WO2021132537A1 - 硫化物固体電解質及びその製造方法 - Google Patents

硫化物固体電解質及びその製造方法 Download PDF

Info

Publication number
WO2021132537A1
WO2021132537A1 PCT/JP2020/048632 JP2020048632W WO2021132537A1 WO 2021132537 A1 WO2021132537 A1 WO 2021132537A1 JP 2020048632 W JP2020048632 W JP 2020048632W WO 2021132537 A1 WO2021132537 A1 WO 2021132537A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
sulfide solid
less
mol
raw material
Prior art date
Application number
PCT/JP2020/048632
Other languages
English (en)
French (fr)
Inventor
祐輝 中山
崇広 伊藤
高橋 司
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=76575980&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2021132537(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to CN202080008256.0A priority Critical patent/CN113348577A/zh
Priority to KR1020217020171A priority patent/KR102410967B1/ko
Priority to JP2021512815A priority patent/JP6952216B1/ja
Priority to US17/606,776 priority patent/US11990583B2/en
Priority to EP20904438.7A priority patent/EP4084113A4/en
Publication of WO2021132537A1 publication Critical patent/WO2021132537A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • C01B25/081Other phosphides of alkali metals, alkaline-earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sulfide solid electrolyte, an electrode mixture using the sulfide solid electrolyte, a slurry and a battery, and a method for producing the sulfide solid electrolyte.
  • the safety device can be simplified, the manufacturing cost and productivity are excellent, and the voltage can be increased by stacking in series in the cell. It also has features. Since the sulfide solid electrolyte used in the solid-state battery does not move other than lithium ions, it is expected to lead to improvement in safety and durability, such as no side reaction due to the movement of anions.
  • a sulfide solid electrolyte As a sulfide solid electrolyte, a sulfide solid electrolyte containing an Argyrodite type crystal phase is known (for example, Patent Documents 1 to 5).
  • Patent Document 6 describes a production method for obtaining a sulfide solid electrolyte having a median diameter D 50 of 2.1 ⁇ m to 4.5 ⁇ m.
  • Japanese Unexamined Patent Publication No. 2001-250580 Japanese Unexamined Patent Publication No. 2016-024874 Japanese Unexamined Patent Publication No. 2010-033732 Japanese Unexamined Patent Publication No. 2011-044249 Japanese Unexamined Patent Publication No. 2012-043646 JP-A-2019-036536
  • the sulfide solid electrolyte is uniformly distributed inside the positive and negative electrodes, and in order to realize such a uniform distribution of the sulfide solid electrolyte. It is preferable to reduce the particle size of the sulfide solid electrolyte.
  • the particle size of the sulfide solid electrolyte can be reduced by pulverizing the sulfide solid electrolyte.
  • pulverization produces particles with a distorted shape and secondary particles in which fine powder generated during pulverization is aggregated, so that the specific surface area of the sulfide solid electrolyte increases and the amount of solvent adsorbed on the particle surface increases.
  • the viscosity of the slurry containing the sulfide solid electrolyte increases. Therefore, in order to adjust the viscosity of the slurry, a large amount of solvent is required, the cost increases, and the productivity of the battery decreases. Therefore, it is required to reduce the particle size of the sulfide solid electrolyte and the specific surface area.
  • the present invention provides a sulfide solid electrolyte having a small particle size and a low specific surface area, an electrode mixture using the sulfide solid electrolyte, a slurry and a battery, and a method for producing the sulfide solid electrolyte. With the goal.
  • the median diameter D 50 which is the particle size at which the cumulative volume is 50% by volume in the volume-based particle size distribution measured by the laser diffraction scattering type particle size distribution measurement method, is 0.10 ⁇ m or more and 2.0 ⁇ m or less.
  • (A ⁇ B) / C [In the formula, A represents the BET specific surface area (m 2 / g), B represents the true density (g / cm 3 ), and C represents the CS value (m 2 / cm 3 ).
  • the method according to the above method which comprises a step of pulverizing a pulverized body in which 50 is 0.10 ⁇ m or more and 2.0 ⁇ m or less.
  • [6] The method for producing the sulfide solid electrolyte according to the above [1], wherein the following step: (2-1) Raw material powder containing lithium (Li) element, phosphorus (P) element and sulfur (S) element, the median diameter D 50 is 0.10 ⁇ m or more and 2.0 ⁇ m or less, and D 95 is 0.
  • the heat-treated body obtained by heat-treating the raw material powder has a median diameter D 50 of 0.10 ⁇ m or more and 2.0 ⁇ m or less.
  • the method according to the above method which comprises a step of pulverizing the pulverized product so as to obtain the pulverized product.
  • the present invention provides a sulfide solid electrolyte having a small particle size and a low specific surface area, an electrode mixture using the sulfide solid electrolyte, a slurry and a battery, and a method for producing the sulfide solid electrolyte.
  • FIG. 1 is a process diagram showing an example of the method for producing a sulfide solid electrolyte of the present invention (first embodiment).
  • FIG. 2 is a process diagram showing an example of the process (1-1) in the first embodiment.
  • FIG. 3 is a process diagram showing an example of the method for producing a sulfide solid electrolyte of the present invention (second embodiment).
  • FIG. 4 is a diagram showing an X-ray diffraction pattern of the sulfide solid electrolyte produced in Examples 1 to 4.
  • a powder is an aggregate of particles.
  • D 10 , D 50 and D 95 For a powder, D 10 , D 50 and D 95 of the powder have cumulative volumes of 10%, 50% and, respectively, in the volume-based particle size distribution of the powder measured by the laser diffraction scattering particle size distribution measurement method. The particle size is 95%, and the unit is ⁇ m. The measurements of D 10 , D 50 and D 95 are carried out, for example, according to the conditions described in the Examples. D 50 is generally referred to as a median diameter.
  • the BET specific surface area of the powder is the specific surface area of the powder measured by a gas adsorption method using nitrogen gas, and the unit is m 2 / g.
  • the BET specific surface area is measured, for example, according to the conditions described in Examples.
  • the true density of the powder is the density of the powder as measured by the pycnometer method, in units of g / cm 3 .
  • the measurement of true density is performed, for example, according to the conditions described in Examples.
  • the CS value of the powder is the surface area per unit volume of the powder when the shape of the particles constituting the powder is assumed to be spherical, and the unit is m 2 / cm 3 .
  • MA is an area average particle diameter ( ⁇ m)
  • MA ( ⁇ m) ⁇ Vi / ⁇ (Vi / di) [In the formula, Vi is the frequency and di is the median value of the particle size classification. ] Is required.
  • the measurement of the CS value is performed, for example, according to the conditions described in the examples.
  • the sulfide solid electrolyte of the present invention contains a lithium (Li) element, a phosphorus (P) element and a sulfur (S) element.
  • lithium (Li) element, phosphorus (P) element and sulfur (S) element in the sulfide solid electrolyte of the present invention can be appropriately adjusted.
  • the content of the lithium (Li) element is preferably 41 mol based on the total molar amount of the constituent elements of the sulfide solid electrolyte of the present invention. % Or more and 50 mol% or less, still more preferably 41 mol% or more and 48 mol% or less, even more preferably 42 mol% or more and 47 mol% or less, and even more preferably 43 mol% or more and 45 mol% or less.
  • the content of the phosphorus (P) element is preferably 7. based on the total molar amount of the constituent elements of the sulfide solid electrolyte of the present invention. 0 mol% or more and 20 mol% or less, still more preferably 7.2 mol% or more and 18 mol% or less, even more preferably 7.5 mol% or more and 16 mol% or less, still more preferably 7.7 mol% or more and 12 mol. % Or less.
  • the content of the sulfur (S) element is preferably 31 mol based on the total molar amount of the constituent elements of the sulfide solid electrolyte of the present invention. % Or more and 43 mol% or less, still more preferably 32 mol% or more and 42 mol% or less, even more preferably 33 mol% or more and 40 mol% or less, and even more preferably 34 mol% or more and 38 mol% or less.
  • the content of lithium (Li) element relative to the content of phosphorus (P) element (content of lithium (Li) element / phosphorus (P) element).
  • the ratio of the content) is preferably 4.8 or more and 7.0 or less, more preferably 5.0 or more and 6.4 or less, and even more preferably 5.2 or more and 5.8 or less in terms of molar ratio.
  • the content of sulfur (S) element with respect to the content of phosphorus (P) element (content of sulfur (S) element / phosphorus (P) element).
  • the ratio of (content) is preferably 3.6 or more and 6.0 or less, more preferably 4.0 or more and 5.0 or less, and even more preferably 4.2 or more and 4.6 or less in terms of molar ratio.
  • the sulfide solid electrolyte of the present invention contains fluorine (F) element, chlorine (Cl) element, bromine (Br) element and iodine (I) element. It is preferable to further contain at least one halogen (X) element selected from, and it is further preferable to further contain at least one halogen (X) element selected from chlorine (Cl) element and bromine (Br) element.
  • the content of the halogen (X) element can be adjusted as appropriate.
  • the content of the halogen (X) element is preferably based on the total molar amount of the constituent elements of the sulfide solid electrolyte of the present invention. 7 mol% or more and 19 mol% or less, more preferably 4.0 mol% or more and 17 mol% or less, further preferably 8.0 mol% or more and 15 mol% or less, still more preferably 10 mol% or more and 14 mol% or less.
  • the "content of halogen (X) elements" is the total content of the two or more kinds of halogen (X) elements. means.
  • the content of halogen (X) element with respect to the content of phosphorus (P) element is preferably 0.50 or more and 2.1 or less, more preferably 0.80 or more and 2.0 or less, and even more preferably 1.2 or more and 1.8 or less in terms of molar ratio.
  • the sulfide solid electrolyte of the present invention is referred to as one or more elements other than lithium (Li) element, phosphorus (P) element, sulfur (S) element and halogen (X) element (hereinafter referred to as "other elements”. ) May be included.
  • other elements include silicon (Si) element, germanium (Ge) element, tin (Sn) element, lead (Pb) element, boron (B) element, aluminum (Al) element, gallium (Ga) element, and the like.
  • Examples thereof include arsenic (As) element, antimony (Sb) element, and bismuth (Bi) element.
  • the total molar amount of the constituent elements of the sulfide solid electrolyte of the present invention and the molar amount of each element are measured by inductively coupled plasma of the element amount in the solution obtained by dissolving the sulfide solid electrolyte of the present invention by alkaline melting or the like. It can be carried out by measurement using a known method such as inductively coupled spectrometry (ICP-AES).
  • ICP-AES inductively coupled spectrometry
  • the sulfide solid electrolyte of the present invention contains a crystal phase having an algyrodite type crystal structure (hereinafter, may be referred to as "algirodite type crystal phase"). Is preferable.
  • the algyrodite type crystal structure is a crystal structure possessed by a group of compounds derived from a mineral represented by the chemical formula: Ag 8 GeS 6.
  • the algyrodite type crystal structure is preferably cubic.
  • the expression "the sulfide solid electrolyte of the present invention contains an algyrodite type crystal phase” means that the sulfide solid electrolyte of the present invention is composed of an algyrodite type crystal phase, and the sulfide solid electrolyte of the present invention , Argyrodite type crystal phase and when it is composed of one or more other phases, it is used in the meaning of including both.
  • the other phase may be a crystalline phase or an amorphous phase.
  • Other phases for example, Li 2 S-phase, LiCl phase, LiBr phase, LiBr x Cl 1-x phase (0 ⁇ x ⁇ 1), include Li 3 PS 4 equality.
  • the content ratio of the algyrodite type crystal phase may be, for example, 10% by mass or more, 20% by mass or more, or 50% by mass with respect to the total crystal phase constituting the sulfide solid electrolyte of the present invention. It may be% or more. Above all, it is preferable that the sulfide solid electrolyte of the present invention contains an algyrodite type crystal phase as a main phase.
  • the "main phase” refers to the phase having the largest ratio with respect to the total amount of all the crystal phases constituting the sulfide solid electrolyte of the present invention.
  • the content ratio of the algyrodite type crystal phase is preferably, for example, 60% by mass or more with respect to the total crystal phase constituting the sulfide solid electrolyte of the present invention. It is more preferably 70% by mass or more, 80% by mass or more, and 90% by mass or more.
  • the ratio of the crystal phase can be confirmed by, for example, XRD measurement.
  • the algyrodite type crystal phase is represented by the following formula (I): Li a PS b X c ... (I) It has a composition represented by.
  • X is at least one halogen element selected from fluorine (F) element, chlorine (Cl) element, bromine (Br) and iodine (I) element.
  • the iodine (I) element tends to reduce the lithium ion conductivity, and the fluorine (F) element is difficult to introduce into the algyrodite type crystal structure. Therefore, X is preferably at least one halogen element selected from chlorine (Cl) element and bromine (Br) element.
  • a is preferably 3.0 or more and 6.5 or less, more preferably 3.5 or more and 6.3 or less, and even more preferably 4. It is 0 or more and 6.0 or less.
  • a is less than 3.0, the amount of Li in the algyrodite type crystal structure decreases, and the lithium ion conductivity decreases.
  • a exceeds 6.5, the number of pores in the Li site decreases, and the lithium ion conductivity decreases.
  • b is preferably 3.5 or more and 5.5 or less, more preferably 4.0 or more and 5.3 or less, and even more preferably 4. 2 or more and 5.0 or less.
  • c is preferably 0.10 or more and 3.0 or less, more preferably 0.50 or more and 2.5 or less, and even more preferably 1. It is 0 or more and 1.8 or less.
  • the algyrodite type crystal phase has the following formula (II): Li 7-d PS 6-d X d ... (II) It has a composition represented by.
  • the composition represented by the formula (II) is the stoichiometric composition of the algyrodite type crystal phase.
  • d is preferably 0.40 or more and 2.2 or less, more preferably 0.80 or more and 2.0 or less, and even more preferably 1. It is 2 or more and 1.8 or less.
  • a part of P is silicon (Si) element, germanium (Ge) element, tin (Sn) element, lead (Pb) element, boron (B) element, aluminum (Al). It may be substituted with one or more elements selected from elements, gallium (Ga) element, arsenic (As) element, antimony (Sb) element and bismus (Bi) element.
  • the formula (II) Li 7-d (P 1 -y M y) and S 6-d X d .
  • M is silicon (Si) element, germanium (Ge) element, tin (Sn) element, lead (Pb) element, boron (B) element, aluminum (Al) element, gallium (Ga) element, arsenic (As) element. , Antimon (Sb) element and Bismus (Bi) element selected from one or more elements.
  • y is preferably 0.010 or more and 0.70 or less, more preferably 0.020 or more and 0.40 or less, and even more preferably 0.050 or more and 0.20 or less.
  • the sulfide solid electrolyte of the present invention contains an algyrodite type crystal phase can be confirmed by an X-ray diffraction pattern measured using CuK ⁇ rays.
  • CuK ⁇ ray for example, CuK ⁇ 1 ray can be used.
  • 2 ⁇ 15.34 ° ⁇ 1.00 °, 17.74 ° ⁇ 1.00 °, 30.97 ° ⁇ 1.00 °, 44.37 ° ⁇ 1.00 °, 47.22 ° ⁇ 1.00
  • It is more preferred to have a peak at one or more positions selected from ° and 51.70 ° ⁇ 1.00 °, 2 ⁇ 25.19 ° ⁇ 1.00 ° and 29.62 ° ⁇ 1.00.
  • the position of the peak described above is represented by a median value of ⁇ 1.00 °, but the median value is preferably ⁇ 0.500 °, and more preferably the median value is ⁇ 0.300 °.
  • the sulfide solid electrolyte of the present invention is in the form of powder.
  • the D 50 of the sulfide solid electrolyte of the present invention is 0.10 ⁇ m or more and 2.0 ⁇ m or less, and the (A ⁇ B) / C value of the sulfide solid electrolyte of the present invention is 1.0 or more and 2.5 or less. Is.
  • the value of (A ⁇ B) / C is 1.0 or more and 2.5 or less, it means that the shape of the particles constituting the powder is close to a true sphere.
  • the sulfide solid electrolyte of the present invention has a low specific surface area due to its small particle size and its shape close to a true sphere.
  • the amount of solvent required for adjusting the viscosity of the slurry can be reduced. Further, it is possible to reduce the generation of hydrogen sulfide gas and the decrease in ionic conductivity due to the reaction between the sulfide solid electrolyte and the moisture in the atmosphere.
  • the sulfide solid electrolyte is uniformly distributed inside the positive and negative electrodes, and in order to realize such a uniform distribution of the sulfide solid electrolyte. It is preferable to reduce the particle size of the sulfide solid electrolyte.
  • the sulfide solid electrolyte of D 50 of the present invention is preferably 0.20 ⁇ m or 1.6 ⁇ m or less, more preferably 0.30 ⁇ m or 1.2 ⁇ m or less, 1.0 .mu.m and even more preferably 0.50 ⁇ m or more It is as follows.
  • the particle size of the sulfide solid electrolyte can be reduced by pulverizing the sulfide solid electrolyte.
  • pulverization produces particles with a distorted shape and secondary particles in which fine powder generated during pulverization is aggregated, so that the specific surface area of the sulfide solid electrolyte increases and the amount of solvent adsorbed on the particle surface increases.
  • the viscosity of the slurry containing the sulfide solid electrolyte increases. Therefore, in order to adjust the viscosity of the slurry, a large amount of solvent is required, the cost increases, and the productivity of the battery decreases.
  • the sulfide solid electrolyte reacts with moisture in the atmosphere, toxic hydrogen sulfide gas is generated, and the ionic conductivity is lowered by decomposition.
