WO2021132126A1 - アンモニア誘導体製造プラント及びアンモニア誘導体の製造方法 - Google Patents

アンモニア誘導体製造プラント及びアンモニア誘導体の製造方法 Download PDF

Info

Publication number
WO2021132126A1
WO2021132126A1 PCT/JP2020/047616 JP2020047616W WO2021132126A1 WO 2021132126 A1 WO2021132126 A1 WO 2021132126A1 JP 2020047616 W JP2020047616 W JP 2020047616W WO 2021132126 A1 WO2021132126 A1 WO 2021132126A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
nitrogen
oxygen
carbon dioxide
generated
Prior art date
Application number
PCT/JP2020/047616
Other languages
English (en)
French (fr)
Inventor
達也 辻内
琢也 平田
立花 晋也
隆仁 米川
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to AU2020414988A priority Critical patent/AU2020414988B9/en
Priority to CA3165596A priority patent/CA3165596A1/en
Priority to DE112020005178.1T priority patent/DE112020005178T5/de
Priority to US17/773,770 priority patent/US20220380224A1/en
Publication of WO2021132126A1 publication Critical patent/WO2021132126A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0488Processes integrated with preparations of other compounds, e.g. methanol, urea or with processes for power generation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/021Process control or regulation of heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/081Supplying products to non-electrochemical reactors that are combined with the electrochemical cell, e.g. Sabatier reactor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present disclosure relates to an ammonia derivative production plant and a method for producing an ammonia derivative.
  • Patent Document 2 describes that hydrogen produced by electrolyzing water reacts with nitrogen in the atmosphere to synthesize ammonia. According to this technology, hydrogen can be obtained without producing carbon dioxide derived from fossil fuels.
  • At least one embodiment of the present disclosure aims to provide an ammonia derivative production plant and a method for producing an ammonia derivative in which the production cost of the ammonia derivative is reduced.
  • the ammonia derivative production plant includes an ammonia synthesizer that electrolyzes water, an ammonia synthesizer that synthesizes ammonia from hydrogen and nitrogen generated by the electrolyzer, and carbon dioxide.
  • An ammonia derivative synthesizer that synthesizes an ammonia derivative from the ammonia synthesized by the ammonia synthesizer and the carbon dioxide produced by the carbon dioxide generator. The generated oxygen is consumed to generate carbon dioxide in the carbon dioxide generator.
  • the method for producing an ammonia derivative according to the present disclosure includes an electrolysis step of electrolyzing water, an ammonia synthesis step of synthesizing ammonia from hydrogen and nitrogen generated in the electrolysis step, and carbon dioxide producing carbon dioxide.
  • the oxygen produced in the electrolysis step includes a carbon production step and an ammonia derivative synthesis step of synthesizing an ammonia derivative from the ammonia synthesized in the ammonia synthesis step and the carbon dioxide produced in the carbon dioxide production step. It is consumed to produce carbon dioxide in the carbon dioxide production step.
  • oxygen generated by the electrolyzer is consumed to generate carbon dioxide by the carbon dioxide generator, so that the production cost of the ammonia derivative can be reduced. Can be done.
  • ammonia derivative production plant and the method for producing the ammonia derivative according to the embodiment of the present disclosure will be described with reference to the drawings.
  • Such an embodiment shows one aspect of the present disclosure, does not limit the disclosure, and can be arbitrarily modified within the scope of the technical idea of the present disclosure.
  • the ammonia derivative production plant 1 includes an electrolysis device 10 that electrolyzes water to generate hydrogen and oxygen, and hydrogen generated by the electrolysis device 10.
  • an ammonia derivative synthesizing apparatus 40 for synthesizing the above.
  • the ammonia derivative is not particularly limited, and examples thereof include urea, melamine, and melamine resin.
  • the source of nitrogen used in the ammonia synthesizer 20 is not particularly limited, and may be nitrogen stored in a tank or the like or nitrogen supplied from another plant.
  • the ammonia derivative production plant 1 can be provided with a nitrogen separation device 2 for separating nitrogen from the air.
  • the configuration of the nitrogen separation device 2 is not particularly limited, and may be, for example, a PSA (pressure fluctuation adsorption) type nitrogen gas generator, a device using a deep cold separation method, a device using a membrane separation method, or the like.
  • a nitrogen-containing gas flow pipe 3 that flows after the nitrogen-containing gas separated from the air flows out of the nitrogen separation device 2 is connected to the nitrogen separation device 2.
  • Oxygen in the air remains in the nitrogen-containing gas. If the nitrogen-containing gas in which oxygen remains is supplied to the ammonia synthesizing apparatus 20, the performance of the ammonia synthesizing catalyst for synthesizing ammonia from nitrogen and hydrogen in the ammonia synthesizing apparatus 20 is deteriorated.
  • the oxygen removing device 4 can be provided in the ammonia derivative production plant 1. If the oxygen remaining in the nitrogen-containing gas is removed by the oxygen removing device 4, the deterioration of the performance of the ammonia synthesis catalyst can be suppressed.
  • the oxygen removing device 4 for example, a device that reacts hydrogen generated by electrolysis of water supplied to the electrolyzer 10 via a water supply pipe 13 with oxygen in a nitrogen-containing gas can be used.
  • the oxygen removing device 4 needs to be connected to the nitrogen-containing gas flow pipe 3 and the hydrogen flow pipe 11 through which the hydrogen flowing out from the electrolysis device 10 flows. With this configuration, nitrogen-containing gas and hydrogen can be supplied to the oxygen removing device 4.
  • a gas-liquid separation device 5 can be provided in the ammonia derivative production plant 1.
  • the gas-liquid separation device 5 is configured to communicate with the oxygen removing device 4 via the outflow gas flow pipe 6, and the outflow gas flow pipe 6 cools the outflow gas to liquefy the water in the outflow gas.
  • a cooler 7 is provided for this purpose.
  • the gas-liquid separator 5 and the electrolyzer 10 are connected via a water recycling pipe 8 so that the water separated by the gas-liquid separator 5 can be used as a part of the water electrolyzed by the electrolyzer 10. You can also connect. According to this configuration, the water generated by the reaction of oxygen and hydrogen in the oxygen removing device 4 is used as a part of the water to be electrolyzed by the electrolyzer 10 and therefore the amount of water consumed by the electrolyzer 10. As a result, the cost of producing the ammonia derivative can be reduced by the operation described later.
  • the gas-liquid separation device 5 In order to supply the gas separated by the gas-liquid separation device 5 to the ammonia synthesis device 20 as an ammonia synthesis gas as a raw material for synthesizing ammonia in the ammonia synthesis device 20, the gas-liquid separation device 5 is an ammonia synthesis gas. It communicates with the ammonia synthesizer 20 via the supply pipe 9.
  • the ammonia synthesis gas supply pipe 9 includes an ammonia synthesis gas compressor 21 for supplying the ammonia synthesis gas to the ammonia synthesis device 20, and a carbon dioxide removal device 22 for removing carbon dioxide contained in the ammonia synthesis gas. Can be provided.
  • the configuration of the carbon dioxide removing device 22 is not particularly limited.
  • a device that removes carbon dioxide by metanation a device that brings an absorption liquid and an ammonia synthetic gas into gas-liquid contact to allow the absorption liquid to absorb carbon dioxide, and an absorption liquid.
  • the equipment may be equipped with a device for recovering carbon dioxide from the carbon dioxide.
  • the configuration of the carbon dioxide generator 30 is not particularly limited, and for example, a boiler 31 may be provided.
  • the carbon dioxide generator 30 includes the boiler 31, the fuel supply pipe 32 and the air supply pipe 33 for supplying fuel and air to the boiler 31 are connected to the boiler 31.
  • One end of an oxygen flow pipe 12 that flows after the generated oxygen flows out of the electrolysis device 10 is connected to the electrolysis device 10, and the other end of the oxygen flow pipe 12 is connected to an air supply pipe 33.
  • steam first steam
  • the steam turbine 50 using this steam as the driving steam and the generator that generates power by the power from the steam turbine 50.
  • 53 can be provided in the ammonia derivative production plant 1.
  • the carbon dioxide generator 30 When the carbon dioxide generator 30 includes the boiler 31, the carbon dioxide generator 30 recovers carbon dioxide from the exhaust gas of the boiler 31 because the exhaust gas generated by the combustion of the fuel in the boiler 31 contains carbon dioxide. It is necessary to provide a carbon dioxide recovery device 34 for this purpose.
  • the configuration of the carbon dioxide recovery device 34 is not particularly limited, and is, for example, a device including a device that brings the absorption liquid and the exhaust gas into gas-liquid contact to allow the absorption liquid to absorb carbon dioxide, and a device that recovers carbon dioxide from the absorption liquid. You may.
  • the ammonia derivative synthesizer 40 communicates with the carbon dioxide generator 30 and the ammonia synthesizer 20 via the carbon dioxide supply pipe 35 and the ammonia supply pipe 23.
  • the carbon dioxide supply pipe 35 is provided with a carbon dioxide compressor 36 for supplying carbon dioxide to the ammonia derivative synthesizer 40 and a cooler 37 for cooling the carbon dioxide flowing out from the carbon dioxide compressor 36. Can be done.
  • the condensed water recovery device 51 that recovers the condensed water in the driving steam that drives the steam turbine 50, the condensed water from the carbon dioxide recovery device 34, and the condensed water from the cooler 37.
  • the condensed water recovery device 51 and the water recycling pipe 8 are connected by a water flow pipe 52 so that the water collected by the condensed water recovery device 51 can be used as a part of the water electrolyzed by the electrolysis device 10. You may.
  • the outflow gas flowing out from the oxygen removing device 4 contains at least water and carbon dioxide in addition to hydrogen and nitrogen.
  • the water vapor contained in the outflow gas is condensed into liquid water and flows into the gas-liquid separation device 5.
  • liquid water falls and collects at the bottom, so that water is separated from the outflow gas.
  • the outflow gas from which water has been separated flows out of the gas-liquid separation device 5 by the ammonia synthetic gas compressor 21, and flows through the ammonia synthetic gas supply pipe 9 as the ammonia synthetic gas.
  • ammonia synthesis gas flows through the ammonia synthesis gas supply pipe 9
  • carbon dioxide is removed by the carbon dioxide removing device 22 and flows into the ammonia synthesis device 20.
  • Hydrogen and nitrogen react in the ammonia synthesizer 20 to synthesize ammonia.
  • the synthesized ammonia flows into the ammonia derivative synthesizer 40 via the ammonia supply pipe 23.
  • fuel and air are supplied to the boiler 31 via the fuel supply pipe 32 and the air supply pipe 33, respectively.
