WO2021135568A1 - 一种水基磁流变抛光液及其配制方法 - Google Patents

一种水基磁流变抛光液及其配制方法 Download PDF

Info

Publication number
WO2021135568A1
WO2021135568A1 PCT/CN2020/123915 CN2020123915W WO2021135568A1 WO 2021135568 A1 WO2021135568 A1 WO 2021135568A1 CN 2020123915 W CN2020123915 W CN 2020123915W WO 2021135568 A1 WO2021135568 A1 WO 2021135568A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
polishing liquid
magnetorheological polishing
powder
polishing
Prior art date
Application number
PCT/CN2020/123915
Other languages
English (en)
French (fr)
Inventor
张学军
白杨
王孝坤
薛栋林
张峰
Original Assignee
中国科学院长春光学精密机械与物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院长春光学精密机械与物理研究所 filed Critical 中国科学院长春光学精密机械与物理研究所
Publication of WO2021135568A1 publication Critical patent/WO2021135568A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents

Definitions

  • the invention belongs to the technical field of optical precision processing and manufacturing, and particularly relates to a water-based magnetorheological polishing liquid and a preparation method thereof.
  • Magnetorheological polishing technology is an emerging optical surface precision processing technology. This processing technology combines the knowledge of electromagnetics, chemistry, contact mechanics, and fluid mechanics. It is a kind of processing between contact and non-contact. The method can be used for deterministic processing of optical elements of various materials. In particular, it is the most widely used for polishing materials such as glass and ceramics.
  • the preparation technology of the magnetorheological polishing liquid is one of the key technologies for the realization of magnetorheological polishing, and the magnetorheological polishing liquid with excellent performance is also a necessary condition for the realization of magnetorheological deterministic polishing.
  • Magnetorheological polishing technology embodies the creative application of magnetorheological fluids in the field of optical processing. Among them, the main components of magnetorheological polishing fluids are similar to those used in traditional fields, but in terms of component selection and specific use There are still big differences in requirements.
  • the magnetorheological polishing liquid should have the following performance characteristics: (1) Good dispersion stability. The requirement here is that the magnetorheological polishing liquid does not settle during use and ensures the consistency of the liquid composition during polishing; the other is that the magnetorheological polishing liquid can be re-dispersed by simple stirring after standing still. (2) Lower zero magnetic field viscosity. This requires that the lower the viscosity of the polishing liquid in the absence of a magnetic field, the better, so as to ensure the stable circulation of the liquid in the circulation system and achieve higher removal efficiency under the same polishing parameters. (3) Good rheological properties.
  • the removal efficiency of the magnetorheological polishing material is proportional to the shear yield stress of the polishing liquid after rheology under a magnetic field. Therefore, in order to obtain a higher material removal efficiency, the preparation of the magnetorheological polishing liquid requires a lower zero magnetic field viscosity to ensure fluidity while having better rheological properties.
  • Magnetorheological polishing fluids include water-based magnetorheological polishing fluids and oil-based magnetorheological polishing fluids. Because water-based magnetorheological polishing fluids are effective in polishing efficiency, environmental protection and composition of oil-based magnetorheological polishing fluids. Advantages in control and other aspects, water-based magnetorheological polishing fluids are more suitable for optical processing. At present, some research units at home and abroad have conducted research on magnetorheological polishing fluids. The main foreign companies QED and Rogers have conducted in-depth research on magnetorheological polishing fluids. Among them, QED has applied for water-based magnetorheological polishing fluids.
  • the patent (US 5804,095) uses simple chemical components, but the dispersion stability is not enough, and the polishing and the added magnetic particles cannot be combined with the magnetic particles. The light efficiency is not high.
  • the selection of magnetic particles and polishing powder particles is proposed to improve the surface quality of the optical mirror surface after magnetorheological polishing, but the specific composition and preparation method of the liquid are not given.
  • the patent applied by Rogers University introduces how to coat a ceramic film on the surface of carbonyl iron powder to improve the oxidation resistance and rust resistance of the magnetorheological polishing solution, and the carbonyl iron powder after coating can be combined with a sexual base carrier liquid
  • the same problem of mixing and preparing the magnetorheological polishing liquid is that the specific preparation method of the magnetorheological polishing liquid is not introduced, and the operation process is complicated.
  • the magnetorheological polishing liquid is prepared by directly adding the polishing powder to the magnetorheological fluid, and the interaction between the polishing powder and the carbonyl iron powder is not considered, and the zero magnetic field viscosity of the prepared magnetorheological polishing fluid is relatively high.
  • ball milling is also used to mix the dispersed phase composed of magnetic particles and polishing powder with the water-based complex carrier liquid (continuous phase).
  • CN problems in 101250380A There is also a patent publication number CN Problems in 101250380A.
  • the thixotropic agent used in the formulation has a large zero-field viscosity and insufficient viscosity stability for long-term polishing.
  • the purpose of the present invention is to provide a water-based magnetorheological polishing fluid and its preparation method.
  • the water-based magnetorheological polishing fluid provided by the present invention has good dispersion stability and viscosity stability, and low zero magnetic field viscosity. , The material removal efficiency is high.
  • the present invention provides a water-based magnetorheological polishing liquid, which includes:
  • the dispersion stabilizer is polyphosphate and/or citrate
  • the wetting agent is a polyol
  • the chelating agent is an amino carboxylic acid compound and/or organic phosphate.
  • the magnetic particles include one or more of unmodified carbonyl iron powder, phosphated carbonyl iron powder, reduced carbonyl iron powder, and coated carbonyl iron powder;
  • the median diameter D 50 of the magnetic particles is 1-10 ⁇ m.
  • the non-magnetic polishing powder includes one or more of diamond powder, alumina powder and cerium oxide powder;
  • the median diameter D 50 of the non-magnetic polishing powder is 20 nm to 3 ⁇ m.
  • the polyphosphate includes one or more of sodium tripolyphosphate, sodium tetrapolyphosphate, ammonium polyphosphate, sodium pyrophosphate and sodium hexametaphosphate;
  • the citrate salt includes one or more of potassium citrate, ammonium citrate and sodium citrate.
  • the polyol includes one or more of propylene glycol, glycerol, butylene glycol, sorbitol, polyglycerol and polypropylene glycol.
  • the aminocarboxylic acid compound includes ethylenediaminetetraacetate and/or nitrilotriacetic acid;
  • the organic phosphate includes pentasodium amino trimethylene phosphonic acid and/or tetrasodium amino trimethylene phosphonic acid.
  • the antioxidant includes sodium nitrite and/or sodium benzoate.
  • the pH adjusting agent includes one or more of sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, phosphoric acid and hydrochloric acid.
  • the present invention provides a preparation method of the water-based magnetorheological polishing liquid according to the above technical scheme, which includes the following steps:
  • the magnetic particles, non-magnetic polishing powder, dispersion stabilizer, wetting agent, chelating agent, antioxidant and pH adjuster are mixed in water to obtain a water-based magnetorheological polishing liquid.
  • the mixing process specifically includes:
  • the present invention provides a water-based magnetorheological polishing liquid and a preparation method thereof.
  • the water-based magnetorheological polishing liquid provided by the present invention includes: 77 to 88 wt% of magnetic particles; 0.01 wt% to 8 wt% of non-magnetic polishing powder; 0.2 to 0.5 wt% of dispersion stabilizer; 0.5 to 1 wt% of wetting agent; chelating agent 0.1-0.4wt%; antioxidant 0.01-0.02wt%; pH adjuster 0.2-0.5wt%; solvent is water; said dispersion stabilizer is polyphosphate and/or citrate; said wetting agent is Polyol; the chelating agent is an amino carboxylic acid compound and/or an organic phosphate.
  • the present invention optimizes and designs the composition formula of the water-based magnetorheological polishing liquid, especially without adding a polymer thickener or thixotropic agent, so that the zero magnetic field viscosity of the water-based magnetorheological polishing liquid is significantly reduced, and at the same time
  • the viscosity stability is higher, and it is more suitable for the use and control of magnetorheological polishing; by considering the effect of non-magnetic polishing powder and magnetic particles, the consumption of non-magnetic polishing powder in the polishing liquid is reduced, and the non-magnetic polishing powder's performance is improved.
  • the polishing efficiency is significantly improved; by adding a specific dispersion stabilizer, the dispersion stability and long-term effectiveness of the magnetorheological polishing liquid can be guaranteed; by adding a specific wetting agent, the moisture in the magnetorheological polishing process can be reduced The loss of the dispersion and the promotion of the dispersion stabilizer on the surface of the magnetic particles make the dispersant work better; by adding a specific chelating agent, the non-magnetic polishing powder and the magnetic particles can be connected to make the polishing powder associate on the surface of the magnetic particles, improving The utilization rate of the polishing powder not only further improves the polishing efficiency, but also saves the production cost.