  • the reaction area between the sulfide solid electrolyte and the moisture in the atmosphere increases, and the amount of hydrogen sulfide gas generated and the decrease in ionic conductivity increase. Therefore, the cost of maintaining a low moisture environment during battery production increases, and the productivity of the battery decreases. Therefore, it is preferable that the shape of the sulfide solid electrolyte is close to that of a true sphere.
  • the value of (A ⁇ B) / C of the sulfide solid electrolyte of the present invention is preferably 1.2 or more and 2.3 or less, more preferably 1.4 or more and 2.2 or less, and even more preferably. It is 1.5 or more and 2.1 or less.
  • the sulfide solid electrolyte of the present invention has at least the following properties (D 10 , D 95 , BET specific surface area, true density and CS value). It is preferable to have one kind.
  • the D 10 of the sulfide solid electrolyte of the present invention is not particularly limited, but is preferably 0.10 ⁇ m or more and 1.0 ⁇ m from the viewpoint of uniformly distributing the sulfide solid electrolyte inside the positive and negative electrodes and obtaining good battery characteristics. Below, it is more preferably 0.20 ⁇ m or more and 0.80 ⁇ m or less, and even more preferably 0.30 ⁇ m or more and 0.60 ⁇ m or less.
  • the D 95 of the sulfide solid electrolyte of the present invention is not particularly limited, but is preferably 0.70 ⁇ m or more and 3.0 ⁇ m from the viewpoint of uniformly distributing the sulfide solid electrolyte inside the positive and negative electrodes and obtaining good battery characteristics.
  • it is more preferably 0.90 ⁇ m or more and 2.3 ⁇ m or less, and even more preferably 1.2 ⁇ m or more and 1.8 ⁇ m or less.
  • the BET specific surface area of the sulfide solid electrolyte of the present invention is not particularly limited, but from the viewpoint of further reducing the amount of solvent required for adjusting the viscosity of the slurry when producing a battery using a slurry containing the sulfide solid electrolyte. From the viewpoint of further reducing the generation of hydrogen sulfide gas and the decrease in ionic conductivity due to the reaction between the sulfide solid electrolyte and the moisture in the atmosphere, it is preferably 2.0 m 2 / g or more and 20 m 2 / g or less, and further. It is preferably 4.0 m 2 / g or more and 15 m 2 / g or less, and even more preferably 5.0 m 2 / g or more and 12 m 2 / g or less.
  • the true density of the sulfide solid electrolyte of the present invention is not particularly limited, but from the viewpoint of further reducing the amount of solvent required for adjusting the viscosity of the slurry when producing a battery using a slurry containing the sulfide solid electrolyte.
  • it is preferably 0.50 g / cm 3 or more and 4.0 g / cm 3 or less. More preferably, it is 0.60 g / cm 3 or more and 3.5 g / cm 3 or less, and even more preferably 0.70 g / cm 3 or more and 3.0 g / cm 3 or less.
  • the CS value of the sulfide solid electrolyte of the present invention is not particularly limited, but from the viewpoint of further reducing the amount of solvent required for adjusting the viscosity of the slurry when producing a battery using a slurry containing the sulfide solid electrolyte. From the viewpoint of further reducing the generation of hydrogen sulfide gas and the decrease in ionic conductivity due to the reaction between the sulfide solid electrolyte and the moisture in the atmosphere, it is preferably 1.0 m 2 / cm 3 or more and 20 m 2 / cm 3 or less. It is more preferably 2.0 m 2 / cm 3 or more and 15 m 2 / cm 3 or less, and even more preferably 3.0 m 2 / cm 3 or more and 12 m 2 / cm 3 or less.
  • the electrode mixture of the present invention contains the sulfide solid electrolyte of the present invention and an active material.
  • the electrode mixture of the present invention may be a negative electrode mixture or a positive electrode mixture.
  • the negative electrode mixture contains at least the negative electrode active material
  • the positive electrode mixture contains at least the positive electrode active material.
  • the electrode mixture may contain a solid electrolyte, a conductive auxiliary agent and a binder, if necessary.
  • the negative electrode active material examples include a carbon material, a metal material, and the like, and one of these can be used alone or in combination of two or more.
  • a general material can be appropriately used as the negative electrode active material, and thus the description thereof is omitted here.
  • the negative electrode active material preferably has electron conductivity.
  • the positive electrode active material is a substance capable of inserting and removing lithium ions, and can be appropriately selected from known positive electrode active materials.
  • Examples of the positive electrode active material include metal oxides and sulfides.
  • Examples of the metal oxide include transition metal oxides and the like.
  • electrode mixture can be the same as those for general electrode mixture, so the description here is omitted.
  • the slurry of the present invention contains the sulfide solid electrolyte of the present invention and a dispersion medium.
  • the content of the sulfide solid electrolyte of the present invention in the slurry of the present invention can be appropriately adjusted according to the use of the slurry of the present invention and the like.
  • the slurry of the present invention has various viscosities depending on the content of the sulfide solid electrolyte of the present invention, and takes various forms such as ink and paste depending on the viscosity.
  • the content of the sulfide solid electrolyte of the present invention in the slurry of the present invention is preferably 10% by mass or more and 90% by mass or less, more preferably 20% by mass or more and 80% by mass or less, based on the total mass of the slurry of the present invention. Even more preferably, it is 30% by mass or more and 70% by mass or less.
  • the dispersion medium contained in the slurry of the present invention is not particularly limited as long as it is a liquid capable of dispersing the sulfide solid electrolyte of the present invention.
  • examples of the dispersion medium include water, an organic solvent and the like.
  • the dispersion medium may be one kind of solvent or a mixture of two or more kinds of solvents.
  • the battery of the present invention is a battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer located between the positive electrode layer and the negative electrode layer, and the solid electrolyte layer contains the sulfide solid electrolyte of the present invention.
  • the positive electrode layer, the negative electrode layer, and the solid electrolyte layer can be the same as those of a general battery, and thus the description thereof is omitted here.
  • the battery of the present invention is preferably a solid-state battery, more preferably a lithium solid-state battery.
  • the lithium solid-state battery may be a primary battery or a secondary battery, but is preferably a lithium secondary battery.
  • the solid-state battery includes not only a solid-state battery containing no liquid substance or gel-like substance as an electrolyte, but also an embodiment containing, for example, 50% by mass or less, 30% by mass or less, 10% by mass or less of a liquid substance or gel-like substance as an electrolyte. To do.
  • Examples of the form of the solid-state battery include a laminated type, a cylindrical type, and a square type.
  • the manufacturing method according to the first embodiment includes the following steps: (1-1) A sulfide solid electrolyte containing a lithium (Li) element, a phosphorus (P) element, and a sulfur (S) element, wherein D 50 is 0.10 ⁇ m or more and 2.0 ⁇ m or less, and (A ⁇ B).
  • ) / C is a step of preparing a sulfide solid electrolyte having a value of more than 2.5 and not more than 5.0 as an intermediate; and (1-2) the intermediate prepared in step (1-1) is heat-treated. comprising the step of pulverizing the resultant heat-treated material, as grinding bodies D 50 is 0.10 ⁇ m or 2.0 ⁇ m or less is obtained.
  • the intermediate prepared in step (1-1) is a precursor of the sulfide solid electrolyte of the present invention, and by subjecting the intermediate to step (1-2), the sulfide solid electrolyte of the present invention Can be obtained.
  • the reason why the sulfide solid electrolyte having a small particle size and a reduced specific surface area can be obtained in the production method according to the first embodiment is as follows.
  • An intermediate having a value of more than 2.5 and 5.0 or less has a large specific surface area because it contains a large amount of particles and fine particles having a distorted shape.
  • the heat-treated body obtained by heat-treating the intermediate body becomes a structure in which particles close to true spheres are necked by sintering a part of the fine particles.
  • the necking surface is preferentially pulverized, so that the formation of particles and fine particles having a distorted shape is suppressed.
  • a sulfide solid electrolyte having a small particle size and a reduced specific surface area can be obtained.
  • the intermediate is a powder of the sulfide solid electrolyte, similar to the sulfide solid electrolyte of the present invention.
  • the composition of the intermediate can be appropriately adjusted in consideration of the composition of the sulfide solid electrolyte of the present invention.
  • the composition of the intermediate is usually the same as the composition of the sulfide solid electrolyte of the present invention.
  • the intermediate preferably contains an algyrodite type crystal phase.
  • the composition of the algyrodite type crystal phase contained in the intermediate can be appropriately adjusted in consideration of the composition of the algyrodite type crystal phase contained in the sulfide solid electrolyte of the present invention.
  • the description of the algyrodite type crystal phase contained in the intermediate can be the same as the above description of the sulfide solid electrolyte of the present invention, and thus the description thereof is omitted here.
  • the D 50 of the intermediate in the step (1-2) may be, for example, 0.20 ⁇ m or more and 1.8 ⁇ m or less, 0.30 ⁇ m or more and 1.4 ⁇ m or less, and 0.40 ⁇ m or more and 1.0 ⁇ m. It may be as follows.
  • the ratio of D 50 of the pulverized product to D 50 of the intermediate is preferably 0.10 or more and 10 or less, more preferably 0.50 or more and 3.0 or less, and even more preferably 0. It is 80 or more and 1.5 or less.
  • the above ratio has a predetermined lower limit, the shape of the pulverized body can be made closer to a true sphere.
  • the above ratio has a predetermined upper limit, it is possible to suppress the production of fine powder during the pulverization step.
  • the value of (A ⁇ B) / C of the intermediate may be, for example, 2.6 or more and 5.0 or less, or 2.7 or more and 4.5 or less. It may be 2.8 or more and 4.0 or less.
  • the intermediate D 10 is not particularly limited, but from the viewpoint of efficiently obtaining a pulverized product having a desired D 10 in the step (1-2), it is preferably 0.10 ⁇ m or more and 1.0 ⁇ m or less, and more preferably 0. It is 20 ⁇ m or more and 0.80 ⁇ m or less, and even more preferably 0.30 ⁇ m or more and 0.60 ⁇ m or less.
  • the intermediate D 95 is not particularly limited, but from the viewpoint of efficiently obtaining a pulverized product having a desired D 95 in the step (1-2), it is preferably 0.50 ⁇ m or more and 5.0 ⁇ m or less, and more preferably 0. It is 60 ⁇ m or more and 4.5 ⁇ m or less, and even more preferably 0.70 ⁇ m or more and 4.0 ⁇ m or less.
  • the BET specific surface area of the intermediate is not particularly limited, but is preferably 3.0 m 2 / g or more and 25 m 2 / g or less from the viewpoint of efficiently obtaining a pulverized body having a desired BET specific surface area in the step (1-2). It is more preferably 5.0 m 2 / g or more and 20 m 2 / g or less, and even more preferably 7.0 m 2 / g or more and 17 m 2 / g or less.
  • the true density of the intermediate is not particularly limited, but may be, for example, 1.5 g / cm 3 or more and 5.0 g / cm 3 or less, or 1.7 g / cm 3 or more and 4.5 g / cm 3 or less. It may be 1.9 g / cm 3 or more and 4.0 g / cm 3 or less.
  • the CS value of the intermediate is not particularly limited, but may be, for example, 1.0 m 2 / cm 3 or more and 25 m 2 / cm 3 or less, or 2.0 m 2 / cm 3 or more and 20 m 2 / cm 3 or less. It may be 3.0 m 2 / cm 3 or more and 15 m 2 / cm 3 or less.
  • the intermediate in step (1-1) is a raw material powder containing lithium (Li) element, phosphorus (P) element and sulfur (S) element, and is D 50.
  • a raw material powder having a value of 0.10 ⁇ m or more and 50 ⁇ m or less is prepared, the raw material powder is heat-treated, and the obtained heat-treated body is crushed so that a pulverized body having a D 50 of 0.10 ⁇ m or more and 2.0 ⁇ m or less can be obtained. You can get it by doing. This makes it possible to efficiently prepare intermediates having desired D50 and desired (A ⁇ B) / C values.
  • the raw material powder for producing the intermediate is hereinafter referred to as "first raw material powder".
  • the first raw material powder is a raw material for an intermediate.
  • the composition of the first raw material powder can be appropriately adjusted in consideration of the composition of the intermediate.
  • the composition of the first raw material powder is usually the same as the composition of the intermediate.
  • the first raw material powder does not contain an algyrodite type crystal phase.
  • "not including the algyrodite type crystal phase” means that the content ratio of the algyrodite type crystal phase is, for example, 5% by mass or less and 3% by mass or less with respect to the total crystal phase constituting the first raw material powder. Or it means that it is 1% by mass or less.
  • the content ratio of the algyrodite type crystal phase may be 0% by mass.
  • the intermediate algyrodite type crystal phase can be produced by heat treatment of the first raw material powder.
  • the first raw material powder includes, for example, a powder of one or more compounds containing a lithium (Li) element, a powder of one or more compounds containing a phosphorus (P) element, and sulfur (S).
  • a mixed powder containing a powder of one or more compounds containing an element and, in some cases, a powder of one or more compounds containing a halogen (X) element can be used.
  • a compound containing a lithium (Li) element, a phosphorus (P) element or a halogen (X) element contains a sulfur (S) element
  • the compound also corresponds to a compound containing a sulfur (S) element.
  • the compound containing the lithium (Li) element, the phosphorus (P) element, the sulfur (S) element and the halogen (X) element may be the same as a known compound generally used as a raw material for a sulfide solid electrolyte. Since it can be done, the description here is omitted.
  • the first raw material powder contains a powder of one or more compounds containing a lithium (Li) element, a powder of one or more compounds containing a phosphorus (P) element, and a sulfur (S) element. It can be prepared by mixing a powder of one or more kinds of compounds and a powder of one or more kinds of compounds containing a halogen (X) element in some cases. Mixing can be performed using, for example, a mortar, a ball mill, a vibration mill, a rolling mill, a bead mill, a kneader or the like.
  • the first raw material powder may contain a reactant produced by the mixing treatment. The mixing is preferably carried out with such a force that the crystallinity of the first raw material powder is maintained.
  • the first raw material powder is, for example, a mixed powder containing Li 2 S powder, P 2 S 5 powder, LiCl powder and / or LiBr powder.
  • the D 50 of the first raw material powder is not particularly limited, but may be, for example, 0.15 ⁇ m or more and 40 ⁇ m or less, 0.20 ⁇ m or more and 30 ⁇ m or less, or 0.25 ⁇ m or more and 20 ⁇ m or less. ..
  • the first raw material powder When D 50 of the first raw material powder is small, the first raw material powder may be used as an intermediate as it is. Therefore, in the step of heat-treating the first raw material powder, crushing the obtained heat-treated body, and preparing the obtained crushed body as an intermediate, the D 50 of the first raw material powder is large, and the first raw material powder It is advantageous to do this when it cannot be used as an intermediate as it is. From this point of view, the D 50 of the first raw material powder is preferably 2.5 ⁇ m or more and 40 ⁇ m or less, more preferably 3.0 ⁇ m or more and 30 ⁇ m or less, and even more preferably 4.0 ⁇ m or more and 20 ⁇ m or less.
  • the D 95 of the first raw material powder is not particularly limited, but may be, for example, 0.10 ⁇ m or more and 20 ⁇ m or less, 0.20 ⁇ m or more and 10 ⁇ m or less, or 0.30 ⁇ m or more and 5.0 ⁇ m or less. Good.
  • the heat treatment of the first raw material powder is preferably performed under the condition that a sulfide solid electrolyte containing an algyrodite type crystal phase is produced.
  • the heat treatment temperature is preferably 350 ° C. or higher and 500 ° C. or lower, more preferably 400 ° C. or higher and 480 ° C. or lower, and even more preferably 450 ° C. or higher and 470 ° C. or lower.
  • the heat treatment time can be appropriately adjusted according to the composition of the first raw material powder, the heat treatment temperature, and the like.
  • the heat treatment time is preferably 1 hour or more and 10 hours or less, more preferably 2 hours or more and 8 hours or less, and even more preferably 3 hours or more and 6 hours or less.
  • the heat treatment may be carried out in an atmosphere of an inert gas such as nitrogen or argon, but is preferably carried out in an atmosphere of hydrogen sulfide gas.
  • step (1-1) grinding the heat-treated material obtained by heat treatment of the first raw material powder (sintered body), the row as grinding bodies D 50 is 0.10 ⁇ m or 2.0 ⁇ m or less is obtained Will be This makes it possible to obtain an intermediate.
  • D 10 the preferred range of D 50 and D 95 of the grinding bodies are respectively the same as the preferred range of D 10, D 50 and D 95 of the intermediate.
  • the heat-treated body (fired body) obtained by heat-treating the first raw material powder can be pulverized by a dry method or a wet method using, for example, a jet mill, a ball mill, a bead mill or the like.
  • a hydrocarbon solvent can be used as the solvent.
  • classification may be performed using a sieve having a predetermined opening.
  • Milling conditions e.g., the rotational speed of the pulverizer, pulverizing treatment step number, pulverization treatment time, energy, etc. to give the thermally treated
  • open eye sieves used for classification depending on the D 50 of the grinding bodies to be obtained Can be adjusted as appropriate.
