WO2021134579A1 - 一种检测处理方法、系统及存储介质 - Google Patents

一种检测处理方法、系统及存储介质 Download PDF

Info

Publication number
WO2021134579A1
WO2021134579A1 PCT/CN2019/130738 CN2019130738W WO2021134579A1 WO 2021134579 A1 WO2021134579 A1 WO 2021134579A1 CN 2019130738 W CN2019130738 W CN 2019130738W WO 2021134579 A1 WO2021134579 A1 WO 2021134579A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
led chip
growth substrate
detection processing
processing method
Prior art date
Application number
PCT/CN2019/130738
Other languages
English (en)
French (fr)
Inventor
陈靖中
Original Assignee
重庆康佳光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆康佳光电技术研究院有限公司 filed Critical 重庆康佳光电技术研究院有限公司
Priority to PCT/CN2019/130738 priority Critical patent/WO2021134579A1/zh
Priority to CN201980003481.2A priority patent/CN111164741A/zh
Publication of WO2021134579A1 publication Critical patent/WO2021134579A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67271Sorting devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays

Definitions

  • the present invention relates to the technical field of display chips, in particular to a detection processing method, system and storage medium.
  • Micro-LED technology namely LED miniaturization and matrix technology.
  • a high-density and small-size LED array integrated on a chip.
  • each pixel of an LED display can be addressed and individually driven to light up. It can be regarded as a miniature version of an outdoor LED display.
  • the distance between pixels is reduced from millimeters.
  • the level is reduced to the micron level.
  • the display panel made of Micro-LED chips has good stability, longevity, and operating temperature advantages. At the same time, it also inherits the advantages of LED low power consumption, color saturation, fast response speed, and strong contrast. Great application prospects.
  • Each pixel area of the circuit board includes three colors of red, green and blue, corresponding to the three colors of Micro-LED chips . If any one of the red, green, and blue Micro-LED chips does not meet the quality standard of a normal Micro-LED chip, that is, a Micro-LED chip that does not meet the configuration requirements, it cannot be displayed normally on the display panel, and the corresponding display panel The pixel area will show black spots, affecting the color mixing of red, green, and blue, and affecting the imaging effect on the display panel.
  • the existing technology cannot accurately detect the location of the Micro-LED chip that does not meet the configuration requirements, and there is no Treatment measures for Micro-LED chips that do not meet the configuration requirements.
  • the technical problem to be solved by the present invention is to provide a detection and processing method, system and storage medium in view of the above-mentioned defects of the prior art, aiming to solve the problem of the inability to transfer the Micro-LED chip to the circuit board in the prior art.
  • Micro-LED chips that do not meet the configuration requirements are accurately detected, and there is no problem of taking corresponding measures for the Micro-LED chips that do not meet the configuration requirements.
  • a detection processing method which includes:
  • Micro-LED chips that do not meet the configuration requirements are removed from the growth substrate.
  • the Micro-LED chip includes:
  • N-type electrode and an actuating layer are arranged on the same side of the N-type semiconductor layer;
  • a P-type semiconductor layer and a P-type electrode are arranged layer by layer on the active layer.
  • the Micro-LED chip that does not meet the configuration requirements is specifically: the position and size of the N-type electrode and the P-type electrode on the Micro-LED chip, and the preset position and size of the N-type electrode and the P-type electrode Does not match.
  • one end of the N-type electrode and the P-type electrode away from the N-type semiconductor layer is flush, and solder is respectively provided.
  • the Micro-LED chip is arranged on the first side surface of the growth substrate;
  • the laser is arranged close to the second side surface of the growth substrate
  • the detector is positioned opposite to the laser and is arranged close to the Micro-LED chip.
  • the growth substrate and the solder are light-permeable materials.
  • Micro-LED chips that do not meet the configuration requirements remove the Micro-LED chips that do not meet the configuration requirements from the growth substrate, and then include:
  • the removed Micro-LED chip is reprocessed or replaced, and the reprocessed or replaced new Micro-LED chip is set on the circuit board.
  • the removed Micro-LED chip is reprocessed or replaced, and the reprocessed or replaced new Micro-LED chip is set on the circuit board, and then includes:
  • the remaining Micro-LED chips on the growth substrate are soldered to the circuit board.
  • N-type electrodes and P-type electrodes are arranged on the Micro-LED chip, and solders are respectively arranged on the N-type electrodes and P-type electrodes;
  • One end of the Micro-LED chip with solder is in contact with the circuit board, the laser is irradiated with the solder, and the remaining Micro-LED chip on the growth substrate is soldered to the circuit board, and the Micro-LED chip is connected to the circuit board.
  • the circuit board is electrically connected.
  • the present invention also provides a detection processing system, which includes a memory and one or more programs, wherein one or more programs are stored in the memory and are configured to be executed by one or more processors. Or one or more programs include methods for performing the detection processing described in any one of the above.
  • the present invention also provides a storage medium on which a computer program is stored, wherein when the computer program is executed by a processor, the steps of the detection processing method described above are implemented.