  • oxygen generated by the electrolyzer 10 is also supplied to the boiler 31 by merging with the air flowing through the air supply pipe 33 after flowing through the oxygen flow pipe 12.
  • fuel is burned, and the heat of combustion produces steam and exhaust gas.
  • the generated steam is used as driving steam for driving the steam turbine 50, and the power obtained from the steam turbine 50 is used to generate electricity in the generator 53.
  • oxygen generated by the electrolyzer 10 is also supplied to the boiler 31 in addition to the air flowing through the air supply pipe 33, the oxygen generated by the electrolyzer 10 is used to generate carbon dioxide by the carbon dioxide generator 30. It is consumed for the purpose and effectively used. Due to the effective use of oxygen, the oxygen concentration in the air supplied to the boiler 31 rises, and the carbon dioxide concentration in the combustion exhaust gas flowing into the carbon dioxide recovery device 34 also rises. It is possible to reduce the size and cost of the recovery device 34.
  • the exhaust gas generated by the boiler 31 contains carbon dioxide. Therefore, carbon dioxide is recovered from the exhaust gas in the carbon dioxide recovery device 34.
  • the exhaust gas from which carbon dioxide has been removed is released into the atmosphere or sent to an exhaust gas treatment device (not shown).
  • the recovered carbon dioxide flows out of the carbon dioxide recovery device 34 by the carbon dioxide compressor 36 and then circulates in the carbon dioxide supply pipe 35.
  • the carbon dioxide flows through the carbon dioxide supply pipe 35, it is cooled by the cooler 37 and flows into the ammonia derivative synthesizer 40.
  • the ammonia derivative synthesizer 40 an ammonia derivative is synthesized from ammonia and carbon dioxide.
  • the condensed water in the driving steam that drives the steam turbine 50, the condensed water from the carbon dioxide recovery device 34, and the condensed water from the cooler 37 are recovered by the condensed water recovery device 51. ..
  • the water collected in the gas-liquid separation device 5 is supplied to the electrolysis device 10 via the water recycling pipe 8, but the water collected in the condensed water recovery device 51 flows into the water recycling pipe 8 via the water flow pipe 52. Then, it merges with the circulating water in the water recycling pipe 8 and is supplied to the electrolysis device 10.
  • the oxygen generated by the electrolyzer 10 is consumed to generate carbon dioxide by the carbon dioxide generator 30, so that the ammonia derivative The manufacturing cost can be reduced.
  • the ammonia derivative production plant according to the second embodiment uses high-temperature steam electrolysis for electrolysis of water as compared with the first embodiment.
  • the same reference numerals as those of the constituent requirements of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • a water preheater 14 is provided in a water supply pipe 13 for supplying water to the electrolyzer 10.
  • the other end of the water recycling pipe 8 whose one end is connected to the bottom of the gas-liquid separator 5 is connected to the water supply pipe 13 on the upstream side of the water preheater 14.
  • the configuration of the water preheater 14 is not particularly limited, and may be a configuration in which water is preheated by any form of energy such as electric energy, or a heat exchanger that exchanges heat between a heat medium such as steam and water. There may be.
  • the water preheater 14 When the water preheater 14 is the latter heat exchanger, it is generated as a heat medium by the reaction of water vapor generated by the exhaust heat generated by the synthesis of ammonia in the ammonia synthesis device 20 and oxygen and hydrogen in the oxygen removal device 4. Water vapor or the like generated by exhaust heat can be used. Other configurations are the same as those in the first embodiment.
  • the water 8 Since the water 8 is connected to the water supply pipe 13 on the upstream side of the water preheater 14, the water supplied to the electrolysis device 10 via the water recycling pipe 8 is also preheated by the water preheater 14 and the electrolysis device. It flows into 10. Other operations are the same as those in the first embodiment.
  • the water supplied to the electrolyzer 10 is preheated by the exhaust heat generated by the synthesis of ammonia in the ammonia synthesizer 20 and the exhaust heat generated by the reaction of oxygen and hydrogen in the oxygen removing device 4. Since high temperature steam electrolysis can be used in the electrolysis apparatus 10, the efficiency of electrolysis can be improved, and as a result, the production cost of the ammonia derivative can be reduced.
  • ammonia derivative production plant according to the third embodiment is modified from the first or second embodiment so that the ammonia derivative production plant can operate stably even when the electric power generated by the renewable energy is used.
  • the third embodiment will be described by modifying the configuration of the first embodiment, but the third embodiment may be configured by modifying the configuration of the second embodiment.
  • the same reference numerals as those of the constituent requirements of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the oxygen flow pipe 12 is provided with an oxygen compressor 15, a cooler 16, and an oxygen tank 17 which is an oxygen storage member for storing oxygen.
  • the carbon dioxide supply pipe 35 is provided with a carbon dioxide tank 38 which is a carbon dioxide storage member for storing carbon dioxide between the cooler 37 and the ammonia derivative synthesizer 40.
  • Other configurations are the same as those of the first embodiment except that the electric power generated by the renewable energy is used for the ammonia derivative production plant 1.
  • the electric power generated by the renewable energy is used in the ammonia derivative manufacturing plant 1.
  • the electric power supply may become unstable, and in that case, the amount of ammonia and the ammonia derivative produced and the product quality become unstable.
  • the electrolyzer 10 When the amount of power generated by renewable energy decreases, power is preferentially supplied to the electrolyzer 10, the ammonia synthesizer 20, and the ammonia derivative synthesizer 40 in the ammonia derivative production plant 1, depending on the power supply capacity.
  • the carbon dioxide generator 30 is changed in load or stopped. In this way, the amount of oxygen consumed and the amount of carbon dioxide produced in the carbon dioxide generator 30 decrease, the amount of oxygen becomes excessive, and the amount of carbon dioxide supplied to the ammonia derivative synthesizer 40 becomes insufficient. There is a risk that it will end up.
  • At least a part of the oxygen generated by the electrolyzer 10 can be stored in the oxygen tank 17, and at least a part of the carbon dioxide generated by the carbon dioxide generator 30 can be stored in the carbon dioxide tank 38. Can be stored. Then, the excess oxygen can be stored in the oxygen tank 17, and the stored oxygen can be used when the amount of power generation is stable, so that the problem of excess oxygen can be solved.
  • the carbon dioxide generator 30 can be used. Even if the load fluctuates or the operation is stopped, the amount of carbon dioxide supplied to the ammonia derivative synthesizer 40 can be secured. As a result, the amount of ammonia and ammonia derivatives produced and the product quality can be stabilized.
  • the ammonia derivative production plant according to the fourth embodiment is designed to effectively utilize the exhaust heat as compared with the third embodiment.
  • the same reference numerals as those of the constituent requirements of the third embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the steam turbine 50 in addition to the steam generated by the boiler 31 (first steam), the steam generated by the exhaust heat generated by the synthesis of ammonia in the ammonia synthesizer 20 (second steam). It is configured to be driven by (steam) and / or one of steam (third steam) generated by the exhaust heat generated by the reaction of oxygen and hydrogen in the oxygen removing device 4. That is, the driving steam for driving the steam turbine 50 is configured to include the first steam and at least one of the second steam and the third steam.
  • the flow path of water or steam is formed in the oxygen removing device 4, and the exhaust heat generated by the reaction of oxygen and hydrogen in the oxygen removing device 4 heats the water or steam flowing through the flow path.
  • a heat exchanger 60 for recovering heat from the outflow gas flowing out from the oxygen removing device 4 is provided in the outflow gas flow pipe 6, and the heat with the outflow gas is provided in the heat exchanger 60. It may be the water vapor generated by the exchange, or it may contain both of these water vapors. Other configurations are the same as those in the third embodiment except that the condensed water recovery device 51 (see FIG. 1) is not provided.
  • the driving steam for driving the steam turbine 50 contains at least one of the second steam and the third steam in addition to the first steam, and the generator 53 generates electricity.
  • the operation is the same as that of the third embodiment except that at least one of the oxygen compressor 15, the ammonia synthetic gas compressor 21, and the carbon dioxide compressor 36 is driven by electric power.
  • the exhaust heat is effectively utilized by driving the steam turbine 50 with the driving steam including the first steam and at least one of the second steam and the third steam. Compared to this, energy efficiency can be improved. Further, in the fourth embodiment, the steam turbine 50 is driven by the driving steam generated by the exhaust heat generated in the ammonia derivative production plant 1 to generate electricity, and this power is used to compress the oxygen compressor 15 and the syngas of ammonia. Since at least one of the machine 21 and the carbon dioxide compressor 36 is driven, the energy efficiency can be further improved as compared with the third embodiment.
  • ammonia derivative production plant according to the fifth embodiment is designed to effectively utilize the exhaust heat as compared with the third embodiment.
  • the same reference numerals as those of the constituent requirements of the third embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the nitrogen-containing gas flow pipe 3 is provided with a nitrogen preheater 70 for preheating the nitrogen-containing gas before flowing into the oxygen removing device 4.
  • the nitrogen-containing gas is the exhaust heat generated by the reaction between the steam (second steam) generated by the exhaust heat generated by the synthesis of ammonia in the ammonia synthesizer 20 and the oxygen and hydrogen in the oxygen removal apparatus 4. It is configured to exchange heat with both or one of the steam generated by (third steam).
  • the flow path of water or steam is formed in the oxygen removing device 4, and the exhaust heat generated by the reaction of oxygen and hydrogen in the oxygen removing device 4 heats the water or steam flowing through the flow path.
  • a heat exchanger 60 for recovering heat from the outflow gas flowing out from the oxygen removing device 4 is provided in the outflow gas flow pipe 6, and the heat with the outflow gas is provided in the heat exchanger 60. It may be the water vapor generated by the exchange, or it may contain both of these water vapors. Other configurations are the same as those in the third embodiment except that the condensed water recovery device 51 (see FIG. 1) is not provided.
