WO2021135897A1 - 陶瓷塑料复合体及其制备方法和应用 - Google Patents

陶瓷塑料复合体及其制备方法和应用 Download PDF

Info

Publication number
WO2021135897A1
WO2021135897A1 PCT/CN2020/135856 CN2020135856W WO2021135897A1 WO 2021135897 A1 WO2021135897 A1 WO 2021135897A1 CN 2020135856 W CN2020135856 W CN 2020135856W WO 2021135897 A1 WO2021135897 A1 WO 2021135897A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
plastic
composite
zirconia
preparation
Prior art date
Application number
PCT/CN2020/135856
Other languages
English (en)
French (fr)
Inventor
许静
林信平
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2021135897A1 publication Critical patent/WO2021135897A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/488Other macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • C04B41/5338Etching
    • C04B41/5353Wet etching, e.g. with etchants dissolved in organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/83Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/91After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint

Definitions

  • This application relates to the field of ceramic-plastic composite materials, in particular to a ceramic-plastic composite body and its preparation method and application.
  • Zirconia ceramics is a kind of inorganic non-metallic multiphase crystalline material. It has the appearance characteristics of warm and moist like jade, excellent mechanical properties, wear resistance, high temperature resistance, corrosion resistance, high insulation, biocompatibility and good optical properties, but Zirconia ceramics also have the defects of high dielectric constant, high density and high hardness, so it is difficult to directly process and post-process the zirconia ceramics.
  • the prior art uses a combination of zirconia ceramics and plastics to solve the above problems. However, due to the difference in the material characteristics of the zirconia ceramics and the plastics themselves, the bonding force between the two is insufficient, which affects the stability of the combination.
  • This application aims to solve at least one of the technical problems existing in the prior art. For this reason, this application proposes a ceramic-plastic composite body, which has higher bonding strength.
  • a ceramic-plastic composite body comprising: composite zirconia ceramics and plastic bonded on the surface of the composite zirconia ceramics, wherein, based on the total amount of the composite zirconia ceramics, the composite zirconia ceramics contain 90- 99% by weight of zirconia, and 1-10% by weight of at least one auxiliary agent selected from zinc oxide, silicon oxide, aluminum oxide and titanium oxide.
  • the bonding strength between the composite zirconia ceramic and the plastic can be effectively improved by using 1-10 wt% of at least one auxiliary agent selected from zinc oxide, silicon oxide, aluminum oxide and titanium oxide.
  • a method for preparing a ceramic plastic composite body includes:
  • auxiliary agent selected from at least one of zinc oxide, silicon oxide, aluminum oxide and titanium oxide;
  • the content of zirconia in the powder slurry is 90-99 wt%, and the content of the auxiliary agent is 1-10 wt%.
  • a ceramic plastic composite obtained by the preparation method of the present application is a ceramic plastic composite obtained by the preparation method of the present application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. Further, in the description of the present application, unless otherwise specified, “plurality” means two or more.
  • the ceramic-plastic composites of the embodiments of the present application include: composite zirconia ceramics and plastics bonded on the surface of the composite zirconia ceramics, wherein, based on the total amount of composite zirconia ceramics, the composite zirconia ceramics contain 90-99wt% Zirconia, and 1-10 wt% of at least one auxiliary agent selected from zinc oxide, silicon oxide, aluminum oxide, and titanium oxide.
  • the provided composite zirconia ceramic is used to improve the final bonding strength with the plastic.
  • the composite zirconia ceramic contains 94-98wt% of zirconia and 2-6wt% of additives.
  • the plastic contains a resin and a modified material; the resin is selected from at least one of polyphenylene sulfide, polybutylene terephthalate, and polyamide, and the modified material is selected from glass fiber, carbon fiber and mineral fiber At least one of.
  • the ceramic-plastic composite body provided by the present application can have good bonding strength between ceramics and plastics.
  • the bonding strength can be determined by drawing with a universal testing machine.
  • the bonding strength between the composite zirconia ceramic and the plastic is more than 25 MPa. After further optimization, the bonding strength between the composite zirconia ceramic and the plastic can be increased to more than 30 MPa, or even 35-45 MPa.
  • auxiliary agent selected from at least one of zinc oxide, silicon oxide, aluminum oxide and titanium oxide;
  • the surface of the ceramic matrix is roughened to form a contact surface; plastic materials are injected onto the contact surface to form a ceramic-plastic composite;