  • the detection processing method, system and storage medium provided by the present invention include: irradiating a growth substrate with a laser; photographing an image of at least one Micro-LED chip arranged on the growth substrate; judging the growth according to the photographed image Whether there are Micro-LED chips that do not meet the configuration requirements on the substrate; if there are Micro-LED chips that do not meet the configuration requirements, remove the Micro-LED chips that do not meet the configuration requirements from the growth substrate.
  • the present invention detects the Micro-LED chips that do not meet the configuration requirements, and then removes the Micro-LED chips that do not meet the configuration requirements, thereby completing the screening of the Micro-LED chips on the growth substrate and ensuring that only the configuration requirements are left on the growth substrate. The required Micro-LED chip.
  • Fig. 1 is a flowchart of a preferred embodiment of the detection processing method of the present invention.
  • Fig. 2 is a structural diagram of a preferred embodiment of the Micro-LED chip in the present invention.
  • Fig. 3 is a functional block diagram of a preferred embodiment of the detection processing system of the present invention.
  • a detection processing method includes the following steps:
  • the instruments that use laser irradiation may be common laser irradiation instruments, semiconductor laser irradiation instruments, infrared laser instruments, etc., as long as the instruments that can realize the laser irradiation function can be used in the present invention.
  • the shooting method and equipment are not limited. Cameras, cameras, video recorders, detectors, digital infrared night vision devices, etc. can be set for online shooting or individual shooting. Anything that can achieve the Micro-LED chip image captured in the present invention The method is a further extension of this program.
  • one Micro-LED chip can be shot, or multiple Micro-LED chips can be shot at the same time; since the growth substrate and the Micro-LED chip are made of light-permeable material, the electrodes on the Micro-LED chip are made of non-light-permeable material , The shape and position of the electrodes on the Micro-LED chip are specifically captured when shooting.
  • S300 Determine whether there is a Micro-LED chip that does not meet the configuration requirements on the growth substrate according to the captured image.
  • a database is stored in the processor, and parameter information of the Micro-LED chip for reference is stored in the database.
  • the parameter information includes: the position and size of the electrode on the Micro-LED chip;
  • the image is compared with the parameters stored in the processor, and the Micro-LED chips that do not match the parameters in the image (that is, do not meet the configuration requirements) are highlighted in the processor to facilitate the processing of the Micro-LED chips that do not meet the configuration requirements .
  • the processor controls the laser to emit laser light, and the Micro-LED chips that do not meet the configuration requirements are knocked off from the growth substrate.
  • a laser is used to illuminate the Micro-LED chip; the detector captures an image of the electrode on the Micro-LED chip; and a processor is used to process the captured image.
  • the laser, detector and processor are integrated into one detector.
  • the detector is an AOI detector with a laser light source.
  • the laser is a kind of light source, its principle is excited light, the use of laser light can improve the light intensity, speed and accuracy;
  • AOI refers to automatic optical inspection, which is based on the optical principle to detect product defects, and is performing automatic inspection At the time, the image of the object to be detected is captured by the camera, compared with the qualified parameters stored in the processor, and the defects on the object to be detected are detected through image analysis, and the defective part can be automatically pointed out.
  • the structure of the Micro-LED chip of the invention is as follows:
  • N-type semiconductor layer 10 the N-type semiconductor layer 10 is disposed on the growth substrate, and the N-type semiconductor layer 10 is made of an N-pole gallium nitride material;
  • N-type electrode 30, the N-type electrode 30 is disposed on the N-type semiconductor layer 10;
  • the actuating layer 20 is disposed on the N-type semiconductor layer 10 on the same side as the N-type electrode 30, and the actuating layer 20 is made of gallium nitride material;
  • the P-type semiconductor layer 40 is disposed on the actuating layer 20, and the actuating layer 20 is made of a p-polar gallium nitride material;
  • the P-type electrode 50 is arranged on the P-type semiconductor layer 40.
  • the end of the N-type electrode 30 and the P-type electrode 50 away from the N-type semiconductor layer 10 are flush, and are respectively provided with solder.
  • the laser is located on the back of the growth substrate provided with the Micro-LED chip, so that the detector can capture the image details of the electrode on the Micro-LED chip in all directions.
  • the position is divided based on the growth substrate.
  • the growth substrate includes a first side surface and a second side surface.
  • the side where the Micro-LED chip is provided is the first side surface of the growth substrate, and the detector is set at the position of the first side surface.
  • the laser can be set at the first side position or at the second side position.
  • the growth substrate and the solder may be made of light-permeable materials, specifically sapphire or glass.
  • the laser light is irradiated, because the light intensity of the laser light source is too high, it is easy to cause high-temperature slander of the Micro-LED chip; further, by arranging the laser at the position of the second side, the laser light emitted by the laser can be It transmits through the growth substrate and the Micro-LED chip in turn to avoid the problem of the Micro-LED chip being slanderred by high temperature.
  • the detector is positioned opposite to the laser, and the detector is used to photograph the Micro-LED chips irradiated by the laser.