  • the magnetorheological polishing liquid provided by the present invention uses water as the base carrier liquid, it also has the advantages of environmental protection and easy cleaning.
  • the water-based magnetorheological polishing liquid of the present invention also has excellent universality.
  • the type and particle size of the polishing powder can be adjusted according to the different polishing materials and polishing stages, so as to meet different polishing requirements.
  • Figure 1 is a process flow diagram for preparing a water-based magnetorheological polishing liquid provided by an embodiment of the present invention
  • Example 2 is a diagram of the removal function obtained by polishing BK7 glass with the water-based magnetorheological polishing liquid provided in Example 1 of the present invention
  • Example 3 is a graph of the removal function obtained by polishing the RB-SiC material by the water-based magnetorheological polishing liquid provided by the present invention in Example 2;
  • the present invention provides a water-based magnetorheological polishing liquid, which includes:
  • the dispersion stabilizer is polyphosphate and/or citrate
  • the wetting agent is a polyol
  • the chelating agent is an amino carboxylic acid compound and/or organic phosphate.
  • the water-based magnetorheological polishing liquid provided by the present invention includes magnetic particles, non-magnetic polishing powder, dispersion stabilizer, wetting agent, chelating agent, antioxidant, pH regulator and water.
  • the magnetic particles as the main component of the dispersed phase of the magnetorheological polishing liquid, preferably include unmodified carbonyl iron powder (that is, ordinary carbonyl iron powder), phosphating carbonyl iron powder, reduced carbonyl iron powder and coated carbonyl iron powder
  • the median diameter D 50 of the magnetic particles is preferably 1-10 ⁇ m, specifically 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 4.5 ⁇ m, 5 ⁇ m, 5.5 ⁇ m, 6 ⁇ m, 6.5 ⁇ m, 7 ⁇ m, 7.5 ⁇ m, 8 ⁇ m, 8.5 ⁇ m, 9 ⁇ m, 9.5 ⁇ m or 10 ⁇ m.
  • the content of the magnetic particles in the water-based magnetorheological polishing liquid is 77 to 88% by weight, and specifically can be 77% by weight, 77.5% by weight, 78% by weight, 78.5% by weight, 79% by weight, 79.5% by weight, 80wt%, 80.5wt%, 81wt%, 81.5wt%, 82wt%, 82.5wt%, 83wt%, 83.5wt%, 84wt%, 84.5wt%, 85wt%, 85.5wt%, 86wt%, 86.5wt%, 87wt %, 87.5wt% or 88wt%.
  • the non-magnetic polishing powder is a key component of the magnetorheological polishing liquid that can satisfy polishing conditions and realize material removal, and preferably includes one or more of diamond powder, alumina powder and cerium oxide powder;
  • the median particle size D 50 of the non-magnetic polishing powder is preferably 20 nm to 3 ⁇ m, specifically 20 nm, 50 nm, 100 nm, 200 nm, 300 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1 ⁇ m, 1.2 ⁇ m, 1.5 ⁇ m. , 1.7 ⁇ m, 2 ⁇ m, 2.3 ⁇ m, 2.5 ⁇ m, 2.7 ⁇ m or 3 ⁇ m.
  • the content of the non-magnetic polishing powder in the water-based magnetorheological polishing liquid is 0.01wt ⁇ to 8wt%, specifically may be 0.01wt ⁇ , 0.05wt ⁇ , 0.1wt ⁇ , 1wt ⁇ , 5wt ⁇ , 1wt%, 1.5wt%, 2wt%, 2.5wt%, 3wt%, 3.5wt%, 4wt%, 4.5wt%, 5wt%, 5.5wt%, 6wt%, 6.5wt%, 7wt%, 7.5wt% or 8wt%.
  • the dispersion stabilizer is polyphosphate and/or citrate.
  • the polyphosphate preferably includes one or more of sodium tripolyphosphate, sodium tetrapolyphosphate, ammonium polyphosphate, sodium pyrophosphate and sodium hexametaphosphate;
  • the citrate preferably includes potassium citrate , One or more of ammonium citrate and sodium citrate.
  • the dispersion stabilizer includes sodium tripolyphosphate and sodium hexametaphosphate, and the mass ratio of the sodium tripolyphosphate and sodium hexametaphosphate is preferably (2 to 3): 10, Specifically, it can be 2:10, 2.1:10, 2.2:10, 2.3:10, 2.4:10, 2.5:10, 2.6:10, 2.7:10, 2.8:10, 2.9:10, or 3:10.
  • the above-mentioned preferred dispersion stabilizer has a better dispersion and stabilization effect on the carbonyl iron powder, as well as a certain anti-rust and anti-oxidation effect.
  • the content of the dispersion stabilizer in the water-based magnetorheological polishing liquid is 0.2-0.5wt%, specifically 0.2wt%, 0.21wt%, 0.22wt%, 0.23wt%, 0.24wt% , 0.25wt%, 0.26wt%, 0.27wt%, 0.28wt%, 0.29wt%, 0.3wt%, 0.31wt%, 0.32wt%, 0.33wt%, 0.34wt%, 0.35wt%, 0.36wt%, 0.37 wt%, 0.38wt%, 0.39wt%, 0.4wt%, 0.41wt%, 0.42wt%, 0.43wt%, 0.44wt%, 0.45wt%, 0.46wt%, 0.47wt%, 0.48wt%, 0.49wt% Or 0.5wt%.
  • the wetting agent is a polyhydric alcohol
  • the polyhydric alcohol preferably includes one or more of propylene glycol, glycerol, butylene glycol, sorbitol, polyglycerin and polypropylene glycol.
  • the above-mentioned preferred wetting agent can reduce the water loss during the magnetorheological polishing process and promote the spreading of the dispersion stabilizer on the surface of the magnetic particles, so that the dispersion stabilizer can perform better.
  • the content of the wetting agent in the water-based magnetorheological polishing liquid is 0.5 to 1 wt%, and specifically may be 0.5 wt%, 0.55 wt%, 0.6 wt%, 0.65 wt% , 0.7wt%, 0.75wt%, 0.8wt%, 0.85wt%, 0.9wt%, 0.95wt% or 1wt%.
  • the chelating agent is an amino carboxylic acid compound and/or organic phosphate.
  • the amino carboxylic acid compound preferably includes ethylenediaminetetraacetate and/or nitrilotriacetic acid; the ethylenediaminetetraacetate is preferably sodium ethylenediaminetetraacetate; the organic phosphate is preferably Including amino trimethylene phosphonic acid pentasodium and/or amino trimethylene phosphonic acid tetrasodium.
  • the above-mentioned preferred chelating agent can connect the non-magnetic polishing powder and the magnetic particles to associate the polishing powder on the surface of the magnetic particles, improve the utilization rate of the polishing powder, and not only further improve the polishing efficiency, but also save the production cost.
  • the content of the chelating agent in the water-based magnetorheological polishing liquid is 0.1-0.4wt%, specifically 0.1wt%, 0.12wt%, 0.15wt%, 0.17wt% , 0.2wt%, 0.23wt%, 0.25wt%, 0.27wt%, 0.3wt%, 0.32wt%, 0.35wt%, 0.37wt% or 0.4wt%.
  • the antioxidant preferably includes sodium nitrite and/or sodium benzoate; the content of the antioxidant in the water-based magnetorheological polishing liquid is 0.01 to 0.02 wt%, and specifically may be 0.01 wt%, 0.011 wt% wt%, 0.012 wt%, 0.013 wt%, 0.014 wt%, 0.015 wt%, 0.016 wt%, 0.017 wt%, 0.018 wt%, 0.019 wt%, or 0.02 wt%.
  • the pH adjusting agent preferably includes one or more of sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, phosphoric acid and hydrochloric acid; the pH adjusting agent is used in a water-based magnetorheological polishing liquid
  • the content in 0.2-0.5wt% specifically can be 0.2wt%, 0.21wt%, 0.22wt%, 0.23wt%, 0.24wt%, 0.25wt%, 0.26wt%, 0.27wt%, 0.28wt%, 0.29 wt%, 0.3wt%, 0.31wt%, 0.32wt%, 0.33wt%, 0.34wt%, 0.35wt%, 0.36wt%, 0.37wt%, 0.38wt%, 0.39wt%, 0.4wt%, 0.41wt% , 0.42wt%, 0.43wt%, 0.44wt%, 0.45wt%, 0.46wt%, 0.47wt%, 0.48wt%
  • the solvent of the water-based magnetorheological polishing liquid is water, and the content of the water in the magnetorheological polishing liquid is preferably the balance.
  • the present invention also provides a preparation method of the water-based magnetorheological polishing liquid according to the above technical scheme, which includes the following steps:
  • the magnetic particles, non-magnetic polishing powder, dispersion stabilizer, wetting agent, chelating agent, antioxidant and pH adjuster are mixed in water to obtain a water-based magnetorheological polishing liquid.
  • the magnetic particles, non-magnetic polishing powder, dispersion stabilizer, wetting agent, chelating agent, antioxidant, and pH adjuster are mixed uniformly in water to obtain the water-based compound provided by the present invention.
  • Magnetorheological polishing liquid preferably includes:
  • the composite base carrier liquid and the solid dispersion phase are separately prepared.
  • the composite base carrier liquid is preferably prepared according to the following steps:
  • the stirring speed of the mixing is preferably 300-600r/min, specifically 300r/min, 350r/min, 400r/min, 450r/min. /min, 500r/min, 550r/min or 600r/min;
  • the mixing temperature is preferably 22-25°C, specifically 22°C, 23°C, 24°C or 25°C;
  • the mixing time is preferably 1 ⁇ 2h, specifically 1h, 1.1h, 1.2h, 1.3h, 1.4h, 1.5h, 1.6h, 1.7h, 1.8h, 1.9h or 2h.
  • the stirring speed of the mixing is preferably 300-600r/min, specifically 300r/min, 350r/min, 400r/min, 450r/min. /min, 500r/min, 550r/min or 600r/min;
  • the mixing temperature is preferably 22-25°C, specifically 22°C, 23°C, 24°C or 25°C;
  • the mixing time is preferably 0.5 ⁇ 1h, specifically 0.5h, 0.6h, 0.7h, 0.8h, 0.9h or 1h.
  • the stirring speed of the mixing is preferably 300-600r/min, specifically 300r/min, 350r/min, 400r/min, 450r/min. /min, 500r/min, 550r/min or 600r/min;
  • the mixing temperature is preferably 22-25°C, specifically 22°C, 23°C, 24°C or 25°C;
  • the mixing time is preferably 1 ⁇ 2h, specifically 1h, 1.1h, 1.2h, 1.3h, 1.4h, 1.5h, 1.6h, 1.7h, 1.8h, 1.9h or 2h.
  • the stirring speed of the mixing is preferably 300-600r/min, specifically 300r/min, 350r/min, 400r/min, 450r/min. /min, 500r/min, 550r/min or 600r/min;
  • the mixing temperature is preferably 22-25°C, specifically 22°C, 23°C, 24°C or 25°C;
  • the mixing time is preferably 1 ⁇ 2h, specifically 1h, 1.1h, 1.2h, 1.3h, 1.4h, 1.5h, 1.6h, 1.7h, 1.8h, 1.9h or 2h.
  • the stirring speed of the mixing is preferably 300-600r/min, specifically 300r/min, 350r/min, 400r/min, 450r/min. /min, 500r/min, 550r/min or 600r/min;
  • the mixing temperature is preferably 22-25°C, specifically 22°C, 23°C, 24°C or 25°C;
  • the mixing time is preferably 1 ⁇ 2h, specifically 1h, 1.1h, 1.2h, 1.3h, 1.4h, 1.5h, 1.6h, 1.7h, 1.8h, 1.9h or 2h.
  • the solid dispersed phase is formed by mixing magnetic particles and non-magnetic polishing powder.
  • the specific conditions of the mixing are not particularly limited in the present invention, and the two components can be mixed uniformly. .
  • the composite base carrier liquid and the solid dispersed phase are rolled and stirred.
