WO2021136228A1 - 铁酸铜/沸石尖晶石复合材料的制备方法及其应用 - Google Patents

铁酸铜/沸石尖晶石复合材料的制备方法及其应用 Download PDF

Info

Publication number
WO2021136228A1
WO2021136228A1 PCT/CN2020/140597 CN2020140597W WO2021136228A1 WO 2021136228 A1 WO2021136228 A1 WO 2021136228A1 CN 2020140597 W CN2020140597 W CN 2020140597W WO 2021136228 A1 WO2021136228 A1 WO 2021136228A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper ferrite
zeolite
composite material
copper
spinel composite
Prior art date
Application number
PCT/CN2020/140597
Other languages
English (en)
French (fr)
Inventor
马军
国谦
邱微
李冬
何海洋
郭忠凯
张家明
刘坪鑫
Original Assignee
哈尔滨工业大学
哈尔滨工业大学水资源国家工程研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学, 哈尔滨工业大学水资源国家工程研究中心有限公司 filed Critical 哈尔滨工业大学
Publication of WO2021136228A1 publication Critical patent/WO2021136228A1/zh

Links

Images

Classifications

    • B01J35/33
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Definitions

  • the invention relates to the technical field of water treatment, in particular to a preparation method and application of a copper ferrite/zeolite spinel composite material.
  • the traditional advanced oxidation technology uses ⁇ OH as the main active substance to degrade pollutants.
  • ⁇ OH has a strong oxidizing property and non-selectivity, which makes it react quickly with organic matter, and the oxidation rate constant is mostly 108M -1 s -1 ⁇ 1010M -1 s -1 .
  • the heterogeneous catalytic ozonation process as one of the advanced oxidation technologies, is also based on promoting the decomposition of ozone to ⁇ OH to improve the removal of organic matter.
  • the heterogeneous catalytic ozonation process does not require the addition of complex chemical agents to the reaction system, and the solid catalyst added to the reaction device is easy to recycle and process. At the same time, it has the characteristics of simple operation and convenient maintenance, so it has the advantages in the actual water treatment process. Good application prospects.
  • Atrazine also known as atrazine, is a triazine pesticide herbicide. It is widely used in the control and prevention of weeds in corn, orchards and farmland. Due to its excellent herbicidal efficacy, low price and easy It has become one of the most widely used and most important herbicides in the world. my country is a large agricultural country. The production and use of pesticides are among the top in the world, accounting for about one-tenth of the world's total output. Atrazine has been used in my country since the early 1980s, and the scope of use has continued to expand in recent years.
  • the invention provides a preparation method and application of a copper ferrite/zeolite spinel composite material, and prepares a practical, convenient and efficient catalyst, which can effectively catalyze the ozone oxidation and degradation of organic pollutant atrazine in water.
  • the copper ferrite/zeolite spinel composite material is prepared by the impregnation-sol-gel method. Compared with a single ozone system, a single natural zeolite catalytic ozone system and a single copper ferrite catalytic ozone system, the copper ferrite/ The zeolite spinel composite material greatly improves the efficiency of ozone degradation of atrazine, and the degradation rate of atrazine is increased by about 30% within 40 minutes.
  • the mass ratio of copper ferrite to natural zeolite powder is 1:1, it is prepared
  • the copper ferrite/zeolite spinel composite material catalyzes the degradation of atrazine in water by ozonation, and completes the degradation in 120 minutes; and the copper ferrite/zeolite spinel composite material prepared by the present invention has stable performance and has stable performance after the reaction. Only 0.05mg/L ⁇ 0.09mg/L metal ions dissolve in the aqueous solution.
  • the invention prepares the copper ferrite/zeolite spinel composite material, the preparation method is simple, the raw material price is low, it has strong magnetism, is easy to recycle, and can be reused.
  • the invention can obtain the preparation method and application of the copper ferrite/zeolite spinel composite material.
  • Figure 1 is a comparison diagram of the removal efficiency of atrazine in the 1# ⁇ 6# reactor in the comparative experiment, C 0 is the initial concentration of atrazine, and C t is the concentration of atrazine at any time t;
  • represents a single ozone system, ⁇ represents a single natural zeolite catalytic ozone system, ⁇ represents a single copper ferrite catalyzed ozone system, ⁇ represents a copper ferrite/zeolite spinel composite catalyzed ozone system prepared in Example 3,
  • represents an example Two prepared copper ferrite/zeolite spinel composite material catalytic ozone system, Representing the catalytic ozone system of the copper ferrite/zeolite spinel composite prepared in Example 1;
  • Figure 2 is the copper ferrite/zeolite spinel composite material prepared in Example 1, the removal efficiency of atrazine in water within 0-120min, C 0 is the initial concentration of atrazine, and C t is A The concentration of Trazine at any time t, ⁇ represents the catalytic ozone system of the copper ferrite/zeolite spinel composite material prepared in Example 1.
  • Specific embodiment 1 The preparation method of the copper ferrite/zeolite spinel composite material of this embodiment is completed in the following steps:
  • the copper ferrite/zeolite spinel composite material is prepared by the impregnation-sol-gel method. Compared with a single ozone system, a single natural zeolite catalyzed ozone system, and a single copper ferrite catalyzed ozone system, the copper ferrite /Zolite spinel composite material greatly improves the efficiency of ozone degradation of atrazine, and the degradation rate of atrazine is increased by about 30% within 40 minutes.
  • the mass ratio of copper ferrite to natural zeolite powder is 1:1, prepare The obtained copper ferrite/zeolite spinel composite material catalyzes the degradation of atrazine in water by ozonation, and completes the degradation in 120 minutes; and the copper ferrite/zeolite spinel composite material prepared in this embodiment has stable performance and is in the reaction Only 0.05mg/L ⁇ 0.09mg/L of metal ions dissolve in the aqueous solution.