  • the content of zirconia in the powder slurry is 90-99 wt%, and the content of the auxiliary agent is 1-10 wt%.
  • the content of zirconia in the powder slurry is 94-98 wt%, and the content of the auxiliary agent is 2-6 wt%.
  • the surface roughening treatment is performed on the ceramic substrate, and the surface of the ceramic substrate after the surface roughening treatment is formed as a contact surface.
  • the contact surface has a more suitable contact angle.
  • the plastic is combined with the ceramic on the contact surface to make the final ceramic The bonding strength of ceramics and plastics in plastic composites is higher.
  • step (1) of the preparation method provided in this application water can be used as a dispersion medium when preparing the powder slurry.
  • the solid content of the powder slurry may be 25-50% by weight, preferably 30-40% by weight.
  • the dispersant may perform mixing treatment on the slurry.
  • the process of mixing treatment includes: ball milling and dispersion of the powder slurry and dispersant for 0.5-10 hours, and then sand milling for 1-10 hours.
  • the dispersant is selected from one or more of sodium dodecyl sulfonate, cetyl trimethyl ammonium bromide, polyacrylic acid and polyethylene glycol;
  • the dosage is 0.1-5wt% of the powder slurry.
  • polyacrylic acid may have an average molecular weight of 500-1000
  • polyethylene glycol may have an average molecular weight of 5000-20000. All dispersants are commercially available.
  • the addition of the binder in step (3) of the present application can facilitate subsequent granulation to obtain composite zirconia ceramic powder.
  • the binder is selected from one or more of polyvinyl alcohol, cellulose and polyacrylic acid; the amount of the binder is 2-6 wt% of the mixed slurry.
  • polyvinyl alcohol may have an average molecular weight of 5000-20000.
  • Cellulose may have an average molecular weight of 5000-20000.
  • Polyacrylic acid can have an average molecular weight of 5000-20000.
  • Binders are all commercially available.
  • the granulation may be spray granulation.
  • the molding can be selected to form the powder by dry pressing and isostatic pressing.
  • the sintering process can be carried out at 1450-1490°C for 2-4 hours.
  • step (5) of the present application the surface treatment of the ceramic substrate is performed to combine with the plastic material.
  • the process of surface roughening treatment includes:
  • step (b) Soak the surface of the ceramic substrate treated in step (a) in a hydrofluoric acid solution for 10s-20h; or soak the surface of the ceramic substrate treated in step (a) in a fluorine-containing substance and an acidic substance 10s-20h in mixed solution;
  • step (c) Wash the surface of the ceramic substrate treated in step (b) with water.
  • the acidic substance is selected from one or more of phosphoric acid, hydrochloric acid, nitric acid, and sulfuric acid;
  • the fluorine-containing substance includes one or more of ammonium fluoride, potassium fluoride, sodium fluoride, and ammonium bifluoride.
  • the surface of the ceramic substrate is first treated with an acid solution, and then the surface of the ceramic substrate is corroded by an acid solution containing fluoride ions to form pores.
  • the surface of the ceramic substrate is processed by such a two-step method to make the ceramic substrate The surface can produce a higher bonding force to improve the bonding effect of the ceramic matrix and the plastic.
  • the plastic includes a resin and a modified material; the resin is selected from at least one of polyphenylene sulfide, polybutylene terephthalate, and polyamide, and the modified material is selected from glass fiber , At least one of carbon fiber and mineral fiber.
  • the resin is selected from at least one of polyphenylene sulfide, polybutylene terephthalate, and polyamide
  • the modified material is selected from glass fiber , At least one of carbon fiber and mineral fiber.
  • polyphenylene sulfide, polybutylene terephthalate, polyamide, glass fiber, carbon fiber, and mineral fiber may not be particularly limited, and all are commercially available.
  • the plastic based on the total amount of the plastic, contains 40-80% by weight of resin and 20-60% by weight of modified material.
  • the plastic may be molded on the contact surface by injection molding to achieve the combination with the ceramic substrate.
  • the conditions of injection molding can include a pressure of 80-140MPa and a mold temperature of 60-150°C.
  • the third aspect of the present application provides an application of the ceramic plastic composite of the present application in communication electronic products. Specifically, it can be an application on a wristwatch, a mobile phone, or a laptop.
  • the bonding strength test of the ceramic-plastic composite body The test condition is: the ceramic-plastic composite body is processed into a 3mm ⁇ 12mm ⁇ 40mm spline using a universal testing machine, and the speed: 5mm/min.
  • Ceramic hardness measurement hardness tester and indentation method (diamond indenter, force 10kg, pressure test time 15s);