  • the method further includes:
  • the removed Micro-LED chip is reprocessed or replaced, and the reprocessed or replaced new Micro-LED chip is set on the circuit board.
  • the Micro-LED chip that does not meet the configuration requirements is knocked down by the laser, a vacancy will be formed in a corresponding position on the growth substrate.
  • the vacancy position of the knocked-down Micro-LED chip is located by the laser, and the vacancy position corresponding to the knocked-down Micro-LED chip is accurately located on the circuit board disposed opposite to the growth substrate, and then laser welding is used The technology solders the new Micro-LED chip to the corresponding vacant position on the circuit board.
  • the end of the new Micro-LED chip provided with solder is in contact with the circuit board, and then the solder is melted by laser irradiation to complete the soldering of the new Micro-LED chip on the circuit board.
  • the LED chip fills the vacant positions on the circuit board corresponding to the growth substrate, so that when the remaining Micro-LED chips on the growth substrate meet the configuration requirements are transferred to the circuit board, a complete, normal display LED display panel can be formed.
  • the end of the Micro-LED chip with solder is in contact with the circuit board, and the laser irradiates the solder to solder the remaining Micro-LED chips on the growth substrate to the circuit board.
  • the LED chip is electrically connected with the circuit board.
  • the remaining Micro-LED chips on the growth substrate are Micro-LED chips that meet the configuration requirements.
  • the growth substrate is irradiated with a laser to melt the solder on the Micro-LED chips, and then the remaining Micro-LED chips on the growth substrate are melted. Transfer to the corresponding position on the circuit board. Understandably, when the Micro-LED chip is transferred, the solder on the Micro-LED chip is in contact with the circuit board, and the position of the Micro-LED chip on the circuit board is accurately positioned by laser irradiation, ensuring the accuracy of the transfer .
  • a new Micro-LED chip is first arranged on the circuit board, and then the remaining Micro-LED chips on the Micro-LED chip are transferred to the circuit board, which realizes the There is no restriction on the order of soldering.
  • the two can be soldered separately or at the same time.
  • the Micro-LED chip is soldered on the circuit board, but in fact there are many ways to arrange the Micro-LED chip on the circuit board, and each arrangement and combination method is an extension of the present invention. As long as the electrical connection can be realized, the solution described in the present invention can be realized.
  • the laser can be used for laser welding, and laser welding is an efficient and precise welding method that uses a high-energy density laser beam as a heat source.
  • laser welding is an efficient and precise welding method that uses a high-energy density laser beam as a heat source.
  • solder can also be arranged on the circuit board at a position corresponding to the solder, so that the solder on the Micro-LED chip and the solder on the circuit board can be melted simultaneously during laser welding, thereby improving The welding speed also makes the welding of the Micro-LED chip and the circuit board stronger.
  • the method further includes:
  • the present invention also provides a detection processing system, as shown in FIG. 3, which includes a memory 70 and one or more programs, wherein one or more programs are stored in the memory 70 and are configured to consist of one or more programs.
  • the execution of the one or more programs by the one or more processors 60 includes the method for executing the detection processing method as described above; the details are as described above.
  • the present invention also provides a storage medium on which a computer program is stored, wherein when the computer program is executed by a processor, the steps of the detection processing method as described above are implemented; the details are as described above.
  • the detection processing method, system and storage medium disclosed in the present invention include: irradiating a growth substrate with a laser; shooting an image of at least one Micro-LED chip arranged on the growth substrate; It is determined whether there are Micro-LED chips that do not meet the configuration requirements on the growth substrate; if there are Micro-LED chips that do not meet the configuration requirements, the Micro-LED chips that do not meet the configuration requirements are removed from the growth substrate.
  • the present invention detects whether the Micro-LED chip on the growth substrate meets the configuration requirements, and then removes the Micro-LED chips that do not meet the configuration requirements.
  • the Micro-LED chips that do not meet the configuration requirements are removed, only the growth substrate remains Micro-LED chips that meet the configuration requirements, and the positions of the removed Micro-LED chips that do not meet the configuration requirements form vacancies, so as to complete the screening of the Micro-LED chips on the growth substrate; later, the Micro-LEDs that do not meet the configuration requirements will be selected Replace the chip with a new Micro-LED chip, irradiate the circuit board with a laser, locate the vacant position on the circuit board corresponding to the position of the growth substrate, and weld the new Micro-LED chip to the corresponding vacancy on the circuit board by laser welding technology. Position, and then laser welding the remaining Micro-LED chips on the growth substrate to the circuit board to complete the transfer of the Micro-LED chips. During the transfer process, the Micro-LED chips that meet the configuration requirements are effectively The chip is transferred, and the precise positioning of the laser is used to improve the accuracy of the transfer of the Micro-LED chip and ensure the efficient production of the LED panel.

