WO2021134159A1 - 碱式碳酸铜的制备方法 - Google Patents

碱式碳酸铜的制备方法 Download PDF

Info

Publication number
WO2021134159A1
WO2021134159A1 PCT/CN2019/129763 CN2019129763W WO2021134159A1 WO 2021134159 A1 WO2021134159 A1 WO 2021134159A1 CN 2019129763 W CN2019129763 W CN 2019129763W WO 2021134159 A1 WO2021134159 A1 WO 2021134159A1
Authority
WO
WIPO (PCT)
Prior art keywords
basic copper
copper carbonate
reaction
carbonate
copper
Prior art date
Application number
PCT/CN2019/129763
Other languages
English (en)
French (fr)
Inventor
汪文辉
朱军强
徐文彬
陈龙
王惠倩
Original Assignee
东江环保股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东江环保股份有限公司 filed Critical 东江环保股份有限公司
Priority to CN201980003385.8A priority Critical patent/CN111132932A/zh
Priority to PCT/CN2019/129763 priority patent/WO2021134159A1/zh
Priority to US17/298,848 priority patent/US20220324718A1/en
Publication of WO2021134159A1 publication Critical patent/WO2021134159A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the application relates to the technical field of preparation of inorganic metal compound materials, in particular to a method for preparing basic copper carbonate.
  • basic copper carbonate is widely used in organic synthesis, agricultural pharmacy, wood preservation, paint compounding, crude oil processing and deep processing of copper products.
  • the requirements for the physical and chemical indicators of basic copper carbonate are also very different, especially in the industries of organic catalysis, inorganic intermediates, electronic electroplating and analysis and testing, and its restrictive chemical composition and bulk density, etc. There are strict requirements.
  • the double decomposition precipitation method is used to prepare by soluble copper salts, such as copper sulfate, copper chloride, copper nitrate and copper acetate, and alkali salts, such as potassium carbonate, sodium carbonate, sodium bicarbonate, ammonium carbonate and hydrogen carbonate.
  • soluble copper salts such as copper sulfate, copper chloride, copper nitrate and copper acetate
  • alkali salts such as potassium carbonate, sodium carbonate, sodium bicarbonate, ammonium carbonate and hydrogen carbonate.
  • ammonium prepared for the metathesis reaction, since this synthetic method, the volume of solution in a solution state amount, and the mother liquor cations (K +, Na + and NH 4 +) or anions (Cl -, SO 4 2- and NO 3 - high) concentration of impurity ions and the like, so that solid-liquid separation after the high impurity content in the product, and must be washed repeatedly beating solid-liquid separation, resulting in a large amount of washing water, and thus a large amount of wastewater technology, high overall cost.
  • the method of preparing basic copper carbonate by ammonia distillation is as follows: first provide carbonized ammonia water, use metallic copper or copper salt to generate a copper ammonia complex solution, and then synthesize basic copper carbonate products by distilling ammonia, and combine with pure copper under certain pressure. Copper is reacted to obtain a copper-ammonia complex solution, which is then evaporated by a compound centrifugal thin-film evaporator, rotating separation, and spinning to obtain high purity basic copper carbonate.
  • the method has a long process flow and high energy consumption. Because a large amount of ammonia is produced during the evaporation process, the operation and control are complicated, and the safety hazard is high.
  • the currently commonly used preparation method of basic copper carbonate has a long process flow, high energy consumption, poor preparation efficiency, and the prepared basic copper carbonate has many impurities, which affects the use.
  • the purpose of the embodiments of the present application is to provide a method for preparing basic copper carbonate, which aims to solve the problems of complicated process and low efficiency in the method for preparing basic copper carbonate in the prior art and low purity of the finished product obtained.
  • a preparation method of basic copper carbonate includes the following steps:
  • a basic copper carbonate is provided, which is prepared by the preparation method of basic copper carbonate.
  • the preparation method uses copper hydroxide and carbon dioxide as raw materials, and uses copper hydroxide as raw materials.
  • Copper hydroxide contains only copper ions and hydroxide ions, and does not introduce impurity ions during the reaction, which is beneficial to the preparation.
  • the high-purity product of basic copper carbonate can also fully recycle copper-containing industrial wastewater.
  • the cost of raw materials is low and meets the requirements of energy saving and environmental protection; carbon dioxide gas is used as a carbon source, and gas is used as a raw material for reaction. Fully mix with solid raw materials to avoid introducing impurities to ensure the high purity of the product, while improving the reaction efficiency and meeting the requirements of energy saving and environmental protection.
  • copper hydroxide is mixed with water to form a precursor slurry, and the precursor slurry is prepared to provide a liquid reaction system for subsequent reactions.
  • the carbon dioxide gas and the liquid slurry are brought into gas-liquid contact to increase the reaction speed while ensuring that the carbon dioxide gas and the material will fully react.
  • an accelerator is added to the precursor slurry, and the accelerator promotes the rapid action of copper hydroxide and the introduced carbon dioxide in the precursor slurry to prepare basic copper carbonate, which improves the reaction efficiency.
  • the raw materials of the preparation method are easy to obtain, no impurity ions are introduced during the reaction process, and the conditions of the preparation method are controllable, and basic copper carbonate with high purity, uniform and controllable size, and stable quality is prepared.
  • the preparation method is fast and efficient. , It meets the requirements of energy saving and environmental protection, and has low equipment requirements, which is beneficial to industrial production.
  • the basic copper carbonate is prepared by the above-mentioned preparation method of basic copper carbonate.
  • the method uses copper hydroxide and carbon dioxide as raw materials, and does not introduce impurity ions during the reaction process, which ensures that the purity of basic copper carbonate is relatively high. At the same time, it can also ensure that the prepared basic copper carbonate has stable quality, uniform and controllable size, and is widely used.
  • FIG. 1 is an SEM image of the prepared copper hydroxide provided in Example 1 of the present application.
  • Fig. 2 is an SEM image of the prepared copper hydroxide provided in Example 2 of the present application.
  • Fig. 3 is an SEM image of the prepared basic copper carbonate provided in Example 1 of the present application.
  • Fig. 4 is an SEM image of the prepared basic copper carbonate provided in Example 2 of the present application.
  • Fig. 5 is an XRD comparison chart of the prepared copper hydroxide provided in Examples 1 to 2 of the present application.
  • Fig. 6 is an XRD comparison chart of the prepared basic copper carbonate provided in Examples 1 to 2 of the present application.
  • FIG. 7 is a differential thermal analysis diagram of a product of basic copper carbonate prepared according to Example 1 of the present application.
  • Fig. 8 is a differential thermal analysis diagram of a product of basic copper carbonate prepared in Example 2 of the present application.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, “multiple” means two or more than two, unless otherwise specifically defined.
  • An example of this application provides a preparation method of basic copper carbonate, the preparation method includes the following steps:
  • S02. Provide an accelerator, add the accelerator to the precursor slurry and mix to obtain a first mixture
  • the raw materials of the preparation method provided in this application are easily obtained, no impurity ions are introduced during the reaction process, and the conditions of the preparation method are controllable, and basic copper carbonate with high purity, uniform and controllable size, and stable quality is prepared.
  • the speed of the preparation method is Fast, high efficiency, meets the requirements of energy saving and environmental protection, and low equipment requirements, which is conducive to industrial production.
  • step S01 copper hydroxide is provided, and the copper hydroxide is mixed with water to obtain a precursor slurry.