  • Ceramic fracture toughness Kic toughness determination hardness tester and indentation method (diamond indenter, force 10kg, pressure test time 15s);
  • Oxide powder, dispersant, and binder are all commercially available.
  • a powder slurry containing zirconia and additives was prepared with water as the dispersion medium.
  • the solid content of the powder slurry was 30wt%; then the powder slurry was added to the powder slurry 0.1wt% polyacrylic acid (with an average molecular weight of 1000), and ball milling to disperse for 5 hours, and then sand milling for 6 hours to obtain a mixed slurry;
  • the powder is molded by static pressing, and then sintered at 1490°C for 2 hours to obtain a ceramic matrix.
  • the surface of the ceramic substrate is roughened: the surface of the ceramic substrate is immersed in hydrochloric acid with a concentration of 10wt% at 40°C for 2h, and then immersed in a mixture of ammonium bifluoride with a concentration of 30wt% and 50wt% hydrochloric acid at 60°C After 600 s in the solution, the ceramic substrate is washed with water to obtain the contact surface.
  • the plastic containing 60% by weight of polybutylene terephthalate and 40% by weight of glass fiber is molded on the contact surface by injection molding to obtain a composite zirconia ceramic plastic composite.
  • the composite was tested for performance, and the results are shown in Table 1.
  • a powder slurry containing zirconia and additives was prepared with water as the dispersion medium.
  • the solid content of the powder slurry was 40wt%; then the powder slurry was added to the powder slurry.
  • the powder is formed by static pressing, and then sintered at 1470° for 2 hours to obtain a ceramic matrix.
  • the surface of the ceramic substrate is roughened: the surface of the ceramic substrate is immersed in sulfuric acid with a concentration of 30wt% at room temperature for 600s, and then immersed in a mixed solution of ammonium bifluoride with a concentration of 10wt% and 20wt% sulfuric acid at 40°C After 6000 seconds, the ceramic substrate is washed with water to obtain the contact surface.
  • Plastics containing 80% by weight of polybutylene terephthalate and 20% by weight of glass fibers are molded onto the contact surface by injection molding to obtain a composite zirconia ceramic plastic composite.
  • the composite was tested for performance, and the results are shown in Table 1.
  • a powder slurry containing zirconia and additives was prepared with water as the dispersion medium.
  • the solid content of the powder slurry was 35wt%, and then 2wt of the powder slurry was added to the powder slurry.
  • 5wt% of polyvinyl alcohol (average molecular weight of 5000) of the mixed slurry is added to the mixed slurry, and mixed, and the obtained mixture is sprayed and granulated to obtain composite zirconia ceramic powder.
  • the powder is formed by static pressing, and then sintered at 1450° for 4 hours to obtain a ceramic matrix.
  • the surface of the ceramic substrate is roughened: the surface of the ceramic substrate is immersed in nitric acid with a concentration of 25 wt% at 25°C for 30 minutes, and then immersed in hydrofluoric acid with a concentration of 20 wt% at 25°C for 40 minutes.
  • the plastic containing 70% by weight of polybutylene terephthalate and 30% by weight of glass fiber is molded on the contact surface by injection molding to obtain a composite zirconia ceramic plastic composite.
  • the composite was tested for performance, and the results are shown in Table 1.
  • Example 1 According to the method of Example 1, the difference is that the composition of the powder slurry is replaced with the composition shown in Table 1 to obtain a composite zirconia ceramic plastic composite. The composite was tested for performance, and the results are shown in Table 1.
  • the difference is that the ceramic substrate is subjected to surface roughening treatment: the surface of the ceramic substrate is immersed in a mixed solution of 10wt% ammonium bifluoride and 20wt% sulfuric acid at 40°C for 6000s.
  • the composite was tested for performance, and the results are shown in Table 1.
  • Example 1 According to the method of Example 1, the difference is that the composition of the powder slurry is replaced with the composition shown in Table 1 to obtain a composite zirconia ceramic plastic composite. The composite was tested for performance, and the results are shown in Table 1.
  • a zirconia ceramic matrix was prepared, and after mechanical grinding, degreasing and degreasing, a clean surface was obtained.
  • the zirconia ceramic substrate is placed in an acidic solution of 20% sulfuric acid, corroded at 80°C for 2400s, and then rinsed with water and dried. A nano-scale roughened surface is formed on the zirconia ceramic substrate.
  • the zirconia ceramic matrix forming the roughened surface is placed in an injection mold, and the same plastic as in Example 2 is injection molded on the roughened surface according to the method of Example 2 to obtain a composite zirconia ceramic plastic composite.
  • the composite was tested for performance, and the results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