  • the energy required by the oxygen removing device 4 can be reduced by preheating the nitrogen-containing gas before flowing into the oxygen removing device 4 by at least one of the second steam and the third steam. It is possible to improve energy efficiency by effectively utilizing exhaust heat.
  • the ammonia derivative production plant is An electrolyzer (10) that electrolyzes water, An ammonia synthesizer (20) that synthesizes ammonia from hydrogen and nitrogen generated by the electrolyzer (10), and an ammonia synthesizer (20).
  • the ammonia derivative synthesizer (40) for synthesizing an ammonia derivative from the ammonia synthesized by the ammonia synthesizer (20) and the carbon dioxide produced by the carbon dioxide generator (30) is provided.
  • the oxygen produced by the electrolyzer (10) is consumed to generate carbon dioxide by the carbon dioxide generator (30).
  • oxygen generated by the electrolyzer is consumed to generate carbon dioxide by the carbon dioxide generator, so that the production cost of the ammonia derivative can be reduced.
  • the ammonia derivative production plant according to another aspect is the ammonia derivative production plant according to (1).
  • an oxygen removing device (4) for reacting oxygen remaining in the nitrogen-containing gas containing nitrogen separated by the nitrogen separating device (2) with hydrogen generated by the electrolyzing device (10).
  • ammonia synthesizer (20) ammonia is synthesized from the effluent gas flowing out from the oxygen remover (4).
  • oxygen remains in the nitrogen-containing gas generated by the nitrogen separator, oxygen deteriorates the performance of the ammonia synthesis catalyst when synthesizing ammonia from the nitrogen-containing gas and hydrogen in the ammonia synthesizer.
  • the oxygen removing device in the oxygen removing device, the oxygen remaining in the nitrogen-containing gas can be removed by the reaction with hydrogen, so that the deterioration of the performance of the ammonia synthesis catalyst can be suppressed.
  • the ammonia derivative production plant according to still another aspect is the ammonia derivative production plant according to (2).
  • the water generated by the reaction of oxygen and hydrogen in the oxygen removing device (4) is configured to be used as a part of the water electrolyzed by the electrolyzing device (10).
  • the ammonia derivative production plant according to still another aspect is the ammonia derivative production plant according to any one of (1) to (3).
  • a water preheater (14) for preheating the water supplied to the electrolyzer (10) is further provided.
  • water preheater (14) water is preheated by the exhaust heat generated by the synthesis of ammonia in the ammonia synthesizer (20).
  • high temperature steam electrolysis can be used in the electrolyzer by preheating the water supplied to the electrolyzer by the exhaust heat generated by the synthesis of ammonia in the ammonia synthesizer.
  • the efficiency of electrolysis can be improved, and as a result, the production cost of the ammonia derivative can be reduced.
  • the ammonia derivative production plant according to still another aspect is the ammonia derivative production plant according to (2) or (3).
  • a water preheater (14) for preheating the water supplied to the electrolyzer (10) is further provided.
  • water preheater (14) water is preheated by the exhaust heat generated by the reaction of oxygen and hydrogen in the oxygen removing device (4).
  • high temperature steam electrolysis can be used in the electrolyzer by preheating the water supplied to the electrolyzer by the exhaust heat generated by the reaction of oxygen and hydrogen in the oxygen removing device. Therefore, the efficiency of electrolysis can be improved, and as a result, the production cost of the ammonia derivative can be reduced.
  • the ammonia derivative production plant according to still another aspect is the ammonia derivative production plant according to any one of (1) to (5).
  • a carbon dioxide storage member (carbon dioxide tank 38) for storing the carbon dioxide produced by the carbon dioxide generator (30) is further provided.
  • the electric power generated by renewable energy is used in the ammonia derivative manufacturing plant according to any one of (1) to (5)
  • the electric power supply may become unstable.
  • ammonia and the ammonia derivative The production amount and product quality of the product become unstable.
  • oxygen generated by the electrolyzer can be stored in the oxygen storage member
  • carbon dioxide generated by the carbon dioxide generator can be stored in the carbon dioxide storage member. Then, when the power supply becomes unstable, the electrolyzer, the ammonia synthesizer, and the ammonia derivative synthesizer are preferentially supplied with power, and the carbon dioxide generator is loaded or stopped depending on the power supply capacity.
  • the ammonia derivative production plant according to still another aspect is the ammonia derivative production plant according to (6).
  • the carbon dioxide generator (30) includes a boiler (31) that produces a first vapor by burning fuel.
  • the ammonia derivative production plant (1) further includes a steam turbine (50).
  • the driving steam that drives the steam turbine (50) is With the first steam It contains the second vapor generated by the exhaust heat generated by the synthesis of ammonia in the ammonia synthesizer (20).
  • the exhaust heat is effectively utilized by driving the steam turbine with the driving steam including the first steam and the second steam generated by the exhaust heat generated in the ammonia derivative production plant. Therefore, energy efficiency can be improved.
  • the ammonia derivative production plant according to still another aspect is the ammonia derivative production plant according to (6).
  • the carbon dioxide generator (30) includes a boiler (31) that produces a first vapor by burning fuel.
  • the ammonia derivative production plant (1) is A steam turbine (50), a nitrogen separator (2) that separates nitrogen from air, and Further provided with an oxygen removing device (4) for reacting oxygen remaining in the nitrogen-containing gas containing nitrogen separated by the nitrogen separating device (2) with hydrogen generated by the electrolyzing device (10).
  • the driving steam that drives the steam turbine (50) is With the first steam It includes a third vapor generated by exhaust heat generated by the reaction of oxygen and hydrogen in the oxygen removing device (4).
  • the exhaust heat is effectively utilized by driving the steam turbine with the driving steam including the first steam and the third steam generated by the exhaust heat generated in the ammonia derivative production plant. Therefore, energy efficiency can be improved.
  • the ammonia derivative production plant according to still another aspect is the ammonia derivative production plant according to (8). Further provided with a heat exchanger (60) for recovering heat from the outflow gas flowing out from the oxygen removing device (4).
  • the third steam contains steam generated by heat exchange with the outflow gas in the heat exchanger (60).
  • the exhaust heat is effectively utilized by driving the steam turbine with the driving steam including the first steam and the third steam generated by the exhaust heat generated in the ammonia derivative production plant. Therefore, energy efficiency can be improved.
  • the ammonia derivative production plant according to still another aspect is the ammonia derivative production plant according to any one of (7) to (9).
  • the oxygen compressor (15) and the ammonia syngas compressor (21) are driven by electric power generated by the steam turbine (50).
  • the steam turbine is driven by the driving steam generated by the exhaust heat generated in the ammonia derivative manufacturing plant to generate electric power, and this electric power is used to generate electricity in each compressor in the ammonia derivative manufacturing plant. Since it is driven, energy efficiency can be further improved.
  • the ammonia derivative production plant according to still another aspect is the ammonia derivative production plant according to (6).
  • a nitrogen separator (2) that separates nitrogen from air
  • An oxygen removing device (4) that reacts oxygen remaining in a nitrogen-containing gas containing nitrogen separated by the nitrogen separating device (2) with hydrogen generated by the electrolyzing device (10).
  • a nitrogen preheater (70) for preheating the nitrogen-containing gas before flowing into the oxygen removing device (4) is further provided.
  • the nitrogen-containing gas is configured to exchange heat with the second steam generated by the exhaust heat generated by the synthesis of ammonia in the ammonia synthesizer (20) in the nitrogen preheater (70).
  • the energy required for the oxygen removing device can be reduced by preheating the nitrogen-containing gas with the second steam generated by the exhaust heat generated by the synthesis of ammonia in the ammonia synthesizer, so that the exhaust can be performed. Energy efficiency can be improved by effectively using heat.
  • the ammonia derivative production plant according to still another aspect is the ammonia derivative production plant according to (6).
  • a nitrogen separator (2) that separates nitrogen from air
  • An oxygen removing device (4) that reacts oxygen remaining in a nitrogen-containing gas containing nitrogen separated by the nitrogen separating device (2) with hydrogen generated by the electrolyzing device (10).
  • a nitrogen preheater (70) for preheating the nitrogen-containing gas before flowing into the oxygen removing device (4) is further provided.
  • the nitrogen-containing gas is configured to exchange heat with the third steam generated by the exhaust heat generated by the reaction of oxygen and hydrogen in the oxygen removing device (4) in the nitrogen preheater (70).
  • the energy required in the oxygen removing device can be reduced by preheating the nitrogen-containing gas with the third steam generated by the exhaust heat generated by the reaction of oxygen and hydrogen in the oxygen removing device. Energy efficiency can be improved by effectively utilizing exhaust heat.
  • the ammonia derivative production plant according to still another aspect is the ammonia derivative production plant according to (12). Further provided with a heat exchanger (60) for recovering heat from the outflow gas flowing out from the oxygen removing device (4).
  • the third steam contains steam generated by heat exchange with the outflow gas in the heat exchanger (60).
  • the energy required in the oxygen removing device can be reduced by preheating the nitrogen-containing gas with the third steam generated by the exhaust heat generated by the reaction of oxygen and hydrogen in the oxygen removing device. Energy efficiency can be improved by effectively utilizing exhaust heat.
  • the method for producing an ammonia derivative according to one aspect is as follows.
  • the oxygen produced in the electrolysis step is consumed to produce carbon dioxide in the carbon dioxide production step.
  • oxygen generated by an electrolyzer is consumed to generate carbon dioxide by a carbon dioxide generator, so that the production cost of the ammonia derivative can be reduced.
  • Nitrogen preheater 1 Ammonia derivative production plant 2 Nitrogen separation device 4 Oxygen removal device 10 Electrolysis device 14 Water preheater 15 Oxygen compressor 17 Oxygen tank (oxygen storage member) 20 Ammonia synthesizer 21 Ammonia syngas compressor 30 Carbon dioxide generator 38 Carbon dioxide tank (carbon dioxide storage member) 40 Ammonia derivative synthesizer 50 Steam turbine 60 Heat exchanger 70 Nitrogen preheater