  • the heat treatment of the intermediate prepared in the step (1-1) is performed at a temperature at which grain growth occurs.
  • D 50 of the heat treatment product obtained by heat treatment of the intermediate is greater than D 50 of the intermediate.
  • the D 50 of the heat-treated body may be 1.1 times or more and 200 times or less, or 1.3 times or more and 100 times or less of the intermediate D 50, or 2.2 times or more and 60 times. It may be double or less.
  • D 10 of the thermal processing body the D 10 of the intermediate may be up to 20 times or more 1-fold, may be not more than 15 times 1.05 times, 1.1 times or more 10 It may be double or less.
  • the heat-treated D 95 may be 1.2 times or more and 200 times or less, 1.4 times or more and 150 times or less, or 2 times or more and 100 times that of the intermediate D 95. It may be double or less.
  • the heat treatment of the intermediate alleviates the strain inside the solid electrolyte particles contained in the intermediate, and the crystallinity is increased.
  • the step (1-1) includes a crushing step as described in FIG. 2, fine particles may be generated in the crushing step, but the heat treatment in the step (1-2) causes the fine particles to be sintered. Can be promoted.
  • the heat treatment temperature is preferably 200 ° C. or higher and 500 ° C. or lower, more preferably 200 ° C. or higher and 450 ° C. or lower, even more preferably 220 ° C. or higher and 420 ° C. or lower, and even more preferably 240 ° C. or higher and 400 ° C. or lower.
  • the heat treatment time of the intermediate can be appropriately adjusted according to the composition of the intermediate, the heat treatment temperature, etc., but in the step (1-2), the desired D50 and the desired (A ⁇ B) / C values. From the viewpoint of efficiently obtaining a pulverized product having the above, it is preferably 0.5 hours or more and 5 hours or less, more preferably 2 hours or more and 4 hours or less, and even more preferably 1.5 hours or more and 3 hours or less.
  • the heat treatment may be carried out in a hydrogen sulfide stream, but is preferably carried out in an atmosphere of an inert gas such as nitrogen or argon from the viewpoint of obtaining a pulverized product having less heterogeneous formation in the step (1-2).
  • Milling of the heat treatment product obtained by heat treatment of the intermediate is carried out as grinding bodies D 50 is 0.10 ⁇ m or 2.0 ⁇ m or less is obtained.
  • the sulfide solid electrolyte of the present invention can be obtained.
  • the crushing of the heat-treated body (fired body) obtained by the heat treatment of the intermediate body is the same as that described in the crushing of the heat-treated body (burned body) obtained by the heat treatment of the first raw material powder. The same can be done.
  • the number of rotations of the crusher, the number of crushing treatment steps, the crushing treatment time, the energy given to the heat-treated body, etc. are less than the crushing of the heat-treated body (fired body) obtained by the heat treatment of the first raw material powder. Is preferable.
  • a heat-treated body (fired body) obtained by heat treatment of an intermediate body Is preferably carried out so that the ratio of the BET specific surface area of the pulverized body of the heat-treated body obtained by the heat treatment of the intermediate body to the BET specific surface area of the intermediate body is 1 or more.
  • the above ratio (BET specific surface area of the intermediate / BET specific surface area of the pulverized product) is preferably 1.0 or more and 3.0 or less, more preferably 1.1 or more and 2.2 or less, and even more preferably 1.2 or more. It is 1.6 or less.
  • the pulverized product obtained in step (1-2) may be used as it is as the sulfide solid electrolyte of the present invention, or may be used as the sulfide solid electrolyte of the present invention after undergoing a desired treatment. ..
  • the sulfide solid electrolyte of the present invention can be obtained by subjecting the raw material powder prepared in step (2-1) to step (2-2).
  • the reason why the sulfide solid electrolyte having a small particle size and a reduced specific surface area can be obtained in the production method according to the second embodiment is as follows.
  • the structure of the raw material powder after heat treatment partially reflects the particle size of the raw material powder.
  • a raw material powder having a median diameter D 50 larger than 2.0 ⁇ m and a D 95 larger than 5.0 ⁇ m is heat-treated, particles larger than at least 2.0 ⁇ m tend to form a necked structure.
  • this is pulverized so that the median diameter D 50 is 0.10 ⁇ m or more and 2.0 ⁇ m or less, particles and fine particles having a distorted shape are generated by pulverizing other than the necking surface, and the specific surface area becomes large.
  • the raw material powder prepared in the step (2-1) is the same as the first raw material powder in the first embodiment except for D 10 , D 50 and D 95.
  • the raw material powder prepared in the step (2-1) is hereinafter referred to as "second raw material powder”.
  • the second raw material powder does not contain the algyrodite type crystal phase.
  • the significance of the description "does not contain the algyrodite type crystal phase" is the same as the significance of the description of the first raw material powder.
  • step (2-2) from the viewpoint of efficiently obtaining a grinding bodies having a desired D 50, the D 50 of the second raw material powder, preferably 0.15 ⁇ m or 0.95 ⁇ m or less, more preferably 0.20 ⁇ m It is 0.90 ⁇ m or more, and even more preferably 0.25 ⁇ m or more and 0.85 ⁇ m or less.
  • the ratio of D 50 of the grinding bodies to the second raw material powder D 50 is preferably 0.10 to 10, more preferably 0.30 to 7.0, even more preferably It is 0.60 or more and 5.0 or less.
  • the above ratio is at least the above lower limit, the shape of the pulverized body becomes more true sphere, which is preferable.
  • the ratio of D 50 of the pulverized product to D 50 of the intermediate is not more than the above upper limit, because the formation of fine powder can be suppressed during the pulverization step.
  • the D 10 of the second raw material powder is not particularly limited, but is preferably 0.10 ⁇ m or more and 0.80 ⁇ m or less, more preferably 0.80 ⁇ m or less, from the viewpoint of efficiently obtaining a pulverized product having a desired D 10 in the step (2-2). Is 0.12 ⁇ m or more and 0.60 ⁇ m or less, and even more preferably 0.14 ⁇ m or more and 0.40 ⁇ m or less.
  • the D 95 of the second raw material powder is not particularly limited, but is preferably 0.10 ⁇ m or more and 5.0 ⁇ m or less, more preferably from the viewpoint of efficiently obtaining a pulverized product having a desired D 95 in the step (2-2). Is 0.15 ⁇ m or more and 3.0 ⁇ m or less, and even more preferably 0.20 ⁇ m or more and 2.0 ⁇ m or less.
  • the heat treatment of the second raw material powder in the step (2-2) is performed under the condition that a sulfide solid electrolyte containing an algyrodite type crystal phase is produced.
  • the heat treatment temperature is preferably 300 ° C. or higher and 550 ° C. or lower, preferably 320 ° C. or higher and 470 ° C. or lower, more preferably 350 ° C. or higher and 450 ° C. or lower, and even more preferably 370 ° C. or higher and 430 ° C. or lower.
  • the heat treatment temperature in the above range is preferable from the viewpoint that the algyrodite formation reaction proceeds sufficiently and that a heat-treated body (fired body) reflecting the particle shape of the raw material can be obtained.
  • the heat treatment time can be appropriately adjusted according to the composition of the second raw material powder, the heat treatment temperature, and the like.
  • the heat treatment time can be the same as the heat treatment time of the first raw material powder.
  • Milling of the heat treatment product obtained by the heat treatment of the second raw material powder (sintered body) is carried out as grinding bodies D 50 is 0.10 ⁇ m or 2.0 ⁇ m or less is obtained. Thereby, the sulfide solid electrolyte of the present invention can be obtained.
  • the preferred range of D 10, D 50 and D 95 of the grinding bodies are respectively the same as the preferred range of D 10, D 50 and D 95 of the sulfide solid electrolyte of the present invention.
  • the crushing of the heat-treated body (fired body) obtained by the heat treatment of the second raw material powder can be the same as the crushing in the step (1-2) of the first embodiment.
  • classification may be performed using a sieve having a predetermined opening.
  • Milling conditions e.g., the rotational speed of the pulverizer, pulverizing treatment step number, pulverization treatment time, energy, etc. to give the thermally treated
  • open eye sieves used for classification depending on the D 50 of the grinding bodies to be obtained Can be adjusted as appropriate.
  • the pulverized product obtained in step (2-2) may be used as it is as the sulfide solid electrolyte of the present invention, or may be used as the sulfide solid electrolyte of the present invention after undergoing a desired treatment. ..
  • the characteristics of the solid electrolyte were evaluated by using the following method.
  • ⁇ Crystal phase The crystal phase of the solid electrolyte sample was analyzed by an X-ray diffraction method (XRD, Cu source) to obtain an X-ray diffraction pattern.
  • the X-ray diffraction method uses an XRD apparatus "Smart Lab” manufactured by Rigaku Co., Ltd. under the conditions of scanning axis: 2 ⁇ / ⁇ , scanning range: 10 to 140 deg, step width: 0.01 deg, scanning speed: 1 deg / min. I went below.
  • X-ray diffraction was performed in an air-unexposed cell.
  • Example 4 a few drops of liquid paraffin were dropped onto the solid electrolyte in an argon atmosphere, and then X-ray diffraction was performed in the atmosphere.
  • the particle size distribution of the solid electrolyte was measured by the laser diffraction scattering type particle size distribution measurement method according to the following procedure. Using an automatic sample feeder for laser diffraction particle size distribution measuring device (“Microtorac SDC” manufactured by Nikkiso Co., Ltd.), set the flow velocity of the measurement sample containing solid electrolyte to 50%, and for the measurement sample containing solid electrolyte. A 30 W ultrasonic wave was applied for 60 seconds.
  • the particle size distribution was measured using the laser diffraction particle size distribution measuring machine "MT3000II” manufactured by Nikkiso Co., Ltd., and from the obtained volume-based particle size distribution chart, the cumulative volumes were 10% by volume, 50% by volume, and 95% by volume.
  • the particle size was determined to be D 10 , D 50 and D 95 , respectively.
  • the organic solvent was passed through a 60 ⁇ m filter, the refractive index of the solvent was 1.50, the particle permeability condition was “transmissive”, the refractive index of the particles was 1.59, and the shape was changed.
  • Non-spherical the measurement range was 0.133 ⁇ m to 704.0 ⁇ m, the measurement time was 10 seconds, the measurement was performed twice, and the average values of the obtained measured values were D 10 , D 50 and D 95 , respectively. ..
  • an organic solvent toluene
  • a measurement sample containing the raw material powder was prepared as follows. First, as will be described later, a slurry containing the raw material powder (raw material slurry) was prepared. Next, a few drops of a dispersant (SN Dispersant 9228 manufactured by Sannopco Co., Ltd.) were added dropwise to an organic solvent (toluene), and then a few drops of a slurry containing the raw material powder were added dropwise to prepare a measurement sample containing the raw material powder. ..
  • SN Dispersant 9228 manufactured by Sannopco Co., Ltd.
  • the BET specific surface area was calculated by the following method. Using a specific surface area measuring device "BELSORP-miniII" manufactured by Microtrac BEL Co., Ltd., the adsorption and desorption isotherms were measured by the constant volume gas adsorption method, and the BET specific surface area was calculated by the multipoint method. The pretreatment was carried out at 120 ° C. for 30 minutes or more in a reduced pressure environment. He was used as the purge gas and N 2 was used as the adsorbent.
  • the true density was calculated by the gas replacement method using the true density evaluation device "BELPycno" manufactured by Microtrac BEL Co., Ltd. The pretreatment was carried out 5 times by purging. An alumina 10cc cell was used for the measurement, and the sample was filled to about 70% of the cell.
  • Example 1 (1) Production of intermediate Li 2 S powder, P 2 S 5 powder, Li Cl powder and Li Br so that the composition is Li 5.4 PS 4.4 Cl 0.8 Br 0.8 and the total amount is 5 g.
  • the powders were weighed and crushed and mixed in toluene with a ball mill for 15 hours to obtain a raw material slurry.
  • the evaluation results of the obtained raw material slurry are shown in Table 1.
  • the obtained raw material powder is filled in a carbon container, and then the temperature rises and falls while circulating hydrogen sulfide gas at 1.0 L / min in a tubular electric furnace. After heat treatment at 200 ° C./hour at 300 ° C. for 4 hours, heat treatment was performed at 500 ° C. for 4 hours.
  • the obtained heat-treated body was crushed to obtain a powdery intermediate body.
  • the crushing was performed by crushing in two stages using a planetary ball mill (manufactured by Fritsch).
  • the first stage of pulverization was carried out using a planetary ball mill (manufactured by Fritsch).
  • a solid electrolyte (heat-treated product) 5 g, dehydrated heptane 10 g, and 5 mm ZrO 2 balls 90 g were placed in a zirconia container having a capacity of 80 cm 3 and pulverized at a rotation speed of 100 rpm for 3 hours.
  • the obtained slurry was vacuum dried to obtain a first-stage pulverized product.
  • the second-stage pulverization was performed using the obtained first-stage pulverized product.
  • 2 g of a solid electrolyte (crushed product of the first stage), 0.06 g of a dispersant (butyl acetate), 10 g of super-dehydrated toluene, and 90 g of 0.8 mmZrO 2 balls are placed in a zirconia container having a capacity of 80 cc.
  • the pulverization treatment was carried out at a rotation speed of 100 rpm for 1 hour.
  • the obtained slurry was subjected to ball separation and solid-liquid separation, vacuum dried at 80 ° C., and then sized through a sieve having a mesh size of 53 ⁇ m to obtain a powdery intermediate.
  • the intermediate had a peak derived from the algyrodite type crystal phase in the X-ray diffraction pattern measured using CuK ⁇ 1 ray.
  • Table 1 shows the evaluation results of the obtained heat-treated body.
  • the heat-treated body had a peak derived from the algyrodite type crystal phase in the X-ray diffraction pattern measured using CuK ⁇ 1 ray.
  • the obtained heat-treated body was crushed as follows to obtain a pulverized body.
  • a heat-treated body (2 g), a dispersant (butyl acetate) 0.06 g, ultra-dehydrated toluene 10 g, and 0.8 mm ZrO 2 balls 90 g were placed in a zirconia container having a capacity of 80 cc, and pulverized for 10 minutes at a rotation speed of 100 rpm.
  • the obtained slurry was subjected to ball separation and solid-liquid separation, vacuum-dried at 80 ° C., and then sized through a sieve having a mesh size of 53 ⁇ m to obtain a pulverized body of a heat-treated product.
  • Table 1 and FIG. 4 show the evaluation results of the obtained crushed material.
  • the pulverized product had a peak derived from the algyrodite type crystal phase in the X-ray diffraction pattern measured using CuK ⁇ 1 ray.
  • Example 2 The same operation as in Example 1 was carried out except that the heat treatment temperature of the intermediate was changed to 300 ° C. The same evaluation results as in Example 1 are shown in Table 1 and FIG.
  • the pulverized product had a peak derived from the algyrodite type crystal phase in the X-ray diffraction pattern measured using CuK ⁇ 1 ray.
  • the intermediate and the heat-treated body also had a peak derived from the algyrodite type crystal phase in the X-ray diffraction pattern measured using CuK ⁇ 1 ray.
  • Example 3 (1) Production of pulverized product Li 2 S powder, P 2 S 5 powder, Li Cl powder and Li Br so that the composition is Li 5.4 PS 4.4 Cl 0.8 Br 0.8 and the total amount is 5 g. Weighed, pulverized and mixed with a planetary ball mill for 2 hours to obtain a raw material powder. 2 g of the obtained raw material powder was put into a zirconia container having a capacity of 80 cc, 0.06 g of a dispersant (butyl acetate), 10 g of ultra-dehydrated toluene, and 90 g of 0.8 mmZrO 2 balls were added and pulverized at a rotation speed of 100 rpm for 1 hour. Was done.
  • the balls After separating the balls from the obtained slurry, the balls were vacuum-dried at 80 ° C. and sized through a 53 ⁇ m sieve to obtain a raw material powder. The characteristics (D 10 , D 50 and D 95 ) of the obtained raw material powder were evaluated. The evaluation results are shown in Table 2.
  • heat treatment is performed at 300 ° C. for 4 hours at an elevating temperature rate of 200 ° C./hour while circulating hydrogen sulfide gas at 1.0 L / min in a tubular electric furnace. After that, heat treatment was performed at 400 ° C. for 4 hours.
  • the obtained heat-treated body was pulverized to obtain a pulverized body.
  • a heat-treated body (2 g), a dispersant (butyl acetate) 0.06 g, ultra-dehydrated toluene 10 g, and 0.8 mm ZrO 2 balls 90 g were placed in a zirconia container having a capacity of 80 cc, and pulverized for 10 minutes at a rotation speed of 100 rpm.
  • the obtained slurry was subjected to ball separation and solid-liquid separation, vacuum-dried at 80 ° C., and then sized through a 53 ⁇ m sieve to obtain a pulverized product.
  • the pulverized product had a peak derived from the algyrodite type crystal phase in the X-ray diffraction pattern measured using CuK ⁇ 1 ray.
  • Example 4 The composition was changed to Li 5.8 PS 4.8 Cl 1.2 , the raw material powder was crushed at a rotation speed of 100 rpm for 2 hours, and the heat-treated body (fired body) was crushed at a rotation speed. The same operation as in Example 3 was performed except that the operation was performed at 100 rpm for 30 minutes. The same evaluation results as in Example 3 are shown in Table 2 and FIG.
  • the pulverized product had a peak derived from the algyrodite type crystal phase in the X-ray diffraction pattern measured using CuK ⁇ 1 ray.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、粒径が小さく、低比表面積の硫化物固体電解質、該硫化物固体電解質を用いた電極合材、スラリー及び電池、並びに、該硫化物固体電解質の製造方法を提供することを目的し、リチウム(Li)元素、リン(P)元素及び硫黄(S)元素を含む硫化物固体電解質であって、メジアン径D50が、0.10μm以上2.0μm以下であり、下記式: (A×B)/C [式中、Aは、BET比表面積(m2/g)を表し、Bは、真密度(g/cm3)を表し、Cは、CS値(m2/cm3)を表す。] の値が1.0以上2.5以下である、硫化物固体電解質を提供する。