Abstract

一种检测处理方法、系统及存储介质,其中,所述方法包括:激光照射生长基板(S100);拍摄设置在所述生长基板上至少一个Micro-LED芯片的图像(S200);根据所拍摄图像判断所述生长基板上是否存在不符合配置要求的Micro-LED芯片(S300);若存在不符合配置要求的Micro-LED芯片,将不符合配置要求的Micro-LED芯片从所述生长基板上移除(S400)。该方法通过检测出不符合配置要求的Micro-LED芯片,进而移除不符合配置要求的Micro-LED芯片,以此完成对生长基板上Micro-LED芯片的筛选,保证生长基板上只剩余符合配置要求的Micro-LED芯片。

Description

一种检测处理方法、系统及存储介质 技术领域
本发明涉及显示芯片技术领域,尤其涉及的是一种检测处理方法、系统及存储介质。
背景技术
Micro-LED技术,即LED微缩化和矩阵化技术。指的是在一个芯片上集成的高密度微小尺寸的LED阵列,如LED显示屏每一个像素可定址、单独驱动点亮,可看成是户外LED显示屏的微缩版,将像素点距离从毫米级降低至微米级。
利用Micro-LED芯片制成的显示面板,具有良好的稳定性、寿命、以及运行温度上的优势,同时也继承了LED低功耗、色彩饱和度、反应速度快、对比度强等优点,具有极大的应用前景。
在制作显示面板时,需要将多个Micro-LED芯片分别转移到对应电路板的像素区域上,电路板的每个像素区域包括红、绿、蓝三色,对应三个颜色的Micro-LED芯片。若红、绿、蓝Micro-LED芯片中任意一个芯片没有达到正常Micro-LED芯片的质量标准,即为不符合配置要求的Micro-LED芯片,则不能在显示面板上正常显示,显示面板上对应的像素区域会呈现黑点,影响红、绿、蓝三色的色彩混合,影响显示面板上的成像效果,现有技术无法精确检测到不符合配置要求的Micro-LED芯片所在的位置,且没有对不符合配置要求的Micro-LED芯片的处理措施。
因此,现有技术存在缺陷,有待改进与发展。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种检测处理方法、系统及存储介质,旨在解决现有技术中的将Micro-LED芯片转移到电路板上时,无法精确检测到不符合配置要求的Micro-LED芯片,且没有对不符合配置要求的Micro-LED芯片采取对应的处理措施的问题。
本发明解决技术问题所采用的技术方案如下:
一种检测处理方法,其中,包括:
激光照射生长基板;
拍摄设置在所述生长基板上至少一个Micro-LED芯片的图像;
根据所拍摄图像判断所述生长基板上是否存在不符合配置要求的Micro-LED芯片;
若存在不符合配置要求的Micro-LED芯片,将不符合配置要求的Micro-LED芯片从所述生长基板上移除。
进一步地,所述Micro-LED芯片包括:
N型半导体层;
在所述N型半导体层上同侧设置有N型电极和作动层;
在所述作动层上逐层设置有P型半导体层和P型电极。
进一步地,所述不符合配置要求的Micro-LED芯片具体为:Micro-LED芯片上N型电极和P型电极的位置和尺寸,与预先设定的N型电极和P型电极的位置和尺寸不符。
进一步地,所述N型电极和P型电极背离所述N型半导体层的一端平齐,且分别设置有焊料。
进一步地,所述Micro-LED芯片设置在生长基板的第一侧面上;
所述激光器靠近所述生长基板的第二侧面设置;
所述探测器与激光器位置相对,且靠近所述Micro-LED芯片设置。
进一步地,所述生长基板和焊料为可透光材料。
进一步地,若存在不符合配置要求的Micro-LED芯片,将不符合配置要求的Micro-LED芯片从所述生长基板上移除,之后包括:
对移除的Micro-LED芯片进行重新加工或者更换,将重新加工或者更换形成的新的Micro-LED芯片设置在电路板上。
进一步地,对移除的Micro-LED芯片进行重新加工或者更换,将重新加工或者更换形成的新的Micro-LED芯片设置在电路板上,之后包括:
通过激光照射,将所述生长基板上剩余的Micro-LED芯片焊接到所述电路板上。
进一步地,通过激光照射,将所述生长基板上剩余的Micro-LED芯片焊接 到所述电路板上,具体为:
Micro-LED芯片上设置有N型电极和P型电极,所述N型电极和P型电极上分别设置有焊料;
所述Micro-LED芯片上有焊料的一端与电路板相接触,激光照射所述焊料,将所述生长基板上剩余的Micro-LED芯片焊接到所述电路板上,所述Micro-LED芯片与所述电路板电连接。
本发明还提供一种检测处理系统,其中,包括有存储器,以及一个或者一个以上的程序,其中一个或者一个以上程序存储于存储器中,且经配置以由一个或者一个以上处理器执行所述一个或者一个以上程序包含用于执行如上任意一项所述的检测处理方法。
本发明还提供一种存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如上所述的检测处理方法的步骤。