  • the copper ferrite/zeolite spinel composite material is prepared with simple preparation method, low raw material price, strong magnetism, easy recycling, and reusable use.
  • this embodiment is different from specific embodiment one in that: in step one, under the temperature condition of 90°C ⁇ 100°C, copper nitrate and ferric nitrate are added to the absolute ethanol at 120r/min Stirring evenly at a stirring rate of ⁇ 180r/min.
  • this embodiment is different from specific embodiment one or two in that: adding anhydrous citric acid as described in step one, and then stirring uniformly at a stirring rate of 120r/min ⁇ 180r/min to obtain copper ferrite sol State mixed liquid.
  • this embodiment is different from one of specific embodiments one to three in that: in step two, under the temperature condition of 90°C ⁇ 100°C, the rate of 10mg/s ⁇ 20mg/s is added to copper ferrite Add natural zeolite powder to the sol mixed liquid, continue to stir at a stirring rate of 120r/min-180r/min until the copper ferrite sol mixed liquid evaporates to dryness.
  • This embodiment is different from one of specific embodiments 1 to 4 in that: the natural zeolite powder described in step 2 is prepared in the following steps: natural zeolite with the same particle size is taken, crushed by a high-speed pulverizer, and then sequentially Wash with pure water and 0.1 mol/L hydrochloric acid to obtain natural zeolite powder.
  • Embodiment 6 The difference between this embodiment and one of Embodiments 1 to 5 is: in step 2, the temperature is increased to 400° C. at a heating rate of 3° C./min, and it is calcined at 400° C. for 8 hours.
  • Embodiment 7 The difference between this embodiment and Embodiments 1 to 6 is that the copper ferrite spinel supported on the copper ferrite/zeolite spinel composite material described in step 2 has a particle size of 2 ⁇ m ⁇ 30 ⁇ m.
  • Embodiment 8 This embodiment is different from one of Embodiments 1 to 7 in that the mass ratio of copper ferrite to natural zeolite powder in the copper ferrite sol mixed liquid in step 2 is 1:1.
  • Specific embodiment 9 Application of copper ferrite/zeolite spinel composite material.
  • the copper ferrite/zeolite spinel composite material is used as a catalyst to catalyze ozone oxidation and degradation of atrazine in water.
  • Embodiment 10 This embodiment is different from Embodiment 9 in that: when the copper ferrite/zeolite spinel composite material is used as a catalyst, the addition amount is 0.05 g/L to 1.0 g/L.
  • Example 1 The preparation method of copper ferrite/zeolite spinel composite material is completed according to the following steps:
  • the copper ferrite spinel supported on the copper ferrite/zeolite spinel composite material has a particle size of 2 ⁇ m to 30 ⁇ m, and the copper ferrite sol-state mixture contains the copper ferrite and natural zeolite The mass ratio of powder is 1:1.
  • the natural zeolite powder described in step two is prepared according to the following steps: natural zeolite with uniform particle size is taken, crushed by a high-speed pulverizer, and then washed with pure water and 0.1 mol/L hydrochloric acid in sequence to obtain natural zeolite powder.
  • Embodiment 2 The preparation method of copper ferrite/zeolite spinel composite material is completed according to the following steps:
  • the copper ferrite spinel supported on the copper ferrite/zeolite spinel composite material has a particle size of 2 ⁇ m-30 ⁇ m, and the copper ferrite sol-state mixture contains the copper ferrite and natural zeolite The mass ratio of powder is 1:2.
  • the natural zeolite powder described in step two is prepared according to the following steps: natural zeolite with uniform particle size is taken, crushed by a high-speed pulverizer, and then washed with pure water and 0.1 mol/L hydrochloric acid in sequence to obtain natural zeolite powder.
  • Example 3 The preparation method of copper ferrite/zeolite spinel composite material is completed according to the following steps:
  • the copper ferrite spinel supported on the copper ferrite/zeolite spinel composite material has a particle size of 2 ⁇ m to 30 ⁇ m, and the copper ferrite sol-state mixture contains the copper ferrite and natural zeolite
  • the mass ratio of powder is 1:5.
  • the natural zeolite powder described in step two is prepared according to the following steps: natural zeolite with uniform particle size is taken, crushed by a high-speed pulverizer, and then washed with pure water and 0.1 mol/L hydrochloric acid in sequence to obtain natural zeolite powder.
  • Figure 1 is a comparison diagram of the removal efficiency of atrazine in the 1# ⁇ 6# reactor in the comparative test; as shown in Figure 1, it is the same as a single ozone system, a single natural zeolite catalyzed ozone system and a single copper ferrite catalyzed ozone Compared with the system, the copper ferrite/zeolite spinel composite materials prepared in Example 1 to Example 3 show very high catalytic activity. Within 40 minutes of reaction time, the removal rate of atrazine in water is relatively high. The effect of ozone is increased by about 30%, and it has high chemical stability. Only trace amounts of copper and iron ions are detected in the aqueous solution after the reaction, which can be used in the actual water treatment field.
  • the copper ferrite/zeolite catalyst has no obvious adsorption effect; and the ozone oxidation alone can only degrade a small amount of atrazine; therefore, the copper ferrite/zeolite spinel composite material prepared in Examples 1 to 3 is made Simple, low cost, simple operation and high catalytic efficiency.
  • Figure 2 is a graph showing the removal efficiency of atrazine from water in the copper ferrite/zeolite spinel composite material prepared in Example 1 within 0 to 120 minutes; as shown in Figure 2, the copper ferrite/zeolite spinel composite material prepared in Example 1 The zeolite spinel composite material completely degrades the atrazine in the water at 120 minutes.