Abstract

アンモニア誘導体製造プラントは、水を電気分解する電気分解装置と、電気分解装置で生成した水素と窒素とからアンモニアを合成するアンモニア合成装置と、二酸化炭素を生成する二酸化炭素生成装置と、アンモニア合成装置で合成されたアンモニアと二酸化炭素生成装置で生成された二酸化炭素とからアンモニア誘導体を合成するアンモニア誘導体合成装置とを備え、電気分解装置で生成した酸素は、二酸化炭素生成装置で二酸化炭素を生成するために消費される。

Description

アンモニア誘導体製造プラント及びアンモニア誘導体の製造方法
 本開示は、アンモニア誘導体製造プラント及びアンモニア誘導体の製造方法に関する。
 従来のアンモニア製造プラントでは、化石燃料である天然ガスや石炭等を原料として合成ガスを生成し、合成ガス中の水素と大気中の窒素とをハーバーボッシュ法で反応させることでアンモニアを合成している(例えば特許文献1)。さらに、合成されたアンモニアを原料として、尿素やメラミン等のアンモニア誘導体を合成することができる。
 しかし、このような従来のアンモニア製造プラントでは、化石燃料を用いることにより、副生成物の二酸化炭素が生成することから、地球温暖化に繋がるとされる二酸化炭素の排出が問題となる。これに対し、特許文献2には、水を電気分解することにより生成した水素と大気中の窒素とを反応させてアンモニアを合成することが記載されている。この技術によれば、化石燃料由来の二酸化炭素を生成せずに、水素を得ることができる。
米国特許出願公開第2015/0183650号明細書 国際公開第2017/104021号
 しかしながら、特許文献2に記載の方法では、水の電気分解によって酸素も生成するが、生成した酸素を有効に利用しなければ、製造コストの悪化につながるといった問題点がある。
 上述の事情に鑑みて、本開示の少なくとも1つの実施形態は、アンモニア誘導体の製造コストを低減したアンモニア誘導体製造プラント及びアンモニア誘導体の製造方法を提供することを目的とする。
 上記目的を達成するため、本開示に係るアンモニア誘導体製造プラントは、水を電気分解する電気分解装置と、前記電気分解装置で生成した水素と窒素とからアンモニアを合成するアンモニア合成装置と、二酸化炭素を生成する二酸化炭素生成装置と、前記アンモニア合成装置で合成されたアンモニアと前記二酸化炭素生成装置で生成された二酸化炭素とからアンモニア誘導体を合成するアンモニア誘導体合成装置とを備え、前記電気分解装置で生成した酸素は、前記二酸化炭素生成装置で二酸化炭素を生成するために消費される。
 また、本開示に係るアンモニア誘導体の製造方法は、水を電気分解する電気分解ステップと、前記電気分解ステップで生成した水素と窒素とからアンモニアを合成するアンモニア合成ステップと、二酸化炭素を生成する二酸化炭素生成ステップと、前記アンモニア合成ステップで合成されたアンモニアと前記二酸化炭素生成ステップで生成した二酸化炭素とからアンモニア誘導体を合成するアンモニア誘導体合成ステップとを含み、前記電気分解ステップで生成した酸素は、前記二酸化炭素生成ステップで二酸化炭素を生成するために消費される。
 本開示のアンモニア誘導体製造プラント及びアンモニア誘導体の製造方法によれば、電気分解装置で生成した酸素を二酸化炭素生成装置で二酸化炭素を生成するために消費するので、アンモニア誘導体の製造コストを低減することができる。
本開示の実施形態1に係るアンモニア誘導体製造プラントの構成図である。 本開示の実施形態2に係るアンモニア誘導体製造プラントの構成図である。 本開示の実施形態3に係るアンモニア誘導体製造プラントの構成図である。 本開示の実施形態4に係るアンモニア誘導体製造プラントの構成図である。 本開示の実施形態5に係るアンモニア誘導体製造プラントの構成図である。
 以下、本開示の実施の形態によるアンモニア誘導体製造プラント及びアンモニア誘導体の製造方法について、図面に基づいて説明する。かかる実施の形態は、本開示の一態様を示すものであり、この開示を限定するものではなく、本開示の技術的思想の範囲内で任意に変更可能である。
(実施形態1)
<実施形態1に係るアンモニア誘導体製造プラントの構成>
 図1に示されるように、本開示の実施形態1に係るアンモニア誘導体製造プラント1は、水を電気分解して水素及び酸素を生成する電気分解装置10と、電気分解装置10で生成した水素と窒素とからアンモニアを合成するアンモニア合成装置20と、二酸化炭素を生成する二酸化炭素生成装置30と、アンモニア合成装置20で合成されたアンモニアと二酸化炭素生成装置30で生成された二酸化炭素とからアンモニア誘導体を合成するアンモニア誘導体合成装置40とを備えている。ここで、アンモニア誘導体については特に限定しないが、例えば、尿素やメラミン、メラミン樹脂等を挙げることができる。
 アンモニア合成装置20で使用される窒素の供給源は特に限定されず、タンク等に貯蔵された窒素や他のプラントから供給される窒素であってもよい。大気中の窒素を使用する場合には、アンモニア誘導体製造プラント1に、空気から窒素を分離する窒素分離装置2を設けることができる。窒素分離装置2の構成は特に限定されず、例えばPSA(圧力変動吸着)式窒素ガス発生装置や深冷分離法を用いた装置、膜分離法を用いた装置等であってもよい。
 窒素分離装置2には、空気から分離された窒素を含む窒素含有ガスが窒素分離装置2から流出した後に流通する窒素含有ガス流通管3が接続されている。窒素含有ガスには空気中の酸素が残存している。酸素が残存した窒素含有ガスがアンモニア合成装置20に供給されてしまうと、アンモニア合成装置20において窒素と水素とからアンモニアを合成するためのアンモニア合成用触媒の性能を低下させてしまうので、窒素含有ガスに残存する酸素を除去するために、酸素除去装置4をアンモニア誘導体製造プラント1に設けることができる。酸素除去装置4において窒素含有ガスに残存する酸素を除去すれば、アンモニア合成用触媒の性能低下を抑制することができる。
 酸素除去装置4として例えば、水供給管13を介して電気分解装置10に供給された水の電気分解で生じた水素と窒素含有ガス中の酸素とを反応させるものを使用することができる。この場合、酸素除去装置4には、窒素含有ガス流通管3が接続されるとともに、電気分解装置10から流出した水素が流通する水素流通管11が接続される構成が必要である。この構成により、酸素除去装置4に窒素含有ガス及び水素を供給可能となる。
 また、酸素除去装置4が水素と窒素含有ガス中の酸素とを反応させるものの場合、酸素除去装置4から流出する流出ガスには、窒素及び水素の他に水が含まれている。このため、流出ガスから水を除去するために、気液分離装置5をアンモニア誘導体製造プラント1に設けることができる。この場合、気液分離装置5は流出ガス流通管6を介して酸素除去装置4に連通するように構成され、流出ガス流通管6には、流出ガスを冷却して流出ガス中の水を液化するための冷却器7が設けられる。
 気液分離装置5で分離された水を、電気分解装置10で電気分解される水の一部として利用できるように、気液分離装置5と電気分解装置10とを水リサイクル管8を介して接続することもできる。この構成によれば、酸素除去装置4における酸素及び水素の反応で生じた水は、電気分解装置10で電気分解される水の一部として利用されるので、電気分解装置10における水の消費量を低減でき、その結果、後述する動作でアンモニア誘導体を製造するコストを低減することができる。
 気液分離装置5で水が分離されたガスをアンモニア合成装置20においてアンモニアを合成するための原料となるアンモニア合成ガスとしてアンモニア合成装置20に供給するために、気液分離装置5はアンモニア合成ガス供給管9を介してアンモニア合成装置20に連通している。アンモニア合成ガス供給管9には、アンモニア合成ガスをアンモニア合成装置20に供給するためのアンモニア合成ガス圧縮機21と、アンモニア合成ガスに含まれる二酸化炭素を除去するための二酸化炭素除去装置22とを設けることができる。二酸化炭素除去装置22の構成は特に限定されず、例えばメタネーションにより二酸化炭素を除去する装置や、吸収液とアンモニア合成ガスとを気液接触させて吸収液に二酸化炭素を吸収させる装置と吸収液から二酸化炭素を回収する装置とを備える設備であってもよい。
 二酸化炭素生成装置30の構成は特に限定されず、例えばボイラ31を備えてもよい。二酸化炭素生成装置30がボイラ31を備える場合、ボイラ31に燃料及び空気を供給するための燃料供給管32及び空気供給管33がボイラ31に接続される。電気分解装置10には、生成した酸素が電気分解装置10から流出した後に流通する酸素流通管12の一端が接続され、酸素流通管12の他端は空気供給管33に接続されている。ボイラ31内では、燃料を燃焼させたときの燃焼熱で水蒸気(第1蒸気)が生成され、この水蒸気を駆動用蒸気とする蒸気タービン50と、蒸気タービン50からの動力によって発電を行う発電機53とをアンモニア誘導体製造プラント1に設けることができる。
 二酸化炭素生成装置30がボイラ31を備える場合、ボイラ31内における燃料の燃焼によって生じた排ガス中に二酸化炭素が含まれているので、二酸化炭素生成装置30は、ボイラ31の排ガスから二酸化炭素を回収するための二酸化炭素回収装置34を備える必要がある。二酸化炭素回収装置34の構成は特に限定されず、例えば吸収液と排ガスとを気液接触させて吸収液に二酸化炭素を吸収させる装置と吸収液から二酸化炭素を回収する装置とを備える設備であってもよい。
 アンモニア誘導体合成装置40は、二酸化炭素供給管35及びアンモニア供給管23を介して二酸化炭素生成装置30及びアンモニア合成装置20と連通している。二酸化炭素供給管35には、二酸化炭素をアンモニア誘導体合成装置40に供給するための二酸化炭素圧縮機36と、二酸化炭素圧縮機36から流出した二酸化炭素を冷却するための冷却器37とを設けることができる。
 アンモニア誘導体製造プラント1には、蒸気タービン50を駆動した駆動用蒸気中の凝縮水と、二酸化炭素回収装置34からの凝縮水と、冷却器37からの凝縮水とを回収する凝縮水回収器51を設けることができる。凝縮水回収器51に回収された水を、電気分解装置10で電気分解される水の一部として利用できるように、凝縮水回収器51と水リサイクル管8とを水流通管52によって接続してもよい。
<実施形態1に係るアンモニア誘導体製造プラントの動作>
 次に、本開示の実施形態1に係るアンモニア誘導体製造プラントの動作(アンモニア誘導体の製造方法を含む)について説明する。図1に示されるように、電気分解装置10において水が電気分解されて水素及び酸素が生成する。生成された水素及び酸素はそれぞれ、電気分解装置10から流出して水素流通管11及び酸素流通管12を流通する。窒素分離装置2において空気から窒素が分離されて、分離された窒素を含む窒素含有ガスが窒素分離装置2から流出して窒素含有ガス流通管3を流通する。水素流通管11を流通する流通する水素及び窒素含有ガス流通管3を流通する窒素含有ガスはそれぞれ、酸素除去装置4に流入する。酸素除去装置4では、窒素含有ガスに残存する酸素と水素とが反応して水が生成することにより、窒素含有ガスから酸素が除去される。
 酸素除去装置4から流出する流出ガスには、水素及び窒素の他に少なくとも水及び二酸化炭素が含まれている。流出ガスが流出ガス流通管6を流通する際に冷却器7で冷却されると、流出ガスに含まれる水蒸気が凝縮して液体の水になった状態で気液分離装置5に流入する。気液分離装置5では液体の水が落下して底部に溜まるので、流出ガスから水が分離される。水が分離された流出ガスは、アンモニア合成ガス圧縮機21によって気液分離装置5から流出して、アンモニア合成ガスとしてアンモニア合成ガス供給管9を流通する。アンモニア合成ガスは、アンモニア合成ガス供給管9を流通する際に、二酸化炭素除去装置22において二酸化炭素が除去されてアンモニア合成装置20に流入する。アンモニア合成装置20において水素及び窒素が反応してアンモニアが合成される。合成されたアンモニアは、アンモニア供給管23を介してアンモニア誘導体合成装置40に流入する。