一种陶瓷塑料复合体及其制备方法和应用。陶瓷塑料复合体,包括:复合氧化锆陶瓷和结合在所述复合氧化锆陶瓷表面的塑料,其中,以所述复合氧化锆陶瓷的总量为基准,所述复合氧化锆陶瓷含有90-99wt%的氧化锆,以及1-10wt%的选自氧化锌、氧化硅、氧化铝和氧化钛中的至少一种的助剂。

Description

陶瓷塑料复合体及其制备方法和应用
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2019年12月30日提交的、申请名称为“陶瓷塑料复合体及其制备方法和应用”的、中国专利申请号“201911399390.3”的优先权。
技术领域
本申请涉及陶瓷塑料复合材料领域,具体涉及陶瓷塑料复合体及其制备方法和应用。
背景技术
氧化锆陶瓷是一种无机非金属多相结晶材料,具有温润如玉的外观特性,优异的机械性能、耐磨性、耐高温、耐腐蚀、高绝缘、生物兼容性以及良好的光学性能,但氧化锆陶瓷同样具有介电常数高、密度高、硬度高的缺陷,因此难以对氧化锆陶瓷直接进行加工及后加工。现有技术采用氧化锆陶瓷与塑料的结合体来解决上述问题,但由于氧化锆陶瓷与塑料本身材料特性的差异,使得二者的结合力不足,影响结合体的稳定性。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种陶瓷塑料复合体,所述陶瓷塑料复合体的结合强度更高。
一种陶瓷塑料复合体,包括:复合氧化锆陶瓷和结合在所述复合氧化锆陶瓷表面的塑料,其中,以所述复合氧化锆陶瓷的总量为基准,所述复合氧化锆陶瓷含有90-99wt%的氧化锆,以及1-10wt%的选自氧化锌、氧化硅、氧化铝和氧化钛中的至少一种的助剂。
由此,通过1-10wt%的选自氧化锌、氧化硅、氧化铝和氧化钛中的至少一种的助剂,可以有效地提高复合氧化锆陶瓷与塑料之间的结合强度。
一种陶瓷塑料复合体的制备方法,包括:
(1)配制含有氧化锆和助剂的粉体浆料,其中,所述助剂选自氧化锌、氧化硅、氧化铝和氧化钛中的至少一种;
(2)将所述粉体浆料与分散剂进行混合处理,得到混合浆料;(3)将所述混合浆料与粘结剂进行混合,并将得到的混合物进行造粒得到复合氧化锆陶瓷粉体;
(4)将所述陶瓷粉体成型并烧结,得到陶瓷基体;
(5)将所述陶瓷基体进行表面粗化处理,形成接触表面;将塑料材料注塑到所述接触表面上,形成陶瓷塑料复合体;
其中,基于所述粉体浆料的总量,所述粉体浆料中氧化锆的含量为90-99wt%,所述助剂的含量为1-10wt%。
一种本申请的制备方法制得的陶瓷塑料复合体。
一种本申请的陶瓷塑料复合体在通讯电子产品中的应用。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
需要说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。进一步地,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请实施例的陶瓷塑料复合体,包括:复合氧化锆陶瓷和结合在复合氧化锆陶瓷表面的塑料,其中,以复合氧化锆陶瓷的总量为基准,复合氧化锆陶瓷含有90-99wt%的氧化锆,以及1-10wt%的选自氧化锌、氧化硅、氧化铝和氧化钛中的至少一种的助剂。
在本申请的一些实施例中,采用提供的复合氧化锆陶瓷以实现改进最终与塑料之间的结合强度。优选地,复合氧化锆陶瓷含有94-98wt%的氧化锆和2-6wt%的助剂。
在本申请的一些实施例中,能够与氧化锆陶瓷相结合的塑料都可以选用。优选地,塑料包含树脂和改性材料;树脂选自聚苯硫醚、聚对苯二甲酸丁二醇酯、聚酰胺中的至少一种,改性材料选自玻璃纤维、碳纤维和矿物纤维中的至少一种。
本申请提供的陶瓷塑料复合体能够具有很好的陶瓷与塑料之间的结合强度。在本申请的一些实施例中,结合强度可以通过万能试验机拉拔测定。
本申请的一些实施例中,复合氧化锆陶瓷与塑料之间的结合强度为25MPa以上,进一步优化后,复合氧化锆陶瓷与塑料之间的结合强度可以提升至30MPa以上,甚至达到35-45MPa。
本申请实施例的陶瓷塑料复合体的制备方法,包括:
(1)配制含有氧化锆和助剂的粉体浆料,其中,助剂选自氧化锌、氧化硅、氧化铝和氧化钛中的至少一种;
(2)将粉体浆料与分散剂进行混合处理,得到混合浆料;
(3)将混合浆料与粘结剂进行混合,并将得到的混合物进行造粒得到复合氧化锆陶瓷粉体;
(4)将陶瓷粉体成型并烧结,得到陶瓷基体;