Abstract

铁酸铜/沸石尖晶石复合材料的制备方法及其应用,涉及水处理技术领域。本发明提供铁酸铜/沸石尖晶石复合材料的制备方法及其应用,制备得到一种实用、方便且高效的催化剂,能够有效地催化臭氧氧化降解水体中的有机污染物阿特拉津。方法:将硝酸铜和硝酸铁加入到无水乙醇中,搅拌,然后加入无水柠檬酸,再搅拌,得到铁酸铜溶胶态混合液;向铁酸铜溶胶态混合液中加入天然沸石粉,继续搅拌至铁酸铜溶胶态混合液蒸干,然后进行研磨,再高温煅烧,最后空冷至室温,研磨,得到铁酸铜/沸石尖晶石复合材料。本发明可获得铁酸铜/沸石尖晶石复合材料的制备方法及其应用。

Description

铁酸铜/沸石尖晶石复合材料的制备方法及其应用 技术领域
本发明涉及水处理技术领域,具体涉及铁酸铜/沸石尖晶石复合材料的制备方法及其应用。
背景技术
传统的高级氧化技术是以·OH为主要活性物质降解污染物。·OH具有极强的氧化性和无选择性,使得它与有机物反应速度很快,氧化速率常数大多在108M -1s -1~1010M -1s -1。非均相催化臭氧氧化工艺作为高级氧化技术之一,也是以促进臭氧分解为·OH为主,从而来提高有机物的去除效果。非均相催化臭氧氧化工艺不需要向反应体系中加入复杂的化学药剂,并且加入到反应装置的固体催化剂易于回收处理,同时具有操作运行简单、维护方便等特点,因此在实际水处理过程中具有良好的应用前景。
阿特拉津(Atrazine,ATZ)又名莠去津,是一种三嗪类农药除草剂,被广泛应用于玉米、果园及农田杂草的控制和防治,由于其除草功效优良、价廉易得,成为目前世界上使用最广泛也是最重要的除草剂之一。我国是一个农业大国,农药的生产与使用均居世界前列,约占世界总产量的十分之一。我国从上个世纪80年代初开始使用阿特拉津,近年来使用范围仍不断扩大。研究表明,在所施用的农药中,有20%~70%会长期残留于土壤中,而阿特拉津具有土壤淋溶性,容易经降雨或地表水淋滤渗入含水层内产生生物富集,引起水环境污染。人体长期暴露在阿特拉津中,免疫系统、淋巴系统、生殖系统和内分泌系统都会受到影响,有可能产生畸形、诱导有机体突变等,严重危害人类健康。因此,开发有效的处理技术以去除水中的阿特拉津至关重要。
阿特拉津的降解脱除主要有以下三种方法:物理吸附,化学氧化和生物降解,但是以上方法存在普遍成本高、实验过程慢和阿特拉津降解不完全的问题。使用吸附法,经济有效的吸附剂制备比较困难,此外还存在解析的问题;采用氧化法,工艺的运行处理费用较高,在一定程度上限制了它们的推广;利用微生物降解,存在是否会产生二次污染、微生物是否会释放出对人类有害的物质等担忧。
发明内容
本发明提供铁酸铜/沸石尖晶石复合材料的制备方法及其应用,制备得到一种实用、方便且高效的催化剂,能够有效地催化臭氧氧化降解水体中的有机污染物阿特拉津。
铁酸铜/沸石尖晶石复合材料的制备方法,按以下步骤完成:
一、在90℃~100℃的温度条件下,将硝酸铜和硝酸铁加入到无水乙醇中,搅拌均匀,然后加入无水柠檬酸,再搅拌均匀,得到铁酸铜溶胶态混合液,所述硝酸铜与硝酸铁的摩尔比为1:2,硝酸铜和硝酸铁的总物质的量与无水乙醇的体积的比为11.49mmol:(100mL~120mL),无水乙醇的体积与无水柠檬酸的物质的量的比为(100mL~120mL):7.66mmol;
二、在90℃~100℃的温度条件下,以10mg/s~20mg/s的速率向铁酸铜溶胶态混合液中加入天然沸石粉,继续搅拌至铁酸铜溶胶态混合液蒸干,然后进行研磨,再升温至400℃,并在400℃的温度条件下煅烧8h,最后空冷至室温,研磨,得到铁酸铜/沸石尖晶石复合材料,所述铁酸铜溶胶态混合液中铁酸铜与天然沸石粉的质量比为1:(1~5)。
本发明的有益效果:
一、本发明通过浸渍-溶胶凝胶法制备铁酸铜/沸石尖晶石复合材料,与单独臭氧体系、单独天然沸石催化臭氧体系和单独铁酸铜催化臭氧体系相比,该铁酸铜/沸石尖晶石复合材料大大提高臭氧降解阿特拉津的效率,40分钟内阿特拉津降解率提升约30%,当铁酸铜与天然沸石粉的质量比为1:1时,制备得到的铁酸铜/沸石尖晶石复合材料催化臭氧氧化降解水中的阿特拉津,120min达完全降解;并且本发明制备的铁酸铜/沸石尖晶石复合材料,性能稳定,在反应后的水溶液中只有0.05mg/L~0.09mg/L的金属离子溶出。
二、本发明制备铁酸铜/沸石尖晶石复合材料,制备方法简单,原材料价格低廉,具有强磁性,易回收,可重复使用。
本发明可获得铁酸铜/沸石尖晶石复合材料的制备方法及其应用。
附图说明
图1为对比试验中,1#~6#反应器中阿特拉津的去除效率的对比图,C 0为阿特拉津的初始浓度,C t为阿特拉津任意t时刻的浓度;■代表单独臭氧体系,●代表单独天然沸石催化臭氧体系,▲代表单独铁酸铜催化臭氧体系,▼代表实施例三制备的铁酸铜/沸石尖晶石复合材料催化臭氧体系,◆代表实施例二制备的铁酸铜/沸石尖晶石复合材料催化臭氧体系,
Figure PCTCN2020140597-appb-000001
代表实施例一制备的铁酸铜/沸石尖晶石复合材料催化臭氧体系;
图2为实施例一制备的铁酸铜/沸石尖晶石复合材料,在0~120min内对水中阿特拉津的去除效率图,C 0为阿特拉津的初始浓度,C t为阿特拉津任意t时刻的浓度,■代表实施例一制备的铁酸铜/沸石尖晶石复合材料催化臭氧体系。
具体实施方式
具体实施方式一:本实施方式铁酸铜/沸石尖晶石复合材料的制备方法,按以下步骤 完成:
一、在90℃~100℃的温度条件下,将硝酸铜和硝酸铁加入到无水乙醇中,搅拌均匀,然后加入无水柠檬酸,再搅拌均匀,得到铁酸铜溶胶态混合液,所述硝酸铜与硝酸铁的摩尔比为1:2,硝酸铜和硝酸铁的总物质的量与无水乙醇的体积的比为11.49mmol:(100mL~120mL),无水乙醇的体积与无水柠檬酸的物质的量的比为(100mL~120mL):7.66mmol;
二、在90℃~100℃的温度条件下,以10mg/s~20mg/s的速率向铁酸铜溶胶态混合液中加入天然沸石粉,继续搅拌至铁酸铜溶胶态混合液蒸干,然后进行研磨,再升温至400℃,并在400℃的温度条件下煅烧8h,最后空冷至室温,研磨,得到铁酸铜/沸石尖晶石复合材料,所述铁酸铜溶胶态混合液中铁酸铜与天然沸石粉的质量比为1:(1~5)。
本实施方式的有益效果:
一、本实施方式通过浸渍-溶胶凝胶法制备铁酸铜/沸石尖晶石复合材料,与单独臭氧体系、单独天然沸石催化臭氧体系和单独铁酸铜催化臭氧体系相比,该铁酸铜/沸石尖晶石复合材料大大提高臭氧降解阿特拉津的效率,40分钟内阿特拉津降解率提升约30%,当铁酸铜与天然沸石粉的质量比为1:1时,制备得到的铁酸铜/沸石尖晶石复合材料催化臭氧氧化降解水中的阿特拉津,120min达完全降解;并且本实施方式制备的铁酸铜/沸石尖晶石复合材料,性能稳定,在反应后的水溶液中只有0.05mg/L~0.09mg/L的金属离子溶出。
二、本实施方式制备铁酸铜/沸石尖晶石复合材料,制备方法简单,原材料价格低廉,具有强磁性,易回收,可重复使用。
具体实施方式二:本实施方式与具体实施方式一不同点是:步骤一中所述在90℃~100℃的温度条件下,将硝酸铜和硝酸铁加入到无水乙醇中,以120r/min~180r/min的搅拌速率搅拌均匀。
其他步骤与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同点是:步骤一中所述加入无水柠檬酸,再以120r/min~180r/min的搅拌速率搅拌均匀,得到铁酸铜溶胶态混合液。
其他步骤与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同点是:步骤二中所述在90℃~100℃的温度条件下,以10mg/s~20mg/s的速率向铁酸铜溶胶态混合液中加入天然沸石粉,继续以120r/min~180r/min的搅拌速率搅拌至铁酸铜溶胶态混合液蒸干。