 一方、燃料供給管32及び空気供給管33を介して燃料及び空気がそれぞれボイラ31に供給される。ボイラ31には、この他に、電気分解装置10で生成した酸素も、酸素流通管12を流通した後に、空気供給管33を流通する空気と合流してボイラ31に供給される。ボイラ31では燃料が燃焼され、その燃焼熱により水蒸気が生成するとともに排ガスが生成する。生成した水蒸気は蒸気タービン50を駆動する駆動用蒸気として使用され、蒸気タービン50から得られる動力により、発電機53において発電が行われる。ボイラ31には、空気供給管33を流通する空気の他に電気分解装置10で生成した酸素も供給されるので、電気分解装置10で生成した酸素を二酸化炭素生成装置30で二酸化炭素を生成するために消費し、有効利用される。酸素の有効利用により、ボイラ31に供給される空気中の酸素濃度が上がり、二酸化炭素回収装置34に流入する燃焼排ガス中の二酸化炭素濃度も上がるので、燃焼排ガスの総量が減少することで二酸化炭素回収装置34の小型化・低コスト化が可能となる。
 ボイラ31で生成した排ガスには二酸化炭素が含まれている。このため、二酸化炭素回収装置34において排ガスから二酸化炭素が回収される。二酸化炭素が除去された排ガスは、大気中に放出されるか、又は図示しない排ガス処理装置に送られる。一方、回収された二酸化炭素は、二酸化炭素圧縮機36によって二酸化炭素回収装置34から流出した後、二酸化炭素供給管35を流通する。二酸化炭素は、二酸化炭素供給管35を流通する際に、冷却器37によって冷却されて、アンモニア誘導体合成装置40に流入する。アンモニア誘導体合成装置40において、アンモニア及び二酸化炭素からアンモニア誘導体が合成される。
 上記動作の間に、蒸気タービン50を駆動した駆動用蒸気中の凝縮水と、二酸化炭素回収装置34からの凝縮水と、冷却器37からの凝縮水とが凝縮水回収器51に回収される。気液分離装置5に溜まった水は水リサイクル管8を介して電気分解装置10に供給されるが、凝縮水回収器51に回収された水は水流通管52を介して水リサイクル管8流入し、水リサイクル管8を流通する水と合流して電気分解装置10に供給される。
 このように、本開示の実施形態1に係るアンモニア誘導体製造プラント1によれば、電気分解装置10で生成した酸素を二酸化炭素生成装置30で二酸化炭素を生成するために消費するので、アンモニア誘導体の製造コストを低減することができる。
(実施形態2)
 次に、実施形態2に係るアンモニア誘導体製造プラントについて説明する。実施形態2に係るアンモニア誘導体製造プラントは、実施形態1に対して、水の電気分解に高温水蒸気電解を用いるようにしたものである。尚、実施形態2において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
<実施形態2に係るアンモニア誘導体製造プラントの構成>
 図2に示されるように、電気分解装置10に水を供給するための水供給管13に水予熱器14が設けられている。一端が気液分離装置5の底部に接続された水リサイクル管8の他端は、水予熱器14よりも上流側で水供給管13に接続されている。水予熱器14の構成は特に限定されず、電気エネルギー等の任意の形態のエネルギーによって水を予熱する構成であってもよいし、水蒸気等の熱媒体と水とを熱交換する熱交換器であってもよい。水予熱器14が後者の熱交換器である場合、熱媒体として、アンモニア合成装置20におけるアンモニアの合成で生じた排熱によって生成した水蒸気や、酸素除去装置4における酸素及び水素の反応で生じた排熱によって生成した水蒸気等を使用することができる。その他の構成は実施形態1と同じである。
<実施形態2に係るアンモニア誘導体製造プラントの動作>
 次に、本開示の実施形態2に係るアンモニア誘導体製造プラントの動作について説明する。図2に示されるように、電気分解装置10には水供給管13を介して水が供給されるが、水供給管13を流通する水は水予熱器14によって予熱されて電気分解装置10に流入する。実施形態1で説明したように、気液分離装置5に溜まった水及び凝縮水回収器51に回収された水は水リサイクル管8を介して電気分解装置10に供給されるが、水リサイクル管8は水予熱器14よりも上流側で水供給管13に接続されているので、水リサイクル管8を介して電気分解装置10に供給される水も水予熱器14によって予熱されて電気分解装置10に流入する。その他の動作は実施形態1と同じである。
 このように、電気分解装置10に供給される水を、アンモニア合成装置20におけるアンモニアの合成で生じた排熱や酸素除去装置4における酸素及び水素の反応で生じた排熱によって予熱することにより、電気分解装置10において高温水蒸気電解を用いることができるので、電気分解の効率を向上でき、その結果、アンモニア誘導体の製造コストを低減することができる。
(実施形態3)
 次に、実施形態3に係るアンモニア誘導体製造プラントについて説明する。実施形態3に係るアンモニア誘導体製造プラントは、実施形態1又は2に対して、再生可能エネルギーによって発電された電力を用いた場合でも安定してアンモニア誘導体製造プラントが動作可能になるように変更したものである。以下では、実施形態1の構成を変更した構成で実施形態3を説明するが、実施形態2の構成を変更して実施形態3を構成してもよい。尚、実施形態3において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
<実施形態3に係るアンモニア誘導体製造プラントの構成>
 図3に示されるように、酸素流通管12には、酸素圧縮機15と、冷却器16と、酸素を貯蔵するための酸素貯蔵部材である酸素タンク17とが設けられている。二酸化炭素供給管35には、冷却器37とアンモニア誘導体合成装置40との間に、二酸化炭素を貯蔵するための二酸化炭素貯蔵部材である二酸化炭素タンク38が設けられている。その他の構成は、再生可能エネルギーによって発電された電力をアンモニア誘導体製造プラント1に用いることを除いて実施形態1と同じである。
<実施形態3に係るアンモニア誘導体製造プラントの動作>
 次に、本開示の実施形態3に係るアンモニア誘導体製造プラントの動作について説明する。図3に示されるように、電気分解装置10で水を電気分解することにより生成した酸素を酸素タンク17に貯蔵可能である点と、二酸化炭素生成装置30において生成された二酸化炭素を二酸化炭素タンク38に貯蔵可能である点以外については、実施形態3の動作は実施形態1の動作と同じである。
 実施形態3では、実施形態1と異なり、再生可能エネルギーによって発電された電力をアンモニア誘導体製造プラント1に用いている。再生可能エネルギーによって発電された電力をアンモニア誘導体製造プラント1に用いる場合、電力供給が不安定になるおそれがあり、その場合には、アンモニア及びアンモニア誘導体の生成量及び製品品質が不安定となる。
 再生可能エネルギーによる発電量が低下した場合には、アンモニア誘導体製造プラント1において、電気分解装置10とアンモニア合成装置20とアンモニア誘導体合成装置40とに優先的に電力を供給し、電力供給能力に応じて二酸化炭素生成装置30を負荷変動又は運転停止させる。このようにすると、二酸化炭素生成装置30における酸素の消費量及び二酸化炭素の生成量が低下してしまい、酸素が過剰になるとともにアンモニア誘導体合成装置40へ供給される二酸化炭素の供給量が不足してしまうおそれがある。
 これに対し、実施形態3では、電気分解装置10で生成した酸素の少なくとも一部を酸素タンク17に貯蔵できるとともに、二酸化炭素生成装置30で生成した二酸化炭素の少なくとも一部を二酸化炭素タンク38に貯蔵できる。そうすると、過剰分の酸素を酸素タンク17に貯蔵しておき、発電量の安定時に貯蔵した酸素を使用することができるので、酸素が過剰になる問題を解決できる。一方、二酸化炭素生成装置30での二酸化炭素の生成量が低下又はゼロになったとしても、発電量の安定時に二酸化炭素タンク38に二酸化炭素を予め貯蔵しておけば、二酸化炭素生成装置30を負荷変動又は運転停止させても、アンモニア誘導体合成装置40への二酸化炭素の供給量を確保することができる。その結果、アンモニア及びアンモニア誘導体の生成量及び製品品質を安定させることができる。
(実施形態4)
 次に、実施形態4に係るアンモニア誘導体製造プラントについて説明する。実施形態4に係るアンモニア誘導体製造プラントは、実施形態3に対して、排熱を有効利用するようにしたものである。尚、実施形態4において、実施形態3の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
<実施形態4に係るアンモニア誘導体製造プラントの構成>
 図4に示されるように、蒸気タービン50は、ボイラ31で生成された水蒸気(第1蒸気)の他に、アンモニア合成装置20におけるアンモニアの合成で生じた排熱によって生成された水蒸気(第2蒸気)と、酸素除去装置4における酸素及び水素の反応で生じた排熱によって生成した水蒸気(第3蒸気)との両方又はいずれか一方によって駆動されるように構成されている。すなわち、蒸気タービン50を駆動する駆動用蒸気は、第1蒸気と、第2蒸気及び第3蒸気の少なくとも一方とを含むように構成されている。
 第3蒸気は、水又は水蒸気の流通流路を酸素除去装置4に形成しておき、酸素除去装置4における酸素及び水素の反応で生じた排熱によって、流通流路を流れる水又は水蒸気を加熱して生成されるものであってもよいし、酸素除去装置4から流出する流出ガスから熱を回収する熱交換器60を流出ガス流通管6に設け、熱交換器60において流出ガスとの熱交換によって生じた水蒸気であってもよいし、これらの両方の水蒸気を含むものであってもよい。その他の構成については、凝縮水回収器51(図1参照)が設けられていない点を除いて実施形態3と同じである。
<実施形態4に係るアンモニア誘導体製造プラントの動作>
 次に、本開示の実施形態4に係るアンモニア誘導体製造プラントの動作について説明する。図4に示されるように、蒸気タービン50を駆動する駆動用蒸気に、第1蒸気の他に第2蒸気及び第3蒸気の少なくとも一方が含まれている点と、発電機53で発電された電力によって酸素圧縮機15とアンモニア合成ガス圧縮機21と二酸化炭素圧縮機36との少なくとも1つが駆動される点とを除く動作は、実施形態3と同じである。
 実施形態4では、第1蒸気と、第2蒸気及び第3蒸気の少なくとも一方とを含む駆動用蒸気によって蒸気タービン50を駆動することにより、排熱が有効に利用されるので、実施形態3に比べてエネルギー効率を向上させることができる。また、実施形態4では、アンモニア誘導体製造プラント1内で生じる排熱によって生成された駆動用蒸気によって蒸気タービン50を駆動して発電を行い、この電力を用いて酸素圧縮機15とアンモニア合成ガス圧縮機21と二酸化炭素圧縮機36との少なくとも1つを駆動するので、実施形態3に比べてエネルギー効率をさらに向上させることができる。
(実施形態5)
 次に、実施形態5に係るアンモニア誘導体製造プラントについて説明する。実施形態5に係るアンモニア誘導体製造プラントは、実施形態3に対して、排熱を有効利用するようにしたものである。尚、実施形態5において、実施形態3の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
<実施形態5に係るアンモニア誘導体製造プラントの構成>
 図5に示されるように、窒素含有ガス流通管3には、窒素含有ガスを酸素除去装置4に流入する前に予熱するための窒素予熱器70が設けられている。窒素予熱器70において窒素含有ガスは、アンモニア合成装置20におけるアンモニアの合成で生じた排熱によって生成された水蒸気(第2蒸気)と、酸素除去装置4における酸素及び水素の反応で生じた排熱によって生成した水蒸気(第3蒸気)との両方又はいずれか一方と熱交換するように構成されている。
 第3蒸気は、水又は水蒸気の流通流路を酸素除去装置4に形成しておき、酸素除去装置4における酸素及び水素の反応で生じた排熱によって、流通流路を流れる水又は水蒸気を加熱して生成されるものであってもよいし、酸素除去装置4から流出する流出ガスから熱を回収する熱交換器60を流出ガス流通管6に設け、熱交換器60において流出ガスとの熱交換によって生じた水蒸気であってもよいし、これらの両方の水蒸気を含むものであってもよい。その他の構成については、凝縮水回収器51(図1参照)が設けられていない点を除いて実施形態3と同じである。
<実施形態5に係るアンモニア誘導体製造プラントの動作>
 次に、本開示の実施形態5に係るアンモニア誘導体製造プラントの動作について説明する。図5に示されるように、窒素含有ガスが酸素除去装置4に流入する前に窒素予熱器70によって予熱される点を除く動作は、実施形態3と同じである。
 実施形態5では、第2蒸気及び第3蒸気の少なくとも一方によって窒素含有ガスを酸素除去装置4に流入する前に予熱することにより、酸素除去装置4で必要なエネルギーを低減できるので、実施形態3に比べて排熱を有効に利用してエネルギー効率を向上させることができる。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