  • copper hydroxide is provided, and copper hydroxide is used as a raw material.
  • the molecular formula of copper hydroxide is Cu(OH) 2
  • copper hydroxide only contains copper ions and hydroxide ions, and no impurity ions are introduced during the reaction process, which is beneficial to the preparation of high-purity basic copper carbonate.
  • copper-containing industrial wastewater can be fully recycled, and the cost of raw materials is low and meets the requirements of energy saving and environmental protection.
  • the copper hydroxide is selected from industrial grade copper hydroxide or copper hydroxide prepared from industrial grade copper-containing waste.
  • the copper hydroxide is selected from technical grade copper hydroxide, which is a blue dry powder.
  • the industrial-grade copper-containing waste is copper-containing etching waste liquid, copper nitrate waste liquid, and tin stripping waste liquid.
  • the copper hydroxide prepared from industrial-grade copper-containing waste has a water content of 15% to 40%, and copper hydroxide with a water content of 15% to 40% has uniform and moderate particle size, smooth surface, and relatively high quality. good.
  • the use of the copper hydroxide with a water content of 15%-40% for subsequent reactions can ensure the preparation of basic copper carbonate with controllable size, high purity and stable quality.
  • the copper hydroxide and water are mixed to obtain a precursor slurry, and the precursor slurry is prepared, in order to provide a liquid reaction system for subsequent reactions.
  • the carbon dioxide gas and the liquid slurry are brought into gas-liquid contact to increase the reaction speed while ensuring that the carbon dioxide gas and the material will fully react.
  • the mixing includes but is not limited to stirring to ensure that the copper hydroxide and water are evenly mixed, so that the copper hydroxide is evenly distributed on the precursor In the bulk slurry, it is conducive to the subsequent reaction.
  • the mass ratio of the copper hydroxide to water is 1: (3.5-20).
  • the mass ratio of the copper hydroxide to water is 1: (10-20)
  • the industrial-grade copper hydroxide powder is mixed with more water .
  • the prepared precursor slurry has a moderate consistency, which is conducive to the subsequent reaction. If excessive water is added, the copper hydroxide content in the prepared precursor slurry is low, and the resulting basic copper carbonate yield of the prepared product during the reaction process is low; if the added water is too little, the prepared product The fluidity of the copper hydroxide slurry is poor. After the carbon dioxide gas is introduced, it is difficult for the carbon dioxide gas and the copper hydroxide to come into full contact, resulting in an excessively long reaction time.
  • the added copper hydroxide is copper hydroxide prepared from industrial-grade copper-containing waste
  • the water content of the copper hydroxide prepared from industrial-grade copper-containing waste is 15%-40%
  • the mass ratio of copper hydroxide to water is 1: (3.5 ⁇ 10).
  • adding less quality water can guarantee The prepared precursor slurry has a moderate consistency, which is conducive to subsequent reactions. If the added water is too much, the prepared precursor slurry contains a lower copper hydroxide content, and the prepared product basic copper carbonate has a lower yield; if the added water is too little, the prepared copper hydroxide material The fluidity of the slurry is poor. After the carbon dioxide gas is introduced, it is difficult for the carbon dioxide gas and the copper hydroxide to come into full contact, which causes the reaction time to be too long.
  • an accelerator is provided, and the accelerator is added to the precursor slurry and mixed to obtain a first mixture.
  • An accelerator is added to the precursor slurry, and the accelerator promotes the rapid action of the copper hydroxide and the introduced carbon dioxide in the precursor slurry to prepare basic copper carbonate, which improves the reaction efficiency.
  • the accelerator selects at least one of ammonia water and ammonium salt.
  • the accelerator is ammonia water.
  • the main component of ammonia water is NH 3 ⁇ H 2 O, which is an aqueous solution of ammonia.
  • Ammonia water is selected as a promoter to participate in the reaction.
  • Ammonia water has a certain catalytic effect, which can catalyze the rapid progress of copper hydroxide and the introduced carbon dioxide.
  • Ammonia water can play a certain activating effect to ensure a better reaction effect and improve the reaction efficiency.
  • the accelerator is selected from an ammonium salt.
  • Ammonium salt refers to the product of the reaction of ammonia and acid, and is an ionic compound composed of ammonium ions and acid radical ions.
  • the ammonium salt compound is added as a promoter to participate in the reaction.
  • the ammonium salt compound has a certain catalytic effect and can catalyze the rapid progress of copper hydroxide and the introduced carbon dioxide.
  • the ammonium salt compound can have a certain activation effect to ensure the reaction The effect is better and the reaction efficiency is improved.
  • the ammonium salt is selected from at least one of tetramethyl ammonium hydroxide, ammonium hydrogen carbonate, ammonium carbonate, tetramethyl ammonium hydrogen carbonate, triethyl methyl ammonium carbonate and tributyl methyl ammonium carbonate.
  • the ammonium salt is selected from at least one of ammonium bicarbonate, ammonium carbonate and tetramethylammonium bicarbonate. Choosing the above-mentioned ammonium salt compound as a promoter to add is beneficial to increase the reaction rate, and at the same time, high-purity basic copper carbonate can be prepared.
  • the accelerator is added to the precursor slurry and mixed to obtain the first mixture.
  • the mixing includes but is not limited to stirring to ensure that the accelerator and the precursor slurry are evenly mixed, so that the accelerator is evenly distributed.
  • the first mixture is prepared by sprinkling in the precursor slurry, which is conducive to the subsequent reaction.
  • the addition amount of the accelerator is 0.04% to 1.0%. Ensuring that the addition amount of the accelerator is 0.0% ⁇ 1.0% is beneficial to promote the reaction of copper hydroxide and carbon dioxide gas. If the addition amount of the accelerator is too small, the reaction rate will be affected and the reaction rate will be lower.
  • step S03 carbon dioxide gas is passed into the first mixture for reaction to obtain a crude basic copper carbonate product.
  • carbon dioxide gas is used as a carbon source, and gas is used as a raw material for the reaction, which can be fully mixed with solid raw materials, avoiding the introduction of impurities, ensuring high purity of the product, while improving the reaction efficiency and meeting the requirements of energy saving and environmental protection; introducing carbon dioxide gas After that, the carbon dioxide gas quickly reacts with the copper hydroxide to quickly prepare basic copper carbonate, which improves the reaction efficiency.
  • copper hydroxide and carbon dioxide are used as raw materials to react under the action of a promoter to generate basic copper carbonate.
  • the reaction formula of the preparation method is as follows:
  • the reaction conditions of the reaction are: the reaction temperature is 5-50°C, the pressure of the reaction system is 1-4 ⁇ 10 5 Pa, and under the above-mentioned reaction conditions , The carbon dioxide gas is introduced to react with the copper hydroxide in the first mixture to generate basic copper carbonate.
  • the reaction time of the reaction is 2-16 hours.
  • the method further includes: stopping the carbon dioxide gas flow and continue the reaction for 10-100 minutes.
  • the purpose of continuing the reaction is to react the incompletely reacted carbon dioxide and copper hydroxide in the system to ensure the complete reaction of the reactants in the system and improve the reaction efficiency. Continued reaction within the above reaction time can ensure complete reaction of the raw materials in the reaction system, improve reaction efficiency and ensure high product yield.
  • the introduction of carbon dioxide gas is stopped, the same reaction conditions as the reaction are maintained, and the reaction is continued for 10-100 minutes.
  • stopping the introduction of carbon dioxide gas includes, but is not limited to, performing heating treatment, and continuing the reaction for 10-100 minutes.