其他步骤与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:步骤二中所述的天然沸石粉按以下步骤制备:取粒径一致的天然沸石,经高速粉碎机粉碎,然后依次用纯水和0.1mol/L盐酸清洗,得到天然沸石粉。
其他步骤与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同点是:步骤二中所述再以3℃/min的升温速率升温至400℃,并在400℃的温度条件下煅烧8h。
其他步骤与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同点是:步骤二中所述的铁酸铜/沸石尖晶石复合材料上负载的铁酸铜尖晶石的粒径为2μm~30μm。
其他步骤与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同点是:步骤二中所述铁酸铜溶胶态混合液中铁酸铜与天然沸石粉的质量比为1:1。
其他步骤与具体实施方式一至七相同。
具体实施方式九:铁酸铜/沸石尖晶石复合材料的应用,所述铁酸铜/沸石尖晶石复合材料作为催化剂,用于催化臭氧氧化降解水中的阿特拉津。
具体实施方式十:本实施方式与具体实施方式九不同点是:所述铁酸铜/沸石尖晶石复合材料作为催化剂时,添加量为0.05g/L~1.0g/L。
其他步骤与具体实施方式九相同。
采用以下实施例验证本发明的有益效果:
实施例一:铁酸铜/沸石尖晶石复合材料的制备方法,按以下步骤完成:
一、将120mL无水乙醇置于水浴锅中,在95℃的温度条件下,将3.83mmol硝酸铜和7.66mmol硝酸铁加入到120mL无水乙醇中,以180r/min的搅拌速率搅拌均匀,然后加入7.66mmol无水柠檬酸,再以180r/min的搅拌速率搅拌均匀,得到铁酸铜溶胶态混合液;
二、在95℃的温度条件下,以10mg/s的速率向铁酸铜溶胶态混合液中加入天然沸石粉,继续以180r/min的搅拌速率搅拌至铁酸铜溶胶态混合液蒸干,然后进行研磨,再置于马弗炉中,以3℃/min的升温速率升温至400℃,并在400℃的温度条件下煅烧8h,最后空冷至室温,研磨,得到铁酸铜/沸石尖晶石复合材料,所述的铁酸铜/沸石尖晶石复合材料上负载的铁酸铜尖晶石的粒径为2μm~30μm,所述铁酸铜溶胶态混合液中铁酸铜与天 然沸石粉的质量比为1:1。
步骤二中所述的天然沸石粉按以下步骤制备:取粒径一致的天然沸石,经高速粉碎机粉碎,然后依次用纯水和0.1mol/L盐酸清洗,得到天然沸石粉。
实施例二:铁酸铜/沸石尖晶石复合材料的制备方法,按以下步骤完成:
一、将120mL无水乙醇置于水浴锅中,在95℃的温度条件下,将3.83mmol硝酸铜和7.66mmol硝酸铁加入到120mL无水乙醇中,以180r/min的搅拌速率搅拌均匀,然后加入7.66mmol无水柠檬酸,再以180r/min的搅拌速率搅拌均匀,得到铁酸铜溶胶态混合液;
二、在95℃的温度条件下,以10mg/s的速率向铁酸铜溶胶态混合液中加入天然沸石粉,继续以180r/min的搅拌速率搅拌至铁酸铜溶胶态混合液蒸干,然后进行研磨,再置于马弗炉中,以3℃/min的升温速率升温至400℃,并在400℃的温度条件下煅烧8h,最后空冷至室温,研磨,得到铁酸铜/沸石尖晶石复合材料,所述的铁酸铜/沸石尖晶石复合材料上负载的铁酸铜尖晶石的粒径为2μm~30μm,所述铁酸铜溶胶态混合液中铁酸铜与天然沸石粉的质量比为1:2。
步骤二中所述的天然沸石粉按以下步骤制备:取粒径一致的天然沸石,经高速粉碎机粉碎,然后依次用纯水和0.1mol/L盐酸清洗,得到天然沸石粉。
实施例三:铁酸铜/沸石尖晶石复合材料的制备方法,按以下步骤完成:
一、将120mL无水乙醇置于水浴锅中,在95℃的温度条件下,将3.83mmol硝酸铜和7.66mmol硝酸铁加入到120mL无水乙醇中,以180r/min的搅拌速率搅拌均匀,然后加入7.66mmol无水柠檬酸,再以180r/min的搅拌速率搅拌均匀,得到铁酸铜溶胶态混合液;
二、在95℃的温度条件下,以10mg/s的速率向铁酸铜溶胶态混合液中加入天然沸石粉,继续以180r/min的搅拌速率搅拌至铁酸铜溶胶态混合液蒸干,然后进行研磨,再置于马弗炉中,以3℃/min的升温速率升温至400℃,并在400℃的温度条件下煅烧8h,最后空冷至室温,研磨,得到铁酸铜/沸石尖晶石复合材料,所述的铁酸铜/沸石尖晶石复合材料上负载的铁酸铜尖晶石的粒径为2μm~30μm,所述铁酸铜溶胶态混合液中铁酸铜与天然沸石粉的质量比为1:5。
步骤二中所述的天然沸石粉按以下步骤制备:取粒径一致的天然沸石,经高速粉碎机粉碎,然后依次用纯水和0.1mol/L盐酸清洗,得到天然沸石粉。
对比试验:
在20℃条件下,选择六个500mL的反应器(1#~6#):
在1#反应器中,先加入超纯水和10mmol/L、PH为7的硼砂缓冲溶液,再以0.20g/L的比例加入实施例一中制备的铁酸铜/沸石尖晶石复合材料,最后加入2μmol/L的阿特拉津,通入臭氧的瞬间,反应开始计时,于0min、2min、5min、10min、20min、30min和40min分别取点。
在2#反应器中,先加入超纯水和10mmol/L、PH为7的硼砂缓冲溶液,再以0.20g/L的比例加入实施例二中制备的铁酸铜/沸石尖晶石复合材料,最后加入2μmol/L的阿特拉津,通入臭氧的瞬间,反应开始计时,于0min、2min、5min、10min、20min、30min和40min分别取点。
在3#反应器中,先加入超纯水和10mmol/L、PH为7的硼砂缓冲溶液,再以0.20g/L的比例加入实施例三中制备的铁酸铜/沸石尖晶石复合材料,最后加入2μmol/L的阿特拉津,通入臭氧的瞬间,反应开始计时,于0min、2min、5min、10min、20min、30min和40min分别取点。
在4#反应器中,先加入超纯水和10mmol/L、PH为7的硼砂缓冲溶液,再以0.20g/L的比例加入天然沸石催化剂,最后加入2μmol/L的阿特拉津,通入臭氧的瞬间,反应开始计时,于0min、2min、5min、10min、20min、30min和40min分别取点。
在5#反应器中,先加入超纯水和10mmol/L、PH为7的硼砂缓冲溶液,再以0.20g/L的比例加入铁酸铜催化剂,最后加入2μmol/L的阿特拉津,通入臭氧的瞬间,反应开始计时,于0min、2min、5min、10min、20min、30min和40min分别取点。
在6#反应器中,先加入超纯水和10mmol/L、PH为7的硼砂缓冲溶液,然后加入2μmol/L的阿特拉津,通入臭氧的瞬间,反应开始计时,于0min、2min、5min、10min、20min、30min和40min分别取点。
图1为对比试验中,1#~6#反应器中阿特拉津的去除效率的对比图;如图1所示,同单独臭氧体系、单独天然沸石催化臭氧体系和单独铁酸铜催化臭氧体系相比,实施例一~实施例三制备的铁酸铜/沸石尖晶石复合材料显示了很高的催化活性,在反应时间为40分钟内,对水中的阿特拉津去除率较单独臭氧作用提升了约30%,而且其具有较高的化学稳定性,在反应后的水溶液中仅检测出微量铜铁离子的溶出,可以应用于实际水处理领域。而铁酸铜/沸石催化剂无明显的吸附作用;而单独使用臭氧氧化,只能降解少量阿特拉津;因此,实施例一~实施例三制备的铁酸铜/沸石尖晶石复合材料制作简单,成本低,操作简单,催化效率高。
图2为实施例一制备的铁酸铜/沸石尖晶石复合材料,在0~120min内对水中阿特拉津的去除效率图;如图2所示,实施例一制备的铁酸铜/沸石尖晶石复合材料在120min时,将水中的阿特拉津完全降解。