(5)将陶瓷基体进行表面粗化处理,形成接触表面;将塑料材料注塑到接触表面上,形成陶瓷塑料复合体;
其中,基于粉体浆料的总量,粉体浆料中,氧化锆的含量为90-99wt%,助剂的含量为1-10wt%。
在本申请的一些实施例中,粉体浆料中氧化锆的含量为94-98wt%,助剂的含量为2-6wt%。首先,以水或其他液体作为分散介质配置粉体浆料,对粉体浆料和分散剂混合后进行处理,得到混合浆料,进而混合浆料与粘结剂混合、造粒以得到复合氧化锆陶瓷粉体,复合氧化锆陶瓷粉体烧结得到陶瓷基体。
进而对陶瓷基体进行表面粗化处理,并使陶瓷基体经过表面粗化处理后的表面形成为接触表面,接触表面具有更合适的接触角,塑料在接触表面上与陶瓷结合,使最终得到的陶瓷塑料复合体中陶瓷与塑料的结合强度更高。
本申请提供的制备方法的步骤(1)中,粉体浆料配制时可以使用水作为分散介质。粉体浆料的固含量可以为25-50wt%,优选为30-40wt%。
本申请的步骤(2)中,分散剂可以对浆料进行混合处理。其中,混合处理的过程包括:粉体浆料与分散剂进行球磨分散0.5-10h,然后进行砂磨1-10h。
在本申请的一些实施例中,分散剂选自十二烷基本磺酸钠、十六烷基三甲基溴化铵、聚丙烯酸和聚乙二醇中的一种或多种;分散剂的用量为粉体浆料的0.1-5wt%。其中聚丙烯酸可以是平均分子量为500-1000,聚乙二醇可以是平均分子量为5000-20000。分散剂均可商购获得。
本申请的步骤(3)中加入粘结剂能够利于后续通过造粒获得复合氧化锆陶瓷粉体。粘结剂选自聚乙烯醇、纤维素和聚丙烯酸中的一种或多种;粘结剂的用量为混合浆料的2-6wt%。其中,聚乙烯醇可以是平均分子量为5000-20000。纤维素可以是平均分子量为5000-20000。聚丙烯酸可以是平均分子量为5000-20000。粘结剂均可商购获得。
本申请中,造粒可以是喷雾造粒。
本申请的步骤(4)中,成型可以选用将粉体通过干压等静压成型。烧结的过程可以是在1450-1490℃下进行2-4h。
本申请的步骤(5)中进行陶瓷基体的表面处理,以便与塑料材料的结合。
具体而言,表面粗化处理的过程包括:
(a)在25-70℃下,将陶瓷基体的表面先浸泡在选自磷酸、盐酸、硝酸和硫酸中的至 少一种的酸液中10s-20h;
(b)将步骤(a)处理后的陶瓷基体的表面浸泡在氢氟酸溶液中10s-20h;或将步骤(a)处理后的陶瓷基体的表面浸泡在含氟物质与酸性物质组成的的混合溶液中10s-20h;
(c)将步骤(b)处理后的陶瓷基体的表面进行水洗。
需要说明的是,酸性物质选自磷酸、盐酸、硝酸和硫酸中的一种或多种;含氟物质包括氟化铵、氟化钾、氟化钠和氟化氢铵中的一种或多种。
由此,先通过酸液对陶瓷基体的表面进行处理,再进一步通过含有氟离子的酸性溶液对陶瓷基体的表面进行侵蚀成孔,通过这样的两步法处理陶瓷基体的表面,使陶瓷基体的表面可以产生更高的结合力,以提高陶瓷基体与塑料的结合效果。
在本申请的一些实施例中,塑料包含树脂和改性材料;树脂选自聚苯硫醚、聚对苯二甲酸丁二醇酯、聚酰胺中的至少一种,改性材料选自玻璃纤维、碳纤维和矿物纤维中的至少一种。其中,聚苯硫醚、聚对苯二甲酸丁二醇酯、聚酰胺、玻璃纤维、碳纤维和矿物纤维可以没有特别的限定,均可商购获得。
在本申请的一些实施例中,基于塑料的总量,塑料含有40-80wt%的树脂和20-60wt%的改性材料。
在本申请的一些实施例中,可以将塑料通过注塑的方法成型在接触表面上,实现与陶瓷基体的结合。注塑的条件可以包括压力为80-140MPa、模温为60-150℃。
本申请第三方面提供一种本申请的陶瓷塑料复合体在通讯电子产品中的应用。具体可以为在腕表、手机、笔记本电脑上的应用。
以下将通过实施例对本申请进行详细描述。以下实施例和对比例中,
陶瓷塑料复合体的结合强度测试:测试条件为:采用万能试验机,将陶瓷塑料复合体加工成3mm×12mm×40mm样条,速度:5mm/min。
陶瓷硬度测定:硬度计及压痕法(金刚压头、力10kg、试压时间15s);
陶瓷断裂韧性Kic韧性测定:硬度计及压痕法(金刚压头、力10kg、试压时间15s);
氧化物粉料、分散剂、粘结剂均为商购获得。
实施例1
按照表1所示的组成,以水为分散介质配制含氧化锆和助剂的粉体浆料,粉体浆料的固含量为30wt%;之后在粉体浆料内加入粉体浆料的0.1wt%聚丙烯酸(平均分子量为1000),并进行球磨分散5h,之后再经过6h的砂磨得到混合浆料;
向混合浆料加入混合浆料的6wt%聚丙烯酸(平均分子量为10000),并进行混合,得到的混合物通过喷雾造粒获得复合氧化锆陶瓷粉体。