  • step S04 the crude basic copper carbonate is purified to obtain the basic copper carbonate.
  • the purification treatment is carried out to ensure the high purity and stable quality basic copper carbonate prepared, and the preparation method is fast, efficient, and meets the requirements of energy saving and environmental protection.
  • the preparation method conditions Controllable and low equipment requirements, which is conducive to industrial production.
  • the purification treatment method includes filtering, washing, and drying the crude basic copper carbonate product.
  • the crude basic copper carbonate product is filtered for the purpose of separating the prepared basic copper carbonate from the solution to obtain a solid basic copper carbonate crude product.
  • the filtration method includes, but is not limited to, centrifugal filtration, vacuum filtration and other methods, as long as it can achieve the effect of solid-liquid separation.
  • the crude product solid of basic copper carbonate obtained by filtration is washed, and the purpose is to remove the impurities adhering to the surface of the product.
  • pure water is used to wash the solid basic copper carbonate crude product three times to ensure that impurities on the solid surface of the basic copper carbonate crude product can be removed.
  • the crude product solid of basic copper carbonate obtained by washing is dried to prepare the basic copper carbonate.
  • the drying process is performed to ensure that the prepared basic copper carbonate product has high purity.
  • the drying temperature is 50-200° C.
  • the drying time is 20 minutes to 15 hours.
  • the preparation method of the basic copper carbonate is easy to obtain raw materials, no impurity ions are introduced during the reaction, and the conditions of the preparation method are controllable, and basic copper carbonate with high purity, uniform and controllable size, and stable quality is prepared.
  • the method has fast speed, high efficiency, meets the requirements of energy saving and environmental protection, and has low equipment requirements, which is conducive to industrialized production.
  • the embodiments of the present application also provide a basic copper carbonate, which is prepared by the above-mentioned preparation method of basic copper carbonate, wherein the purity of the basic copper carbonate is relatively high. Reaching over 99.0%; this method uses copper hydroxide and carbon dioxide as raw materials for preparation, and no impurity ions are introduced during the reaction process, which ensures that the purity of basic copper carbonate is higher, and the purity reaches more than 99.0%, while also ensuring the preparation.
  • the basic copper carbonate has stable quality and is widely used.
  • Carbon dioxide gas was introduced into the first mixture, and the reaction was carried out at a pressure of 3.8 ⁇ 10 5 Pa and 22.0°C for 8.0 hours; after the reaction, the introduction of carbon dioxide gas was stopped, and the reaction was continued for 30 minutes under the same conditions as above to obtain alkali Crude copper carbonate products;
  • the crude basic copper carbonate product is filtered, washed, and dried at 105° C. for 2 hours to prepare the basic copper carbonate.
  • Carbon dioxide gas was introduced into the first mixture, and the reaction was carried out at a pressure of 1.5 ⁇ 10 5 Pa and 35.0°C for 6.0 hours; after the reaction, the introduction of carbon dioxide gas was stopped, and the reaction was continued for 60 minutes under the same conditions as above to obtain alkali Crude copper carbonate products;
  • the crude basic copper carbonate product is filtered, washed, and dried at 150° C. for 40 minutes to prepare the basic copper carbonate.
  • ammonium bicarbonate add 9.8 g of ammonium bicarbonate to the precursor slurry and mix to obtain a first mixture
  • Carbon dioxide gas was introduced into the first mixture, and the reaction was carried out at a pressure of 1.1 ⁇ 10 5 Pa and 42.0°C for 4.5 hours; after the reaction, the introduction of carbon dioxide gas was stopped, and the reaction was continued for 15 minutes under the same conditions as above to obtain alkali Crude copper carbonate products;
  • the crude basic copper carbonate product is filtered, washed, and dried at 80° C. for 6 hours to prepare the basic copper carbonate.
  • An accelerator is provided, and a mixture of 30.0 ml of ammonia water containing 18.0% of ammonia and 7.5 g of ammonium carbonate is added to the precursor slurry and mixed to obtain a first mixture;
  • Carbon dioxide gas was introduced into the first mixture, and the reaction was carried out at a pressure of 2.0 ⁇ 10 5 Pa and 10.0°C for 15.0 hours; after the reaction, the introduction of carbon dioxide gas was stopped, and the reaction was continued for 90 minutes under the same conditions as above to obtain alkali Crude copper carbonate products;
  • the crude basic copper carbonate product is filtered, washed, and dried at 180° C. for 20 minutes to prepare the basic copper carbonate.
  • An accelerator is provided, and a mixture of 4.3 g of ammonium carbonate and 4.3 g of ammonium bicarbonate is added to the precursor slurry and mixed to obtain a first mixture;
  • Carbon dioxide gas was introduced into the first mixture, and the reaction was carried out at a pressure of 3.0 ⁇ 10 5 Pa and 18.0°C for 12.0 hours; after the reaction, the introduction of carbon dioxide gas was stopped, and the reaction was continued for 80 minutes under the same conditions as above to obtain alkali Crude copper carbonate products;
  • the crude basic copper carbonate product is filtered, washed, and dried at 55° C. for 14 hours to prepare the basic copper carbonate.
  • Carbon dioxide gas was introduced into the first mixture, and the reaction was carried out at a pressure of 2.2 ⁇ 10 5 Pa and 27.0°C for 10.0 hours; after the reaction, the introduction of carbon dioxide gas was stopped, and the reaction was continued for 45 minutes under the same conditions as above to obtain alkali Crude copper carbonate products;
  • the crude basic copper carbonate product is filtered, washed, and dried at 125° C. for 1.5 hours to prepare the basic copper carbonate.
  • the copper hydroxide prepared in Example 1 was analyzed by scanning electron microscopy (SEM).
  • Figure 1 shows a 2.0KX image, which can be obtained from Figure 1.
  • the copper hydroxide prepared in Example 1 The purity is high, the surface is smooth, and the particle size is uniform.
  • the crude product prepared in Example 1 is copper hydroxide; the alkali prepared in Example 1 Copper carbonate was analyzed by scanning electron microscopy (SEM).
  • Figure 3 shows a 20.0KX image. From Figure 3, the copper hydroxide prepared in Example 1 has high purity, smooth surface and uniform particle size.
  • the copper hydroxide prepared in Example 2 was analyzed by scanning electron microscopy (SEM).
  • Figure 2 shows a 4.0KX image, which can be obtained from Figure 2.
  • the copper hydroxide prepared in Example 2 The purity is high, the surface is smooth, and no impurities are attached.
  • the crude product prepared in Example 2 is copper hydroxide; the alkali prepared in Example 2 Copper carbonate was analyzed by scanning electron microscopy (SEM).
  • Figure 4 shows a 40.0KX image.
  • the copper hydroxide prepared in Example 2 has a relatively high purity, a smooth surface, and no impurities attached.
  • the XRD pattern analysis of the basic copper carbonate shown in Figure 6 it can be obtained by comparing with the basic copper carbonate standard card, it can be obtained that the product prepared in Example 2 is basic copper carbonate; Copper carbonate is subjected to product differential thermal analysis, and it can be obtained from the data analysis of FIG. 8 that the product prepared in Example 2 is basic copper carbonate.
  • the purity of the basic copper carbonate prepared in Examples 1 to 6 was tested, and it was found that the purity of the basic copper carbonate prepared in Examples 1 to 6 all reached more than 99.0%. It can be obtained that the purity of the basic copper carbonate prepared by the preparation method of the present application is relatively high, and the purity exceeds 99.0%. At the same time, the quality of the prepared basic copper carbonate can be guaranteed to be stable and widely used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供一种碱式碳酸铜的制备方法。该方法包括:将氢氧化铜与水混合得到前驱体料浆;在前驱体料浆中加入促进剂,混合得到第一混合物;在第一混合物中通入二氧化碳气体进行反应得到碱式碳酸铜粗制品;将碱式碳酸铜粗制品进行纯化处理得到碱式碳酸铜,其中促进剂选自氨水和铵盐中的至少一种。该制备方法原料容易获得,在反应过程中未引入杂质离子,能制备得到纯度高、大小均匀可控、质量稳定的碱式碳酸铜;该制备方法速度快、效率高、条件可控,符合节能环保的要求,设备要求低,有利于工业化生产。