(1)一の態様に係るアンモニア誘導体製造プラントは、
 水を電気分解する電気分解装置(10)と、
 前記電気分解装置(10)で生成した水素と窒素とからアンモニアを合成するアンモニア合成装置(20)と、
 二酸化炭素を生成する二酸化炭素生成装置(30)と、
 前記アンモニア合成装置(20)で合成されたアンモニアと前記二酸化炭素生成装置(30)で生成された二酸化炭素とからアンモニア誘導体を合成するアンモニア誘導体合成装置(40)と
を備え、
 前記電気分解装置(10)で生成した酸素は、前記二酸化炭素生成装置(30)で二酸化炭素を生成するために消費される。
 本開示のアンモニア誘導体製造プラントによれば、電気分解装置で生成した酸素を二酸化炭素生成装置で二酸化炭素を生成するために消費するので、アンモニア誘導体の製造コストを低減することができる。
(2)別の態様に係るアンモニア誘導体製造プラントは、(1)に記載のアンモニア誘導体製造プラントであって、
 空気から窒素を分離する窒素分離装置(2)と、
 前記窒素分離装置(2)で分離された窒素を含む窒素含有ガスに残存する酸素と前記電気分解装置(10)で生成した水素とを反応させる酸素除去装置(4)と
をさらに備え、
 前記アンモニア合成装置(20)において、前記酸素除去装置(4)から流出した流出ガスからアンモニアが合成される。
 窒素分離装置で生成された窒素含有ガスに酸素が残存していると、アンモニア合成装置において窒素含有ガスと水素とからアンモニアを合成する時に、酸素がアンモニア合成用触媒の性能を低下させてしまう。しかし、(2)の構成によれば、酸素除去装置において、窒素含有ガスに残存する酸素は水素との反応で除去できるので、アンモニア合成用触媒の性能低下を抑制することができる。
(3)さらに別の態様に係るアンモニア誘導体製造プラントは、(2)に記載のアンモニア誘導体製造プラントであって、
 前記酸素除去装置(4)における酸素及び水素の反応で生成した水を、前記電気分解装置(10)で電気分解される水の一部として利用するように構成されている。
 (2)の構成では、酸素除去装置における酸素及び水素の反応で水が生成するが、(3)の構成によれば、この水は、電気分解装置で電気分解される水の一部として利用されるので、電気分解装置における水の消費量を低減でき、その結果、アンモニア誘導体の製造コストを低減することができる。
(4)さらに別の態様に係るアンモニア誘導体製造プラントは、(1)~(3)のいずれかに記載のアンモニア誘導体製造プラントであって、
 前記電気分解装置(10)に供給される水を予熱するための水予熱器(14)をさらに備え、
 前記水予熱器(14)において、前記アンモニア合成装置(20)におけるアンモニアの合成で生じた排熱によって水が予熱されるように構成されている。
 このような構成によれば、電気分解装置に供給される水を、アンモニア合成装置におけるアンモニアの合成で生じた排熱によって予熱することにより、電気分解装置において高温水蒸気電解を用いることができるので、電気分解の効率を向上でき、その結果、アンモニア誘導体の製造コストを低減することができる。
(5)さらに別の態様に係るアンモニア誘導体製造プラントは、(2)または(3)に記載のアンモニア誘導体製造プラントであって、
 前記電気分解装置(10)に供給される水を予熱するための水予熱器(14)をさらに備え、
 前記水予熱器(14)において、前記酸素除去装置(4)における酸素及び水素の反応で生じた排熱によって水が予熱されるように構成されている。
 このような構成によれば、電気分解装置に供給される水を、酸素除去装置における酸素及び水素の反応で生じた排熱によって予熱することにより、電気分解装置において高温水蒸気電解を用いることができるので、電気分解の効率を向上でき、その結果、アンモニア誘導体の製造コストを低減することができる。
(6)さらに別の態様に係るアンモニア誘導体製造プラントは、(1)~(5)のいずれかに記載のアンモニア誘導体製造プラントであって、
 前記電気分解装置(10)で生成した酸素を貯蔵するための酸素貯蔵部材(酸素タンク17)と、
 前記二酸化炭素生成装置(30)で生成した二酸化炭素を貯蔵するための二酸化炭素貯蔵部材(二酸化炭素タンク38)と
をさらに備える。
 再生可能エネルギーによって発電された電力を(1)~(5)のいずれかに記載のアンモニア誘導体製造プラントに用いる場合、電力供給が不安定になるおそれがあり、その場合には、アンモニア及びアンモニア誘導体の生成量及び製品品質が不安定となる。これに対し、(6)の構成によれば、電気分解装置で生成した酸素を酸素貯蔵部材に貯蔵できるとともに、二酸化炭素生成装置で生成した二酸化炭素を二酸化炭素貯蔵部材に貯蔵できる。そうすると、電力供給が不安定になった場合、電気分解装置とアンモニア合成装置とアンモニア誘導体合成装置とに優先的に電力を供給するとともに電力供給能力に応じて二酸化炭素生成装置を負荷変動又は運転停止させたとしても、電気分解装置で生成した酸素を酸素貯蔵部材に貯蔵するとともに、二酸化炭素貯蔵部材に貯蔵された二酸化炭素をアンモニア誘導体合成装置に供給することにより、アンモニア及びアンモニア誘導体の生成量及び製品品質を安定させることができる。
(7)さらに別の態様に係るアンモニア誘導体製造プラントは、(6)に記載のアンモニア誘導体製造プラントであって、
 前記二酸化炭素生成装置(30)は、燃料を燃焼させることにより第1蒸気を生成するボイラ(31)を備え、
 前記アンモニア誘導体製造プラント(1)は蒸気タービン(50)をさらに備え、
 前記蒸気タービン(50)を駆動する駆動用蒸気は、
 前記第1蒸気と、
 前記アンモニア合成装置(20)におけるアンモニアの合成で生じた排熱によって生成された第2蒸気と
を含む。
 このような構成によれば、アンモニア誘導体製造プラント内で生じる排熱によって生成された第1蒸気及び第2蒸気を含む駆動用蒸気によって蒸気タービンを駆動することにより、排熱が有効に利用されるので、エネルギー効率を向上させることができる。
(8)さらに別の態様に係るアンモニア誘導体製造プラントは、(6)に記載のアンモニア誘導体製造プラントであって、
 前記二酸化炭素生成装置(30)は、燃料を燃焼させることにより第1蒸気を生成するボイラ(31)を備え、
 前記アンモニア誘導体製造プラント(1)は、
 蒸気タービン(50)と
 空気から窒素を分離する窒素分離装置(2)と、
 前記窒素分離装置(2)で分離された窒素を含む窒素含有ガスに残存する酸素と前記電気分解装置(10)で生成した水素とを反応させる酸素除去装置(4)と
をさらに備え、
 前記蒸気タービン(50)を駆動する駆動用蒸気は、
 前記第1蒸気と、
 前記酸素除去装置(4)における酸素及び水素の反応で生じた排熱によって生成した第3蒸気と
を含む。
 このような構成によれば、アンモニア誘導体製造プラント内で生じる排熱によって生成された第1蒸気及び第3蒸気を含む駆動用蒸気によって蒸気タービンを駆動することにより、排熱が有効に利用されるので、エネルギー効率を向上させることができる。
(9)さらに別の態様に係るアンモニア誘導体製造プラントは、(8)に記載のアンモニア誘導体製造プラントであって、
 前記酸素除去装置(4)から流出する流出ガスから熱を回収する熱交換器(60)をさらに備え、
 前記第3蒸気は、前記熱交換器(60)において前記流出ガスとの熱交換によって生じた蒸気を含む。
 このような構成によれば、アンモニア誘導体製造プラント内で生じる排熱によって生成された第1蒸気及び第3蒸気を含む駆動用蒸気によって蒸気タービンを駆動することにより、排熱が有効に利用されるので、エネルギー効率を向上させることができる。
(10)さらに別の態様に係るアンモニア誘導体製造プラントは、(7)~(9)のいずれかに記載のアンモニア誘導体製造プラントであって、
 前記電気分解装置(10)で生成した酸素を前記二酸化炭素生成装置(30)に供給するための酸素圧縮機(15)と、
 窒素及び水素を前記アンモニア合成装置(20)に供給するためのアンモニア合成ガス圧縮機(21)と
をさらに備え、
 前記酸素圧縮機(15)及び前記アンモニア合成ガス圧縮機(21)は、前記蒸気タービン(50)で発電された電力によって駆動される。
 このような構成によれば、アンモニア誘導体製造プラント内で生じる排熱によって生成された駆動用蒸気によって蒸気タービンを駆動して発電を行い、この電力を用いてアンモニア誘導体製造プラント内の各圧縮機を駆動するので、エネルギー効率をさらに向上させることができる。
(11)さらに別の態様に係るアンモニア誘導体製造プラントは、(6)に記載のアンモニア誘導体製造プラントであって、
 空気から窒素を分離する窒素分離装置(2)と、
 前記窒素分離装置(2)で分離された窒素を含む窒素含有ガスに残存する酸素と前記電気分解装置(10)で生成した水素とを反応させる酸素除去装置(4)と、
 前記窒素含有ガスを前記酸素除去装置(4)に流入する前に予熱するための窒素予熱器(70)と
をさらに備え、
 前記窒素含有ガスは、前記窒素予熱器(70)において、前記アンモニア合成装置(20)におけるアンモニアの合成で生じた排熱によって生成された第2蒸気と熱交換するように構成されている。
 このような構成によれば、アンモニア合成装置におけるアンモニアの合成で生じた排熱によって生成された第2蒸気によって窒素含有ガスを予熱することにより、酸素除去装置で必要なエネルギーを低減できるので、排熱を有効に利用してエネルギー効率を向上させることができる。
(12)さらに別の態様に係るアンモニア誘導体製造プラントは、(6)に記載のアンモニア誘導体製造プラントであって、
 空気から窒素を分離する窒素分離装置(2)と、
 前記窒素分離装置(2)で分離された窒素を含む窒素含有ガスに残存する酸素と前記電気分解装置(10)で生成した水素とを反応させる酸素除去装置(4)と、
 前記窒素含有ガスを前記酸素除去装置(4)に流入する前に予熱するための窒素予熱器(70)と
をさらに備え、
 前記窒素含有ガスは、前記窒素予熱器(70)において、前記酸素除去装置(4)における酸素及び水素の反応で生じた排熱によって生成した第3蒸気と熱交換するように構成されている。
 このような構成によれば、酸素除去装置における酸素及び水素の反応で生じた排熱によって生成した第3蒸気によって窒素含有ガスを予熱することにより、酸素除去装置で必要なエネルギーを低減できるので、排熱を有効に利用してエネルギー効率を向上させることができる。
(13)さらに別の態様に係るアンモニア誘導体製造プラントは、(12)に記載のアンモニア誘導体製造プラントであって、
 前記酸素除去装置(4)から流出する流出ガスから熱を回収する熱交換器(60)をさらに備え、
 前記第3蒸気は、前記熱交換器(60)において前記流出ガスとの熱交換によって生じた蒸気を含む。
 このような構成によれば、酸素除去装置における酸素及び水素の反応で生じた排熱によって生成した第3蒸気によって窒素含有ガスを予熱することにより、酸素除去装置で必要なエネルギーを低減できるので、排熱を有効に利用してエネルギー効率を向上させることができる。
(14)一の態様に係るアンモニア誘導体の製造方法は、
 水を電気分解する電気分解ステップと、
 前記電気分解ステップで生成した水素と窒素とからアンモニアを合成するアンモニア合成ステップと、
 二酸化炭素を生成する二酸化炭素生成ステップと、
 前記アンモニア合成ステップで合成されたアンモニアと前記二酸化炭素生成ステップで生成した二酸化炭素とからアンモニア誘導体を合成するアンモニア誘導体合成ステップと
を含み、
 前記電気分解ステップで生成した酸素は、前記二酸化炭素生成ステップで二酸化炭素を生成するために消費される。
 本開示のアンモニア誘導体の製造方法によれば、電気分解装置で生成した酸素を二酸化炭素生成装置で二酸化炭素を生成するために消費するので、アンモニア誘導体の製造コストを低減することができる。
1 アンモニア誘導体製造プラント
2 窒素分離装置
4 酸素除去装置
10 電気分解装置
14 水予熱器
15 酸素圧縮機
17 酸素タンク(酸素貯蔵部材)
20 アンモニア合成装置
21 アンモニア合成ガス圧縮機
30 二酸化炭素生成装置
38 二酸化炭素タンク(二酸化炭素貯蔵部材)
40 アンモニア誘導体合成装置
50 蒸気タービン
60 熱交換器
70 窒素予熱器