Description

硫化物固体電解質及びその製造方法
 本発明は、硫化物固体電解質、該硫化物固体電解質を用いた電極合材、スラリー及び電池、並びに、該硫化物固体電解質の製造方法に関する。
 固体電池は、可燃性の有機溶媒を用いないので、安全装置の簡素化を図ることができ、製造コスト及び生産性に優れているとともに、セル内で直列に積層して高電圧化を図れるという特徴も有する。固体電池に用いられる硫化物固体電解質では、リチウムイオン以外は移動しないため、アニオンの移動による副反応が生じない等、安全性及び耐久性の向上につながることが期待される。
 硫化物固体電解質として、アルジロダイト(Argyrodite)型結晶相を含む硫化物固体電解質が知られている(例えば、特許文献1~特許文献5)。
 また、特許文献6には、メジアン径D50が2.1μm~4.5μmの硫化物固体電解質を得る製造方法が記載されている。
特開2001-250580号公報 特開2016-024874号公報 特開2010-033732号公報 特開2011-044249号公報 特開2012-043646号公報 特開2019-036536号公報
 固体電池において、良好な電池特性を得るためには、正負極の電極内部に均一に硫化物固体電解質が分布していることが好ましく、このような硫化物固体電解質の均一な分布を実現するためには、硫化物固体電解質の粒径を小さくすることが好ましい。硫化物固体電解質の粒径は、硫化物固体電解質の粉砕により小さくすることができる。しかしながら、粉砕により、形状がいびつな粒子や粉砕時に生じた微粉が凝集した二次粒子が発生するため、硫化物固体電解質の比表面積が増大し、粒子表面に吸着する溶媒量が増加するため、硫化物固体電解質を含むスラリーの粘度が増大する。このため、スラリーの粘度を調整するためには、多量の溶媒が必要となり、コストが増大し、電池の生産性が低下する。したがって、硫化物固体電解質の粒径を小さくするとともに、比表面積を低減することが求められる。
 また、硫化物固体電解質は、大気中の水分と反応すると、有毒な硫化水素ガスが発生するとともに、分解によってイオン伝導率が低下する。このため、電池生産時に低水分環境を維持するコストが増大し、電池の生産性が低下する。粒径が小さく、低比表面積の固体電解質である場合、大気中の水分との反応面積を少なくすることができるため、硫化水素ガスの発生と分解によるイオン伝導率の低下とを抑制することができる。したがって、これらの観点においても、硫化物固体電解質の粒径を小さくするとともに、比表面積を低減することが求められる。
 そこで、本発明は、粒径が小さく、低比表面積の硫化物固体電解質、該硫化物固体電解質を用いた電極合材、スラリー及び電池、並びに、該硫化物固体電解質の製造方法を提供することを目的とする。
 上記課題を解決するために、本発明は、以下の発明を提供する。
[1]リチウム(Li)元素、リン(P)元素及び硫黄(S)元素を含む硫化物固体電解質であって、
 レーザー回折散乱式粒度分布測定法によって測定される体積基準の粒度分布において累積体積が50体積%となる粒径であるメジアン径D50が、0.10μm以上2.0μm以下であり、下記式:
 (A×B)/C
[式中、Aは、BET比表面積(m/g)を表し、Bは、真密度(g/cm)を表し、Cは、CS値(m/cm)を表す。]
の値が1.0以上2.5以下である、硫化物固体電解質。
[2]上記[1]に記載の硫化物固体電解質と活物質とを含む電極合材。
[3]上記[1]に記載の硫化物固体電解質と分散媒とを含むスラリー。
[4]正極層と、負極層と、前記正極層及び前記負極層の間に位置する固体電解質層とを備える電池であって、
 前記固体電解質層が、上記[1]に記載の硫化物固体電解質を含む、前記電池。
[5]上記[1]に記載の硫化物固体電解質を製造する方法であって、下記工程:
(1-1)リチウム(Li)元素、リン(P)元素及び硫黄(S)元素を含む硫化物固体電解質であって、メジアン径D50が0.10μm以上2.0μm以下であり、下記式:
 (A×B)/C
[式中、Aは、BET比表面積(m/g)を表し、Bは、真密度(g/cm)を表し、Cは、CS値(m/cm)を表す。]
の値が2.5超5.0以下である前記硫化物固体電解質を、中間体として準備する工程;並びに
(1-2)前記中間体を熱処理し、得られた熱処理体を、メジアン径D50が0.10μm以上2.0μm以下である粉砕体が得られるように粉砕する工程
を含む、前記方法。
[6]上記[1]に記載の硫化物固体電解質を製造する方法であって、下記工程:
(2-1)リチウム(Li)元素、リン(P)元素及び硫黄(S)元素を含む原料粉末であって、メジアン径D50が0.10μm以上2.0μm以下であり、D95が0.30μm以上5.0μm以下である前記原料粉末を準備する工程;並びに
(2-2)前記原料粉末を熱処理し、得られた熱処理体を、メジアン径D50が0.10μm以上2.0μm以下である粉砕体が得られるように粉砕する工程
を含む、前記方法。
 本発明により、粒径が小さく、低比表面積の硫化物固体電解質、該硫化物固体電解質を用いた電極合材、スラリー及び電池、並びに、該硫化物固体電解質の製造方法が提供される。
図1は、本発明の硫化物固体電解質の製造方法(第1実施形態)の一例を示す工程図である。 図2は、第1実施形態における工程(1-1)の一例を示す工程図である。 図3は、本発明の硫化物固体電解質の製造方法(第2実施形態)の一例を示す工程図である。 図4は、実施例1~4で製造された硫化物固体電解質のX線回折パターンを示す図である。
≪用語の説明≫
 以下、本明細書で用いられる用語について説明する。なお、以下の用語の説明は、別段規定される場合を除き、本明細書を通じて適用される。
<粉末>
 粉末は、粒子の集合体である。
<D10、D50及びD95
 ある粉末に関し、当該粉末のD10、D50及びD95は、それぞれ、レーザー回折散乱式粒度分布測定法によって測定される当該粉末の体積基準の粒度分布において、累積体積が10%、50%及び95%となる粒径であり、単位はμmである。D10、D50及びD95の測定は、例えば、実施例に記載の条件に従って行われる。なお、D50は、一般的に、メジアン径と呼ばれる。
<BET比表面積>
 ある粉末に関し、当該粉末のBET比表面積は、窒素ガスを用いたガス吸着法によって測定される当該粉末の比表面積であり、単位はm/gである。BET比表面積の測定は、例えば、実施例に記載の条件に従って行われる。
<真密度>
 ある粉末に関し、当該粉末の真密度は、ピクノメーター法によって測定される当該粉末の密度であり、単位はg/cmである。真密度の測定は、例えば、実施例に記載の条件に従って行われる。
<CS値>
 ある粉末に関し、当該粉末のCS値は、当該粉末を構成する粒子の形状を球形と仮定した場合の、当該粉末の単位体積あたりの表面積であり、単位はm/cmである。粉末のCS値は、レーザー回折散乱式粒度分布測定法によって測定される当該粉末の体積基準の粒度分布に基づいて、次式:CS値(m/cm)=6/MAから求められる。なお、MAは、面積平均粒径(μm)であり、次式:MA(μm)=ΣVi/Σ(Vi/di)[式中、Viは頻度、diは粒度区分の中央値である。]から求められる。CS値の測定は、例えば、実施例に記載の条件に従って行われる。
<(A×B)/C>
 ある粉末に関し、下記式:
 (A×B)/C
[式中、Aは、当該粉末のBET比表面積(m/g)を表し、Bは、当該粉末の真密度(g/cm)を表し、Cは、当該粉末のCS値(m/cm)を表す。]に基づいて算出される値は、粒度分布測定から、粒子を球形と仮定して求められたCS値(m/cm)に真密度(g/cm)を掛けて算出した表面積値(m/g)と、BET測定で求められた比表面積(m/g)との比を意味する。つまり、上記式で得られる値が1.0に近いほど、粉末を構成する粒子の形状が真球に近いことを意味する。
≪硫化物固体電解質≫
 本発明の硫化物固体電解質は、リチウム(Li)元素、リン(P)元素及び硫黄(S)元素を含む。
 本発明の硫化物固体電解質におけるリチウム(Li)元素、リン(P)元素及び硫黄(S)元素の含有量は、適宜調整することができる。
 本発明の硫化物固体電解質のリチウムイオン伝導性を向上させる観点から、リチウム(Li)元素の含有量は、本発明の硫化物固体電解質の構成元素の合計モル量を基準として、好ましくは41モル%以上50モル%以下、さらに好ましくは41モル%以上48モル%以下、さらに一層好ましくは42モル%以上47モル%以下、さらに一層好ましくは43モル%以上45モル%以下である。
 本発明の硫化物固体電解質のリチウムイオン伝導性を向上させる観点から、リン(P)元素の含有量は、本発明の硫化物固体電解質の構成元素の合計モル量を基準として、好ましくは7.0モル%以上20モル%以下、さらに好ましくは7.2モル%以上18モル%以下、さらに一層好ましくは7.5モル%以上16モル%以下、さらに一層好ましくは7.7モル%以上12モル%以下である。
 本発明の硫化物固体電解質のリチウムイオン伝導性を向上させる観点から、硫黄(S)元素の含有量は、本発明の硫化物固体電解質の構成元素の合計モル量を基準として、好ましくは31モル%以上43モル%以下、さらに好ましくは32モル%以上42モル%以下、さらに一層好ましくは33モル%以上40モル%以下、さらに一層好ましくは34モル%以上38モル%以下である。
 本発明の硫化物固体電解質のリチウムイオン伝導性を向上させる観点から、リン(P)元素の含有量に対するリチウム(Li)元素の含有量(リチウム(Li)元素の含有量/リン(P)元素の含有量)の比は、モル比で、好ましくは4.8以上7.0以下、さらに好ましくは5.0以上6.4以下、さらに一層好ましくは5.2以上5.8以下である。
 本発明の硫化物固体電解質のリチウムイオン伝導性を向上させる観点から、リン(P)元素の含有量に対する硫黄(S)元素の含有量(硫黄(S)元素の含有量/リン(P)元素の含有量)の比は、モル比で、好ましくは3.6以上6.0以下、さらに好ましくは4.0以上5.0以下、さらに一層好ましくは4.2以上4.6以下である。
 本発明の硫化物固体電解質のリチウムイオン伝導性を向上させる観点から、本発明の硫化物固体電解質は、フッ素(F)元素、塩素(Cl)元素、臭素(Br)元素及びヨウ素(I)元素から選択される少なくとも一種のハロゲン(X)元素をさらに含むことが好ましく、塩素(Cl)元素及び臭素(Br)元素から選択される少なくとも一種のハロゲン(X)元素をさらに含むことがさらに好ましい。
 ハロゲン(X)元素の含有量は、適宜調整することができる。
 本発明の硫化物固体電解質のリチウムイオン伝導性を向上させる観点から、ハロゲン(X)元素の含有量は、本発明の硫化物固体電解質の構成元素の合計モル量を基準として、好ましくは3.7モル%以上19モル%以下、さらに好ましくは4.0モル%以上17モル%以下、さらに一層好ましくは8.0モル%以上15モル%以下、さらに一層好ましくは10モル%以上14モル%以下である。なお、本発明の硫化物固体電解質が二種以上のハロゲン(X)元素を含む場合、「ハロゲン(X)元素の含有量」は、当該二種以上のハロゲン(X)元素の合計含有量を意味する。
 本発明の硫化物固体電解質のリチウムイオン伝導性を向上させる観点から、リン(P)元素の含有量に対するハロゲン(X)元素の含有量(ハロゲン(X)元素の含有量/リン(P)元素の含有量)の比は、モル比で、好ましくは0.50以上2.1以下、さらに好ましくは0.80以上2.0以下、さらに一層好ましくは1.2以上1.8以下である。
 本発明の硫化物固体電解質は、リチウム(Li)元素、リン(P)元素、硫黄(S)元素及びハロゲン(X)元素以外の一種又は二種以上の元素(以下「その他の元素」という。)を含んでもよい。その他の元素としては、例えば、ケイ素(Si)元素、ゲルマニウム(Ge)元素、スズ(Sn)元素、鉛(Pb)元素、ホウ素(B)元素、アルミニウム(Al)元素、ガリウム(Ga)元素、ヒ素(As)元素、アンチモン(Sb)元素、ビスマス(Bi)元素等が挙げられる。
 本発明の硫化物固体電解質の構成元素の合計モル量及び各元素のモル量の測定は、本発明の硫化物固体電解質をアルカリ溶融等で溶解して得られる溶液中の元素量を誘導結合プラズマ発光分光分析法(ICP-AES)等の公知の方法を用いて測定することにより行うことができる。
 本発明の硫化物固体電解質のリチウムイオン伝導性を向上させる観点から、本発明の硫化物固体電解質は、アルジロダイト型結晶構造を有する結晶相(以下「アルジロダイト型結晶相」という場合がある)を含むことが好ましい。アルジロダイト型結晶構造は、化学式:AgGeSで表される鉱物に由来する化合物群が有する結晶構造である。アルジロダイト型結晶構造は、好ましくは立方晶系である。
 「本発明の硫化物固体電解質がアルジロダイト型結晶相を含む」という表現は、本発明の硫化物固体電解質が、アルジロダイト型結晶相で構成されている場合、及び、本発明の硫化物固体電解質が、アルジロダイト型結晶相と、一種又は二種以上のその他の相とで構成されている場合の両者を含む意味で用いられる。その他の相は、結晶相であってもよいし、非晶質相であってもよい。その他の相としては、例えば、LiS相、LiCl相、LiBr相、LiBrCl1-x相(0<x<1)、LiPS相等が挙げられる。