Description

碱式碳酸铜的制备方法 技术领域
本申请涉及无机金属化合物材料制备技术领域,具体涉及一种碱式碳酸铜的制备方法。
背景技术
碱式碳酸铜作为一种重要的化工产品,广泛应用于有机合成、农业制药、木材防腐、涂料复配、原油处理及铜产品深加工等过程。市场上,因使用领域的不同,对碱式碳酸铜的理化指标的要求也千差万别,特别在有机催化、无机中间体、电子电镀及分析检测等行业,对其限制性化学组分及堆积密度等有着严格要求。
现阶段碱式碳酸铜的制备方法有很多,主要分为两类:复分解沉淀法及蒸氨法。
其中,采用复分解沉淀法进行制备,是通过可溶性铜盐,如硫酸铜、氯化铜、硝酸铜及醋酸铜等,与碱盐,如碳酸钾、碳酸钠、碳酸氢钠、碳酸铵及碳酸氢铵等,进行复分解反应制备,由于此方法是在溶液状态下合成,溶液体积量大,且母液中阳离子(K +、Na +及NH 4 +)或阴离子(Cl -、SO 4 2-及NO 3 -)等杂质离子浓度高,所以固液分离后产品中杂质含量高,必须经过多次打浆洗涤及固液分离,造成洗水的用量大,因而工艺废水量大,综合成本高。
采用蒸氨法制备碱式碳酸铜的方法为:先提供碳化氨水,采用金属铜或铜盐生成铜氨络合物溶液,后通过蒸氨合成碱式碳酸铜产品,并在一定压力下与纯铜反应得到铜氨络合溶液,再通过复式离心薄膜蒸发器蒸发、旋转分离、旋刮制得高纯碱式碳酸铜。该方法工艺流程长,能耗高,由于蒸发过程产生大量氨,操作控制复杂,安全隐患大。
因此,目前常用的碱式碳酸铜的制备方法工艺流程长,能耗高,制备效率差,且制备得到的碱式碳酸铜杂质多,影响使用。
技术问题
本申请实施例的目的在于:提供一种碱式碳酸铜的制备方法,旨在解决现有技术中制备碱式碳酸铜的方法工艺复杂效率低且制备得到的成品纯度低的问题。
技术解决方案
本发明实施例是这样实现的,
第一方面,提供了一种碱式碳酸铜的制备方法,所述制备方法包括如下步骤:
提供氢氧化铜,将所述氢氧化铜与水混合得到前驱体料浆;
提供促进剂,在所述前驱体料浆中加入所述促进剂混合得到第一混合物;
在所述第一混合物中通入二氧化碳气体进行反应得到碱式碳酸铜粗制品;
将所述碱式碳酸铜粗制品进行纯化处理得到所述碱式碳酸铜。
第二方面,提供了一种碱式碳酸铜,所述碱式碳酸铜由所述的碱式碳酸铜的制备方法制备得到。
有益效果
本申请实施例提供的一种碱式碳酸铜的制备方法的有益效果在于:
首先,该制备方法以氢氧化铜和二氧化碳作为制备原料,以氢氧化铜为原材料,氢氧化铜仅包含了铜离子和氢氧根离子,在反应过程中不会引入杂质离子,有利于制备得到的高纯度的产品碱式碳酸铜,同时也可以充分对含铜类的工业废水进行回收利用,原材料成本低且符合节能环保的要求;以二氧化碳气体为碳源,以气体作为原材料进行反应,能够充分与固体原料进行混合,避免引入杂质保证产品的高纯度,同时能提高反应效率且符合节能环保的要求。
其次,制备过程中,将氢氧化铜与水混合形成前驱体料浆,制备前驱体料浆,为后续反应提供液态反应体系。在后续通入二氧化碳气体反应的过程中,使二氧化碳气体与液体料浆形成气液接触,提高反应速度,同时保证二氧化碳气体与料将充分发生反应。在此基础上,在所述前驱体料浆中加入促进剂,促进剂在前驱体料浆中促进氢氧化铜与通入的二氧化碳快速进行作用,制备得到碱式碳酸铜,提高了反应效率。
该制备方法原料简易获得,在反应过程中未引入杂质离子,同时此制备方法条件可控,制备得到纯度高、大小均匀可控、质量稳定的碱式碳酸铜,该制备方法速度快、效率高、符合节能环保的要求,设备要求低,有利于工业化生产。
本申请实施例提供的一种碱式碳酸铜的有益效果在于:
所述碱式碳酸铜是由上述碱式碳酸铜的制备方法制备得到,该方法以氢氧化铜和二氧化碳作为制备原料,在反应过程中不会引入杂质离子,保证了碱式碳酸铜的纯度较高,同时也能保证制备得到的碱式碳酸铜质量稳定、大小均匀可控,应用广泛。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例1提供的制备得到的氢氧化铜的SEM图。
图2是本申请实施例2提供的制备得到的氢氧化铜的SEM图。
图3是本申请实施例1提供的制备得到的碱式碳酸铜的SEM图。
图4是本申请实施例2提供的制备得到的碱式碳酸铜的SEM图。
图5是本申请实施例1~2提供的制备得到的氢氧化铜的XRD对照图。
图6是本申请实施例1~2提供的制备得到的碱式碳酸铜的XRD对照图。
图7是本申请实施例1提供的制备得到的碱式碳酸铜的产品差热分析图。
图8是本申请实施例2提供的制备得到的碱式碳酸铜的产品差热分析图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所述的技术方案,以下结合具体附图及实施例进行详细说明。
本申请实例提供一种碱式碳酸铜的制备方法,所述制备方法包括如下步骤:
S01. 提供氢氧化铜,将所述氢氧化铜与水混合得到前驱体料浆;
S02. 提供促进剂,在所述前驱体料浆中加入所述促进剂混合得到第一混合物;
S03. 在所述第一混合物中通入二氧化碳气体进行反应得到碱式碳酸铜粗制品;
S04. 将所述碱式碳酸铜粗制品进行纯化处理得到所述碱式碳酸铜。
本申请所提供的制备方法原料简易获得,在反应过程中未引入杂质离子,同时此制备方法条件可控,制备得到纯度高、大小均匀可控、质量稳定的碱式碳酸铜,该制备方法速度快、效率高、符合节能环保的要求,设备要求低,有利于工业化生产。
在上述步骤S01中,提供氢氧化铜,将所述氢氧化铜与水混合得到前驱体料浆。
具体的,提供氢氧化铜,以氢氧化铜为原材料。氢氧化铜的分子式为Cu(OH) 2,氢氧化铜仅包含了铜离子和氢氧根离子,在反应过程中不会引入杂质离子,有利于制备得到的高纯度的产品碱式碳酸铜,同时也可以充分对含铜类的工业废水进行回收利用,原材料成本低且符合节能环保的要求。
所述氢氧化铜选自工业级氢氧化铜或由工业级含铜废料制备得到的氢氧化铜。在一些实施例中,所述氢氧化铜选自工业级氢氧化铜,工业级氢氧化铜为呈现蓝色的干粉末。
在另一些实施例中,所述工业级含铜废料为含铜蚀刻废液、硝酸铜废液及退锡废液。选择上述工业级废料制备氢氧化铜作为该反应的原材料,一方面对工业废水进行有效地循环利用、符合节能环保的要求;另一方面为该制备方法提供原材料,降低原材料的成本。其中,所述由工业级含铜废料制备得到的氢氧化铜的含水率为15%~40%,含水率为15%~40%的氢氧化铜粒径大小均匀、适中,表面光滑,品质较佳。采用所述含水率为15%~40%的氢氧化铜进行后续反应,可保证制备得到大小可控、纯度较高、质量稳定的碱式碳酸铜。