本发明所提供的一种检测处理方法、系统及存储介质,其中,包括:激光照射生长基板;拍摄设置在所述生长基板上至少一个Micro-LED芯片的图像;根据所拍摄图像判断所述生长基板上是否存在不符合配置要求的Micro-LED芯片;若存在不符合配置要求的Micro-LED芯片,将不符合配置要求的Micro-LED芯片从所述生长基板上移除。本发明通过检测出不符合配置要求的Micro-LED芯片,进而移除不符合配置要求的Micro-LED芯片,以此完成对生长基板上Micro-LED芯片的筛选,保证生长基板上只剩余符合配置要求的Micro-LED芯片。
附图说明
图1是本发明中检测处理方法的较佳实施例的流程图。
图2是本发明中Micro-LED芯片的较佳实施例的结构图。
图3是本发明中检测处理系统的较佳实施例的功能原理框图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解 释本发明,并不用于限定本发明。
请参见图1,图1是本发明中一种检测处理方法的流程图。如图1所示,本发明实施例所述的一种检测处理方法包括以下步骤:
S100、激光照射生长基板。具体的,使用激光照射的仪器可为常见的激光照射仪、半导体激光照射仪、红外线激光仪等,只要能够实现激光照射功能的仪器均可用于本发明中。
S200、拍摄设置在所述生长基板上至少一个Micro-LED芯片的图像。具体地,拍摄的方式和仪器并不做限定,可设置摄像头、相机、录像机、检测仪、数码红外夜视仪等进行联机拍摄或者单独拍摄,凡是能够实现本发明中拍摄到Micro-LED芯片图像的方式均是本方案的进一步延伸。在进行拍摄时可拍摄到一个Micro-LED芯片,也可同时拍摄多个Micro-LED芯片;由于生长基板和Micro-LED芯片为可透光材质,Micro-LED芯片上的电极为不可透光材质,在进行拍摄时具体拍摄到的是Micro-LED芯片上电极的形状和位置。
S300、根据所拍摄图像判断所述生长基板上是否存在不符合配置要求的Micro-LED芯片。
具体地,处理器中存储有数据库,所述数据库中存储有可供参照的Micro-LED芯片的参数信息,所述参数信息包括:Micro-LED芯片上电极的位置和尺寸;通过将拍摄得到的图像与处理器中存储的参数进行对比,将图像中和参数不符的(即不符合配置要求)的Micro-LED芯片在处理器中凸显出来,方便对不符合配置要求的Micro-LED芯片进行处理。
可以理解地,只要能够获取到生长基板上Micro-LED芯片的相关信息,不论其实施方式如何变化,均是本发明所要保护的范围。
S400、若存在不符合配置要求的Micro-LED芯片,将不符合配置要求的Micro-LED芯片从所述生长基板上移除。
具体地,当存在不符合配置要求的Micro-LED芯片时,处理器控制所述激光器发出激光,将不符合配置要求的Micro-LED芯片从生长基板上打落。
在本发明优选的实施例中,使用激光器照射Micro-LED芯片;探测器拍摄所述Micro-LED芯片上电极的图像;使用处理器对拍摄到的图像进行处理。优选地,所述激光器、探测器和处理器集成为一台侦测器。较佳地,所述侦测器为 具有雷射光源的AOI侦测器。其中,雷射是一种光源,其原理是受激发光,使用雷射发光能够提高光照强度、速度和精准度;AOI指的是自动光学检测,是基于光学原理检测产品缺陷,在进行自动检测时,通过摄像头拍摄待检测物体的图像,与处理器中存储的合格参数进行比较,通过图像分析,检查出待检测物体上的缺陷,能够将缺陷部分自动指出。
在发明较佳实施例中,本发明所述的Micro-LED芯片的结构如下:
将多个Micro-LED芯片设置在一生长基板上;
所述Micro-LED芯片的结构如图2所示:
N型半导体层10,所述N型半导体层10设置在所述生长基板上,所述N型半导体层10由N极氮化镓材料制成;
N型电极30,所述N型电极30设置在所述N型半导体层10上;
作动层20,所述作动层20设置在所述N型半导体层10上,与所述N型电极30同侧设置,所述作动层20由氮化镓材料制成;
P型半导体层40,设置在所述作动层20上,所述作动层20由P极氮化镓材料制成;
P型电极50,设置在所述P型半导体层40上。
所述N型电极30和P型电极50背离所述N型半导体层10的一端平齐,且分别设置有焊料。
在本发明的较佳实施例中,所述激光器位于设置有Micro-LED芯片的生长基板的背面,方便探测器能够全方位拍摄到Micro-LED芯片上电极的图像细节。此处以生长基板为基准进行位置划分,生长基板包括第一侧面和第二侧面,设置有Micro-LED芯片的一侧为生长基板的第一侧面,所述探测器设置在第一侧面位置,所述激光器可设置在第一侧面位置,也可设置在第二侧面位置。
在本发明优选的实施例中,所述生长基板和焊料可由可透光材料制成,具体可为蓝宝石或者玻璃。在进行雷射光照射时,由于雷射光源的光强度过大,容易造成Micro-LED芯片的高温诋毁;进一步地,通过将激光器设置在所述第二侧面的位置,激光器发射出的雷射光可依次透射过生长基板和Micro-LED芯片,避免Micro-LED芯片被高温诋毁的问题。具体地,在激光器逐个照射所述Micro-LED芯片时,所述探测器与激光器位置相对,所述探测器用于拍摄所述激 光器照射的Micro-LED芯片。
