层;所述凝胶电解质,银离子能够实现可逆沉积和溶解。
S4:在聚对苯二甲酸乙二酯(PET)基体的一侧直接沉积氧化铟锡,得到对电极;
S5:将S2得到的工作电极沉积有铂薄膜的一侧与S3得到的凝胶电解质层一侧叠置,将S4得到的对电极沉积有氧化铟锡一侧与S3得到的凝胶电解质层另一侧叠置,并用环氧树脂和聚酰亚胺胶带密封叠置结构的边缘,得到柔性电致变发射率器件。
在组装前,为了使器件内电接触均匀,先使用导电银漆或导电胶带涂覆于工作电极和对电极的周边,然后用环氧树脂和聚酰亚胺胶带密封所述导电银漆或导电胶带,防止所述导电银漆或导电胶带与凝胶电解质直接接触。
实施例2
本实施例提出一种柔性电致变发射率器件,从上到下依次包括工作电极、凝胶电解质层和对电极;
所述工作电极包括聚酯薄膜和金属薄膜,所述聚酯薄膜一侧镀制有过渡层,所述金属薄膜沉积在所述过渡层上;
所述电解质层包括多孔隔膜和电解质,所述电解质浸润在所述多孔隔膜中;所述电解质包括含金属离子的电致变色材料和溶剂,所述 金属离子为能够实现可逆电沉积和溶解的金属离子且所述金属离子的金属与所述金属薄膜用金属不同。
本实施例中,聚酯薄膜厚度为5μm;金属薄膜为钌(Ru)薄膜,厚度为2nm;凝胶电解质层中的凝胶电解质由硝酸银(含金属离子的电致变色材料)、十甲基四氟硼酸二茂铁盐(电化学调节剂)和1-丁基-3-甲基咪唑硝酸盐(助剂和溶剂)混合而成(将0.5mmol/L硝酸银、0.1mmol/L十甲基四氟硼酸二茂铁盐、1-丁基-3-甲基咪唑硝酸盐100mL加热搅拌配制电解质),厚度为10μm。
本实施例中,工作电极的方块电阻为100Ω/□。
实施例3
本实施例提出一种柔性电致变发射率器件,从上到下依次包括工作电极、凝胶电解质层和对电极;
所述工作电极包括改性聚氯乙烯薄膜和金属薄膜,所述改性聚氯乙烯薄膜下侧镀制有过渡层,所述金属薄膜沉积在所述过渡层上;
所述电解质层包括多孔隔膜和电解质,所述电解质浸润在所述多孔隔膜中;所述电解质包括含金属离子的电致变色材料和溶剂,所述金属离子为能够实现可逆电沉积和溶解的金属离子且所述金属离子的金属与所述金属薄膜用金属不同。
本实施例中,改性聚氯乙烯薄膜为表面引入了含氧官能团的聚氯乙烯薄膜,厚度为100μm;金属薄膜为金(Au)薄膜,厚度为30nm;凝胶电解质层中的凝胶电解质由四氟硼酸银、十甲基二茂铁、1,10-菲咯啉、聚乙烯醇和二甲亚砜混合而成,厚度为300μm。
本实施例中,工作电极的方块电阻为80Ω/□。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所 作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (11)