 アルジロダイト型結晶相の含有割合は、例えば、本発明の硫化物固体電解質を構成する全結晶相に対して、10質量%以上であってもよく、20質量%以上であってもよく、50質量%以上であってもよい。中でも、本発明の硫化物固体電解質が、アルジロダイト型結晶相を主相として含有していることが好ましい。ここで、「主相」とは、本発明の硫化物固体電解質を構成する全ての結晶相の総量に対して最も割合の大きい相を指す。アルジロダイト型結晶相が主相である場合、アルジロダイト型結晶相の含有割合は、本発明の硫化物固体電解質を構成する全結晶相に対して、例えば、60質量%以上であることが好ましく、中でも70質量%以上、80質量%以上、90質量%以上であることがさらに好ましい。なお、結晶相の割合は、例えば、XRD測定により確認することができる。
 一実施形態において、アルジロダイト型結晶相は、下記式(I):
 LiPS   ・・・(I)
で表される組成を有する。
 Xは、フッ素(F)元素、塩素(Cl)元素、臭素(Br)及びヨウ素(I)元素から選択される少なくとも一種のハロゲン元素である。ヨウ素(I)元素はリチウムイオン伝導性が低下させる傾向があり、フッ素(F)元素はアルジロダイト型結晶構造に導入しにくい。したがって、Xは、塩素(Cl)元素及び臭素(Br)元素から選択される少なくとも一種のハロゲン元素であることが好ましい。
 本発明の硫化物固体電解質のリチウムイオン伝導性を向上させる観点から、aは、好ましくは3.0以上6.5以下、さらに好ましくは3.5以上6.3以下、さらに一層好ましくは4.0以上6.0以下である。aが3.0未満であると、アルジロダイト型結晶構造内のLi量が少なくなり、リチウムイオン伝導性が低下する。一方、aが6.5を超えると、Liサイトの空孔が少なくなり、リチウムイオン伝導率が低下する。
 本発明の硫化物固体電解質のリチウムイオン伝導性を向上させる観点から、bは、好ましくは3.5以上5.5以下、さらに好ましくは4.0以上5.3以下、さらに一層好ましくは4.2以上5.0以下である。
 本発明の硫化物固体電解質のリチウムイオン伝導性を向上させる観点から、cは、好ましくは0.10以上3.0以下、さらに好ましくは0.50以上2.5以下、さらに一層好ましくは1.0以上1.8以下である。
 別の実施形態において、アルジロダイト型結晶相は、下記式(II):
 Li7-dPS6-d   ・・・(II)
で表される組成を有する。式(II)で表される組成は、アルジロダイト型結晶相の化学量論組成である。
 式(II)において、Xは、式(I)と同義である。
 本発明の硫化物固体電解質のリチウムイオン伝導性を向上させる観点から、dは、好ましくは0.40以上2.2以下、さらに好ましくは0.80以上2.0以下、さらに一層好ましくは1.2以上1.8以下である。
 式(I)又は(II)において、Pの一部が、ケイ素(Si)元素、ゲルマニウム(Ge)元素、スズ(Sn)元素、鉛(Pb)元素、ホウ素(B)元素、アルミニウム(Al)元素、ガリウム(Ga)元素、ヒ素(As)元素、アンチモン(Sb)元素及びビスマス(Bi)元素から選択される一種又は二種以上の元素で置換されていてもよい。この場合、式(I)は、Li(P1-y)Sとなり、式(II)は、Li7-d(P1-y)S6-dとなる。Mは、ケイ素(Si)元素、ゲルマニウム(Ge)元素、スズ(Sn)元素、鉛(Pb)元素、ホウ素(B)元素、アルミニウム(Al)元素、ガリウム(Ga)元素、ヒ素(As)元素、アンチモン(Sb)元素及びビスマス(Bi)元素から選択される一種又は二種以上の元素である。yは、好ましくは、0.010以上0.70以下、さらに好ましくは、0.020以上0.40以下、さらに一層好ましくは、0.050以上0.20以下である。
 本発明の硫化物固体電解質がアルジロダイト型結晶相を含むことは、CuKα線を用いて測定されるX線回折パターンによって確認することができる。CuKα線としては、例えば、CuKα1線を用いることができる。
 本発明の硫化物固体電解質は、CuKα1線を用いて測定されるX線回折パターンにおいて、2θ=25.19°±1.00°及び29.62°±1.00°の位置にピークを有することが好ましい。これらのピークは、アルジロダイト型結晶相に由来するピークである。
 本発明の硫化物固体電解質は、CuKα1線を用いて測定されるX線回折パターンにおいて、2θ=25.19°±1.00°及び29.62°±1.00°の位置に加えて、2θ=15.34°±1.00°、17.74°±1.00°、30.97°±1.00°、44.37°±1.00°、47.22°±1.00°及び51.70°±1.00°から選択される1又は2以上の位置にピークを有することがさらに好ましく、2θ=25.19°±1.00°及び29.62°±1.00°の位置に加えて、2θ=15.34°±1.00°、17.74°±1.00°、30.97°±1.00°、44.37°±1.00°、47.22°±1.00°及び51.70°±1.00°の全ての位置にピークを有することがさらに一層好ましい。これらのピークは、アルジロダイト型結晶相に由来するピークである。
 なお、上述したピークの位置は、中央値±1.00°で表されているが、中央値±0.500°であることが好ましく、中央値±0.300°であることがさらに好ましい。
 本発明の硫化物固体電解質は、粉末状である。本発明の硫化物固体電解質のD50は、0.10μm以上2.0μm以下であり、本発明の硫化物固体電解質の(A×B)/Cの値は、1.0以上2.5以下である。なお、(A×B)/Cの値が1.0以上2.5以下であることは、粉末を構成する粒子の形状が真球に近いことを示す。本発明の硫化物固体電解質は、粒径が小さく、形状が真球に近いことに起因して低比表面積である。したがって、本発明の硫化物固体電解質を含むスラリーを用いて電池を生産する際、スラリーの粘度を調整するために必要な溶媒量を低減することができる。また、硫化物固体電解質と大気中の水分との反応に起因する硫化水素ガス発生及びイオン伝導率低下を低減することができる。
 固体電池において、良好な電池特性を得るためには、正負極の電極内部に均一に硫化物固体電解質が分布していることが好ましく、このような硫化物固体電解質の均一な分布を実現するためには、硫化物固体電解質の粒径を小さくすることが好ましい。上記観点から、本発明の硫化物固体電解質のD50は、好ましくは0.20μm以上1.6μm以下、さらに好ましくは0.30μm以上1.2μm以下、さらに一層好ましくは0.50μm以上1.0μm以下である。
 硫化物固体電解質の粒径は、硫化物固体電解質の粉砕により小さくすることができる。しかしながら、粉砕により、形状がいびつな粒子や粉砕時に生じた微粉が凝集した二次粒子が発生するため、硫化物固体電解質の比表面積が増大し、粒子表面に吸着する溶媒量が増加するため、硫化物固体電解質を含むスラリーの粘度が増大する。このため、スラリーの粘度を調整するためには、多量の溶媒が必要となり、コストが増大し、電池の生産性が低下する。また、硫化物固体電解質は、大気中の水分と反応すると、有毒な硫化水素ガスが発生するとともに、分解によってイオン伝導率が低下する。比表面積の増大に伴い、硫化物固体電解質と大気中の水分との反応面積が増大し、硫化水素ガス発生量及びイオン伝導率低下が増大する。このため、電池生産時に低水分環境を維持するコストが増大し、電池の生産性が低下する。したがって、硫化物固体電解質の形状を真球に近づけることが好ましい。上記観点から、本発明の硫化物固体電解質の(A×B)/Cの値は、好ましくは1.2以上2.3以下、さらに好ましくは1.4以上2.2以下、さらに一層好ましくは1.5以上2.1以下である。
 本発明の硫化物固体電解質は、上記特性(D50及び(A×B)/Cの値)に加えて、下記特性(D10、D95、BET比表面積、真密度及びCS値)の少なくとも一種を有することが好ましい。
 本発明の硫化物固体電解質のD10は特に限定されないが、正負極の電極内部に均一に硫化物固体電解質を分布させ、良好な電池特性を得る観点から、好ましくは0.10μm以上1.0μm以下、さらに好ましくは0.20μm以上0.80μm以下、さらに一層好ましくは0.30μm以上0.60μm以下である。
 本発明の硫化物固体電解質のD95は特に限定されないが、正負極の電極内部に均一に硫化物固体電解質を分布させ、良好な電池特性を得る観点から、好ましくは0.70μm以上3.0μm以下、さらに好ましくは0.90μm以上2.3μm以下、さらに一層好ましく1.2μm以上1.8μm以下である。
 本発明の硫化物固体電解質のBET比表面積は特に限定されないが、硫化物固体電解質を含むスラリーを用いて電池を生産する際、スラリーの粘度を調整するために必要な溶媒量をより低減する観点、及び、硫化物固体電解質と大気中の水分との反応に起因する硫化水素ガス発生及びイオン伝導率低下をより低減する観点から、好ましくは2.0m/g以上20m/g以下、さらに好ましくは4.0m/g以上15m/g以下、さらに一層好ましくは5.0m/g以上12m/g以下である。
 本発明の硫化物固体電解質の真密度は特に限定されないが、硫化物固体電解質を含むスラリーを用いて電池を生産する際、スラリーの粘度を調整するために必要な溶媒量をより低減する観点、及び、硫化物固体電解質と大気中の水分との反応に起因する硫化水素ガス発生及びイオン伝導率低下をより低減する観点から、好ましくは0.50g/cm以上4.0g/cm以下、さらに好ましくは0.60g/cm以上3.5g/cm以下、さらに一層好ましくは0.70g/cm以上3.0g/cm以下である。
 本発明の硫化物固体電解質のCS値は特に限定されないが、硫化物固体電解質を含むスラリーを用いて電池を生産する際、スラリーの粘度を調整するために必要な溶媒量をより低減する観点、及び、硫化物固体電解質と大気中の水分との反応に起因する硫化水素ガス発生及びイオン伝導率低下をより低減する観点から、好ましくは1.0m/cm以上20m/cm以下、さらに好ましくは2.0m/cm以上15m/cm以下、さらに一層好ましくは3.0m/cm以上12m/cm以下である。
≪電極合材≫
 本発明の電極合材は、本発明の硫化物固体電解質と活物質とを含む。
 一実施形態において、本発明の電極合材は、負極合材であってもよく、正極合材であってもよい。負極合材は少なくとも負極活物質を含有し、正極合材は少なくとも正極活物質を含有する。電極合材は、必要に応じて固体電解質、導電助剤および結着剤を含有していてもよい。
 負極活物質としては、例えば、炭素材料、金属材料等が挙げられ、これらのうち一種を単独で又は二種以上を組み合わせて用いることができる。炭素材料や金属材料としては、負極活物質として一般的な材料を適宜用いることができるため、ここでの記載は省略する。負極活物質は、電子伝導性を有することが好ましい。
 正極活物質は、リチウムイオンの挿入脱離が可能な物質であり、公知の正極活物質の中から適宜選択することができる。正極活物質としては、例えば、金属酸化物、硫化物等が挙げられる。金属酸化物としては、例えば、遷移金属酸化物等が挙げられる。
 なお、電極合材に関するその他の説明については、一般的な電極合材と同様とすることができるため、ここでの記載は省略する。
≪スラリー≫
 本発明のスラリーは、本発明の硫化物固体電解質と分散媒とを含む。
 本発明のスラリーにおける本発明の硫化物固体電解質の含有量は、本発明のスラリーの用途等に応じて適宜調整することができる。本発明のスラリーは、本発明の硫化物固体電解質の含有量に応じて種々の粘度を有し、粘度に応じて、インク、ペースト等の種々の形態をとる。本発明のスラリーにおける本発明の硫化物固体電解質の含有量は、本発明のスラリーの総質量を基準として、好ましくは10質量%以上90質量%以下、さらに好ましくは20質量%以上80質量%以下、さらに一層好ましくは30質量%以上70質量%以下である。
 本発明のスラリーに含まれる分散媒は、本発明の硫化物固体電解質を分散させることができる液体である限り特に限定されない。分散媒としては、例えば、水、有機溶媒等が挙げられる。分散媒は、一種の溶媒であってもよいし、二種以上の溶媒の混合物であってもよい。
≪電池≫
 本発明の電池は、正極層と、負極層と、正極層及び負極層の間に位置する固体電解質層とを備える電池であり、固体電解質層は、本発明の硫化物固体電解質を含む。なお、正極層、負極層および固体電解質層については、一般的な電池と同様とすることができるため、ここでの記載は省略する。
 本発明の電池は、好ましくは固体電池であり、さらに好ましくはリチウム固体電池である。リチウム固体電池は、一次電池であってもよいし、二次電池であってもよいが、リチウム二次電池であることが好ましい。固体電池は、液状物質又はゲル状物質を電解質として一切含まない固体電池のほか、例えば50質量%以下、30質量%以下、10質量%以下の液状物質又はゲル状物質を電解質として含む態様も包含する。固体電池の形態としては、例えば、ラミネート型、円筒型及び角型等が挙げられる。
≪硫化物固体電解質の製造方法≫
 以下、本発明の硫化物固体電解質の製造方法の実施形態について説明する。
<第1実施形態>
 第1実施形態に係る製造方法は、例えば図1に示すように、下記工程:
(1-1)リチウム(Li)元素、リン(P)元素及び硫黄(S)元素を含む硫化物固体電解質であって、D50が0.10μm以上2.0μm以下であり、(A×B)/Cの値が2.5超5.0以下である硫化物固体電解質を、中間体として準備する工程;並びに
(1-2)工程(1-1)で準備された中間体を熱処理し、得られた熱処理体を、D50が0.10μm以上2.0μm以下である粉砕体が得られるように粉砕する工程
を含む。
 工程(1-1)で準備される中間体は、本発明の硫化物固体電解質の前駆体であり、中間体に対して工程(1-2)を施すことにより、本発明の硫化物固体電解質を得ることができる。