具体的,将所述氢氧化铜与水混合得到前驱体料浆,制备前驱体料浆,目的是为后续反应提供液态反应体系。在后续通入二氧化碳气体反应的过程中,使二氧化碳气体与液体料浆形成气液接触,提高反应速度,同时保证二氧化碳气体与料将充分发生反应。其中,将所述氢氧化铜与水混合得到前驱体料浆的步骤中,所述混合的包括但不限于搅拌等形式,保证氢氧化铜与水混合均匀,使氢氧化铜均匀分撒在前驱体料浆中,有利于后续反应。
其中,所述氢氧化铜与水的质量比为1:(3.5~20)。在一些实施例中,当添加的氢氧化铜为工业级氢氧化铜,所述氢氧化铜与水的质量比为1:(10~20),以较多的水混合工业级氢氧化铜粉末,以保证制备得到的前驱体料浆浓稠度适中,有利于后续反应。若添加的水过量,制备得到的前驱体料浆中氢氧化铜含量较低,则反应过程中造成制备得到的产品碱式碳酸铜产率较低;若添加的水过少,则制备得到的氢氧化铜料浆流动性较差,当通入二氧化碳气体之后,二氧化碳气体与氢氧化铜不易进行充分接触,导致反应时间过长。
在一些实施例中,当添加的氢氧化铜为由工业级含铜废料制备得到的氢氧化铜,且工业级含铜废料制备得到的氢氧化铜的含水率为15%~40%时,所述氢氧化铜与水的质量比为1:(3.5~10),此时,由于工业级含铜废料制备得到的氢氧化铜本身含有一定的水分,因此添加较少质量的水,就能够保证制备得到的前驱体料浆浓稠度适中,有利于后续反应。若添加的水过量,制备得到的前驱体料浆中氢氧化铜含量较低,则制备得到的产品碱式碳酸铜产率较低;若添加的水过少,则制备得到的氢氧化铜料浆流动性较差,当通入二氧化碳气体之后,二氧化碳气体与氢氧化铜不易进行充分接触,导致反应时间过长。
在上述步骤S02中,提供促进剂,在所述前驱体料浆中加入所述促进剂混合得到第一混合物。在所述前驱体料浆中加入促进剂,促进剂在前驱体料浆中促进氢氧化铜与通入的二氧化碳快速进行作用,制备得到碱式碳酸铜,提高了反应效率。
其中,所述促进剂选择氨水、铵盐的至少一种。在一些实施例中,所述促进剂为氨水。氨水的主要成分为NH 3·H 2O,是氨的水溶液,选择氨水作为促进剂参与反应,氨水起到一定的催化作用,能够催化氢氧化铜与通入的二氧化碳快速进行作用,同时所述氨水能够起到一定的活化作用,保证反应效果较好,提高了反应效率。
在一些实施例中,所述促进剂选择铵盐。铵盐是指氨与酸反应的生成物,是由铵离子和酸根离子构成的离子化合物。添加铵盐化合物作为促进剂参与反应,铵盐化合物起到一定的催化作用,能够催化氢氧化铜与通入的二氧化碳快速进行作用,同时所述铵盐化合物能够起到一定的活化作用,保证反应效果较好,提高了反应效率。
所述铵盐选自四甲基氢氧化铵、碳酸氢铵、碳酸铵、四甲基碳酸氢铵、三乙基甲基碳酸铵及三丁基甲基碳酸铵盐的至少一种。在本申请实施例中,所述铵盐选自碳酸氢铵、碳酸铵及四甲基碳酸氢铵的至少一种。选择上述铵盐化合物作为促进剂进行添加,有利于提高反应速率,同时能制备得到高纯度的碱式碳酸铜。
具体的,在所述前驱体料浆中加入所述促进剂混合得到第一混合物,所述混合的包括但不限于搅拌等形式,保证促进剂与前驱体料浆混合均匀,使促进剂均匀分撒在前驱体料浆中制备得到第一混合物,有利于后续反应。
其中,以所述第一混合物的质量为100%,所述促进剂的添加量为0.04%~1.0%。保证促进剂的添加量为0.0%~1.0%,有利于促进氢氧化铜与二氧化碳气体反应,若促进剂的添加量过少,则影响反应速率,使反应速率较低。
在上述步骤S03中,在所述第一混合物中通入二氧化碳气体进行反应得到碱式碳酸铜粗制品。
具体的,以二氧化碳气体为碳源,以气体作为原材料进行反应,能够充分与固体原料进行混合,避免引入杂质保证产品的高纯度,同时能提高反应效率且符合节能环保的要求;通入二氧化碳气体之后,二氧化碳气体迅速与氢氧化铜进行作用,快速制备得到碱式碳酸铜,提高了反应效率。本申请以氢氧化铜和二氧化碳为原材料,在促进剂的作用下反应,生成碱式碳酸铜,该制备方法的反应式如下:
2Cu(OH) 2+CO 2→CuCO 3·Cu(OH) 2+H 2O;
由上述反应式可得,制备过程中没有引入其他杂质,可制备得到高纯度的碱式碳酸铜产品。
所述第一混合物中通入二氧化碳气体进行反应的步骤中,所述反应的反应条件为:反应温度为5~50℃,反应体系的压强为1~4×10 5 Pa,在上述反应条件下,通入二氧化碳气体与第一混合物中的氢氧化铜进行反应,生成碱式碳酸铜。其中,所述反应的反应时间为2~16小时。
其中,在所述第一混合物中通入二氧化碳气体进行反应之后,还包括:停止通入二氧化碳气体,继续反应10~100分钟。继续反应的目的是将体系中未完全反应的二氧化碳和氢氧化铜进行反应,保证系统中的反应物反应完全,提高反应效率。在上述反应时间内进行继续反应,可保证将反应体系中的原材料反应完全,提高反应效率以及保证产品产率较高。
在一些实施例中,停止通入二氧化碳气体,保持与所述反应相同的反应条件,继续反应10~100分钟。在另一些实施例中,停止通入二氧化碳气体,包括但不限于进行加热处理,继续反应10~100分钟。
在上述步骤S04中,将所述碱式碳酸铜粗制品进行纯化处理得到所述碱式碳酸铜。制备得到碱式碳酸铜粗制品之后进行纯化处理,保证了制备得到的高纯度且质量稳定的碱式碳酸铜,且该制备方法速度快、效率高、符合节能环保的要求,同时此制备方法条件可控,设备要求低,有利于工业化生产。
其中,将所述碱式碳酸铜粗制品进行纯化处理的步骤中,所述纯化处理的方法包括将碱式碳酸铜粗制品进行过滤、洗涤、干燥处理。
将所述碱式碳酸铜粗制品进行过滤,目的是使制备得到的碱式碳酸铜与溶液分离,以得到碱式碳酸铜粗制品固体。所述过滤的方法包括但不限于离心过滤法,真空过滤法等方法,能达到固液分离的效果即可。
将进行过滤得到的碱式碳酸铜粗制品固体进行洗涤,目的是去除产品表面黏附的杂质。在本申请实施例中,采用纯水对碱式碳酸铜粗制品固体进行三次洗涤,保证能够去除碱式碳酸铜粗制品固体表面的杂质。
将进行洗涤得到的碱式碳酸铜粗制品固体进行干燥,制备得到所述碱式碳酸铜。进行干燥处理,保证制备得到的碱式碳酸铜产品纯度较高。其中,所述干燥的温度为50~200℃,所述干燥的时间为20分钟~15小时。
所述碱式碳酸铜的制备方法原料简易获得,在反应过程中未引入杂质离子,同时此制备方法条件可控,制备得到纯度高、大小均匀可控、质量稳定的碱式碳酸铜,该制备方法速度快、效率高、符合节能环保的要求,设备要求低,有利于工业化生产。
相应的,本申请实施例还提供了一种碱式碳酸铜,所述碱式碳酸铜是由上述碱式碳酸铜的制备方法制备得到,其中,所述碱式碳酸铜的纯度较高,纯度达到99.0%以上;该方法以氢氧化铜和二氧化碳作为制备原料,在反应过程中不会引入杂质离子,保证了碱式碳酸铜的纯度较高,纯度达到99.0%以上,同时也能保证制备得到的碱式碳酸铜质量稳定,应用广泛。