  • the specific operation process of the rolling stirring is: loading the composite base carrier liquid and the solid dispersed phase into the container, then sealing the container, then putting the sealed container into the rolling stirring device, and finally starting the device to roll Stir.
  • the volume of the container is preferably 2 to 3 times the volume of the composite base carrier liquid and the solid dispersion mixture; the rotating speed of the rolling stirring is preferably 100 to 150 revolutions per minute, specifically 100 revolutions per minute.
  • the rolling stirring time is preferably 2 to 4h, specifically 2h, 2.5h, 3h, 3.5h or 4h.
  • the invention obtains the water-based magnetorheological polishing liquid with good dispersion stability and viscosity stability, low zero magnetic field viscosity and high material removal efficiency by optimizing the composition formula of the water-based magnetorheological polishing liquid. More specifically, the magnetorheological polishing liquid and its preparation method provided by the present invention include at least the following advantages:
  • the present invention does not add polymer thickener or thixotropic agent, so that the zero magnetic field viscosity of the water-based magnetorheological polishing liquid is significantly reduced, and the viscosity stability is higher, and it is more suitable for the use and control of magnetorheological polishing ;
  • Adding a specific dispersion stabilizer can ensure the dispersion stability and long-term effectiveness of the magnetorheological polishing liquid; adding a specific wetting agent can reduce the loss of water during the magnetorheological polishing process and promote the dispersion of the stabilizer The spreading of the surface of the magnetic particles makes the dispersant play a better role;
  • Adding a specific chelating agent can connect the non-magnetic polishing powder and the magnetic particles to associate the polishing powder on the surface of the magnetic particles, which improves the utilization rate of the polishing powder, which not only further improves the polishing efficiency, but also saves the production cost;
  • the type and particle size of the polishing powder can be adjusted according to the different polishing materials and polishing stages, so as to meet different polishing needs
  • the chemical reagents added in the water-based magnetorheological polishing liquid have excellent water solubility. After polishing, the polishing cycle system only needs to be cleaned with tap water, and the cleaning process is convenient. It takes a short time and is clean;
  • a rolling stirring method is used in the mixing process of the solid dispersed phase and the composite carrier liquid. This mixing method does not affect the additive components and chemical effects of the magnetorheological polishing liquid , And the operation is simple and convenient.
  • Step 1 Add the dispersion stabilizer sodium citrate to 250ml of deionized water and stir for 1 hour, the speed of the stirrer is set to 400r/min, and the temperature is controlled between 22°C and 25°C.
  • Step 2 Add propylene glycol, a wetting agent, to the solution obtained in Step 1, and stir for 0.5 hours with a stirrer.
  • the speed of the stirrer is set to 400r/min, and the temperature is controlled between 22°C and 25°C.
  • Step 3 Add the chelating agent sodium ethylenediaminetetraacetate to the solution obtained in step 2, and stir for 1.5 hours with a stirrer, the speed of the stirrer is set to 400r/min, and the temperature is controlled between 22°C and 25°C.
  • Step 4 Add the antioxidant sodium nitrite to the solution obtained in step 3, stir with a stirrer for 1 hour, the speed of the stirrer is set to 400r/min, and the temperature is controlled between 22°C and 25°C.
  • Step 5 Add the pH regulator sodium carbonate to the solution obtained in step 4, stir with a stirrer for 1 hour, set the speed of the stirrer to 400r/min, and control the temperature between 22°C and 25°C.
  • Step 6 Due to the loss of water during the stirring process, supplement the lost deionized water component, and stir for another 0.5 hour.
  • the speed of the stirrer is set to 500r/min, and the temperature is controlled between 22°C and 25°C to obtain a composite Base carrier fluid.
  • Step 7 Mix ordinary carbonyl iron powder and cerium oxide powder uniformly to obtain a solid dispersion phase.
  • Step 8 Using the composite carrier liquid as the continuous phase, add the continuous phase and the solid dispersion phase to the round wide-mouthed bottle, the volume of the wide-mouthed bottle is twice the total volume of the continuous phase and the solid dispersion phase, and the mouth of the bottle is sealed. Put it into a rolling stirring device and stir at 120 rpm for 2.5 hours to obtain a water-based magnetorheological polishing liquid.
  • Step 1 The dispersion stabilizer mixed with sodium tripolyphosphate and sodium hexametaphosphate is added to 250ml of deionized water and stirred, the speed of the stirrer is set to 400r/min, and the temperature is controlled between 22°C and 25°C.
  • Step 2 Add sorbitol, a wetting agent, to the solution obtained in Step 1, stir with a stirrer for 0.5 hours, set the speed of the stirrer to 400r/min, and control the temperature between 22°C and 25°C.
  • Step 3 Add the chelating agent sodium ethylenediaminetetraacetate to the solution obtained in step 2, and stir for 1.5 hours with a stirrer, the speed of the stirrer is set to 400r/min, and the temperature is controlled between 22°C and 25°C.
  • Step 4 Add the antioxidant sodium nitrite to the solution obtained in step 3, stir with a stirrer for 1 hour, the speed of the stirrer is set to 400r/min, and the temperature is controlled between 22°C and 25°C.
  • Step 5 Add the pH adjuster potassium carbonate to the solution obtained in step 4, stir with a stirrer for 1 hour, the speed of the stirrer is set to 400r/min, and the temperature is controlled between 22°C and 25°C.
  • Step 6 Due to the loss of water during the stirring process, supplement the lost deionized water component, and stir for another 0.5 hour.
  • the speed of the stirrer is set to 500r/min, and the temperature is controlled between 22°C and 25°C to obtain a composite Base carrier fluid.
  • Step 7 Mix ordinary carbonyl iron powder and diamond fine powder uniformly to obtain a solid dispersion phase.
  • Step 8 Using the composite carrier liquid as the continuous phase, add the continuous phase and the solid dispersion phase to a round wide-mouthed bottle, the volume of the wide-mouthed bottle is twice the total volume of the continuous phase and the solid dispersion phase, and the mouth of the bottle is sealed. Put it into a rolling stirring device, stir and stir at 120 rpm for 4 hours to obtain a water-based magnetorheological polishing liquid.
  • Step 1 Add the dispersion stabilizer sodium hexametaphosphate to 250ml of deionized water and stir, the speed of the stirrer is set to 400r/min, and the temperature is controlled between 22°C and 25°C.
  • Step 2 Add the wetting agent glycerol to the solution obtained in step 1, and stir for 1 hour with a stirrer.
  • the speed of the stirrer is set to 400r/min, and the temperature is controlled between 22°C and 25°C.
  • Step 3 Add the chelating agent pentasodium amino trimethylene phosphonic acid to the solution obtained in step 2, stir for 1.5 hours with a stirrer, set the speed of the stirrer to 400r/min, and control the temperature between 22°C and 25°C .
  • Step 4 Add the antioxidant sodium nitrite to the solution obtained in step 3, stir with a stirrer for 1 hour, the speed of the stirrer is set to 400r/min, and the temperature is controlled between 22°C and 25°C.
  • Step 5 Add the pH regulator sodium carbonate to the solution obtained in step 4, stir with a stirrer for 1 hour, set the speed of the stirrer to 400r/min, and control the temperature between 22°C and 25°C.
  • Step 6 Due to the loss of water during the stirring process, supplement the lost deionized water component, and stir for another 0.5 hour.
  • the speed of the stirrer is set to 500r/min, and the temperature is controlled between 22°C and 25°C to obtain water.
  • Base compound carrier fluid is set to 500r/min, and the temperature is controlled between 22°C and 25°C to obtain water.
  • Step 7 Mix ordinary carbonyl iron powder and diamond fine powder uniformly to obtain a solid dispersion phase.
  • Step 8 Using the composite carrier liquid as the continuous phase, add the continuous phase and the solid dispersion phase to a round wide-mouthed bottle, the volume of the wide-mouthed bottle is twice the total volume of the continuous phase and the solid dispersion phase, and the mouth of the bottle is sealed. Put it into a rolling stirring device and stir at 120 rpm for 3 hours to obtain a water-based magnetorheological polishing liquid.
  • Example 1 Use the water-based magnetorheological polishing liquid prepared in Example 1, Example 2, and Example 3 to polish the material.
  • the relevant processing parameters of the polishing operation are shown in Table 1:
  • Figure 2 is the removal function diagram obtained by polishing BK7 glass with the water-based magnetorheological polishing liquid provided in Example 1 of the present invention.
  • Figure 3 is the implementation provided by the present invention.
  • Example 2 The removal function diagram obtained by polishing the RB-SiC material by the water-based magnetorheological polishing solution.
  • Figure 4 is the removal of the modified silicon surface of the silicon carbide substrate by the water-based magnetorheological polishing solution provided by the present invention. Function graph.
  • BK7 glass is a standard material
  • RB-SiC material refers to the SiC material prepared by the reaction sintering method (RB)
  • silicon carbide substrate modified silicon surface refers to the use of physical vapor deposition technology (PVD) in the RB-SiC material
  • PVD physical vapor deposition technology
  • Example 2 The zero magnetic field viscosity of the water-based magnetorheological polishing liquid prepared in Example 1, Example 2, and Example 3 was tested respectively, and the results were: 255mPa ⁇ S (Example 1 polishing liquid), 260mPa ⁇ S (Example 2 polishing liquid), 280mPa ⁇ S (Example 3 polishing liquid).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