所述步骤S400之后还包括:
S500、对移除的Micro-LED芯片进行重新加工或者更换,将重新加工或者更换形成的新的Micro-LED芯片设置在电路板上。
具体地,当不符合配置要求的Micro-LED芯片被所述激光器打落之后,所述生长基板上相应的位置会形成空缺。此时通过激光器定位所述被打落的Micro-LED芯片的空缺位置,且在与生长基板相对设置的电路板上准确定位与被打落的Micro-LED芯片对应的空缺位置,进而利用激光焊接技术将新的Micro-LED芯片焊接到电路板上对应的空缺位置上。在电路板上焊接新的Micro-LED芯片时,将新的Micro-LED芯片上设置有焊料的一端与电路板相接触,之后通过激光照射使焊料熔化,完成在电路板上焊接新的Micro-LED芯片,以填充电路板上与生长基板对应的空缺位置,方便在将生长基板上剩余的符合配置要求的Micro-LED芯片转移到电路板上时,形成完整的、正常显示的LED显示面板。
S600、通过激光照射,将所述生长基板上剩余的Micro-LED芯片焊接到所述电路板上。
具体地,所述Micro-LED芯片上有焊料的一端与电路板相接触,激光照射所述焊料,将所述生长基板上剩余的Micro-LED芯片焊接到所述电路板上,所述Micro-LED芯片与所述电路板电连接。所述生长基板上剩余的Micro-LED芯片为符合配置要求的Micro-LED芯片,通过激光照射所述生长基板,使得Micro-LED芯片上的焊料熔化,进而将生长基板上剩余的Micro-LED芯片转移到电路板相应位置上。可以理解地,在进行Micro-LED芯片转移时,所述Micro-LED芯片上的焊料与电路板接触,且电路板上Micro-LED芯片的位置是通过激光照射准确定位的,保证了转移的精度。
可以理解地,本发明方案中先将新的Micro-LED芯片设置在所述电路板上,之后将所述Micro-LED芯片上剩余的Micro-LED芯片转移到所述电路板上,其实现对焊料的焊接并没有先后顺序的限定,两者可分别进行焊接,也可同时进行焊接。当然地,本发明中采用的将Micro-LED芯片焊接在电路板上,实则将Micro-LED芯片设置在电路板上的方式有多种,每一种排列组合的方式均是本发 明方案的延伸,只要能够实现电连接的方式均可实现本发明中所述的方案。
在本发明优选的实施例中,可使用所述激光器进行激光焊接,激光焊接是利用高能量密度的激光束作为热源的一种高效精密焊接方法。通过发射雷射光源可达到对所述Micro-LED芯片精确定位的效果,提升转移Micro-LED芯片的精度。
在本发明优选的实施例中,还可在所述电路板上与所述焊料对应的位置上设置焊料,在激光焊接时使Micro-LED芯片上的焊料和电路板上的焊料同时熔化,提升了焊接的速度,也使得Micro-LED芯片和电路板焊接更加牢固。
所述步骤S600之后还包括:
S700、控制所述生长基板从所述Micro-LED芯片上移除。具体的移除可依靠机器控制也可通过激光照射脱落。
本发明还提供一种检测处理系统,如图3所示,其中,包括有存储器70,以及一个或者一个以上的程序,其中一个或者一个以上程序存储于存储器70中,且经配置以由一个或者一个以上处理器60执行所述一个或者一个以上程序包含用于执行如上所述的检测处理方法;具体如上所述。
本发明还提供一种存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如上所述的检测处理方法的步骤;具体如上所述。
综上所述,本发明公开的一种检测处理方法、系统及存储介质,其中,包括:激光照射生长基板;拍摄设置在所述生长基板上至少一个Micro-LED芯片的图像;根据所拍摄图像判断所述生长基板上是否存在不符合配置要求的Micro-LED芯片;若存在不符合配置要求的Micro-LED芯片,将不符合配置要求的Micro-LED芯片从所述生长基板上移除。本发明通过检测生长基板上的Micro-LED芯片是否符合配置要求,进而移除不符合配置要求的Micro-LED芯片,当不符合配置要求的Micro-LED芯片被移除之后,生长基板上只剩余符合配置要求的Micro-LED芯片,移除的不符合配置要求的Micro-LED芯片的位置形成空缺,以此完成对生长基板上Micro-LED芯片的筛选;之后将不符合配置要求的Micro-LED芯片更换成新的Micro-LED芯片,通过激光照射电路板,在与生长基板位置对应的电路板上定位空缺位置,先将新的Micro-LED芯片通过激光焊接技术焊接到电路板上对应的空缺位置上,之后再将所述生长基板上剩余的Micro-LED芯片激光焊接到所述电路板上,以此完成Micro-LED芯片的转移, 在转移过程中有效地对符合配置要求的Micro-LED芯片进行转移,同时通过激光精准定位,提高了转移Micro-LED芯片的精确程度,保证了LED面板的高效制作。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (11)