 第1実施形態に係る製造方法において、粒径が小さく、比表面積が低減された硫化物固体電解質を得ることができる理由は、以下の通りである。リチウム(Li)元素、リン(P)元素及び硫黄(S)元素を含む硫化物固体電解質であって、メジアン径D50が0.10μm以上2.0μm以下であり、(A×B)/Cの値が2.5超5.0以下である中間体は、形状がいびつな粒子や微粒子を多量に含むため、比表面積が大きい。上記中間体を熱処理することによって得られる熱処理体は、微粒子の一部が焼結することによって、真球に近い粒子がネッキングした構造体となる。上記熱処理体をメジアン径D50が0.10μm以上2.0μm以下となるように粉砕した場合、ネッキング面が優先的に粉砕されることによって、形状がいびつな粒子や微粒子の生成が抑制され、粒径が小さく、比表面積が低減された硫化物固体電解質を得ることができる。
 中間体は、本発明の硫化物固体電解質と同様、硫化物固体電解質の粉末である。中間体の組成は、本発明の硫化物固体電解質の組成を考慮して適宜調整することができる。中間体の組成は、通常、本発明の硫化物固体電解質の組成と同一である。中間体は、アルジロダイト型結晶相を含むことが好ましい。中間体に含まれるアルジロダイト型結晶相の組成は、本発明の硫化物固体電解質に含まれるアルジロダイト型結晶相の組成を考慮して適宜調整することができる。なお、中間体に含まれるアルジロダイト型結晶相の説明は、本発明の硫化物固体電解質の上述した説明と同様とすることができるため、ここでの記載は省略する。
 工程(1-2)における中間体のD50は、例えば0.20μm以上1.8μm以下であってもよく、0.30μm以上1.4μm以下であってもよく、0.40μm以上1.0μm以下であってもよい。
 工程(1-2)において、中間体のD50に対する粉砕体のD50の比は、好ましくは0.10以上10以下、さらに好ましくは0.50以上3.0以下、さらに一層好ましくは0.80以上1.5以下である。上記比が所定の下限を有することで、粉砕体の形状を真球に近づけることができる。一方、上記比が所定の上限を有することで、粉砕する工程時に微粉の生成を抑えることができる。
 工程(1-2)において、中間体の(A×B)/Cの値は、例えば2.6以上5.0以下であってもよく、2.7以上4.5以下であってもよく、2.8以上4.0以下であってもよい。
 中間体のD10は特に限定されないが、工程(1-2)において、所望のD10を有する粉砕体を効率よく得る観点から、好ましくは0.10μm以上1.0μm以下、さらに好ましくは0.20μm以上0.80μm以下、さらに一層好ましくは0.30μm以上0.60μm以下である。
 中間体のD95は特に限定されないが、工程(1-2)において、所望のD95を有する粉砕体を効率よく得る観点から、好ましくは0.50μm以上5.0μm以下、さらに好ましくは0.60μm以上4.5μm以下、さらに一層好ましくは0.70μm以上4.0μm以下である。
 中間体のBET比表面積は特に限定されないが、工程(1-2)において、所望のBET比表面積を有する粉砕体を効率よく得る観点から、好ましくは3.0m/g以上25m/g以下、さらに好ましくは5.0m/g以上20m/g以下、さらに一層好ましくは7.0m/g以上17m/g以下である。
 中間体の真密度は特に限定されないが、例えば1.5g/cm以上5.0g/cm以下であってもよく、1.7g/cm以上4.5g/cm以下であってもよく、1.9g/cm以上4.0g/cm以下であってもよい。
 中間体のCS値は特に限定されないが、例えば1.0m/cm以上25m/cm以下であってもよく、2.0m/cm以上20m/cm以下であってもよく、3.0m/cm以上15m/cm以下であってもよい。
 本発明において、例えば図2に示すように、工程(1-1)における中間体は、リチウム(Li)元素、リン(P)元素及び硫黄(S)元素を含む原料粉末であって、D50が0.10μm以上50μm以下である原料粉末を準備し、当該原料粉末を熱処理し、得られた熱処理体を、D50が0.10μm以上2.0μm以下である粉砕体が得られるように粉砕することで得ることができる。これにより、所望のD50及び所望の(A×B)/Cの値を有する中間体を効率よく準備することができる。なお、中間体を製造するための原料粉末を、以下、「第1の原料粉末」という。
 第1の原料粉末は、中間体の原料である。第1の原料粉末の組成は、中間体の組成を考慮して適宜調整することができる。第1の原料粉末の組成は、通常、中間体の組成と同一である。第1の原料粉末は、アルジロダイト型結晶相を含まない。ここで、「アルジロダイト型結晶相を含まない」とは、アルジロダイト型結晶相の含有割合が、第1の原料粉末を構成する全結晶相に対して、例えば5%質量%以下、3質量%以下又は1質量%以下であることを意味する。なお、アルジロダイト型結晶相の含有割合は、0質量%であってもよい。中間体のアルジロダイト型結晶相は、第1の原料粉末の熱処理によって生成され得る。
 第1の原料粉末としては、例えば、リチウム(Li)元素を含む一種又は二種以上の化合物の粉末と、リン(P)元素を含む一種又は二種以上の化合物の粉末と、硫黄(S)元素を含む一種又は二種以上の化合物の粉末と、場合によりハロゲン(X)元素を含む一種又は二種以上の化合物の粉末とを含む混合粉末を使用することができる。リチウム(Li)元素、リン(P)元素又はハロゲン(X)元素を含む化合物が硫黄(S)元素を含む場合、当該化合物は硫黄(S)元素を含む化合物にも該当する。
 リチウム(Li)元素、リン(P)元素、硫黄(S)元素及びハロゲン(X)元素を含む化合物としては、硫化物固体電解質の原料として一般的に用いられる公知の化合物と同様とすることができるため、ここでの記載は省略する。
 第1の原料粉末は、リチウム(Li)元素を含む一種又は二種以上の化合物の粉末と、リン(P)元素を含む一種又は二種以上の化合物の粉末と、硫黄(S)元素を含む一種又は二種以上の化合物の粉末と、場合によりハロゲン(X)元素を含む一種又は二種以上の化合物の粉末とを混合することにより調製することができる。混合は、例えば、乳鉢、ボールミル、振動ミル、転動ミル、ビーズミル、混練機等を用いて行うことができる。第1の原料粉末は、混合処理によって生じた反応物を含んでいてもよい。混合は、第1の原料粉末の結晶性が維持される程度の力で行うことが好ましい。
 第1の原料粉末は、例えば、LiS粉末と、P粉末と、LiCl粉末及び/又はLiBr粉末とを含む混合粉末である。
 第1の原料粉末のD50は特に限定されないが、例えば0.15μm以上40μm以下であってもよく、0.20μm以上30μm以下であってもよく、0.25μm以上20μm以下であってもよい。
 第1の原料粉末のD50が小さい場合には、第1の原料粉末をそのまま中間体として使用することができる場合がある。したがって、第1の原料粉末を熱処理し、得られた熱処理体を粉砕し、得られた粉砕体を中間体として準備する工程は、第1の原料粉末のD50が大きく、第1の原料粉末をそのまま中間体として使用できない場合に行うことが有利である。かかる観点から、第1の原料粉末のD50は、好ましくは2.5μm以上40μm以下、さらに好ましくは3.0μm以上30μm以下、さらに一層好ましく4.0μm以上20μm以下である。
 第1の原料粉末のD95は特に限定されないが、例えば0.10μm以上20μm以下であてもよく、0.20μm以上10μm以下であってもよく、0.30μm以上5.0μm以下であってもよい。
 工程(1-1)において、第1の原料粉末の熱処理は、アルジロダイト型結晶相を含む硫化物固体電解質が生成される条件で行われることが好ましい。熱処理温度は、好ましくは350℃以上500℃以下、さらに好ましくは400℃以上480℃以下、さらに一層好ましくは450℃以上470℃以下で行われる。熱処理時間は、第1の原料粉末の組成、熱処理温度等に応じて適宜調整することができる。熱処理時間は、好ましくは1時間以上10時間以下、さらに好ましくは2時間以上8時間以下、さらに一層好ましくは3時間以上6時間以下である。熱処理は、窒素、アルゴン等の不活性ガス雰囲気下で行われてもよいが、硫化水素ガス雰囲気下で行われることが好ましい。
 工程(1-1)において、第1の原料粉末の熱処理によって得られた熱処理体(焼成体)の粉砕は、D50が0.10μm以上2.0μm以下である粉砕体が得られるように行われる。これにより、中間体を得ることができる。粉砕体のD10、D50及びD95の好ましい範囲は、それぞれ、中間体のD10、D50及びD95の好ましい範囲と同様である。
 第1の原料粉末の熱処理によって得られた熱処理体(焼成体)の粉砕は、例えば、ジェットミル、ボールミル、ビーズミル等を用いて、乾式又は湿式で行うことができる。粉砕を湿式で行う場合、溶媒として、例えば炭化水素系溶媒を用いることできる。
 粉砕後、所定の目開きの篩を用いて分級を行ってもよい。粉砕条件(例えば、粉砕機の回転数、粉砕処理工程数、粉砕処理時間、熱処理体に与えるエネルギー等)、分級に用いられる篩の目開き等は、得ようとする粉砕体のD50に応じて適宜調整することができる。
 工程(1-1)で準備された中間体の熱処理は、粒成長が生じる温度で行われる。したがって、中間体の熱処理によって得られる熱処理体のD50は、中間体のD50よりも大きい。例えば、熱処理体のD50は、中間体のD50の、1.1倍以上200倍以下であってもよく、1.3倍以上100倍以下であってもよく、2.2倍以上60倍以下であってもよい。また、例えば、熱処理体のD10は、中間体のD10の、1倍以上20倍以下であってもよく、1.05倍以上15倍以下であってもよく、1.1倍以上10倍以下であってもよい。さらに、例えば、熱処理体のD95は、中間体のD95の、1.2倍以上200倍以下であってもよく、1.4倍以上150倍以下であってもよく、2倍以上100倍以下であってもよい。
 工程(1-2)においては、中間体の熱処理によって、中間体に含まれる固体電解質粒子内部の歪が緩和され、結晶性が増大する。また、工程(1-1)が図2で説明したような粉砕工程を含むとき、当該粉砕工程で微粒子が発生する場合があるが、工程(1-2)における熱処理によって、微粒子の焼結を促進させることができる。熱処理温度は、好ましくは200℃以上500℃以下、さらに好ましくは200℃以上450℃以下、さらに一層好ましくは220℃以上420℃以下、さらに一層好ましくは240℃以上400℃以下である。中間体の熱処理時間は、中間体の組成、熱処理温度等に応じて適宜調整することができるが、工程(1-2)において、所望のD50及び所望の(A×B)/Cの値を有する粉砕体を効率よく得る観点から、好ましくは0.5時間以上5時間以下、さらに好ましくは2時間以上4時間以下、さらに一層好ましくは1.5時間以上3時間以下である。熱処理は、硫化水素気流下で行われてもよいが、工程(1-2)において異相生成が少ない粉砕体を得る観点から、窒素、アルゴン等の不活性ガス雰囲気下で行われることが好ましい。
 中間体の熱処理によって得られる熱処理体の粉砕は、D50が0.10μm以上2.0μm以下である粉砕体が得られるように行われる。これにより、本発明の硫化物固体電解質を得ることができる。得られる粉砕体のD10、D50及びD95の好ましい範囲は、それぞれ、本発明の硫化物固体電解質のD10、D50及びD95の好ましい範囲と同様である。
 工程(1-2)において、中間体の熱処理によって得られた熱処理体(焼成体)の粉砕は、第1の原料粉末の熱処理によって得られた熱処理体(焼成体)の粉砕で記載した内容と同様とすることができる。
 工程(1-2)において、所望のD50及び所望の(A×B)/Cの値を有する粉砕体を効率よく得る観点から、例えば、中間体の熱処理によって得られた熱処理体(焼成体)の粉砕における粉砕機の回転数、粉砕処理工程数、粉砕処理時間、熱処理体に与えるエネルギー等は、第1の原料粉末の熱処理によって得られた熱処理体(焼成体)の粉砕よりも少ないことが好ましい。
 工程(1-2)において、所望のD50及び所望の(A×B)/Cの値を有する粉砕体を効率よく得る観点から、例えば、中間体の熱処理によって得られた熱処理体(焼成体)の粉砕は、中間体の熱処理によって得られた熱処理体の粉砕体のBET比表面積と中間体のBET比表面積との比が1以上なるように行われることが好ましい。上記比(中間体のBET比表面積/粉砕体のBET比表面積)は、好ましくは1.0以上3.0以下、さらに好ましくは1.1以上2.2以下、さらに一層好ましくは1.2以上1.6以下である。
 工程(1-2)で得られた粉砕体は、そのまま、本発明の硫化物固体電解質として用いてもよいし、所望の処理を施した後、本発明の硫化物固体電解質として用いてもよい。
<第2実施形態>
 第2実施形態に係る製造方法は、例えば図3に示すように、下記工程:
(2-1)リチウム(Li)元素、リン(P)元素及び硫黄(S)元素を含む原料粉末であって、D50が0.10μm以上2.0μm以下であり、D95が0.30μm以上5.0μm以下である原料粉末を準備する工程
(2-2)原料粉末を熱処理し、得られた熱処理体を、D50が0.10μm以上2.0μm以下である粉砕体が得られるように粉砕する工程
を含む。
 工程(2-1)で準備される原料粉末に対して工程(2-2)を施すことにより、本発明の硫化物固体電解質を得ることができる。
 第2実施形態に係る製造方法において、粒径が小さく、比表面積が低減された硫化物固体電解質を得ることができる理由は、以下の通りである。原料粉末の熱処理後の構造は、原料粉末の粒径を一部反映する。メジアン径D50が2.0μmよりも大きく、D95が5.0μmよりも大きい原料粉末を熱処理した場合、少なくとも2.0μmよりも大きい粒子がネッキングした構造体となる傾向がある。これをメジアン径D50が0.10μm以上2.0μm以下となるに粉砕する場合には、ネッキング面以外が粉砕されることによって、形状がいびつな粒子や微粒子が生成し、比表面積大きくなる。したがって、メジアン径D50が0.10μm以上2.0μm以下であり、D95が0.30μm以上5.0μm以下である原料粉末を用いた場合には、上記ネッキング面以外の粉砕頻度が抑制されるため、形状がいびつな粒子や微粒子がなく、粒径が小さく、比表面積が低減された硫化物固体電解質を得ることができる。