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
实施例 1
一种碱式碳酸铜的制备方法
以酸性含铜蚀刻废液为原料,经除杂精制,与碱通过控制结晶的方式,制得78.0g含水19.0%的氢氧化铜,与1170.0ml的纯水混合于2000.0ml高压反应釜中得到前驱体料浆;
提供促进剂氨水,在所述前驱体料浆中加入3.5ml氨水混合得到第一混合物;
在所述第一混合物中通入二氧化碳气体,在压强3.8×10 5Pa,22.0℃条件下进行反应8.0小时;反应后,停止通入二氧化碳气体,在上述相同的条件下继续反应30分钟得到碱式碳酸铜粗制品;
将所述碱式碳酸铜粗制品进行过滤、洗涤、在105℃的条件下干燥处理2小时,制备得到所述碱式碳酸铜。
实施例2
一种碱式碳酸铜的制备方法
以酸碱含铜蚀刻废液为原料,经除杂精制,与碱通过控制结晶的方式,制得310g含水36.0%的氢氧化铜,与1000.0ml的纯水混合于2000.0ml高压反应釜中得到前驱体料浆;
提供促进剂碳酸铵,在所述前驱体料浆中加入6.5g碳酸铵混合得到第一混合物;
在所述第一混合物中通入二氧化碳气体,在压强1.5×10 5Pa,35.0℃条件下进行反应6.0小时;反应后,停止通入二氧化碳气体,在上述相同的条件下继续反应60分钟得到碱式碳酸铜粗制品;
将所述碱式碳酸铜粗制品进行过滤、洗涤、在150℃的条件下干燥处理40分钟,制备得到所述碱式碳酸铜。
实施例3
一种碱式碳酸铜的制备方法
以硝酸铜废液为原料,经除杂精制,与碱通过控制结晶的方式,制得62.0g含水26.5%的氢氧化铜,与1200.0ml的纯水混合于2000.0ml高压反应釜中得到前驱体料浆;
提供促进剂碳酸氢铵,在所述前驱体料浆中加入9.8g 碳酸氢铵混合得到第一混合物;
在所述第一混合物中通入二氧化碳气体,在压强1.1×10 5 Pa,42.0℃条件下进行反应4.5小时;反应后,停止通入二氧化碳气体,在上述相同的条件下继续反应15分钟得到碱式碳酸铜粗制品;
将所述碱式碳酸铜粗制品进行过滤、洗涤、在80℃的条件下干燥处理6小时,制备得到所述碱式碳酸铜。
实施例4
一种碱式碳酸铜的制备方法
以硫酸铜废液为原料,经除杂精制,与碱通过控制结晶的方式,制得230.0g含水20.3%的氢氧化铜,与1150.0ml的纯水混合于2000.0ml高压反应釜中得到前驱体料浆;
提供促进剂,在所述前驱体料浆中加入含氨18.0%的30.0ml的氨水及7.5g碳酸铵的混合物混合得到第一混合物;
在所述第一混合物中通入二氧化碳气体,在压强2.0×10 5Pa,10.0℃条件下进行反应15.0小时;反应后,停止通入二氧化碳气体,在上述相同的条件下继续反应90分钟得到碱式碳酸铜粗制品;
将所述碱式碳酸铜粗制品进行过滤、洗涤、在180℃的条件下干燥处理20分钟,制备得到所述碱式碳酸铜。
实施例5
一种碱式碳酸铜的制备方法
以155 g高纯氢氧化铜作为原料,与1250.0ml的纯水混合于2000.0ml高压反应釜中得到前驱体料浆;
提供促进剂,在所述前驱体料浆中加入4.3g碳酸铵及4.3g碳酸氢铵的混合物混合得到第一混合物;
在所述第一混合物中通入二氧化碳气体,在压强3.0×10 5Pa,18.0℃条件下进行反应12.0小时;反应后,停止通入二氧化碳气体,在上述相同的条件下继续反应80分钟得到碱式碳酸铜粗制品;
将所述碱式碳酸铜粗制品进行过滤、洗涤、在55℃的条件下干燥处理14小时,制备得到所述碱式碳酸铜。
实施例6
一种碱式碳酸铜的制备方法
以醋酸铜废液为原料,经除杂精制,与碱通过控制结晶的方式,制得105.0g含水24.7%的氢氧化铜,与1050.0ml的纯水混合于2000.0ml高压反应釜中得到前驱体料浆;
提供促进剂,在所述前驱体料浆中加入0.7g四甲基碳酸氢铵混合得到第一混合物;
在所述第一混合物中通入二氧化碳气体,在压强2.2×10 5Pa,27.0℃条件下进行反应10.0小时;反应后,停止通入二氧化碳气体,在上述相同的条件下继续反应45分钟得到碱式碳酸铜粗制品;
将所述碱式碳酸铜粗制品进行过滤、洗涤、在125℃的条件下干燥处理1.5小时,制备得到所述碱式碳酸铜。
结果分析
对实施例1和实施例2制备得到的氢氧化铜进行扫描电镜(SEM)分析及X射线衍射仪(XRD)分析;对实施例1和实施例2制备得到的碱式碳酸铜进行扫描电镜(SEM)分析,X射线衍射仪(XRD)分析以及产品差热分析,其结果如下:
如图1所示,对实施例1制备得到的氢氧化铜进行扫描电镜(SEM)分析,图1显示的是2.0KX的图像,从图1中可得,实施例1制备得到的氢氧化铜纯度较高,表面光滑,粒子大小均匀。同时,根据图5所示的氢氧化铜的XRD图分析可得,与氢氧化铜标准卡片进行比较,可得到实施例1制备得到的粗产品为氢氧化铜;对实施例1制备得到的碱式碳酸铜进行扫描电镜(SEM)分析,图3显示的是20.0KX的图像,从图3中可得,实施例1制备得到的氢氧化铜纯度较高,表面光滑,粒子大小均匀。同时,根据图6所示的碱式碳酸铜的XRD图分析可得,与碱式碳酸铜标准卡片进行比较,可得到实施例1制备得到的产品为碱式碳酸铜;再对所述碱式碳酸铜进行产品差热分析,从图7数据分析可得,实施例1制备得到的产品为碱式碳酸铜。
如图2所示,对实施例2制备得到的氢氧化铜进行扫描电镜(SEM)分析,图2显示的是4.0KX的图像,从图2中可得,实施例2制备得到的氢氧化铜纯度较高,表面光滑,没有附着杂质。同时,根据图5所示的氢氧化铜的XRD图分析可得,与氢氧化铜标准卡片进行比较,可得到实施例2制备得到的粗产品为氢氧化铜;对实施例2制备得到的碱式碳酸铜进行扫描电镜(SEM)分析,图4显示的是40.0KX的图像,从图4中可得,实施例2制备得到的氢氧化铜纯度较高,表面光滑,没有附着杂质。同时,根据图6所示的碱式碳酸铜的XRD图分析可得,与碱式碳酸铜标准卡片进行比较,可得到实施例2制备得到的产品为碱式碳酸铜;再对所述碱式碳酸铜进行产品差热分析,从图8数据分析可得,实施例2制备得到的产品为碱式碳酸铜。
对实施例1~6制备得到的碱式碳酸铜的纯度进行检验,发现实施例1~6制备得到的碱式碳酸铜的纯度均达到99.0%以上。由此可得,利用本申请的制备方法制备得到的碱式碳酸铜的纯度较高,纯度均超过99.0%,同时也能保证制备得到的碱式碳酸铜质量稳定,应用广泛。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (14)