Claims (10)

  1. 铁酸铜/沸石尖晶石复合材料的制备方法,其特征在于该制备方法按以下步骤完成:
    一、在90℃~100℃的温度条件下,将硝酸铜和硝酸铁加入到无水乙醇中,搅拌均匀,然后加入无水柠檬酸,再搅拌均匀,得到铁酸铜溶胶态混合液,所述硝酸铜与硝酸铁的摩尔比为1:2,硝酸铜和硝酸铁的总物质的量与无水乙醇的体积的比为11.49mmol:(100mL~120mL),无水乙醇的体积与无水柠檬酸的物质的量的比为(100mL~120mL):7.66mmol;
    二、在90℃~100℃的温度条件下,以10mg/s~20mg/s的速率向铁酸铜溶胶态混合液中加入天然沸石粉,继续搅拌至铁酸铜溶胶态混合液蒸干,然后进行研磨,再升温至400℃,并在400℃的温度条件下煅烧8h,最后空冷至室温,研磨,得到铁酸铜/沸石尖晶石复合材料,所述铁酸铜溶胶态混合液中铁酸铜与天然沸石粉的质量比为1:(1~5)。
  2. 根据权利要求1所述的铁酸铜/沸石尖晶石复合材料的制备方法,其特征在于步骤一中所述在90℃~100℃的温度条件下,将硝酸铜和硝酸铁加入到无水乙醇中,以120r/min~180r/min的搅拌速率搅拌均匀。
  3. 根据权利要求1所述的铁酸铜/沸石尖晶石复合材料的制备方法,其特征在于步骤一中所述加入无水柠檬酸,再以120r/min~180r/min的搅拌速率搅拌均匀,得到铁酸铜溶胶态混合液。
  4. 根据权利要求1所述的铁酸铜/沸石尖晶石复合材料的制备方法,其特征在于步骤二中所述在90℃~100℃的温度条件下,以10mg/s~20mg/s的速率向铁酸铜溶胶态混合液中加入天然沸石粉,继续以120r/min~180r/min的搅拌速率搅拌至铁酸铜溶胶态混合液蒸干。
  5. 根据权利要求1所述的铁酸铜/沸石尖晶石复合材料的制备方法,其特征在于步骤二中所述的天然沸石粉按以下步骤制备:取粒径一致的天然沸石,经高速粉碎机粉碎,然后依次用纯水和0.1mol/L盐酸清洗,得到天然沸石粉。
  6. 根据权利要求1所述的铁酸铜/沸石尖晶石复合材料的制备方法,其特征在于步骤二中所述再以3℃/min的升温速率升温至400℃,并在400℃的温度条件下煅烧8h。
  7. 根据权利要求1所述的铁酸铜/沸石尖晶石复合材料的制备方法,其特征在于步骤二中所述的铁酸铜/沸石尖晶石复合材料上负载的铁酸铜尖晶石的粒径为2μm~30μm。
  8. 根据权利要求1所述的铁酸铜/沸石尖晶石复合材料的制备方法,其特征在于步骤二中所述铁酸铜溶胶态混合液中铁酸铜与天然沸石粉的质量比为1:1。
  9. 铁酸铜/沸石尖晶石复合材料的应用,其特征在于所述铁酸铜/沸石尖晶石复合材料作为催化剂,用于催化臭氧氧化降解水中的阿特拉津。
  10. 根据权利要求9所述的铁酸铜/沸石尖晶石复合材料的应用,其特征在于所述铁酸铜/沸石尖晶石复合材料作为催化剂时,添加量为0.05g/L~1.0g/L。
PCT/CN2020/140597 2019-12-31 2020-12-29 铁酸铜/沸石尖晶石复合材料的制备方法及其应用 WO2021136228A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911422653.8A CN111068739B (zh) 2019-12-31 2019-12-31 铁酸铜/沸石尖晶石复合材料的制备方法及其应用
CN201911422653.8 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021136228A1 true WO2021136228A1 (zh) 2021-07-08

Family

ID=70321535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140597 WO2021136228A1 (zh) 2019-12-31 2020-12-29 铁酸铜/沸石尖晶石复合材料的制备方法及其应用

Country Status (2)