 工程(2-1)で準備される原料粉末は、D10、D50及びD95を除き、第1実施形態における第1の原料粉末と同様である。なお、工程(2-1)で準備される原料粉末を、以下、「第2の原料粉末」という。
 第2の原料粉末は、アルジロダイト型結晶相を含まない。なお、「アルジロダイト型結晶相を含まない」との記載の意義は、第1の原料粉末での記載の意義と同様である。
 工程(2-2)において、所望のD50を有する粉砕体を効率よく得る観点から、第2の原料粉末のD50は、好ましくは0.15μm以上0.95μm以下、さらに好ましくは0.20μm以上0.90μm以下、さらに一層好ましくは0.25μm以上0.85μm以下である。
 工程(2-2)において、第2の原料粉末D50に対する粉砕体のD50の比は、好ましくは0.10以上10以下、さらに好ましくは0.30以上7.0以下、さらに一層好ましくは0.60以上5.0以下である。上記比が記載の下限以上であることで、粉砕体の形状がより真球となるため、好ましい。中間体のD50に対する粉砕体のD50の比が記載の上限以下であることで、粉砕する工程時に微粉の生成を抑えることができるため、好ましい。
 第2の原料粉末のD10は特に限定されないが、工程(2-2)において、所望のD10を有する粉砕体を効率よく得る観点から、好ましくは0.10μm以上0.80μm以下、さらに好ましくは0.12μm以上0.60μm以下、さらに一層好ましく0.14μm以上0.40μm以下である。
 第2の原料粉末のD95は特に限定されないが、工程(2-2)において、所望のD95を有する粉砕体を効率よく得る観点から、好ましくは0.10μm以上5.0μm以下、さらに好ましくは0.15μm以上3.0μm以下、さらに一層好ましくは0.20μm以上2.0μm以下である。
 工程(2-2)における第2の原料粉末の熱処理は、アルジロダイト型結晶相を含む硫化物固体電解質が生成される条件で行われる。熱処理温度は、好ましくは300℃以上550℃以下、好ましくは320℃以上470℃以下、さらに好ましくは350℃以上450℃以下、さらに一層好ましくは370℃以上430℃以下で行われる。上記範囲の熱処理温度は、アルジロダイト生成反応が十分に進行するという観点及び原料の粒子形状を反映した熱処理体(焼成体)が得られるという観点から好ましい。熱処理時間は、第2の原料粉末の組成、熱処理温度等に応じて適宜調整することができる。熱処理時間は、第1の原料粉末の熱処理時間と同様とすることができる。
 第2の原料粉末の熱処理によって得られた熱処理体(焼成体)の粉砕は、D50が0.10μm以上2.0μm以下である粉砕体が得られるように行われる。これにより、本発明の硫化物固体電解質を得ることができる。粉砕体のD10、D50及びD95の好ましい範囲は、それぞれ、本発明の硫化物固体電解質のD10、D50及びD95の好ましい範囲と同様である。
 第2の原料粉末の熱処理によって得られた熱処理体(焼成体)の粉砕については、第1実施形態の工程(1-2)における粉砕と同様とすることができる。
 粉砕後、所定の目開きの篩を用いて分級を行ってもよい。粉砕条件(例えば、粉砕機の回転数、粉砕処理工程数、粉砕処理時間、熱処理体に与えるエネルギー等)、分級に用いられる篩の目開き等は、得ようとする粉砕体のD50に応じて適宜調整することができる。
 工程(2-2)で得られた粉砕体は、そのまま、本発明の硫化物固体電解質として用いてもよいし、所望の処理を施した後、本発明の硫化物固体電解質として用いてもよい。
 各実施例において、固体電解質の特性評価は、以下の方法を用いて行った。
<組成>
 各実施例で得られた固体電解質のサンプルを全溶解してICP発光分析法によりサンプルの元素組成を分析した。
<結晶相>
 固体電解質サンプルにおける結晶相の分析は、X線回折法(XRD、Cu線源)で分析し、X線回折パターンを得た。X線回折法は、株式会社リガク製のXRD装置「Smart Lab」を用いて、走査軸:2θ/θ、走査範囲:10~140deg、ステップ幅:0.01deg、走査速度:1deg/minの条件下で行った。実施例1~3においては、大気非曝露セル中でX線回折法を行った。実施例4においては、アルゴン雰囲気中で固体電解質上に流動パラフィンを数滴滴下した後、大気中でX線回折法を行った。
<D10、D50及びD95
 レーザー回折散乱式粒度分布測定法による固体電解質の粒度分布の測定は、次の手順で行った。レーザー回折粒子径分布測定装置用自動試料供給機(日機装株式会社製「Microtorac SDC」)を用い、固体電解質を含む測定用試料の流速を50%に設定し、固体電解質を含む測定用試料に対して30Wの超音波を60秒間照射した。その後、日機装株式会社製レーザー回折粒度分布測定機「MT3000II」を用いて粒度分布を測定し、得られた体積基準粒度分布のチャートから、累積体積が10体積%、50体積%及び95体積%となる粒径を求め、それぞれ、D10、D50及びD95とした。なお、D10、D50及びD95の測定の際、有機溶媒を60μmのフィルターを通し、溶媒屈折率を1.50、粒子透過性条件を「透過」、粒子屈折率1.59、形状を「非球形」とし、測定レンジを0.133μm~704.0μm、測定時間を10秒とし、測定を2回行い、得られた測定値の平均値をそれぞれD10、D50及びD95とした。
 固体電解質を含む測定用試料は、次のようにして作製した。まず、固体電解質0.3gと分散剤含有液5.7g(トルエンの質量:分散剤(サンノプコ株式会社製 SNディスパーサント9228)の質量=19:1(質量比)とを手混合することにより、固体電解質を含むスラリーを作製した。次いで、固体電解質を含むスラリー6mlを有機溶媒(トルエン)に投入することにより、固体電解質を含む測定用試料を調製した。
 なお、固体電解質の原料粉末のD10、D50及びD95の測定は、原料粉末を含む測定用試料を使用した点を除き、上記と同様に行った。原料粉末を含む測定用試料は、次のようにして作製した。まず、後述するように、原料粉末を含むスラリー(原料スラリー)を作製した。次いで、有機溶媒(トルエン)に分散剤(サンノプコ株式会社製 SNディスパーサント9228)を数滴滴下した後、原料粉末を含むスラリーを数滴滴下することにより、原料粉末を含む測定用試料を作製した。
<BET比表面積>
 BET比表面積は、次の方法で算出した。MicrotracBEL株式会社製の比表面積測定装置「BELSORP-miniII」を用いて、定容量ガス吸着法により吸脱着等温線を測定し、多点法によりBET比表面積を算出した。前処理は減圧環境下で120℃にて30分以上実施した。パージガスにはHe、吸着質にはNを使用した。
<真密度>
 MicrotracBEL株式会社製の真密度評価装置「BELPycno」を用いて、ガス置換法によって真密度を算出した。前処理はパージにて5回実施した。測定にはアルミナ10ccセルを使用し、セルの7割程度まで試料を充填した。
<CS値>
 D10、D50及びD95の測定と同様にして、日機装株式会社製レーザー回折粒度分布測定機「MT3000II」を用いて粒度分布を測定し、得られた体積基準粒度分布のチャートから、CS値を算出した。
<実施例1>
(1)中間体の製造
 組成がLi5.4PS4.4Cl0.8Br0.8となり、全量が5gとなるように、LiS粉末、P粉末、LiCl粉末及びLiBr粉末をそれぞれ秤量し、トルエン中にてボールミルで15時間、粉砕及び混合を行い、原料スラリーを得た。得られた原料スラリーの評価結果を表1に示す。
 得られた原料スラリーを真空加熱乾燥した後、得られた原料粉末をカーボン製の容器に充填した後、管状電気炉にて、硫化水素ガスを1.0L/分で流通させながら、昇降温速度200℃/時間にて300℃で4時間熱処理した後、500℃で4時間熱処理した。
 得られた熱処理体(焼成体)を粉砕し、粉末状の中間体を得た。粉砕は遊星ボールミル(フリッチュ製)を用いて2段階に粉砕することで行った。1段階目の粉砕では、遊星ボールミル(フリッチュ製)を用いて行った。容量80cmのジルコニア製容器に固体電解質(熱処理体)5g、脱水ヘプタン10g、5mmZrOボール90gを入れ、回転数100rpmで3時間粉砕処理を行った。得られたスラリーを真空乾燥し、1段階目の粉砕体とした。得られた1段階目の粉砕体を用いて2段階目の粉砕を行った。2段階目の粉砕では、容量80ccのジルコニア製容器に固体電解質(第1段階目の粉砕体)2g、分散剤(酢酸ブチル)0.06g、超脱水トルエン10g、0.8mmZrOボール90gを入れ、回転数100rpmで1時間粉砕処理を行った。得られたスラリーに対して、ボール分離及び固液分離を行い、80℃で真空乾燥した後、目開き53μmの篩を通して整粒することで粉末状の中間体を得た。
 なお、秤量、混合、電気炉へのセット、電気炉からの取り出し、粉砕及び整粒作業は全て、十分に乾燥されたArガス(露点-60℃以下)で置換されたグローブボックス内で行った。
(2)中間体の特性評価
 得られた中間体の評価結果を表1に示す。
 なお、中間体は、CuKα1線を用いて測定されるX線回折パターンにおいて、アルジロダイト型結晶相に由来するピークを有していた。
(3)中間体の熱処理
 中間体を、アルゴンガスを1L/分の流量でフローした環境下、250℃で2時間熱処理した。
(4)熱処理体の特性評価
 得られた熱処理体の評価結果を表1に示す。
 なお、熱処理体は、CuKα1線を用いて測定されるX線回折パターンにおいて、アルジロダイト型結晶相に由来するピーク有していた。
(5)熱処理体の粉砕
 得られた熱処理体を以下の通り粉砕し、粉砕体を得た。容量80ccのジルコニア製容器に熱処理体2g、分散剤(酢酸ブチル)0.06g、超脱水トルエン10g、0.8mmZrOボール90gを入れ、回転数100rpmで10分間粉砕処理を行った。得られたスラリーに対してボール分離及び固液分離を行い、80℃で真空乾燥した後、目開き53μmの篩を通して整粒することで熱処理体の粉砕体を得た。
(6)粉砕体の特性評価
 得られた粉砕体の評価結果を表1及び図4に示す。
 図4に示すように、粉砕体は、CuKα1線を用いて測定されるX線回折パターンにおいて、アルジロダイト型結晶相に由来するピークを有していた。
<実施例2>
 中間体の熱処理温度を300℃に変更した点を除き、実施例1と同様の操作を行った。実施例1と同様の評価結果を表1及び図4に示す。
 図4に示すように、粉砕体は、CuKα1線を用いて測定されるX線回折パターンにおいて、アルジロダイト型結晶相に由来するピークを有していた。
 なお、中間体及び熱処理体についても、CuKα1線を用いて測定されるX線回折パターンにおいて、アルジロダイト型結晶相に由来するピークを有していた。
<実施例3>
(1)粉砕体の製造
 組成がLi5.4PS4.4Cl0.8Br0.8となり、全量が5gとなるように、LiS粉末、P粉末、LiCl粉末及びLiBrをそれぞれ秤量し、遊星ボールミルで2時間、粉砕及び混合を行い、原料粉末を得た。得られた原料粉末を容量80ccのジルコニア製容器に2g投入し、さらに分散剤(酢酸ブチル)0.06g、超脱水トルエン10g、0.8mmZrOボール90gを入れ、回転数100rpmで1時間粉砕処理を行った。得られたスラリーからボールを分離した後、80℃で真空乾燥し、53μm篩を通して整粒することで原料粉末を得た。得られた原料粉末の特性(D10、D50及びD95)を評価した。評価結果を表2に示す。
 得られた原料粉末をカーボン製の容器に充填した後、管状電気炉にて、硫化水素ガスを1.0L/分で流通させながら、昇降温速度200℃/時間にて300℃で4時間熱処理した後、400℃で4時間熱処理した。
 得られた熱処理体(焼成体)を粉砕し、粉砕体を得た。容量80ccのジルコニア製容器に熱処理体2g、分散剤(酢酸ブチル)0.06g、超脱水トルエン10g、0.8mmZrOボール90gを入れ、回転数100rpmで10分間粉砕処理を行った。得られたスラリーに対してボール分離及び固液分離を行い、80℃で真空乾燥した後、53μm篩を通して整粒することで粉砕体を得た。
 なお、秤量、混合、電気炉へのセット、電気炉からの取り出し、粉砕及び整粒作業は全て、十分に乾燥されたArガス(露点-60℃以下)で置換されたグローブボックス内で行った。
(2)粉砕体の特性評価
 得られた粉砕体の評価結果を表2及び図4に示す。
 図4に示すように、粉砕体は、CuKα1線を用いて測定されるX線回折パターンにおいて、アルジロダイト型結晶相に由来するピークを有していた。
<実施例4>
 組成をLi5.8PS4.8Cl1.2に変更した点、原料粉末の粉砕処理を回転数100rpmで2時間を行った点、及び、熱処理体(焼成体)の粉砕処理を回転数100rpmで30分間行った点を除き、実施例3と同様の操作を行った。実施例3と同様の評価結果を表2及び図4に示す。
 図4に示すように、粉砕体は、CuKα1線を用いて測定されるX線回折パターンにおいて、アルジロダイト型結晶相に由来するピークを有していた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示すように、実施例1~4により、Li、P及びSを含むとともに、アルジロダイト型結晶相を含む硫化物固体電解質であって、0.10μm以上2.0μm以下のD50及び1.0以上2.5以下の(A×B)/Cの値を有する粉末を得ることができた。