  1. 一种柔性电致变发射率器件,其特征在于,从上到下依次包括工作电极、凝胶电解质层和对电极;
    所述工作电极包括柔性聚合物薄膜和金属薄膜,所述柔性聚合物薄膜为经过表面改性的薄膜和/或为在其下侧镀制有过渡层的薄膜,所述金属薄膜沉积在所述经过表面改性的薄膜上或过渡层上;
    所述电解质层包括多孔隔膜和电解质,所述电解质浸润在所述多孔隔膜中;所述电解质包括含金属离子的电致变色材料和溶剂,所述金属离子为能够实现可逆电沉积和溶解的金属离子且所述金属离子的金属与所述金属薄膜用金属不同。
  2. 如权利要求1所述的柔性电致变发射率器件,其特征在于,所述柔性聚合物薄膜为聚乙烯、聚丙烯、聚酰亚胺、聚酯、聚偏氟乙烯、聚四氟乙烯、聚苯乙烯和聚氯乙烯中的至少一种。
  3. 如权利要求1所述的柔性电致变发射率器件,其特征在于,所述过渡层为氧化物、氮化物、氟化物、半导体单质和金属单质中的至少一种。
  4. 如权利要求3所述的柔性电致变发射率器件,其特征在于,所述氧化物为SiO 2、Cr 2O 3、TiO 2、Al 2O 3、Fe 2O 3、ZnO、HfO 2、Ta 2O 5和ZrO 2中的一种;所述氮化物为Si 3N 4;所述氟化物为BaF 2、CaF 2或MgF 2;所述半导体单质为Si或Ge;所述金属单质为钛、铬和镍中的一种。
  5. 如权利要求1所述的柔性电致变发射率器件,其特征在于,所述金属薄膜中的金属为钌、铑、钯、锇、铱、铂、钇、锆、铌、钼、锝、铪、钽、钨、铼和金中的一种。
  6. 如权利要求1所述的柔性电致变发射率器件,其特征在于,所述柔性聚合物薄膜的厚度为5~100μm;所述过渡层的厚度小于100nm;所述金属薄膜的厚度为2~30nm;所述凝胶电解质层的厚度 为10~300μm。
  7. 如权利要求1所述的柔性电致变发射率器件,其特征在于,所述工作电极的方块电阻为10~400Ω/□。
  8. 如权利要求1所述的柔性电致变发射率器件,其特征在于,所述对电极包括基体和导电层,所述导电层设置在所述基体上侧。
  9. 如权利要求8所述的柔性电致变发射率器件,其特征在于,所述基体为柔性薄膜。
  10. 如权利要求1所述的柔性电致变发射率器件,其特征在于,所述多孔隔膜为柔性、能导通离子的多孔材料,包括滤纸、聚乙烯、聚丙烯、尼龙、聚偏氟乙烯、聚砜、聚醚醚酮和聚酯。
  11. 一种柔性电致变发射率器件的制备方法,其特征在于,包括以下步骤:
    S1:对柔性聚合物薄膜进行表面改性和/或在所述薄膜一侧镀制过渡层;
    S2:在经表面改性的柔性聚合物薄膜的一侧沉积金属薄膜,得到工作电极;
    或者,
    在柔性聚合物薄膜或表面改性的柔性聚合物薄膜的过渡层侧沉积金属薄膜,得到工作电极;
    S3:配制凝胶电解质,并用所述凝胶电解质浸润多孔隔膜,得到凝胶电解质层;
    S4:在基体的一侧直接沉积导电层,得到对电极;
    S5:将S2得到的工作电极沉积有金属薄膜的一侧与S3得到的凝胶电解质层一侧叠置,将S4得到的对电极沉积有导电层的一侧与S3得到的凝胶电解质层另一侧叠置,并封住叠置结构的边缘,得到基于 金属电沉积的电致变发射率器件。
PCT/CN2020/124386 2020-01-07 2020-10-28 一种柔性电致变发射率器件及制备方法 WO2021139330A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/418,870 US20220075236A1 (en) 2020-01-07 2020-10-28 Flexible variable emissivity electrochromic device and preparation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010012597.7A CN111176047B (zh) 2020-01-07 2020-01-07 一种柔性电致变发射率器件及制备方法
CN202010012597.7 2020-01-07

Publications (1)

Publication Number Publication Date
WO2021139330A1 true WO2021139330A1 (zh) 2021-07-15

Family

ID=70658009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124386 WO2021139330A1 (zh) 2020-01-07 2020-10-28 一种柔性电致变发射率器件及制备方法

Country Status (3)

Country Link
US (1) US20220075236A1 (zh)
CN (1) CN111176047B (zh)
WO (1) WO2021139330A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115291452A (zh) * 2022-08-19 2022-11-04 南京理工大学 红外辐射特性可调的新型电致变色结构