将粉体通过静压成型,然后在1490℃烧结2h,获得陶瓷基体。
陶瓷基体进行表面粗化处理:将陶瓷基体的表面于40℃下浸泡在浓度为10wt%的盐酸中2h,之后再于60℃下浸泡在浓度为30wt%的氟化氢铵与50wt%的盐酸的混合溶液中600s,然后将陶瓷基体进行水洗得到接触表面。
通过注塑成型将含有60wt%聚对苯二甲酸丁二醇酯和40wt%玻璃纤维的塑料成型到接触表面上,得到复合氧化锆陶瓷塑料复合体。将该复合体进行性能测试,结果见表1。
实施例2
按照表1所示的组成,以水为分散介质配制含氧化锆和助剂的粉体浆料,粉体浆料的固含量为40wt%;之后在粉体浆料内加入粉体浆料的1wt%的十六烷基三甲基溴化铵,并进行球磨分散1h,之后再经过4h的砂磨得到混合浆料;
向混合浆料加入混合浆料的5wt%的纤维素(平均分子量为10000),并进行混合,得到的混合物通过喷雾造粒获得复合氧化锆陶瓷粉体。
将粉体通过静压成型,然后在1470°烧结2h,获得陶瓷基体。
陶瓷基体进行表面粗化处理:将陶瓷基体的表面于室温下浸泡在浓度为30wt%的硫酸中600s,之后再于40℃下浸泡在浓度为10wt%的氟化氢铵与20wt%的硫酸的混合溶液中6000s,然后将陶瓷基体进行水洗得到接触表面。
通过注塑成型将含有80wt%聚对苯二甲酸丁二醇酯和20wt%玻璃纤维的塑料成型到接触表面,得到复合氧化锆陶瓷塑料复合体。将该复合体进行性能测试,结果见表1。
实施例3
按照表1所示的组成,以水为分散介质配制含氧化锆和助剂的粉体浆料,粉体浆料的固含量为35wt%,之后在粉体浆料内加入粉体浆料2wt%的十二烷基本磺酸钠,并进行球磨分散2h,之后再经过6h的砂磨得到混合浆料;
向混合浆料加入混合浆料的5wt%的聚乙烯醇(平均分子量为5000),并进行混合,得到的混合物通过喷雾造粒获得复合氧化锆陶瓷粉体。
将粉体通过静压成型,然后在1450°烧结4h,获得陶瓷基体。
陶瓷基体进行表面粗化处理:将陶瓷基体的表面于25℃下浸泡在浓度为25wt%的硝酸 中30min,之后再于25℃下浸泡在浓度为20wt%的氢氟酸中40min。
通过注塑成型将含有70wt%聚对苯二甲酸丁二醇酯和30wt%玻璃纤维的塑料成型到接触表面上,得到复合氧化锆陶瓷塑料复合体。将该复合体进行性能测试,结果见表1。
实施例4-16
按照实施例1的方法,不同的是,粉体浆料的组成用表1所示的组成替换,制得复合氧化锆陶瓷塑料复合体。将复合体进行性能测试,结果见表1。
实施例17
按照实施例2的方法,不同的是,陶瓷基体进行表面粗化处理:将陶瓷基体的表面于40℃下浸泡在浓度为10wt%的氟化氢铵与20wt%的硫酸的混合溶液中6000s。将该复合体进行性能测试,结果见表1。
对比例1
按照实施例1的方法,不同的是,粉体浆料的组成用表1所示的组成替换,制得复合氧化锆陶瓷塑料复合体。将复合体进行性能测试,结果见表1。
对比例2
按照表1所示的组成,制备氧化锆陶瓷基体,经机械打磨,脱脂除油后,得到洁净的表面。
将氧化锆陶瓷基体置于20%硫酸的酸性溶液中,在80℃下腐蚀2400s,再用水冲洗干净并烘干。在氧化锆陶瓷基体上形成纳米级粗化表面。
将形成粗化表面的氧化锆陶瓷基体置于注塑模具中,按照实施例2的方法将与实施例2相同的塑料注塑成型到粗化表面,得到复合氧化锆陶瓷塑料复合体。将该复合体进行性能测试,结果见表1。
表1
Figure PCTCN2020135856-appb-000001
Figure PCTCN2020135856-appb-000002
表1(续)
Figure PCTCN2020135856-appb-000003
表1(续)
Figure PCTCN2020135856-appb-000004
表1(续)
Figure PCTCN2020135856-appb-000005
Figure PCTCN2020135856-appb-000006
表1(续)
Figure PCTCN2020135856-appb-000007
由上述实施例、对比例和表1的结果可以看出,本申请提供的陶瓷塑料复合体中陶瓷基体与塑料的结合强度高;实施例1-14进一步优选助剂的含量,使提供的陶瓷塑料复合体中陶瓷基体与塑料的结合强度进一步提高;通过实施例2和实施例17可以看出,采用优选两步法处理陶瓷基体表面,能提高陶瓷基体与塑料的结合强度。对比例1的助剂含量过高、对比例2无助剂,陶瓷基体与塑料的结合强度明显降低。