一种水基磁流变抛光液及其配制方法, 所述水基磁流变抛光液包括:磁性颗粒77~88wt%;非磁性抛光粉0.01wt‰~8wt%;分散稳定剂0.2~0.5wt%;润湿剂0.5~1wt%;螯合剂0.1~0.4wt%;抗氧化剂0.01~0.02wt%;pH调节剂0.2~0.5wt%;溶剂为水;所述分散稳定剂为多聚磷酸盐和/或柠檬酸盐;所述润湿剂为多元醇;所述螯合剂为氨基羧酸类化合物和/或有机磷酸盐。

Description

一种水基磁流变抛光液及其配制方法
本申请要求于2019年12月30日提交至中国专利局、申请号为201911393574.9、发明名称为“一种水基磁流变抛光液及其配制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于光学精密加工制造技术领域,尤其涉及一种水基磁流变抛光液及其配制方法。
背景技术
磁流变抛光技术是一种新兴的光学表面精密加工技术,这种加工技术综合了电磁学、化学、接触力学、流体力学的知识,是一种介于接触与非接触之间的一种加工方法,可对多种材料光学元件进行确定性加工。尤其是对玻璃和陶瓷等材料抛光应用最广。磁流变抛光液的制备技术是磁流变抛光实现的关键技术之一,性能优良的磁流变抛光液也是实现磁流变确定性抛光的必要条件。磁流变抛光技术体现了磁流变液在光学加工领域中创造性的应用,其中,磁流变抛光液在主要成份上与传统领域应用的磁流变液大体类似,但是在成份选择和具体使用要求上还是有着很大的差别。
基于实际光学加工的需求,磁流变抛光液应具有以下性能特征:(1)良好的分散稳定性。这里要求一是磁流变抛光液在使用过程中不发生沉降,保证抛光期间液体成份的一致性,二是要求磁流变抛光液在经过静置后,通过简单的搅拌可以实现在再分散。(2)较低的零磁场粘度。这一点要求抛光液在无磁场作用情况的粘度越低越好,从而保证液体在循环系统中稳定的循环,同时实现在相同的抛光参数下获得更高的去除效率。(3)良好的流变特性。磁流变抛光材料的去除效率与抛光液在磁场下的发生流变后的剪切屈服应力成正比。因此,为了获得较高的材料去除效率,磁流变抛光液的配制要求具有较低零磁场粘度保证流动性的同时要具有较好的流变特性。(4)易清洗性。 磁流变抛光液加入到循环系统当中进行抛光使用,抛光结束需要从循环系统中排出液体,然后对循环系统中的残存于循环管路中的液体进行清洗,确保循环系统的洁净,以使下次抛光加入的新抛光液不受影响。因此,磁流变抛光液的易清洗性也是非常重要的。(5)环保、无毒和配制工艺简单。
磁流变抛光液包括水基磁流变抛光液和油基的磁流变抛光液两种,由于水基的磁流变抛光液相对于油基磁流变抛光液在抛光效率、环保和成份控制等方面的优势,水基磁流变抛光液更适合于光学加工使用。目前,国内外有一些研究单位对磁流变抛光液进行了研究,国外主要有QED公司和罗杰斯特对磁流变抛光液进行了深入的研究,其中QED公司申请的水基磁流变抛光液专利(US 5804095),其采用的化学成份简单,但是分散稳定性不够,而不能使抛光与所添加的磁性颗粒很好的结合光效率不高。另外提出了磁性颗粒和抛光粉颗粒的选择提高磁流变抛光后光学镜面的表面质量,但是没有给出液体的具体成份和配制方法。罗杰斯特大学申请的专利介绍了如何在羰基铁粉表面镀一层陶瓷膜层,提高磁流变抛光液的抗氧化、抗锈蚀的能力,并且镀膜后的羰基铁粉可以与性的基载液混合配制成磁流变抛光液同样的问题是没有介绍磁流变抛光液的具体配制方法,操作过程繁琐。
国内关于磁流变抛光液的研究目前还处于起步阶段,其中公开号为CN101139504A的专利通过使用表面活性剂对羰基铁粉进行表面处理,并采用球磨的方式进行混合搅拌,得到磁流变液,然后添加抛光粉搅拌,配制出磁流变抛光液。这种方式获得磁流变抛光液工艺复杂,采用球磨方式破坏了羰基铁粉表面形貌和粒径分布,影响配制出磁流变抛光液性能。而且,采用直接将抛光粉加入到磁流变液中配制出磁流变抛光液,没有考虑到抛光粉与羰基铁粉的相互作用,配制的磁流变抛光液零磁场粘度较高。另一个专利公开号为CN 101250380A的专利中,同样采用了球磨的方式对磁性颗粒和抛光粉组成的分散相与水基复配基载液(连续相)进行混合,同样存在专利公开号为CN 101250380A中的问题。另外,在配方中采用的触变剂,零磁场粘度较大,而且长时间抛光使用的粘度稳定性不足。
发明内容
有鉴于此,本发明的目的在于提供一种水基磁流变抛光液及其配制方法,本发明提供的水基磁流变抛光液具有良好的分散稳定性和粘度稳定性,零磁场粘度低,材料去除效率高。
本发明提供了一种水基磁流变抛光液,包括:
Figure PCTCN2020123915-appb-000001
所述分散稳定剂为多聚磷酸盐和/或柠檬酸盐;
所述润湿剂为多元醇;
所述螯合剂为氨基羧酸类化合物和/或有机磷酸盐。
优选的,所述磁性颗粒包括未改性羰基铁粉、磷化羰基铁粉、还原羰基铁粉和包覆羰基铁粉中的一种或多种;
所述磁性颗粒的中值粒径D 50为1~10μm。
优选的,所述非磁性抛光粉包括金刚石粉、氧化铝粉和氧化铈粉中的一种或多种;
所述非磁性抛光粉的中值粒径D 50为20nm~3μm。
优选的,所述多聚磷酸盐包括三聚磷酸钠、四聚磷酸钠、聚磷酸铵、焦磷酸钠和六偏磷酸钠中的一种或多种;
所述柠檬酸盐包括柠檬酸钾、柠檬酸铵和柠檬酸钠中的一种或多种。
优选的,所述多元醇包括丙二醇、丙三醇、丁二醇、山梨醇、聚甘油和聚丙二醇中的一种或多种。
优选的,所述氨基羧酸类化合物包括乙二胺四乙酸盐和/或氮川三乙酸;
所述有机磷酸盐包括氨基三亚甲基膦酸五钠和/或氨基三甲叉膦酸四钠。
优选的,所述抗氧化剂包括亚硝酸钠和/或苯甲酸钠。
优选的,所述pH调节剂包括氢氧化钠、碳酸钠、氢氧化钾、碳酸钾、磷酸和盐酸中的一种或多种。
本发明提供了一种上述技术方案所述水基磁流变抛光液的配制方法,包括以下步骤:
将磁性颗粒、非磁性抛光粉、分散稳定剂、润湿剂、螯合剂、抗氧化剂和pH调节剂在水中混合,得到水基磁流变抛光液。
优选的,所述混合的过程具体包括:
a)将分散稳定剂、润湿剂、螯合剂、抗氧化剂、pH调节剂和水混合,得到复合基载液;将磁性颗粒和非磁性抛光粉混合,得到固体分散相;
b)将所述复合基载液和固体分散相进行滚动搅拌,得到水基磁流变抛光液。
与现有技术相比,本发明提供了一种水基磁流变抛光液及其配制方法。本发明提供的水基磁流变抛光液包括:磁性颗粒77~88wt%;非磁性抛光粉0.01wt‰~8wt%;分散稳定剂0.2~0.5wt%;润湿剂0.5~1wt%;螯合剂0.1~0.4wt%;抗氧化剂0.01~0.02wt%;pH调节剂0.2~0.5wt%;溶剂为水;所述分散稳定剂为多聚磷酸盐和/或柠檬酸盐;所述润湿剂为多元醇;所述螯合剂为氨基羧酸类化合物和/或有机磷酸盐。本发明通过对水基磁流变抛光液的成分配方进行优化设计,特别是不添加高分子的增稠剂或是触变剂,使水基磁流变抛光液的零磁场粘度显著降低,同时粘度稳定性更高,更适用于磁流变抛光使用和控制;通过考虑的非磁性抛光粉与磁性颗粒的作用,减少了抛光液中非磁性抛光粉的使用量,提高了非磁性抛光粉的利用效率,使抛光效率明显得到提高;通过添加特定的分散稳定剂,可以保证磁流变抛光液的分散稳定性及长期有效性;通过添加特定的润湿剂,可以降低磁流变抛光过程水分的损失,以及促进分散稳定剂在磁性颗粒表面的展开使分散剂更好的发挥作用;通过添加特定的螯合剂,可连接非磁性抛光粉与磁性颗粒使抛光粉缔合于磁性颗粒表面,提高抛光粉的利用率,不仅进一步提高的抛光效率,而且还节省了生产成本。而且,由于本发明提供的磁流变抛光液以水作为基载液,因此其还具有环保、易清洗的优点。另外,本发明的水基磁流变抛光液还具有极好的普适性,可根据抛光材料和抛光阶段的不同,对抛光粉的类型和粒径进行调整,从而满足不同的抛光需求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1是本发明实施例提供的配制水基磁流变抛光液的工艺流程图;