  1. 一种检测处理方法,其特征在于,包括:
    激光照射生长基板;
    拍摄设置在所述生长基板上至少一个Micro-LED芯片的图像;
    根据所拍摄图像判断所述生长基板上是否存在不符合配置要求的Micro-LED芯片;
    若存在不符合配置要求的Micro-LED芯片,将不符合配置要求的Micro-LED芯片从所述生长基板上移除。
  2. 根据权利要求1所述的检测处理方法,其特征在于,所述Micro-LED芯片包括:
    N型半导体层;
    在所述N型半导体层上同侧设置有N型电极和作动层;
    在所述作动层上逐层设置有P型半导体层和P型电极。
  3. 根据权利要求2所述的检测处理方法,其特征在于,所述不符合配置要求的Micro-LED芯片具体为:Micro-LED芯片上N型电极和P型电极的位置和尺寸,与预先设定的N型电极和P型电极的位置和尺寸不符。
  4. 根据权利要求3所述的检测处理方法,其特征在于,所述N型电极和P型电极背离所述N型半导体层的一端平齐,且分别设置有焊料。
  5. 根据权利要求4所述的检测处理方法,其特征在于,
    所述Micro-LED芯片设置在生长基板的第一侧面上;
    所述激光器靠近所述生长基板的第二侧面设置;
    所述探测器与激光器位置相对,且靠近所述Micro-LED芯片设置。
  6. 根据权利要求5所述的检测处理方法,其特征在于,所述生长基板和焊料为可透光材料。
  7. 根据权利要求1所述的检测处理方法,其特征在于,若存在不符合配置要求的Micro-LED芯片,将不符合配置要求的Micro-LED芯片从所述生长基板上移除,之后包括:
    对移除的Micro-LED芯片进行重新加工或者更换,将重新加工或者更换形成的新的Micro-LED芯片设置在电路板上。
  8. 根据权利要求7所述的检测处理方法,其特征在于,对移除的Micro-LED 芯片进行重新加工或者更换,将重新加工或者更换形成的新的Micro-LED芯片设置在电路板上,之后包括:
    通过激光照射,将所述生长基板上剩余的Micro-LED芯片焊接到所述电路板上。
  9. 根据权利要求6所述的检测处理方法,其特征在于,通过激光照射,将所述生长基板上剩余的Micro-LED芯片焊接到所述电路板上,具体为:
    Micro-LED芯片上设置有N型电极和P型电极,所述N型电极和P型电极上分别设置有焊料;
    所述Micro-LED芯片上有焊料的一端与电路板相接触,激光照射所述焊料,将所述生长基板上剩余的Micro-LED芯片焊接到所述电路板上,所述Micro-LED芯片与所述电路板电连接。
  10. 一种检测处理系统,其特征在于,包括有存储器,以及一个或者一个以上的程序,其中一个或者一个以上程序存储于存储器中,且经配置以由一个或者一个以上处理器执行所述一个或者一个以上程序包含用于执行如权利要求1至9中任意一项所述的检测处理方法。
  11. 一种存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至9中任意一项所述的检测处理方法的步骤。
PCT/CN2019/130738 2019-12-31 2019-12-31 一种检测处理方法、系统及存储介质 WO2021134579A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/130738 WO2021134579A1 (zh) 2019-12-31 2019-12-31 一种检测处理方法、系统及存储介质
CN201980003481.2A CN111164741A (zh) 2019-12-31 2019-12-31 一种检测处理方法、系统及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130738 WO2021134579A1 (zh) 2019-12-31 2019-12-31 一种检测处理方法、系统及存储介质