  1. 一种碱式碳酸铜的制备方法,其特征在于,所述制备方法包括如下步骤:
    提供氢氧化铜,将所述氢氧化铜与水混合得到前驱体料浆;
    提供促进剂,在所述前驱体料浆中加入所述促进剂混合得到第一混合物;
    在所述第一混合物中通入二氧化碳气体进行反应得到碱式碳酸铜粗制品;
    将所述碱式碳酸铜粗制品进行纯化处理得到所述碱式碳酸铜。
  2. 根据权利要求1所述的碱式碳酸铜的制备方法,其特征在于,所述氢氧化铜选自工业级氢氧化铜或由工业级含铜废料制备得到的氢氧化铜。
  3. 根据权利要求2所述的碱式碳酸铜的制备方法,其特征在于,所述由工业级含铜废料制备得到的氢氧化铜的含水率为15%~40%。
  4. 根据权利要求2或3所述的碱式碳酸铜的制备方法,其特征在于,所述工业级含铜废液选自工业级含铜蚀刻废液、工业级硝酸铜废液及工业级退锡废液的任意一种。
  5. 根据权利要求1~3所述的碱式碳酸铜的制备方法,其特征在于,所述氢氧化铜与水的质量比为1:(3.5~20)。
  6. 根据权利要求1~3所述的碱式碳酸铜的制备方法,其特征在于,所述促进剂选择氨水、铵盐的至少一种。
  7. 根据权利要求6所述的碱式碳酸铜的制备方法,其特征在于,所述铵盐选自四甲基氢氧化铵、碳酸氢铵、碳酸铵、四甲基碳酸氢铵、三乙基甲基碳酸铵及三丁基甲基碳酸铵盐的至少一种。
  8. 根据权利要求7所述的碱式碳酸铜的制备方法,其特征在于,所述铵盐选自碳酸氢铵、碳酸铵及四甲基碳酸氢铵的至少一种。
  9. 根据权利要求1~3、7、8任一所述的碱式碳酸铜的制备方法,其特征在于,以所述第一混合物的质量为100%,所述促进剂的添加量为0.04‰~1.0%。
  10. 根据权利要求1~3、7、8任一所述的碱式碳酸铜的制备方法,其特征在于,所述第一混合物中通入二氧化碳气体进行反应的步骤中,所述反应的反应条件为:反应温度为5~50℃,反应体系的压强为1~4×10 5 Pa。
  11. 根据权利要求1~3、7、8任一所述的碱式碳酸铜的制备方法,其特征在于,所述第一混合物中通入二氧化碳气体进行反应的步骤中,所述第一反应的反应时间为2~16小时。
  12. 根据权利要求1~3、7、8任一所述的碱式碳酸铜的制备方法,其特征在于,在所述第一混合物中通入二氧化碳气体进行反应之后,还包括:停止通入二氧化碳气体,继续反应10~100分钟。
  13. 根据权利要求1~3、7、8任一所述的碱式碳酸铜的制备方法,其特征在于,将所述碱式碳酸铜粗制品进行纯化处理的步骤中,所述纯化处理的方法包括将碱式碳酸铜粗制品进行过滤、洗涤、干燥处理。
  14. 一种碱式碳酸铜,其特征在于,所述碱式碳酸铜由上述权利要求1~13任一所述的碱式碳酸铜的制备方法制备得到。
PCT/CN2019/129763 2019-12-30 2019-12-30 碱式碳酸铜的制备方法 WO2021134159A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980003385.8A CN111132932A (zh) 2019-12-30 2019-12-30 碱式碳酸铜的制备方法
PCT/CN2019/129763 WO2021134159A1 (zh) 2019-12-30 2019-12-30 碱式碳酸铜的制备方法
US17/298,848 US20220324718A1 (en) 2019-12-30 2019-12-30 Method for preparing basic copper carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/129763 WO2021134159A1 (zh) 2019-12-30 2019-12-30 碱式碳酸铜的制备方法