图2是本发明提供的实施例1水基磁流变抛光液对BK7玻璃进行抛光得到的去除函数图;
图3是本发明提供的实施例2水基磁流变抛光液对RB-SiC材料抛光得到的去除函数图;
图4是本发明提供的实施例3水基磁流变抛光液对碳化硅基底改性硅表面抛光得到的去除函数图。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种水基磁流变抛光液,包括:
Figure PCTCN2020123915-appb-000002
所述分散稳定剂为多聚磷酸盐和/或柠檬酸盐;
所述润湿剂为多元醇;
所述螯合剂为氨基羧酸类化合物和/或有机磷酸盐。
本发明提供的水基磁流变抛光液包括磁性颗粒、非磁性抛光粉、分散稳定剂、润湿剂、螯合剂、抗氧化剂、pH调节剂和水。其中,所述磁性颗粒作为磁流变抛光液分散相的主要成份,优选包括未改性羰基铁粉(即普通羰基铁粉)、磷化羰基铁粉、还原羰基铁粉和包覆羰基铁粉中的一种或多种;所述磁性颗粒的中值粒径D 50优选为1~10μm,具体可为1μm、1.5μm、2μm、2.5μm、3μm、3.5μm、4μm、4.5μm、5μm、5.5μm、6μm、6.5μm、7μm、7.5μm、8μm、8.5μm、9μm、9.5μm或10μm。在本发明中,所述磁性颗粒在水基磁流变抛光液中的含量为77~88wt%,具体可为77wt%、77.5wt%、78wt%、78.5wt%、79wt%、79.5wt%、80wt%、80.5wt%、81wt%、81.5wt%、82wt%、82.5wt%、83wt%、83.5wt%、84wt%、84.5wt%、85wt%、85.5wt%、86wt%、86.5wt%、87wt%、87.5wt%或88wt%。
在本发明中,所述非磁性抛光粉是磁流变抛光液能够满足抛光条件,实现材料去除的关键成份,优选包括金刚石粉、氧化铝粉和氧化铈粉中的一种或多种;所述非磁性抛光粉的中值粒径D 50优选为20nm~3μm,具体可为20nm、50nm、100nm、200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1μm、1.2μm、1.5μm、1.7μm、2μm、2.3μm、2.5μm、2.7μm或3μm。在本发明中,所述非磁性抛光粉在水基磁流变抛光液中的含量为0.01wt‰~8wt%,具体可为0.01wt‰、0.05wt‰、0.1wt‰、1wt‰、5wt‰、1wt%、1.5wt%、2wt%、2.5wt%、3wt%、3.5wt%、4wt%、4.5wt%、5wt%、5.5wt%、6wt%、6.5wt%、7wt%、7.5wt%或8wt%。
在本发明中,所述分散稳定剂为多聚磷酸盐和/或柠檬酸盐。其中,所述多聚磷酸盐优选包括三聚磷酸钠、四聚磷酸钠、聚磷酸铵、焦磷酸钠和六偏磷酸钠中的一种或多种;所述柠檬酸盐优选包括柠檬酸钾、柠檬酸铵和柠檬酸钠中的一种或多种。在本发明提供的一个实施例中,所述分散稳定剂包括三聚磷酸钠和六偏磷酸钠,所述三聚磷酸钠和六偏磷酸钠的质量比优选为(2~3):10,具体可为2:10、2.1:10、2.2:10、2.3:10、2.4:10、2.5:10、2.6:10、2.7:10、2.8:10、2.9:10或3:10。在本发明中,上述优选的分散稳定剂对羰基铁粉具有较好的分散和稳定作用,同时具有一定防锈和抗氧化作用。在本发明中,所述分散稳定剂在水基磁流变抛光液中的含量为0.2~0.5wt%,具体可为0.2 wt%、0.21wt%、0.22wt%、0.23wt%、0.24wt%、0.25wt%、0.26wt%、0.27wt%、0.28wt%、0.29wt%、0.3wt%、0.31wt%、0.32wt%、0.33wt%、0.34wt%、0.35wt%、0.36wt%、0.37wt%、0.38wt%、0.39wt%、0.4wt%、0.41wt%、0.42wt%、0.43wt%、0.44wt%、0.45wt%、0.46wt%、0.47wt%、0.48wt%、0.49wt%或0.5wt%。
在本发明中,所述润湿剂为多元醇,所述多元醇优选包括丙二醇、丙三醇、丁二醇、山梨醇、聚甘油和聚丙二醇中的一种或多种。在本发明中,上述优选的润湿剂可以降低磁流变抛光过程水分的损失,以及促进分散稳定剂在磁性颗粒表面的展开,从而使分散稳定剂更好的发挥作用。在本发明中,在本发明中,所述润湿剂在水基磁流变抛光液中的含量为0.5~1wt%,具体可为0.5wt%、0.55wt%、0.6wt%、0.65wt%、0.7wt%、0.75wt%、0.8wt%、0.85wt%、0.9wt%、0.95wt%或1wt%。
在本发明中,所述螯合剂为氨基羧酸类化合物和/或有机磷酸盐。其中,所述氨基羧酸类化合物优选包括乙二胺四乙酸盐和/或氮川三乙酸;所述乙二胺四乙酸盐优选为乙二胺四乙酸钠;所述有机磷酸盐优选包括氨基三亚甲基膦酸五钠和/或氨基三甲叉膦酸四钠。在本发明中,上述优选的螯合剂可连接非磁性抛光粉与磁性颗粒使抛光粉缔合于磁性颗粒表面,提高抛光粉的利用率,不仅进一步提高的抛光效率,而且还节省了生产成本。在本发明中,在本发明中,所述螯合剂在水基磁流变抛光液中的含量为0.1~0.4wt%,具体可为0.1wt%、0.12wt%、0.15wt%、0.17wt%、0.2wt%、0.23wt%、0.25wt%、0.27wt%、0.3wt%、0.32wt%、0.35wt%、0.37wt%或0.4wt%。
在本发明中,所述抗氧化剂优选包括亚硝酸钠和/或苯甲酸钠;所述抗氧化剂在水基磁流变抛光液中的含量为0.01~0.02wt%,具体可为0.01wt%、0.011wt%、0.012wt%、0.013wt%、0.014wt%、0.015wt%、0.016wt%、0.017wt%、0.018wt%、0.019wt%或0.02wt%。
在本发明中,所述pH调节剂优选包括氢氧化钠、碳酸钠、氢氧化钾、碳酸钾、磷酸和盐酸中的一种或多种;所述pH调节剂在水基磁流变抛光液中的含量为0.2~0.5wt%,具体可为0.2wt%、0.21wt%、0.22wt%、0.23wt%、0.24wt%、0.25wt%、0.26wt%、0.27wt%、0.28wt%、0.29wt%、0.3wt%、0.31wt%、0.32wt%、0.33wt%、0.34wt%、0.35wt%、0.36wt%、0.37wt%、0.38wt%、 0.39wt%、0.4wt%、0.41wt%、0.42wt%、0.43wt%、0.44wt%、0.45wt%、0.46wt%、0.47wt%、0.48wt%、0.49wt%或0.5wt%。
在本发明中,所述水基磁流变抛光液的溶剂为水,所述水在磁流变抛光液中的含量优选为余量。
本发明还提供了一种上述技术方案所述水基磁流变抛光液的配制方法,包括以下步骤:
将磁性颗粒、非磁性抛光粉、分散稳定剂、润湿剂、螯合剂、抗氧化剂和pH调节剂在水中混合,得到水基磁流变抛光液。
在本发明提供的配制方法中,直接将磁性颗粒、非磁性抛光粉、分散稳定剂、润湿剂、螯合剂、抗氧化剂和pH调节剂在水中混合均匀,即可得到本发明提供的水基磁流变抛光液。其中,所述混合的具体过程优选包括:
a)将分散稳定剂、润湿剂、螯合剂、抗氧化剂、pH调节剂和水混合,得到复合基载液;将磁性颗粒和非磁性抛光粉混合,得到固体分散相;
b)将所述复合基载液和固体分散相进行滚动搅拌,得到水基磁流变抛光液。
在本发明提供的上述混合过程中,首先分别配制复合基载液和固体分散相。其中,所述复合基载液优选按照以下步骤进行配制:
a1)将分散稳定剂与水混合,得到第一混合液;
a2)将所述第一混合液与润湿剂混合,得到第二混合液;
a3)将所述第二混合液与螯合剂混合,得到第三混合液;
a4)将所述第三混合液与抗氧化剂混合,得到第四混合液;
a5)将所述第四混合液与pH调节剂混合,得到复合基载液。