Claims (19)

  1. 一种陶瓷塑料复合体,其特征在于,包括:复合氧化锆陶瓷和结合在所述复合氧化锆陶瓷表面的塑料,其中,以所述复合氧化锆陶瓷的总量为基准,所述复合氧化锆陶瓷含有90-99wt%的氧化锆,以及1-10wt%的选自氧化锌、氧化硅、氧化铝和氧化钛中的至少一种的助剂。
  2. 根据权利要求1所述的陶瓷塑料复合体,其特征在于,所述复合氧化锆陶瓷含有94-98wt%的氧化锆和2-6wt%的所述助剂。
  3. 根据权利要求1或2所述的陶瓷塑料复合体,其特征在于,所述塑料包含树脂和改性材料;所述树脂选自聚苯硫醚、聚对苯二甲酸丁二醇酯、聚酰胺中的至少一种,所述改性材料选自玻璃纤维、碳纤维和矿物纤维中的至少一种。
  4. 根据权利要求3所述的陶瓷塑料复合体,其特征在于,基于所述塑料的总量,所述塑料含有40-80wt%的所述树脂和20-60wt%的所述改性材料。
  5. 根据权利要求1-4中任意一项所述的陶瓷塑料复合体,其特征在于,所述复合氧化锆陶瓷与所述塑料之间的结合强度为25MPa以上。
  6. 根据权利要求5所述的陶瓷塑料复合体,其特征在于,所述复合氧化锆陶瓷与所述塑料之间的结合强度为30MPa以上。
  7. 根据权利要求6所述的陶瓷塑料复合体,其特征在于,所述复合氧化锆陶瓷与所述塑料之间的结合强度为35-45MPa。
  8. 一种陶瓷塑料复合体的制备方法,其特征在于,包括:
    (1)配制含有氧化锆和助剂的粉体浆料,其中,所述助剂选自氧化锌、氧化硅、氧化铝和氧化钛中的至少一种;
    (2)将所述粉体浆料与分散剂进行混合处理,得到混合浆料;
    (3)将所述混合浆料与粘结剂进行混合,并将得到的混合物进行造粒得到复合氧化锆陶瓷粉体;
    (4)将所述陶瓷粉体成型并烧结,得到陶瓷基体;
    (5)将所述陶瓷基体进行表面粗化处理,形成接触表面;将塑料材料注塑到所述接触表面上,形成陶瓷塑料复合体;
    其中,基于所述粉体浆料的总量,所述粉体浆料中氧化锆的含量为90-99wt%,所述助剂的含量为1-10wt%。
  9. 根据权利要求8所述的制备方法,其特征在于,所述粉体浆料中氧化锆的含量为94-98wt%,所述助剂的含量为2-6wt%。
  10. 根据权利要求8或9所述的制备方法,其特征在于,步骤(2)中,所述分散剂选自十二烷基本磺酸钠、十六烷基三甲基溴化铵、聚丙烯酸和聚乙二醇中的一种或多种。
  11. 根据权利要求10所述的制备方法,其特征在于,所述分散剂的用量为所述粉体浆 料的0.1-5wt%。
  12. 根据权利要求11所述的制备方法,其特征在于,所述混合处理的过程包括:所述粉体浆料与分散剂进行球磨分散0.5-10h,然后进行砂磨1-10h。
  13. 根据权利要求8-12中任意一项所述的制备方法,其特征在于,步骤(3)中,所述粘结剂选自聚乙烯醇、纤维素和聚丙烯酸中的一种或多种。
  14. 根据权利要求13所述的制备方法,其特征在于,所述粘结剂的用量为所述粉体浆料的2-6wt%。
  15. 根据权利要求8-14中任意一项所述的制备方法,其特征在于,步骤(5)中所述表面粗化处理的过程包括:
    (a)在25-70℃下,将所述陶瓷基体的表面先浸泡在选自磷酸、盐酸、硝酸和硫酸中的至少一种的酸液中10s-20h,
    (b)将步骤(a)处理后的所述陶瓷基体的表面浸泡在氢氟酸溶液中10s-20h;或将步骤(a)处理后的陶瓷基体的表面浸泡在含氟物质与酸性物质组成的混合溶液中10s-20h,
    (c)将步骤(b)处理后的陶瓷基体的表面进行水洗。
  16. 根据权利要求15所述的制备方法,其特征在于,所述酸性物质选自磷酸、盐酸、硝酸和硫酸中的一种或多种;所述含氟物质包括氟化铵、氟化钾、氟化钠和氟化氢铵中的一种或多种。
  17. 根据权利要求8-16中任意一项所述的制备方法,其特征在于,所述塑料包含树脂和改性材料;所述树脂选自聚苯硫醚、聚对苯二甲酸丁二醇酯、聚酰胺中的至少一种,所述改性材料选自玻璃纤维、碳纤维和矿物纤维中的至少一种。
  18. 根据权利要求17所述的制备方法,其特征在于,基于所述塑料的总量,所述塑料含有40-80wt%的所述树脂和20-60wt%的所述改性材料。
  19. 一种如权利要求1-7中任意一项所述的陶瓷塑料复合体或权利要求8-18中任一项所述的制备方法制得的陶瓷塑料复合体在通讯电子产品中的应用。
PCT/CN2020/135856 2019-12-30 2020-12-11 陶瓷塑料复合体及其制备方法和应用 WO2021135897A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911399390.3A CN113045308A (zh) 2019-12-30 2019-12-30 陶瓷塑料复合体及其制备方法和应用
CN201911399390.3 2019-12-30

Publications (1)

Publication Number Publication Date
WO2021135897A1 true WO2021135897A1 (zh) 2021-07-08