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111176047B (zh) * 2020-01-07 2023-06-23 中国人民解放军国防科技大学 一种柔性电致变发射率器件及制备方法
CN113568197A (zh) * 2021-07-23 2021-10-29 中国人民解放军国防科技大学 一种柔性红外辐射动态调控器件及制备方法
CN114114774A (zh) * 2021-11-23 2022-03-01 中国人民解放军国防科技大学 一种开路稳定的银可逆电沉积器件及制备方法
CN114326239A (zh) * 2021-12-07 2022-04-12 北京工业大学 一种柔性一体化电致变色器件及其制备方法
CN114987004B (zh) * 2022-05-16 2023-04-07 中国人民解放军国防科技大学 一种气致变红外发射率器件及其制备方法、应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070008603A1 (en) * 2005-07-11 2007-01-11 Sotzing Gregory A Electrochromic devices utilizing very low band gap conjugated counter electrodes: preparation and use
CN104932168A (zh) * 2015-06-10 2015-09-23 电子科技大学 一种柔性电致变色器件及其制备方法
CN107922829A (zh) * 2015-03-24 2018-04-17 弗劳恩霍夫应用研究促进协会 具有改善的电解质层的电致变色元件
CN109188819A (zh) * 2018-08-28 2019-01-11 上海幂方电子科技有限公司 一种柔性电致变色器件及其制备方法
CN109283704A (zh) * 2017-07-21 2019-01-29 韩国电子通信研究院 可逆电化学镜
CN110184576A (zh) * 2019-06-18 2019-08-30 上海空间电源研究所 一种柔性无机电致变发射率材料及其制备方法与应用
CN111176047A (zh) * 2020-01-07 2020-05-19 中国人民解放军国防科技大学 一种柔性电致变发射率器件及制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774255A (en) * 1996-09-23 1998-06-30 Mcdonnell Douglas Corporation Adaptive infrared modulator
CN100555472C (zh) * 2004-01-21 2009-10-28 大日本油墨化学工业株式会社 离子导体以及使用其的电化学型显示元件
US20050248825A1 (en) * 2004-05-04 2005-11-10 Rockwell Scientific Licensing, Llc Reversible electrodeposition optical modulation device with conducting polymer counter electrode
CN101419374B (zh) * 2008-11-21 2010-08-11 宁波市金榜汽车电子有限公司 一种电致变色镜反射层材料及其器件
CN102176102B (zh) * 2010-12-27 2013-06-26 航天材料及工艺研究所 一种变发射率、变反射率电致变色智能热控涂层及制备方法
CN102157575A (zh) * 2011-03-28 2011-08-17 天津师范大学 新型多层膜结构的透明导电氧化物薄膜及其制备方法
CN102998870A (zh) * 2011-09-08 2013-03-27 华德塑料制品有限公司 电致变色材料
EP2570846A1 (en) * 2011-09-19 2013-03-20 Hydro-Québec Flexible transparent electrochromic device
CN103207492A (zh) * 2013-03-29 2013-07-17 天津理工大学 一种电致变发射率智能材料及其制备方法
JP6278384B2 (ja) * 2013-10-24 2018-02-14 スタンレー電気株式会社 光学装置、撮像装置、光学素子の駆動方法
CN103713439B (zh) * 2013-11-30 2017-01-04 西安科技大学 一种可调红外发射率柔性隐身器件及其组装方法
CN103744246B (zh) * 2014-01-01 2017-02-15 电子科技大学 一种镜面反射型电致变色器件及其制备方法
CN103969904B (zh) * 2014-05-26 2016-08-24 电子科技大学 柔性电致变色层与器件的制备方法
CN104614913B (zh) * 2015-03-05 2017-10-27 哈尔滨工业大学 一种可在镜面态和透明态相互转化的柔性可粘贴电致变色器件的制备方法
CN104726034B (zh) * 2015-03-19 2017-03-29 哈尔滨工业大学 一种可见‑红外兼容隐身装置及其制备方法
CN104865617B (zh) * 2015-05-08 2017-03-08 中国人民解放军国防科学技术大学 一种具有光谱选择性低发射率的红外隐身薄膜及其制备方法
CN106125443B (zh) * 2016-08-10 2019-02-26 电子科技大学 一种多态电致变色器件及其制备方法
CN106932992A (zh) * 2017-03-31 2017-07-07 中国航发北京航空材料研究院 一种调控近红外光的柔性电致变色器件及制备方法
CN108866483B (zh) * 2018-06-26 2020-08-07 中国人民解放军国防科技大学 一种智能热控器件及其制备方法
CN109254468A (zh) * 2018-11-09 2019-01-22 广东彩乐智能包装科技有限公司 兼具电致变色和电致发光功能的柔性器件及其制备方法
CN109283765B (zh) * 2018-12-07 2021-04-09 哈尔滨工业大学 一种多孔聚醚醚酮电解质膜的制备方法及应用
CN110632803B (zh) * 2019-09-20 2022-05-31 长春工业大学 一种柔性电致变色器件及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070008603A1 (en) * 2005-07-11 2007-01-11 Sotzing Gregory A Electrochromic devices utilizing very low band gap conjugated counter electrodes: preparation and use
CN107922829A (zh) * 2015-03-24 2018-04-17 弗劳恩霍夫应用研究促进协会 具有改善的电解质层的电致变色元件
CN104932168A (zh) * 2015-06-10 2015-09-23 电子科技大学 一种柔性电致变色器件及其制备方法
CN109283704A (zh) * 2017-07-21 2019-01-29 韩国电子通信研究院 可逆电化学镜
CN109188819A (zh) * 2018-08-28 2019-01-11 上海幂方电子科技有限公司 一种柔性电致变色器件及其制备方法
CN110184576A (zh) * 2019-06-18 2019-08-30 上海空间电源研究所 一种柔性无机电致变发射率材料及其制备方法与应用
CN111176047A (zh) * 2020-01-07 2020-05-19 中国人民解放军国防科技大学 一种柔性电致变发射率器件及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115291452A (zh) * 2022-08-19 2022-11-04 南京理工大学 红外辐射特性可调的新型电致变色结构
CN115291452B (zh) * 2022-08-19 2023-12-26 南京理工大学 红外辐射特性可调的新型电致变色结构