Publications (1)

Publication Number Publication Date
WO2021134579A1 true WO2021134579A1 (zh) 2021-07-08

Family

ID=70562434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130738 WO2021134579A1 (zh) 2019-12-31 2019-12-31 一种检测处理方法、系统及存储介质

Country Status (2)

Country Link
CN (1) CN111164741A (zh)
WO (1) WO2021134579A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112992022A (zh) * 2020-09-24 2021-06-18 重庆康佳光电技术研究院有限公司 显示面板及检测方法
CN113012609A (zh) * 2020-10-22 2021-06-22 重庆康佳光电技术研究院有限公司 显示面板制作方法及显示面板
CN117516707A (zh) * 2024-01-04 2024-02-06 上海聚跃检测技术有限公司 一种砷化镓芯片安装测试结构和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101995223A (zh) * 2009-08-25 2011-03-30 比亚迪股份有限公司 一种芯片外观检测方法及系统
CN202609149U (zh) * 2012-02-14 2012-12-19 睿成汇商科技有限公司 高速的片式元件检测装置
CN108133942A (zh) * 2013-03-15 2018-06-08 苹果公司 具有冗余方案的发光二极管显示器和利用集成的缺陷检测测试制造发光二极管显示器的方法
CN109904107A (zh) * 2019-03-27 2019-06-18 韩进龙 一种微型器件补充装置、补充系统及补充方法
CN110148655A (zh) * 2019-05-21 2019-08-20 北京易美新创科技有限公司 微型led芯片巨量转移方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180092056A (ko) * 2017-02-08 2018-08-17 한국광기술원 마이크로 led칩 분리 및 전사방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101995223A (zh) * 2009-08-25 2011-03-30 比亚迪股份有限公司 一种芯片外观检测方法及系统
CN202609149U (zh) * 2012-02-14 2012-12-19 睿成汇商科技有限公司 高速的片式元件检测装置
CN108133942A (zh) * 2013-03-15 2018-06-08 苹果公司 具有冗余方案的发光二极管显示器和利用集成的缺陷检测测试制造发光二极管显示器的方法
CN109904107A (zh) * 2019-03-27 2019-06-18 韩进龙 一种微型器件补充装置、补充系统及补充方法
CN110148655A (zh) * 2019-05-21 2019-08-20 北京易美新创科技有限公司 微型led芯片巨量转移方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Introduction to Mass Transfer", CNBLOGS.COM, 26 August 2019 (2019-08-26), XP055825434, Retrieved from the Internet <URL:https://www.cnblogs.com/Sonny-xby/p/11413675.html> *

Also Published As

Publication number Publication date
CN111164741A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2021134579A1 (zh) 一种检测处理方法、系统及存储介质
JP2014526706A (ja) 非接触式部品検査装置及び部品検査方法
KR20120109915A (ko) 발광소자 검사 장치 및 그 검사 방법
JP2006047290A (ja) 基板検査用の画像生成方法、基板検査装置、および基板検査用の照明装置
JP2888829B1 (ja) ランド付基板の検査装置
JP2006268050A (ja) 画像検査装置、パネル検査方法及び表示パネルの製造方法
US7586073B2 (en) Imaging system with high-spectrum resolution and imaging method for the same
TW201415047A (zh) 非接觸式發光二極體的檢測裝置和利用其的檢測方法
JP2007024510A (ja) 基板の検査装置
KR100281881B1 (ko) 인쇄회로기판의크림솔더검사장치및검사방법
JP5580121B2 (ja) 基板検査装置
JP2008068284A (ja) 欠陥修正装置、欠陥修正方法、及びパターン基板の製造方法
JPH1123234A (ja) Bgaの半田ボールの高さ測定方法およびその装置
JP2021089159A (ja) 検査装置及び検査方法
JP3243385B2 (ja) 物体の形状検査装置
TWI830022B (zh) 螢光影像檢測系統
JP3247302B2 (ja) 半田付け検査装置
JPH0658731A (ja) パターン検査装置
JP2607108Y2 (ja) 半田付部検査装置
TWI830680B (zh) 螢光檢測方法
TWI786773B (zh) 助焊劑分布狀況的檢測方法及檢測設備
JP7409178B2 (ja) 電子装置の検査装置及び検査方法
JP2009276208A (ja) 実装基板の外観検査方法
JP6733039B2 (ja) 外観検査装置、外観検査方法
CN206820860U (zh) 一种机器视觉检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958194

Country of ref document: EP

Kind code of ref document: A1