Family

ID=76507786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135856 WO2021135897A1 (zh) 2019-12-30 2020-12-11 陶瓷塑料复合体及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113045308A (zh)
WO (1) WO2021135897A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117185786A (zh) * 2023-09-12 2023-12-08 东莞市晟鼎精密仪器有限公司 一种等离子清洗设备电极用陶瓷绝缘板材料及其制作方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115215683B (zh) * 2022-08-05 2023-05-12 湖南柯盛新材料有限公司 具有表面链状结构的氧化锆陶瓷基体及其制备方法和用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106747436A (zh) * 2017-02-23 2017-05-31 南京云启金锐新材料有限公司 高纯高强度氧化锆陶瓷指纹识别贴片的生产方法
CN107010998A (zh) * 2017-02-27 2017-08-04 广东长盈精密技术有限公司 陶瓷的表面处理方法、陶瓷制品及陶瓷塑料复合体
CN107685418A (zh) * 2017-07-19 2018-02-13 歌尔股份有限公司 陶瓷和塑料复合材料的制备方法以及电子设备的外壳
CN108726994A (zh) * 2017-05-19 2018-11-02 宁波健立电子有限公司 一种复合陶瓷盖板及其制造方法
CN109016332A (zh) * 2018-07-12 2018-12-18 歌尔股份有限公司 无机非金属与塑料的结合体及其制备方法
CN109096926A (zh) * 2018-08-01 2018-12-28 广州雷斯曼新材料科技有限公司 一种酸性玻璃胶及其制备方法
US20190071369A1 (en) * 2017-09-01 2019-03-07 Coxon Precise Industrial Co., Ltd. Ceramic and plastic composite and method for fabricating the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357157A (ja) * 1991-06-04 1992-12-10 Matsushita Electric Ind Co Ltd 成形用セラミック造粒粉末の製造方法
DE10359303A1 (de) * 2003-12-17 2005-07-21 Roche Diagnostics Gmbh Kunststoff-Spritzgussteil mit eingebettetem Bauteil
ATE405686T1 (de) * 2005-06-16 2008-09-15 Sulzer Metco Us Inc Aluminiumoxid dotierter verschleissbarer keramischer werkstoff
DE102009026622A1 (de) * 2009-05-29 2010-12-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Formkörper mit eingebetteten Kopplungspartikeln für Biomoleküle
CN101748874A (zh) * 2009-12-23 2010-06-23 成都中基国业新材料有限责任公司 陶瓷塑料复合结构件及其制作方法
CN102260078B (zh) * 2010-05-31 2013-03-20 比亚迪股份有限公司 一种氧化锆陶瓷及其制备方法
JP6064567B2 (ja) * 2012-12-07 2017-01-25 東ソー株式会社 複合プレートおよびその製造方法
CN104961462B (zh) * 2015-06-20 2018-02-27 宁波博莱特光电科技股份有限公司 一种高强度氧化锆陶瓷插芯的制备方法
CN106866142B (zh) * 2017-02-23 2019-08-27 南京云启金锐新材料有限公司 纳米级高纯二氧化锆复合粉体的生产方法
CN109093926A (zh) * 2018-07-12 2018-12-28 歌尔股份有限公司 一种陶瓷与塑胶的复合件及其制备方法
CN108863445A (zh) * 2018-07-12 2018-11-23 歌尔股份有限公司 一种陶瓷与塑胶的复合件的制备方法
CN110304920B (zh) * 2019-08-16 2021-09-07 Oppo广东移动通信有限公司 氧化锆陶瓷及其制备方法、壳体和电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106747436A (zh) * 2017-02-23 2017-05-31 南京云启金锐新材料有限公司 高纯高强度氧化锆陶瓷指纹识别贴片的生产方法
CN107010998A (zh) * 2017-02-27 2017-08-04 广东长盈精密技术有限公司 陶瓷的表面处理方法、陶瓷制品及陶瓷塑料复合体
CN108726994A (zh) * 2017-05-19 2018-11-02 宁波健立电子有限公司 一种复合陶瓷盖板及其制造方法
CN107685418A (zh) * 2017-07-19 2018-02-13 歌尔股份有限公司 陶瓷和塑料复合材料的制备方法以及电子设备的外壳
US20190071369A1 (en) * 2017-09-01 2019-03-07 Coxon Precise Industrial Co., Ltd. Ceramic and plastic composite and method for fabricating the same
CN109016332A (zh) * 2018-07-12 2018-12-18 歌尔股份有限公司 无机非金属与塑料的结合体及其制备方法
CN109096926A (zh) * 2018-08-01 2018-12-28 广州雷斯曼新材料科技有限公司 一种酸性玻璃胶及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117185786A (zh) * 2023-09-12 2023-12-08 东莞市晟鼎精密仪器有限公司 一种等离子清洗设备电极用陶瓷绝缘板材料及其制作方法
CN117185786B (zh) * 2023-09-12 2024-04-02 东莞市晟鼎精密仪器有限公司 一种等离子清洗设备电极用陶瓷绝缘板材料及其制作方法

Also Published As

Publication number Publication date
CN113045308A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
WO2021135897A1 (zh) 陶瓷塑料复合体及其制备方法和应用
KR101757069B1 (ko) 알루미나 복합체 세라믹스 조성물 및 그의 제조방법
TW201825440A (zh) 陶瓷複合材料及方法
WO2020010811A1 (zh) 一种陶瓷与塑胶的复合件及其制备方法
CN106946571B (zh) 一种纤维增韧碳化硅陶瓷叶轮及其凝胶注模成型制备方法
CN115368120B (zh) 一种氧化铝陶瓷及其生产工艺
WO2020010812A1 (zh) 一种陶瓷与塑胶的复合件的制备方法
CN115551818A (zh) 陶瓷烧结体的制造方法和陶瓷烧结体
US11028019B2 (en) Boron carbide composite
CN114014667A (zh) 复合碳化硅陶瓷粉料及陶瓷分离阀的制备方法
CN113896554A (zh) 一种高致密纤维增强石英陶瓷复合材料及其制备方法
WO2018235908A1 (ja) 表面に金属酸化物が付着した黒鉛の製造方法、表面に金属酸化物と水溶性レジンとが付着した黒鉛、黒鉛含有キャスタブル耐火物および黒鉛含有キャスタブル耐火物の製造方法
CN109456575A (zh) 一种陶瓷复合材料及其制备方法
CN112279653A (zh) 一种具有裂纹愈合能力的陶瓷材料及其制备方法
CN105503183B (zh) 基于凝胶注模工艺的氧化锆陶瓷刀具制备方法
JP2010208937A (ja) 高圧絶縁体を製造する方法
JP2007261925A (ja) セラミックス成形体の製造方法およびこれを用いたセラミックス焼結体の製造方法
WO2020029530A1 (zh) 氧化锆陶瓷的制备方法以及复合材料
CN105924179A (zh) 一种氮化硅陶瓷加热器保护管及其制备方法与应用
KR101095027B1 (ko) 알루미나 결합제 부정형 내화물 및 이의 제조 방법
CN107999737B (zh) 一种连铸耐火件的制备工艺
KR102282500B1 (ko) 무기나노입자 분산을 통해 열전도도가 향상된 나노복합절연소재 및 그 제조방법
JP2019064844A (ja) 窒素含有難焼結性の粉体による固化体の製造方法
KR102156549B1 (ko) 알루미나 소결체 및 그 제조방법
JP5885799B2 (ja) 断熱材及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908746

Country of ref document: EP

Kind code of ref document: A1