Claims (13)

  1.  リチウム(Li)元素、リン(P)元素及び硫黄(S)元素を含む硫化物固体電解質であって、
     レーザー回折散乱式粒度分布測定法によって測定される体積基準の粒度分布において累積体積が50体積%となる粒径であるメジアン径D50が、0.10μm以上2.0μm以下であり、下記式:
     (A×B)/C
    [式中、Aは、BET比表面積(m/g)を表し、Bは、真密度(g/cm)を表し、Cは、CS値(m/cm)を表す。]
    の値が1.0以上2.5以下である、硫化物固体電解質。
  2.  前記リチウム(Li)元素の含有量が、前記硫化物固体電解質の構成元素の合計モル量を基準として、41モル%以上50モル%以下であり、
     前記リン(P)元素の含有量が、前記硫化物固体電解質の構成元素の合計モル量を基準として、7.0モル%以上20モル%以下であり、
     前記硫黄(S)元素の含有量が、前記硫化物固体電解質の構成元素の合計モル量を基準として、31モル%以上43モル%以下である、請求項1に記載の硫化物固体電解質。
  3.  少なくとも一種のハロゲン(X)元素をさらに含む、請求項1又は2に記載の硫化物固体電解質。
  4.  前記少なくとも一種のハロゲン(X)元素が、塩素(Cl)元素及び臭素(Br)元素の少なくとも一種である、請求項3に記載の硫化物固体電解質。
  5.  前記少なくとも一種のハロゲン(X)元素の含有量が、前記硫化物固体電解質の構成元素の合計モル量を基準として、3.7モル%以上19モル%以下である、請求項3又は4に記載の硫化物固体電解質。
  6.  CuKα1線を用いて測定されるX線回折パターンにおいて、2θ=25.19°±1.00°及び29.62°±1.00°の位置にピークを有する、請求項1~5のいずれか一項に記載の硫化物系固体電解質。
  7.  前記X線回折パターンにおいて、2θ=15.34°±1.00°、17.74°±1.00°、30.97°±1.00°、44.37°±1.00°、47.22°±1.00°及び51.70°±1.00°から選択される位置にピークを有する、請求項6に記載の硫化物固体電解質。
  8.  前記硫化物固体電解質が、アルジロダイト型結晶構造を有する結晶相を含み、
     前記結晶相が、下記式:
     LiPS
    [式中、Xは少なくとも一種のハロゲン元素であり、aは3.0以上6.5以下であり、bは3.5以上5.5以下であり、cは0.50以上3.0以下である。]
    で表される組成を有する、請求項1~7のいずれか一項に記載の硫化物固体電解質。
  9.  請求項1~8のいずれか一項に記載の硫化物固体電解質と活物質とを含む電極合材。
  10.  請求項1~8のいずれか一項に記載の硫化物固体電解質と分散媒とを含むスラリー。
  11.  正極層と、負極層と、前記正極層及び前記負極層の間に位置する固体電解質層とを備える電池であって、
     前記固体電解質層が、請求項1~8のいずれか一項に記載の硫化物固体電解質を含む、前記電池。
  12.  請求項1~8のいずれか一項に記載の硫化物固体電解質を製造する方法であって、下記工程:
    (1-1)リチウム(Li)元素、リン(P)元素及び硫黄(S)元素を含む硫化物固体電解質であって、メジアン径D50が0.10μm以上2.0μm以下であり、下記式:
     (A×B)/C
    [式中、Aは、BET比表面積(m/g)を表し、Bは、真密度(g/cm)を表し、Cは、CS値(m/cm)を表す。]
    の値が2.5超5.0以下である前記硫化物固体電解質を、中間体として準備する工程;並びに
    (1-2)前記中間体を熱処理し、得られた熱処理体を、メジアン径D50が0.10μm以上2.0μm以下である粉砕体が得られるように粉砕する工程
    を含む、前記方法。
  13.  請求項1~8のいずれか一項に記載の硫化物固体電解質を製造する方法であって、下記工程:
    (2-1)リチウム(Li)元素、リン(P)元素及び硫黄(S)元素を含む原料粉末であって、メジアン径D50が0.10μm以上2.0μm以下であり、D95が0.30μm以上5.0μm以下である前記原料粉末を準備する工程;並びに
    (2-2)前記原料粉末を熱処理し、得られた熱処理体を、メジアン径D50が0.10μm以上2.0μm以下である粉砕体が得られるように粉砕する工程
    を含む、前記方法。
PCT/JP2020/048632 2019-12-27 2020-12-25 硫化物固体電解質及びその製造方法 WO2021132537A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080008256.0A CN113348577A (zh) 2019-12-27 2020-12-25 硫化物固体电解质及其制造方法
KR1020217020171A KR102410967B1 (ko) 2019-12-27 2020-12-25 황화물 고체 전해질 및 그 제조 방법
JP2021512815A JP6952216B1 (ja) 2019-12-27 2020-12-25 硫化物固体電解質及びその製造方法
US17/606,776 US11990583B2 (en) 2019-12-27 2020-12-25 Sulfide solid electrolyte and method of producing the same
EP20904438.7A EP4084113A4 (en) 2019-12-27 2020-12-25 SULFIDE-BASED SOLID ELECTROLYTE AND METHOD FOR PRODUCING SOLID ELECTROLYTE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-239129 2019-12-27
JP2019239129 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021132537A1 true WO2021132537A1 (ja) 2021-07-01

Family

ID=76575980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048632 WO2021132537A1 (ja) 2019-12-27 2020-12-25 硫化物固体電解質及びその製造方法

Country Status (7)

Country Link
US (1) US11990583B2 (ja)
EP (1) EP4084113A4 (ja)
JP (1) JP6952216B1 (ja)
KR (1) KR102410967B1 (ja)
CN (1) CN113348577A (ja)
TW (1) TW202134172A (ja)
WO (1) WO2021132537A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053928A1 (ja) * 2021-09-30 2023-04-06 Agc株式会社 硫化物系固体電解質粉末の製造方法
WO2024009879A1 (ja) * 2022-07-08 2024-01-11 三井金属鉱業株式会社 硫黄化合物の粉砕方法、固体電解質の粉砕方法、固体電解質の製造方法及び固体電解質
JP7456540B1 (ja) 2023-07-05 2024-03-27 Agc株式会社 硫化物固体電解質粉末、固体電解質層及びリチウムイオン二次電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7344295B2 (ja) * 2020-03-23 2023-09-13 三井金属鉱業株式会社 硫化物固体電解質、及びそれを用いた電極合剤、固体電解質層並びに電池
EP4213270A1 (en) * 2021-09-28 2023-07-19 LG Energy Solution, Ltd. Electrode assembly for secondary battery, and secondary battery comprising same
WO2024058633A1 (ko) * 2022-09-16 2024-03-21 주식회사 엘지화학 고체 전해질 제조방법 및 고체 전해질
CN117594868B (zh) * 2024-01-17 2024-05-14 中国第一汽车股份有限公司 一种硫化物及其制备方法、固态电解质、全固态电池和用电设备
CN117613371A (zh) * 2024-01-18 2024-02-27 中国第一汽车股份有限公司 固态电解质的制备方法、固态电解质及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250580A (ja) 2000-03-06 2001-09-14 Masahiro Tatsumisuna 高リチウムイオン伝導性硫化物セラミックスおよびこれを用いた全固体電池
JP2010033732A (ja) 2008-07-25 2010-02-12 Idemitsu Kosan Co Ltd リチウム電池用被コーティング固体電解質、及びそれを用いた全固体二次電池
JP2011044249A (ja) 2009-08-19 2011-03-03 Toyota Motor Corp 硫化物固体電解質材料
JP2012043646A (ja) 2010-08-19 2012-03-01 Idemitsu Kosan Co Ltd 硫化物系固体電解質及びその製造方法、並びにリチウムイオン電池
JP2016024874A (ja) 2014-07-16 2016-02-08 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
JP2016207421A (ja) * 2015-04-21 2016-12-08 トヨタ自動車株式会社 硫化物固体電解質材料の製造方法
JP2019036536A (ja) 2017-08-10 2019-03-07 出光興産株式会社 アルジロダイト型結晶構造を有する硫化物固体電解質の製造方法
JP2019186129A (ja) * 2018-04-13 2019-10-24 トヨタ自動車株式会社 硫化物固体電解質粒子の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107112586B (zh) * 2014-12-26 2018-11-02 三井金属矿业株式会社 锂离子电池用硫化物系固体电解质和固体电解质化合物
EP3386022B1 (en) 2015-11-30 2023-10-25 Nec Corporation Lithium ion secondary battery
WO2018164224A1 (ja) * 2017-03-08 2018-09-13 出光興産株式会社 硫化物固体電解質粒子
JP6597701B2 (ja) * 2017-04-18 2019-10-30 トヨタ自動車株式会社 負極合材、当該負極合材を含む負極、及び、当該負極を備える全固体リチウムイオン二次電池
JP6595152B2 (ja) 2017-07-07 2019-10-23 三井金属鉱業株式会社 リチウム二次電池の固体電解質及び当該固体電解質用硫化物系化合物
CN110998952B (zh) * 2017-08-10 2023-08-08 出光兴产株式会社 硫化物固体电解质
CN109786814A (zh) * 2017-11-14 2019-05-21 三星电子株式会社 用于全固态二次电池的固体电解质、复合电极、全固态二次电池和制备固体电解质的方法
EP3734616B1 (en) 2017-12-28 2022-10-12 Mitsui Mining & Smelting Co., Ltd. Solid electrolyte
JP7077766B2 (ja) * 2018-05-18 2022-05-31 トヨタ自動車株式会社 硫化物系固体電解質、当該硫化物系固体電解質の製造方法、及び、全固体電池の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250580A (ja) 2000-03-06 2001-09-14 Masahiro Tatsumisuna 高リチウムイオン伝導性硫化物セラミックスおよびこれを用いた全固体電池
JP2010033732A (ja) 2008-07-25 2010-02-12 Idemitsu Kosan Co Ltd リチウム電池用被コーティング固体電解質、及びそれを用いた全固体二次電池
JP2011044249A (ja) 2009-08-19 2011-03-03 Toyota Motor Corp 硫化物固体電解質材料
JP2012043646A (ja) 2010-08-19 2012-03-01 Idemitsu Kosan Co Ltd 硫化物系固体電解質及びその製造方法、並びにリチウムイオン電池
JP2016024874A (ja) 2014-07-16 2016-02-08 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
JP2016207421A (ja) * 2015-04-21 2016-12-08 トヨタ自動車株式会社 硫化物固体電解質材料の製造方法
JP2019036536A (ja) 2017-08-10 2019-03-07 出光興産株式会社 アルジロダイト型結晶構造を有する硫化物固体電解質の製造方法
JP2019186129A (ja) * 2018-04-13 2019-10-24 トヨタ自動車株式会社 硫化物固体電解質粒子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4084113A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053928A1 (ja) * 2021-09-30 2023-04-06 Agc株式会社 硫化物系固体電解質粉末の製造方法
WO2024009879A1 (ja) * 2022-07-08 2024-01-11 三井金属鉱業株式会社 硫黄化合物の粉砕方法、固体電解質の粉砕方法、固体電解質の製造方法及び固体電解質
JP7456540B1 (ja) 2023-07-05 2024-03-27 Agc株式会社 硫化物固体電解質粉末、固体電解質層及びリチウムイオン二次電池

Also Published As

Publication number Publication date
JP6952216B1 (ja) 2021-10-20
EP4084113A1 (en) 2022-11-02
KR20210100131A (ko) 2021-08-13
CN113348577A (zh) 2021-09-03
EP4084113A4 (en) 2023-09-20
JPWO2021132537A1 (ja) 2021-12-23
TW202134172A (zh) 2021-09-16
US20220263122A1 (en) 2022-08-18
KR102410967B1 (ko) 2022-06-22
US11990583B2 (en) 2024-05-21

Similar Documents

Publication Publication Date Title
JP6952216B1 (ja) 硫化物固体電解質及びその製造方法
WO2021251347A1 (ja) 固体電解質、電極合剤及び電池
KR102410782B1 (ko) 황화물 고체 전해질
JP7239337B2 (ja) 固体電解質
WO2022045302A1 (ja) 活物質及びその製造方法、電極合剤並びに電池
JP5634828B2 (ja) スピネル型リチウム・マンガン系複合酸化物粒子の製造方法ならびに用途
WO2017204334A1 (ja) 小粒径のニッケルリチウム金属複合酸化物粉体の製造方法
US20220416292A1 (en) Solid electrolyte, and electrode mixture, solid electrolyte layer and solid-state battery, each using same
WO2021132538A1 (ja) 硫化物固体電解質及びその製造方法
US20220336852A1 (en) Sulfide solid electrolyte, and electrode mixture, solid electrolyte layer, and solid battery using same
US20220376293A1 (en) Solid electrolyte, and electrode mixture, solid electrolyte layer and solid-state battery, each using same
JP7405300B1 (ja) 硫化物固体電解質粉末及び電極合剤
JP7442022B2 (ja) 複合材料及びその製造方法
JP7421011B2 (ja) 電池
WO2024048476A1 (ja) 複合材料の製造方法及び複合材料
JP5828622B2 (ja) スピネル型リチウム・マンガン系複合酸化物およびその製造方法ならびに用途
WO2024009879A1 (ja) 硫黄化合物の粉砕方法、固体電解質の粉砕方法、固体電解質の製造方法及び固体電解質
US20220344708A1 (en) Solid electrolyte, and electrode mixture, solid electrolyte layer and solid-state battery, each using same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021512815

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217020171

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020904438

Country of ref document: EP

Effective date: 20220727