在本发明提供的上述复合基载液的制备步骤中,步骤a1)中,所述混合的搅拌速度优选为300~600r/min,具体可为300r/min、350r/min、400r/min、450r/min、500r/min、550r/min或600r/min;所述混合的温度优选为22~25℃,具体可为22℃、23℃、24℃或25℃;所述混合的时间优选为1~2h,具体可为1h、1.1h、1.2h、1.3h、1.4h、1.5h、1.6h、1.7h、1.8h、1.9h或2h。
在本发明提供的上述复合基载液的制备步骤中,步骤a2)中,所述混合的搅拌速度优选为300~600r/min,具体可为300r/min、350r/min、400r/min、450r/min、500r/min、550r/min或600r/min;所述混合的温度优选为22~25℃, 具体可为22℃、23℃、24℃或25℃;所述混合的时间优选为0.5~1h,具体可为0.5h、0.6h、0.7h、0.8h、0.9h或1h。
在本发明提供的上述复合基载液的制备步骤中,步骤a3)中,所述混合的搅拌速度优选为300~600r/min,具体可为300r/min、350r/min、400r/min、450r/min、500r/min、550r/min或600r/min;所述混合的温度优选为22~25℃,具体可为22℃、23℃、24℃或25℃;所述混合的时间优选为1~2h,具体可为1h、1.1h、1.2h、1.3h、1.4h、1.5h、1.6h、1.7h、1.8h、1.9h或2h。
在本发明提供的上述复合基载液的制备步骤中,步骤a4)中,所述混合的搅拌速度优选为300~600r/min,具体可为300r/min、350r/min、400r/min、450r/min、500r/min、550r/min或600r/min;所述混合的温度优选为22~25℃,具体可为22℃、23℃、24℃或25℃;所述混合的时间优选为1~2h,具体可为1h、1.1h、1.2h、1.3h、1.4h、1.5h、1.6h、1.7h、1.8h、1.9h或2h。
在本发明提供的上述复合基载液的制备步骤中,步骤a5)中,所述混合的搅拌速度优选为300~600r/min,具体可为300r/min、350r/min、400r/min、450r/min、500r/min、550r/min或600r/min;所述混合的温度优选为22~25℃,具体可为22℃、23℃、24℃或25℃;所述混合的时间优选为1~2h,具体可为1h、1.1h、1.2h、1.3h、1.4h、1.5h、1.6h、1.7h、1.8h、1.9h或2h。
在本发明提供的上述混合过程中,所述固体分散相由磁性颗粒和非磁性抛光粉混合而成,本发明对所述混合的具体条件没有特别限定,可将两种组分混合均匀即可。
在本发明提供的上述混合过程中,获得复合基载液和固体分散相后,将所述复合基载液和固体分散相进行滚动搅拌。其中,所述滚动搅拌的具体操作过程为:将复合基载液和固体分散相装入容器中,然后对容器密封,之后将密封的容器放入滚动搅拌装置中,最后启动所述装置进行滚动搅拌。在本发明中,所述容器的容积优选为所述复合基载液和固体分散混合物体积的2~3倍;所述滚动搅拌的转速优选为100~150转/分,具体可为100转/分、105转/分、110转/分、115转/分、120转/分、125转/分、130转/分、135转/分、140转/分、145转/分或150转/分;所述滚动搅拌的时间优选为2~4h,具体可为2h、2.5h、3h、3.5h或4h。
在本发明提供的上述混合过程中,滚动搅拌结束后,得到本发明提供的 水基磁流变抛光液。
本发明通过对水基磁流变抛光液的成分配方进行优化设计,获得了具有良好分散稳定性和粘度稳定性、零磁场粘度低、材料去除效率高的水基磁流变抛光液。更具体来说,本发明提供的磁流变抛光液及其配制方法至少包括如下优点:
1)本发明不添加高分子的增稠剂或是触变剂,使水基磁流变抛光液的零磁场粘度显著降低,同时粘度稳定性更高,更适用于磁流变抛光使用和控制;
2)本发明考虑的非磁性抛光粉与磁性颗粒的作用,减少了抛光液中非磁性抛光粉的使用量,提高了非磁性抛光粉的利用效率,使抛光效率明显得到提高;
3)添加特定的分散稳定剂,可以保证磁流变抛光液的分散稳定性及长期有效性;通过添加特定的润湿剂,可以降低磁流变抛光过程水分的损失,以及促进分散稳定剂在磁性颗粒表面的展开使分散剂更好的发挥作用;
4)添加特定的螯合剂,可连接非磁性抛光粉与磁性颗粒使抛光粉缔合于磁性颗粒表面,提高抛光粉的利用率,不仅进一步提高的抛光效率,而且还节省了生产成本;
5)具有极好的普适性,可根据抛光材料和抛光阶段的不同,对抛光粉的类型和粒径进行调整,从而满足不同的抛光需求
6)在本发明提供的优选技术方案中,水基磁流变抛光液中所添加化学试剂具有极好的水溶性,抛光使用后,对抛光循环系统的清洗只需使用自来水,清洗过程方便、所需时间短、洁净;
7)在本发明提供的优选技术方案中,在固体分散相与复合基载液混合过程中采用了滚动搅拌的方式,这种混合方式对磁流变抛光液的添加成分和化学作用不造成影响,且操作简单、方便。
为更清楚起见,下面通过以下实施例进行详细说明。
实施例1
1)成分设计
本实施例提供的水基磁流变抛光液的具体组分及含量如表1所示:
表1实施例1磁流变抛光液的成分信息表
成分名 成分信息 含量(wt%) 备注
普通羰基铁粉 D 50=3μm 80 磁性颗粒
氧化铈粉 D 50=3μm 4 非磁性抛光粉
柠檬酸钠 分析纯 0.3 分散稳定剂
丙二醇 分析纯 0.8 润湿剂
乙二胺四乙酸钠 分析纯 0.2 螯合剂
亚硝酸钠 分析纯 0.01 抗氧化剂
碳酸钠 分析纯 0.4 pH调节剂
去离子水 余量 溶剂
2)对照表1的成分信息,按照图1所示的流程配制水基磁流变抛光液,具体步骤如下:
步骤1、将分散稳定剂柠檬酸钠加入到250ml去离子水中搅拌1小时,搅拌器的转速设置为400r/min,温度控制在22℃~25℃之间。
步骤2、将润湿剂丙二醇加入到步骤1所得的溶液当中,利用搅拌器搅拌0.5小时,搅拌器的转速设置为400r/min,温度控制在22℃~25℃之间。
步骤3、将螯合剂乙二胺四乙酸钠加入到步骤2所得的溶液当中,利用搅拌器搅拌1.5小时,搅拌器的转速设置为400r/min,温度控制在22℃~25℃之间。
步骤4、将抗氧化剂亚硝酸钠加入到步骤3所得的溶液当中,利用搅拌器搅拌1小时,搅拌器的转速设置为400r/min,温度控制在22℃~25℃之间。
步骤5、将pH调节剂碳酸钠加入到步骤4所得的溶液当中,利用搅拌器搅拌1小时,搅拌器的转速设置为400r/min,温度控制在22℃~25℃之间。
步骤6、由于搅拌过程中会有水分的损失,补充损失的去离子水成分,再进行搅拌0.5小时,搅拌器的转速设置为500r/min,温度控制在22℃~25℃之间,得到复合基载液。
步骤7、将普通羰基铁粉和氧化铈粉混合均匀,得到固体分散相。
步骤8、以复合基载液作为连续相,将连续相和固体分散相加入圆形广口瓶中,广口瓶容积为连续相和固体分散相总体积的2倍,并将瓶口密封,放入滚动搅拌装置中,在120转/分搅拌2.5小时,得到水基磁流变抛光液。
实施例2
1)成分设计
本实施例提供的水基磁流变抛光液的具体组分及含量如表1所示:
表2实施例2磁流变抛光液的成分信息表
成分名 成分信息 含量(wt%) 备注
普通羰基铁粉 D 50=4μm 84 磁性颗粒
金刚石微粉 D 50=0.1μm 0.1 非磁性抛光粉
三聚磷酸钠 分析纯 0.1 分散稳定剂
六偏磷酸钠 分析纯 0.3 分散稳定剂
山梨醇 分析纯 1 润湿剂
乙二胺四乙酸钠 分析纯 0.3 螯合剂
亚硝酸钠 分析纯 0.01 抗氧化剂
碳酸钾 分析纯 0.3 pH调节剂
去离子水 余量 溶剂
2)对照表2的成分信息,按照图1所示的流程配制水基磁流变抛光液,具体步骤如下:
步骤1、将三聚磷酸钠和六偏磷酸钠混合的分散稳定剂加入到250ml去离子水中搅拌,搅拌器的转速设置为400r/min,温度控制在22℃~25℃之间。
步骤2、将润湿剂山梨醇加入到步骤1所得的溶液当中,利用搅拌器搅拌0.5小时,搅拌器的转速设置为400r/min,温度控制在22℃~25℃之间。
步骤3、将螯合剂乙二胺四乙酸钠加入到步骤2所得的溶液当中,利用搅拌器搅拌1.5小时,搅拌器的转速设置为400r/min,温度控制在22℃~25℃之间。
步骤4、将抗氧化剂亚硝酸钠加入到步骤3所得的溶液当中,利用搅拌器搅拌1小时,搅拌器的转速设置为400r/min,温度控制在22℃~25℃之间。
步骤5、将pH调节剂碳酸钾加入到步骤4所得的溶液当中,利用搅拌器搅拌1小时,搅拌器的转速设置为400r/min,温度控制在22℃~25℃之间。
步骤6、由于搅拌过程中会有水分的损失,补充损失的去离子水成分,再进行搅拌0.5小时,搅拌器的转速设置为500r/min,温度控制在22℃~25℃之间,得到复合基载液。
步骤7、将普通羰基铁粉和金刚石微粉混合均匀,得到固体分散相。
步骤8、以复合基载液作为连续相,将连续相和固体分散相加入圆形广口瓶中,广口瓶容积为连续相和固体分散相总体积的2倍,并将瓶口密封,放入滚动搅拌装置中,在120转/分搅拌搅拌4小时,得到水基磁流变抛光液。
实施例3
1)成分设计
本实施例提供的水基磁流变抛光液的具体组分及含量如表1所示:
表3实施例3磁流变抛光液的成分信息表
成分名 成分信息 含量(wt%) 备注
普通羰基铁粉 D 50=4μm 85 磁性颗粒
金刚石微粉 D 50=0.05μm 0.1 非磁性抛光粉
六偏磷酸钠 分析纯 0.5 分散稳定剂
丙三醇 分析纯 0.9 润湿剂
氨基三亚甲基膦酸五钠 分析纯 0.3 螯合剂
亚硝酸钠 分析纯 0.02 抗氧化剂
碳酸钠 分析纯 0.5 pH调节剂
去离子水 余量 溶剂
2)对照表3的成分信息,按照图1所示的流程配制水基磁流变抛光液,具体步骤如下:
步骤1、将分散稳定剂六偏磷酸钠加入到250ml去离子水中搅拌,搅拌器的转速设置为400r/min,温度控制在22℃~25℃之间。
步骤2、将润湿剂丙三醇加入到步骤1所得的溶液当中,利用搅拌器搅拌1小时,搅拌器的转速设置为400r/min,温度控制在22℃~25℃之间。
步骤3、将螯合剂氨基三亚甲基膦酸五钠加入到步骤2所得的溶液当中,利用搅拌器搅拌1.5小时,搅拌器的转速设置为400r/min,温度控制在22℃~25℃之间。
步骤4、将抗氧化剂亚硝酸钠加入到步骤3所得的溶液当中,利用搅拌器搅拌1小时,搅拌器的转速设置为400r/min,温度控制在22℃~25℃之间。
步骤5、将pH调节剂碳酸钠加入到步骤4所得的溶液当中,利用搅拌器搅拌1小时,搅拌器的转速设置为400r/min,温度控制在22℃~25℃之间。
步骤6、由于搅拌过程中会有水分的损失,补充损失的去离子水成分,再进行搅拌0.5小时,搅拌器的转速设置为500r/min,温度控制在22℃~25℃之间,得到水基复配载液。
步骤7、将普通羰基铁粉和金刚石微粉混合均匀,得到固体分散相。
步骤8、以复合基载液作为连续相,将连续相和固体分散相加入圆形广口瓶中,广口瓶容积为连续相和固体分散相总体积的2倍,并将瓶口密封,放入 滚动搅拌装置中,在120转/分搅拌3小时,得到水基磁流变抛光液。
性能评价
1)分别使用实施例1、实施例2、实施例3配制的水基磁流变抛光液对材料进行抛光作业,抛光作业的相关加工参数如表1所示:
表1抛光作业加工参数
控制参量 抛光轮尺寸 压入深度 抛光轮转速
参数 160mm 1mm 120r/min
抛光作业得到的去除函数如图2~4所示,图2是本发明提供的实施例1水基磁流变抛光液对BK7玻璃进行抛光得到的去除函数图,图3是本发明提供的实施例2水基磁流变抛光液对RB-SiC材料抛光得到的去除函数图,图4是本发明提供的实施例3水基磁流变抛光液对碳化硅基底改性硅表面抛光得到的去除函数图。其中,BK7玻璃是一种标准材料;RB-SiC材料是指采用反应烧结法(RB)制备的SiC材料;碳化硅基底改性硅表面是指采用物理气相沉积技术(PVD)在RB-SiC材料表面沉积形成的具有一定厚度(10μm左右)的Si改性层。
通过图2可以计算得出,去除函数的峰值去除效率可达到4.6μm/min;通过图3可以计算得出去除函数的峰值,去除效率可达1.2μm/min;通过图4可以计算得到去除函数的峰值去除效率可达到1.5μm/min。
连续抛光作业6小时后,分别计算上述三种水基磁流变抛光液对相应材料进行抛光作业的去除效率变化率,结果分别为:≤3%(实施例1抛光液)、≤4%(实施例2抛光液)、≤3%(实施例3抛光液)。
2)分别检测实施例1、实施例2、实施例3配制的水基磁流变抛光液的零磁场粘度,结果分别为:255mPa·S(实施例1抛光液)、260mPa·S(实施例2抛光液)、280mPa·S(实施例3抛光液)。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种水基磁流变抛光液,包括:
    Figure PCTCN2020123915-appb-100001
    所述分散稳定剂为多聚磷酸盐和/或柠檬酸盐;
    所述润湿剂为多元醇;
    所述螯合剂为氨基羧酸类化合物和/或有机磷酸盐。
  2. 根据权利要求1所述的水基磁流变抛光液,其特征在于,所述磁性颗粒包括未改性羰基铁粉、磷化羰基铁粉、还原羰基铁粉和包覆羰基铁粉中的一种或多种;
    所述磁性颗粒的中值粒径D 50为1~10μm。
  3. 根据权利要求1所述的水基磁流变抛光液,其特征在于,所述非磁性抛光粉包括金刚石粉、氧化铝粉和氧化铈粉中的一种或多种;
    所述非磁性抛光粉的中值粒径D 50为20nm~3μm。
  4. 根据权利要求1所述的水基磁流变抛光液,其特征在于,所述多聚磷酸盐包括三聚磷酸钠、四聚磷酸钠、聚磷酸铵、焦磷酸钠和六偏磷酸钠中的一种或多种;
    所述柠檬酸盐包括柠檬酸钾、柠檬酸铵和柠檬酸钠中的一种或多种。
  5. 根据权利要求1所述的水基磁流变抛光液,其特征在于,所述多元醇包括丙二醇、丙三醇、丁二醇、山梨醇、聚甘油和聚丙二醇中的一种或多种。
  6. 根据权利要求1所述的水基磁流变抛光液,其特征在于,所述氨基羧酸类化合物包括乙二胺四乙酸盐和/或氮川三乙酸;
    所述有机磷酸盐包括氨基三亚甲基膦酸五钠和/或氨基三甲叉膦酸四钠。
  7. 根据权利要求1所述的水基磁流变抛光液,其特征在于,所述抗氧化剂包括亚硝酸钠和/或苯甲酸钠。
  8. 根据权利要求1所述的水基磁流变抛光液,其特征在于,所述pH调节剂包括氢氧化钠、碳酸钠、氢氧化钾、碳酸钾、磷酸和盐酸中的一种或多种。
  9. 一种权利要求1~8任一项所述水基磁流变抛光液的配制方法,包括以下步骤:
    将磁性颗粒、非磁性抛光粉、分散稳定剂、润湿剂、螯合剂、抗氧化剂和pH调节剂在水中混合,得到水基磁流变抛光液。
  10. 根据权利要求9所述的配制方法,其特征在于,所述混合的过程具体包括:
    a)将分散稳定剂、润湿剂、螯合剂、抗氧化剂、pH调节剂和水混合,得到复合基载液;将磁性颗粒和非磁性抛光粉混合,得到固体分散相;
    b)将所述复合基载液和固体分散相进行滚动搅拌,得到水基磁流变抛光液。
PCT/CN2020/123915 2019-12-30 2020-10-27 一种水基磁流变抛光液及其配制方法 WO2021135568A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911393574.9A CN111100559B (zh) 2019-12-30 2019-12-30 一种水基磁流变抛光液及其配制方法
CN201911393574.9 2019-12-30