Country Link
CN (1) CN111068739B (zh)
WO (1) WO2021136228A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111068739B (zh) * 2019-12-31 2022-01-25 哈尔滨工业大学 铁酸铜/沸石尖晶石复合材料的制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355558A (ja) * 2001-06-01 2002-12-10 National Institute Of Advanced Industrial & Technology ホルムアルデヒドの酸化除去方法
CN102151567A (zh) * 2011-02-25 2011-08-17 哈尔滨工业大学 臭氧氧化分解水中有机污染物的催化剂及其催化臭氧处理污水的方法
CN105233855A (zh) * 2015-11-16 2016-01-13 建德市环保科技创新创业中心有限公司 一种沸石负载催化剂、其制备方法及在处理有机废水中的应用
CN108341479A (zh) * 2018-02-12 2018-07-31 中国科学院南京土壤研究所 基于纳米铁酸铜活化单过硫酸盐的应用
CN110479283A (zh) * 2019-08-27 2019-11-22 华中科技大学 一种镍负载在铁酸铜尖晶石表面的催化剂及其制备与应用
CN111068739A (zh) * 2019-12-31 2020-04-28 哈尔滨工业大学 铁酸铜/沸石尖晶石复合材料的制备方法及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005230663A (ja) * 2004-02-18 2005-09-02 Nippon Eisei Center:Kk 小クラスター水の製造方法及び製造装置
CN102527387A (zh) * 2011-12-26 2012-07-04 南京理工大学 铁酸铜-石墨烯纳米复合物及其制备方法
CN106861695B (zh) * 2017-01-16 2019-08-30 华侨大学 一种磁性缺氧位铁酸铜催化剂的制备方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355558A (ja) * 2001-06-01 2002-12-10 National Institute Of Advanced Industrial & Technology ホルムアルデヒドの酸化除去方法
CN102151567A (zh) * 2011-02-25 2011-08-17 哈尔滨工业大学 臭氧氧化分解水中有机污染物的催化剂及其催化臭氧处理污水的方法
CN105233855A (zh) * 2015-11-16 2016-01-13 建德市环保科技创新创业中心有限公司 一种沸石负载催化剂、其制备方法及在处理有机废水中的应用
CN108341479A (zh) * 2018-02-12 2018-07-31 中国科学院南京土壤研究所 基于纳米铁酸铜活化单过硫酸盐的应用
CN110479283A (zh) * 2019-08-27 2019-11-22 华中科技大学 一种镍负载在铁酸铜尖晶石表面的催化剂及其制备与应用
CN111068739A (zh) * 2019-12-31 2020-04-28 哈尔滨工业大学 铁酸铜/沸石尖晶石复合材料的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI XUE, WANG DONG, ZHANG SHUO: "Evaluation of Fe-Functionalized 4A Zeolite as Ozone Catalyst for an Enhancement of Hydroxyl Radical Pathway in a Multiphase Reactor", OZONE: SCIENCE AND ENGINEERING., LEWIS PUBLISHERS, CHELSEA, MI., US, vol. 41, no. 2, 4 March 2019 (2019-03-04), US, pages 156 - 165, XP055826412, ISSN: 0191-9512, DOI: 10.1080/01919512.2018.1510764 *

Also Published As

Publication number Publication date
CN111068739A (zh) 2020-04-28
CN111068739B (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
Guo et al. Doping of carbon into boron nitride to get the increased adsorption ability for tetracycline from water by changing the pH of solution
Su et al. Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles
Liang et al. A review: Application of tourmaline in environmental fields
Park et al. Adsorption of NH3-N onto rice straw-derived biochar
Zhang et al. Surface modified leaves with high efficiency for the removal of aqueous Cr (VI)
CN101785988B (zh) 多元金属氧化物砷吸附材料及其制备方法和应用
Sharma et al. An insight into the green synthesis of SiO2 nanostructures as a novel adsorbent for removal of toxic water pollutants
CN101805037B (zh) 一种磁性壳聚糖微粒去除水中腐殖酸类污染物的方法
CN102989461A (zh) 磁性铁酸镍光催化材料的制备方法及应用
CN109082277A (zh) 一种镉砷复合污染修复剂及其制备方法与应用
CN108484337A (zh) 一种盐碱土改良剂及其制备方法
Hu et al. Kinetic and equilibrium of cefradine adsorption onto peanut husk
WO2021136228A1 (zh) 铁酸铜/沸石尖晶石复合材料的制备方法及其应用
Ordonez et al. Synergistic effects of aluminum/iron oxides and clay minerals on nutrient removal and recovery in water filtration media
Liang et al. Heterogeneous activation of peroxymonosulfate by Co3O4 loaded biochar for efficient degradation of 2, 4-dichlorophenoxyacetic acid
Cong et al. A dandelion-like NiCo2O4 microsphere with superior catalytic activity as the mediator of persulfate activation for high-efficiency degradation of emerging contaminants
CN102397775B (zh) 除砷吸附剂及其制备方法与应用
CN109456774A (zh) 一种多效环保硅基土壤重金属钝化剂及其制备方法与应用
Suvathi et al. Improved photocatalytic dye degradation and seed germination through enzyme-coupled titanium oxide nanopowder-A cost-effective approach
Hasan et al. Nanomaterials and soil health for agricultural crop production: current status and future prospects
Wang et al. Removal of tetracycline by biochar-supported biogenetic sulfidated zero valent iron: Kinetics, pathways and mechanism
An et al. TiO2-WO3 activated weathered lignite coating phosphate fertilizer to improve longitudinal migration efficiency
Wen et al. Efficient removal of sulfamethazine from irrigation water using an ultra-stable magnetic carbon composite catalyst
CN106186156A (zh) 一种制备除砷吸附剂的方法
CN105731584A (zh) 一种去除水中微污染物布洛芬的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909505

Country of ref document: EP

Kind code of ref document: A1