Claims (14)

  1.  水を電気分解する電気分解装置と、
     前記電気分解装置で生成した水素と窒素とからアンモニアを合成するアンモニア合成装置と、
     二酸化炭素を生成する二酸化炭素生成装置と、
     前記アンモニア合成装置で合成されたアンモニアと前記二酸化炭素生成装置で生成された二酸化炭素とからアンモニア誘導体を合成するアンモニア誘導体合成装置と
    を備え、
     前記電気分解装置で生成した酸素は、前記二酸化炭素生成装置で二酸化炭素を生成するために消費される、アンモニア誘導体製造プラント。
  2.  空気から窒素を分離する窒素分離装置と、
     前記窒素分離装置で分離された窒素を含む窒素含有ガスに残存する酸素と前記電気分解装置で生成した水素とを反応させる酸素除去装置と
    をさらに備え、
     前記アンモニア合成装置において、前記酸素除去装置から流出した流出ガスからアンモニアが合成される、請求項1に記載のアンモニア誘導体製造プラント。
  3.  前記酸素除去装置における酸素及び水素の反応で生成した水を、前記電気分解装置で電気分解される水の一部として利用するように構成されている、請求項2に記載のアンモニア誘導体製造プラント。
  4.  前記電気分解装置に供給される水を予熱するための水予熱器をさらに備え、
     前記水予熱器において、前記アンモニア合成装置におけるアンモニアの合成で生じた排熱によって水が予熱されるように構成されている、請求項1~3のいずれか一項に記載のアンモニア誘導体製造プラント。
  5.  前記電気分解装置に供給される水を予熱するための水予熱器をさらに備え、
     前記水予熱器において、前記酸素除去装置における酸素及び水素の反応で生じた排熱によって水が予熱されるように構成されている、請求項2または3に記載のアンモニア誘導体製造プラント。
  6.  前記電気分解装置で生成した酸素を貯蔵するための酸素貯蔵部材と、
     前記二酸化炭素生成装置で生成した二酸化炭素を貯蔵するための二酸化炭素貯蔵部材と
    をさらに備える、請求項1~5のいずれか一項に記載のアンモニア誘導体製造プラント。
  7.  前記二酸化炭素生成装置は、燃料を燃焼させることにより第1蒸気を生成するボイラを備え、
     前記アンモニア誘導体製造プラントは蒸気タービンをさらに備え、
     前記蒸気タービンを駆動する駆動用蒸気は、
     前記第1蒸気と、
     前記アンモニア合成装置におけるアンモニアの合成で生じた排熱によって生成された第2蒸気と
    を含む、請求項6に記載のアンモニア誘導体製造プラント。
  8.  前記二酸化炭素生成装置は、燃料を燃焼させることにより第1蒸気を生成するボイラを備え、
     前記アンモニア誘導体製造プラントは、
     蒸気タービンと
     空気から窒素を分離する窒素分離装置と、
     前記窒素分離装置で分離された窒素を含む窒素含有ガスに残存する酸素と前記電気分解装置で生成した水素とを反応させる酸素除去装置と
    をさらに備え、
     前記蒸気タービンを駆動する駆動用蒸気は、
     前記第1蒸気と、
     前記酸素除去装置における酸素及び水素の反応で生じた排熱によって生成した第3蒸気と
    を含む、請求項6に記載のアンモニア誘導体製造プラント。
  9.  前記酸素除去装置から流出する流出ガスから熱を回収する熱交換器をさらに備え、
     前記第3蒸気は、前記熱交換器において前記流出ガスとの熱交換によって生じた蒸気を含む、請求項8に記載のアンモニア誘導体製造プラント。
  10.  前記電気分解装置で生成した酸素を前記二酸化炭素生成装置に供給するための酸素圧縮機と、
     窒素及び水素を前記アンモニア合成装置に供給するためのアンモニア合成ガス圧縮機と
    をさらに備え、
     前記酸素圧縮機及び前記アンモニア合成ガス圧縮機は、前記蒸気タービンで発電された電力によって駆動される、請求項7~9のいずれか一項に記載のアンモニア誘導体製造プラント。
  11.  空気から窒素を分離する窒素分離装置と、
     前記窒素分離装置で分離された窒素を含む窒素含有ガスに残存する酸素と前記電気分解装置で生成した水素とを反応させる酸素除去装置と、
     前記窒素含有ガスを前記酸素除去装置に流入する前に予熱するための窒素予熱器と
    をさらに備え、
     前記窒素含有ガスは、前記窒素予熱器において、前記アンモニア合成装置におけるアンモニアの合成で生じた排熱によって生成された第2蒸気と熱交換するように構成されている、請求項6に記載のアンモニア誘導体製造プラント。
  12.  空気から窒素を分離する窒素分離装置と、
     前記窒素分離装置で分離された窒素を含む窒素含有ガスに残存する酸素と前記電気分解装置で生成した水素とを反応させる酸素除去装置と、
     前記窒素含有ガスを前記酸素除去装置に流入する前に予熱するための窒素予熱器と
    をさらに備え、
     前記窒素含有ガスは、前記窒素予熱器において、前記酸素除去装置における酸素及び水素の反応で生じた排熱によって生成した第3蒸気と熱交換するように構成されている、請求項6に記載のアンモニア誘導体製造プラント。
  13.  前記酸素除去装置から流出する流出ガスから熱を回収する熱交換器をさらに備え、
     前記第3蒸気は、前記熱交換器において前記流出ガスとの熱交換によって生じた蒸気を含む、請求項12に記載のアンモニア誘導体製造プラント。
  14.  水を電気分解する電気分解ステップと、
     前記電気分解ステップで生成した水素と窒素とからアンモニアを合成するアンモニア合成ステップと、
     二酸化炭素を生成する二酸化炭素生成ステップと、
     前記アンモニア合成ステップで合成されたアンモニアと前記二酸化炭素生成ステップで生成した二酸化炭素とからアンモニア誘導体を合成するアンモニア誘導体合成ステップと
    を含み、
     前記電気分解ステップで生成した酸素は、前記二酸化炭素生成ステップで二酸化炭素を生成するために消費される、アンモニア誘導体の製造方法。
PCT/JP2020/047616 2019-12-25 2020-12-21 アンモニア誘導体製造プラント及びアンモニア誘導体の製造方法 WO2021132126A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2020414988A AU2020414988B9 (en) 2019-12-25 2020-12-21 Ammonia derivative production plant and production method for ammonia derivative
CA3165596A CA3165596A1 (en) 2019-12-25 2020-12-21 Ammonia derivative production plant and ammonia derivative production method
DE112020005178.1T DE112020005178T5 (de) 2019-12-25 2020-12-21 Ammoniak-Derivat-Produktionsanlage und Ammoniak-Derivat-Produktionsverfahren
US17/773,770 US20220380224A1 (en) 2019-12-25 2020-12-21 Ammonia derivative production plant and ammonia derivative production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-233987 2019-12-25
JP2019233987A JP7353163B2 (ja) 2019-12-25 2019-12-25 アンモニア誘導体製造プラント及びアンモニア誘導体の製造方法