Publications (1)

Publication Number Publication Date
WO2021135568A1 true WO2021135568A1 (zh) 2021-07-08

Family

ID=70424345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123915 WO2021135568A1 (zh) 2019-12-30 2020-10-27 一种水基磁流变抛光液及其配制方法

Country Status (2)

Country Link
CN (1) CN111100559B (zh)
WO (1) WO2021135568A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111100559B (zh) * 2019-12-30 2021-08-03 中国科学院长春光学精密机械与物理研究所 一种水基磁流变抛光液及其配制方法
CN113930164B (zh) * 2021-10-11 2022-08-23 温州大学 一种钛合金抛光用的抛光液及其制备方法和应用
CN114752306A (zh) * 2022-04-19 2022-07-15 长沙埃福思科技有限公司 一种用于集成显示屏的铁磁性抛光液及其制备方法
CN114958208A (zh) * 2022-07-07 2022-08-30 中国科学院长春光学精密机械与物理研究所 一种超光滑磁流变抛光液及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101139504A (zh) * 2007-10-30 2008-03-12 西安工业大学 磁流变抛光液及其制备方法
CN101250380A (zh) * 2008-03-25 2008-08-27 中国人民解放军国防科学技术大学 用于光学加工的水基磁流变抛光液及其制备方法
CN107936849A (zh) * 2017-11-10 2018-04-20 苏州晶瑞化学股份有限公司 一种抛光液及其制备方法和应用
CN108624235A (zh) * 2017-03-23 2018-10-09 湖南大学 一种抗氧化的水基磁流变抛光液及其制备方法
CN109536039A (zh) * 2018-12-06 2019-03-29 中国科学院长春光学精密机械与物理研究所 一种水基磁辅助抛光液、制备方法及磁流变抛光液
CN111100559A (zh) * 2019-12-30 2020-05-05 中国科学院长春光学精密机械与物理研究所 一种水基磁流变抛光液及其配制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795212A (en) * 1995-10-16 1998-08-18 Byelocorp Scientific, Inc. Deterministic magnetorheological finishing
CN100447913C (zh) * 2006-10-10 2008-12-31 武汉理工大学 一种稳定的水基磁流变液及其制备方法
CN101260279A (zh) * 2008-04-24 2008-09-10 中国人民解放军国防科学技术大学 低粘度稳定的非水基磁流变抛光液及其配制方法
CN104231941B (zh) * 2014-09-02 2016-07-13 天津大学 一种光学玻璃抛光专用磁流变液及其制备方法
CN107573854B (zh) * 2017-08-04 2020-02-14 北京交通大学 一种磁流变抛光胶及其制备方法
CN107936847A (zh) * 2017-11-24 2018-04-20 中国科学院上海光学精密机械研究所 一种光学零件加工用高稳定性磁流变抛光液及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101139504A (zh) * 2007-10-30 2008-03-12 西安工业大学 磁流变抛光液及其制备方法
CN101250380A (zh) * 2008-03-25 2008-08-27 中国人民解放军国防科学技术大学 用于光学加工的水基磁流变抛光液及其制备方法
CN108624235A (zh) * 2017-03-23 2018-10-09 湖南大学 一种抗氧化的水基磁流变抛光液及其制备方法
CN107936849A (zh) * 2017-11-10 2018-04-20 苏州晶瑞化学股份有限公司 一种抛光液及其制备方法和应用
CN109536039A (zh) * 2018-12-06 2019-03-29 中国科学院长春光学精密机械与物理研究所 一种水基磁辅助抛光液、制备方法及磁流变抛光液
CN111100559A (zh) * 2019-12-30 2020-05-05 中国科学院长春光学精密机械与物理研究所 一种水基磁流变抛光液及其配制方法

Also Published As

Publication number Publication date
CN111100559A (zh) 2020-05-05
CN111100559B (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
WO2021135568A1 (zh) 一种水基磁流变抛光液及其配制方法
CN106281045A (zh) 一种用于不锈钢精密抛光的纳米材料配方及其制备工艺
CN103205201B (zh) 不粘陶瓷涂料及其涂覆方法
EP2415853B1 (en) Working fluid for brittle and hard materials
CN103952648B (zh) 用于污水处理的材料、制备方法及其应用
TW200304489A (en) Cerium-based abrasive and method for manufacturing the same
CN104592897B (zh) 一种含有石墨烯的化学机械抛光液
CN108473851A (zh) 研磨用组合物
CN113122747B (zh) 一种具有优异力学性能的Cu-(WC-Y2O3)复合材料制备方法
JP2006028372A (ja) クロムを含まない防錆用水系コーティング組成物
CN106752672A (zh) 一种基于石墨烯增强的水性环氧锌粉底漆及其生产方法
TW201623559A (zh) 化學機械拋光液
JP3782771B2 (ja) 研磨用砥粒及び研磨剤の製造方法
TW201739893A (zh) 研磨用組成物
CN102702928B (zh) 无锡环保型电泳漆及其制备方法
CN111534235A (zh) 用于不锈钢精密抛光的抛光液
CN101423748B (zh) 液体研磨剂及其制备方法
CN109096924A (zh) 一种玻璃自由曲面表面抛光液及其制备方法和应用
TWI440672B (zh) ITO ink
CN106967338A (zh) 一种水性钛白浆及其制备方法
CN109439284A (zh) 一种研磨液配方及生产工艺
JP5483815B2 (ja) ラップ剤組成物
CN115322685B (zh) 一种用于化学机械抛光的碱性氧化铝分散液及其制备方法
CN106634392B (zh) 一种高温润滑石墨剂及其配制方法
CN106967386A (zh) 一种水性碳化硅晶片研磨液及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908582

Country of ref document: EP

Kind code of ref document: A1