Also Published As

Publication number Publication date
CN111176047A (zh) 2020-05-19
US20220075236A1 (en) 2022-03-10
CN111176047B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2021139330A1 (zh) 一种柔性电致变发射率器件及制备方法
Zhao et al. Preparation of WO3 films with controllable crystallinity for improved near-infrared electrochromic performances
Park et al. A review on fabrication processes for electrochromic devices
US8773746B2 (en) All-solid-state reflective dimming electrochromic element sealed with protective layer, and dimming member comprising the same
CN111025812B (zh) 一种基于金属电沉积的电致变发射率器件及制备方法
CN110109311B (zh) 一种全固态电致变色器件及其制备方法
BR122017019084B1 (pt) Artigo eletrocondutor transparente, métodos para fabricar o artigo eletrocondutor transparente, e as nanopartículas de óxido compósito, dispersão de nanopartícula de proteção contra o infravermelho, e, nanopartículas de proteção contra o infravermelho
CN111624829B (zh) 多彩电致变色结构、其制备方法及应用
CN111158201B (zh) 一种颜色可变的电致变发射率器件及制备方法
Wu et al. Dip-coating process engineering and performance optimization for three-state electrochromic devices
JPS63249132A (ja) 第3電極層から電極取出しを行なつたec素子
CN110095911B (zh) 一种电致变色器件的制备方法
CN108803183B (zh) 一种双层全无机电致变色器件及其制备方法
CN110045558A (zh) 铝酸锂固态离子传导层及其制备方法与含该固态离子传导层的全固态电致变色器件
CN110032018A (zh) 铝锂合金固态离子传导层及其制备方法与所含该固态离子传导层的全固态电致变色器件
Shin et al. Silver nanowires network encapsulated by low temperature sol–gel ZnO for transparent flexible electrodes with ambient stability
Jun et al. The characterization of nanocrystalline dye-sensitized solar cells with flexible metal substrates by electrochemical impedance spectroscopy
JP5387925B2 (ja) 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子
TWI528095B (zh) 電致變色元件及其製造方法
CN103744220B (zh) 一种pdlc显示模块
JP4904714B2 (ja) 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子
Wu et al. Room-temperature fabrication of NiO films for electrochromic application by electrophoretic deposition (EPD): from single layers to devices
Salvinelli et al. Stoichiometry gradient, cation interdiffusion, and band alignment between a nanosized TiO2 blocking layer and a transparent conductive oxide in dye-sensitized solar cell front contacts
KR102136286B1 (ko) 전기변색소자용 산화변색잉크층 제조방법 및 이에 의한 전기변색소자
Chou et al. Research of titanium dioxide compact layer applied to dye-sensitized solar cell with different substrates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911545

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20911545

Country of ref document: EP

Kind code of ref document: A1