Publications (1)

Publication Number Publication Date
WO2021132126A1 true WO2021132126A1 (ja) 2021-07-01

Family

ID=76576079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047616 WO2021132126A1 (ja) 2019-12-25 2020-12-21 アンモニア誘導体製造プラント及びアンモニア誘導体の製造方法

Country Status (6)

Country Link
US (1) US20220380224A1 (ja)
JP (1) JP7353163B2 (ja)
AU (1) AU2020414988B9 (ja)
CA (1) CA3165596A1 (ja)
DE (1) DE112020005178T5 (ja)
WO (1) WO2021132126A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023019425A (ja) 2021-07-29 2023-02-09 トヨタ自動車株式会社 燃料製造プラント
WO2023176921A1 (ja) * 2022-03-16 2023-09-21 東洋エンジニアリング株式会社 尿素製造方法及び尿素製造装置
US20240116767A1 (en) * 2022-05-27 2024-04-11 Blue Planet Systems Corporation Methods and Systems for Synthesizing Ammonia
CN116282069A (zh) * 2023-02-16 2023-06-23 河北正元氢能科技有限公司 一种灰氢绿氢耦合制氨系统
CN116161675A (zh) * 2023-02-28 2023-05-26 中国天楹股份有限公司 一种生活垃圾焚烧发电厂与氢氨醇制备的耦合系统及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267725A (ja) * 2002-03-15 2003-09-25 Hitachi Zosen Corp アンモニアの製造方法及びその装置並びにこれにより製造したアンモニアを用いる排煙脱硝方法
WO2004108860A1 (ja) * 2003-06-09 2004-12-16 Hitachi, Ltd. 新燃料製造プラント及びこれに用いられる海水淡水化装置
WO2007114279A1 (ja) * 2006-03-30 2007-10-11 Nippon Steel Engineering Co., Ltd. 液体燃料合成システム
WO2015019473A1 (ja) * 2013-08-08 2015-02-12 トヨタ自動車株式会社 アンモニア合成方法
CN204848289U (zh) * 2015-08-28 2015-12-09 中化重庆涪陵化工有限公司 氨合成塔余热回收利用系统
JP2016514033A (ja) * 2013-02-08 2016-05-19 東洋エンジニアリング株式会社 燃焼排ガスからの二酸化炭素回収プロセス
WO2016125649A1 (ja) * 2015-02-04 2016-08-11 三菱重工環境・化学エンジニアリング株式会社 排熱回収装置、発電システム、及び排熱回収方法
JP2018531970A (ja) * 2015-11-04 2018-11-01 エクソンモービル ケミカル パテンツ インコーポレイテッド 統合されたガスタービン及び変換システムプロセス
JP3220107U (ja) * 2018-08-14 2019-02-14 赫普科技発展(北京)有限公司 火力発電所における電解水素製造・アンモニア合成システム
JP2019151545A (ja) * 2018-01-08 2019-09-12 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータNuovo Pignone Tecnologie S.R.L. アンモニア製造プラント

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10106430B2 (en) 2013-12-30 2018-10-23 Saudi Arabian Oil Company Oxycombustion systems and methods with thermally integrated ammonia synthesis
JPWO2017104021A1 (ja) 2015-12-16 2018-10-04 日揮株式会社 アンモニアの製造方法
CN105542327A (zh) 2015-12-28 2016-05-04 张桂华 一种新型合成橡胶的配方及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267725A (ja) * 2002-03-15 2003-09-25 Hitachi Zosen Corp アンモニアの製造方法及びその装置並びにこれにより製造したアンモニアを用いる排煙脱硝方法
WO2004108860A1 (ja) * 2003-06-09 2004-12-16 Hitachi, Ltd. 新燃料製造プラント及びこれに用いられる海水淡水化装置
WO2007114279A1 (ja) * 2006-03-30 2007-10-11 Nippon Steel Engineering Co., Ltd. 液体燃料合成システム
JP2016514033A (ja) * 2013-02-08 2016-05-19 東洋エンジニアリング株式会社 燃焼排ガスからの二酸化炭素回収プロセス
WO2015019473A1 (ja) * 2013-08-08 2015-02-12 トヨタ自動車株式会社 アンモニア合成方法
WO2016125649A1 (ja) * 2015-02-04 2016-08-11 三菱重工環境・化学エンジニアリング株式会社 排熱回収装置、発電システム、及び排熱回収方法
CN204848289U (zh) * 2015-08-28 2015-12-09 中化重庆涪陵化工有限公司 氨合成塔余热回收利用系统
JP2018531970A (ja) * 2015-11-04 2018-11-01 エクソンモービル ケミカル パテンツ インコーポレイテッド 統合されたガスタービン及び変換システムプロセス
JP2019151545A (ja) * 2018-01-08 2019-09-12 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータNuovo Pignone Tecnologie S.R.L. アンモニア製造プラント
JP3220107U (ja) * 2018-08-14 2019-02-14 赫普科技発展(北京)有限公司 火力発電所における電解水素製造・アンモニア合成システム

Also Published As

Publication number Publication date
AU2020414988A1 (en) 2022-06-30
CA3165596A1 (en) 2021-07-01
AU2020414988B2 (en) 2023-09-14
DE112020005178T5 (de) 2022-09-22
US20220380224A1 (en) 2022-12-01
JP7353163B2 (ja) 2023-09-29
JP2021102532A (ja) 2021-07-15
AU2020414988B9 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
WO2021132126A1 (ja) アンモニア誘導体製造プラント及びアンモニア誘導体の製造方法
JP5183119B2 (ja) 発電システム
CN113993816A (zh) 可再生能量在氨合成中的使用
AU2016365408B2 (en) Polygeneration production of hydrogen for use in various industrial processes
US20110185701A1 (en) Turbine equipment and power generating plant
JP5496494B2 (ja) 発電システム
US20090117024A1 (en) Process for the Production of Hydrogen with Co-Production and Capture of Carbon Dioxide
AU2017268378B2 (en) Systems and methods of production of hydrogen containing compounds using products of fuel cells
US9278312B2 (en) System for recovering high-purity CO2 from gasification gas containing CO, CO2, COS and H2S
JP4981439B2 (ja) 固体燃料ガス化ガス利用プラント
RU2682584C2 (ru) Способ получения аммиака и производных соединений, в частности мочевины
JP4744971B2 (ja) 低質廃熱回収システム
WO2019073722A1 (ja) メタン製造システム及びメタン製造方法
AU2021331003A1 (en) Heat recovery during electrolysis processes
CN111591957B (zh) 一种煤层气联合循环发电及co2捕集系统及方法
JP5183118B2 (ja) 発電システム
WO2023176921A1 (ja) 尿素製造方法及び尿素製造装置
WO2023144076A1 (en) Carbon capture system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3165596

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020414988

Country of ref document: AU

Date of ref document: 20201221

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20905194

Country of ref document: EP

Kind code of ref document: A1