Publications (1)

Publication Number Publication Date
WO2021134159A1 true WO2021134159A1 (zh) 2021-07-08

Family

ID=70507775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129763 WO2021134159A1 (zh) 2019-12-30 2019-12-30 碱式碳酸铜的制备方法

Country Status (3)

Country Link
US (1) US20220324718A1 (zh)
CN (1) CN111132932A (zh)
WO (1) WO2021134159A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114195315A (zh) * 2021-12-30 2022-03-18 江苏维达环保科技有限公司 一种酸性和非酸性含铜蚀刻废液、退锡废液及硝酸铜废液合并处理方法
CN116022838A (zh) * 2022-12-15 2023-04-28 广东臻鼎环境科技有限公司 一种利用线路板酸性蚀刻废液回收铜资源的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101428841A (zh) * 2007-11-05 2009-05-13 沈祖达 碱式碳酸铜制备方法
US20090324481A1 (en) * 2008-06-27 2009-12-31 Jeff Miller Low energy method of preparing basic copper carbonates
CN103043701A (zh) * 2012-12-21 2013-04-17 泰兴冶炼厂有限公司 一种制备高纯碱式碳酸铜的方法
TW201343560A (zh) * 2012-04-25 2013-11-01 Amia Co Ltd 溶解銅及製備銅鹽之方法
CN104891551A (zh) * 2014-03-04 2015-09-09 金居开发铜箔股份有限公司 氧化铜的制造方法及氧化铜的制造设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1296642A (fr) * 1961-05-08 1962-06-22 Roussel Uclaf Préparation cuivrique pour usage agricole
RU2225360C1 (ru) * 2003-02-25 2004-03-10 Соколов Валерий Васильевич Малахит и способ его получения
TWI486312B (zh) * 2010-01-12 2015-06-01 Amia Co Ltd 自含銅廢液回收銅之方法
CN106430330A (zh) * 2016-07-26 2017-02-22 广东环境保护工程职业学院 一种钴氧化物粉末的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101428841A (zh) * 2007-11-05 2009-05-13 沈祖达 碱式碳酸铜制备方法
US20090324481A1 (en) * 2008-06-27 2009-12-31 Jeff Miller Low energy method of preparing basic copper carbonates
TW201343560A (zh) * 2012-04-25 2013-11-01 Amia Co Ltd 溶解銅及製備銅鹽之方法
CN103043701A (zh) * 2012-12-21 2013-04-17 泰兴冶炼厂有限公司 一种制备高纯碱式碳酸铜的方法
CN104891551A (zh) * 2014-03-04 2015-09-09 金居开发铜箔股份有限公司 氧化铜的制造方法及氧化铜的制造设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, JIAWEI ET AL.: "Copper Hydroxide", CONCISE DICTIONARY OF CHEMISTRY, 31 July 1987 (1987-07-31), CN, pages 99, XP009528940, ISBN: 7543407221 *
LI WUKE, SONG DANDAN, WAN JIAN, ETC.: "6.11-Preparation of basic copper carbonate - design experiment", BASIC CHEMISTRY EXPERIMENT COURSE (2ND ED, 1ST PR.), 31 August 2014 (2014-08-31), CN, pages 245 - 246, XP009529155, ISBN: 978-7-5622-6763-8 *
ZHAO, JINAN ET AL.: "Experiment 23, Preparation of Cupric Carbonate Basic", EXPERIMENTS OF INORGANIC AND ANALYTICAL CHEMISTRY, 31 October 2014 (2014-10-31), CN, pages 127 - 128, XP009528942, ISBN: 978-7-5646-2495-8 *

Also Published As

Publication number Publication date
US20220324718A1 (en) 2022-10-13
CN111132932A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
CN103922416A (zh) 一种从赤泥中分离回收铁的方法
WO2021134159A1 (zh) 碱式碳酸铜的制备方法
JP2015165800A (ja) 一価のコハク酸塩の製造方法
CN112225235A (zh) 一种从硫酸钠制备碳酸氢钠和硫酸氢钠的方法
CN111634928A (zh) 一种二次碳化法制备大颗粒小苏打的方法及所得的小苏打
CN104591234A (zh) 由工业氢氧化镁制备轻质碳酸镁的工艺
JP2002518281A (ja) 硫酸カリウムの製造法
CN102381958A (zh) 氨循环制备草酸钴的方法
CN109504120A (zh) 一种高纯度铜酞菁的清洁化生产方法
CN101700899A (zh) 一种高纯片状氢氧化镁的生产制备工艺
CN109665549A (zh) 一种利用二氧化碳制备钙铝水滑石的工艺
CN113830806A (zh) 一种母液循环制备镁铝水滑石的方法
CN114272914B (zh) 一种锂吸附剂、膜元件、其制备方法及锂提取方法与装置
CN1736870A (zh) 硝酸转化法制取硝酸钾方法
CN108395643B (zh) 用于pvc热稳定剂的改性水铝钙石及其清洁制备方法
CN109052477A (zh) 一种用于制备仲钨酸铵的钨酸钠制备工艺
CN107442107B (zh) 一种二氧化锰-阴离子粘土复合材料及其制备方法与应用
CN1673083A (zh) 一种制取硝酸钾和氯化镁的工艺方法
CN1108987C (zh) 用硼镁矿制取硼酸联产碳酸镁的方法
CN104628033A (zh) 一种偏钒酸盐的制备方法
CN113896214A (zh) 一种硫酸锂溶液吸附碳化制备高纯碳酸锂的方法
CN109761865B (zh) 一种硫脲的绿色制备方法
CN106881108A (zh) 一种笑气分解催化剂制备方法
CN113509922A (zh) 一种用于合成脂肪族碳酸酯的催化剂及其制备方法和应用
CN113149084A (zh) 一种超细氧化钴的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19958563

Country of ref document: EP

Kind code of ref document: A1