WO2019073722A1 - メタン製造システム及びメタン製造方法 - Google Patents

メタン製造システム及びメタン製造方法 Download PDF

Info

Publication number
WO2019073722A1
WO2019073722A1 PCT/JP2018/032809 JP2018032809W WO2019073722A1 WO 2019073722 A1 WO2019073722 A1 WO 2019073722A1 JP 2018032809 W JP2018032809 W JP 2018032809W WO 2019073722 A1 WO2019073722 A1 WO 2019073722A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
steam
methane
methane production
production system
Prior art date
Application number
PCT/JP2018/032809
Other languages
English (en)
French (fr)
Inventor
重雄 幡宮
良平 稲垣
啓信 小林
佐々木 崇
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019073722A1 publication Critical patent/WO2019073722A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/04Methane
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for

Definitions

  • the present invention relates to a methane production system and a methane production method which consume less energy.
  • energy conversion sector power generation such as, CO 2 reduction for power industry is a major challenge.
  • coal-fired thermal power generation has a large amount of CO 2 emissions, and technological development has also been studied for separating and recovering generated CO 2 and returning it to the ground. If the generated CO 2 can be chemically converted to fuel and reused, the total amount of CO 2 emissions can be suppressed, so a technology for converting CO 2 into hydrogen H 2 and converting it to methane is attracting attention.
  • Equation 1 As the methanation reaction of CO 2 , a reaction formula shown in (Equation 1) is known. (Equation 1) CO 2 + 4H 2 ⁇ CH 4 + 2H 2 O
  • CO 2 can be separated and recovered from the combustion exhaust gas, and hydrogen can be manufactured by electrolysis of water such as alkaline water electrolysis or solid polymer type water electrolysis using electric power.
  • water such as alkaline water electrolysis or solid polymer type water electrolysis using electric power.
  • power generation using renewable energy such as wind power generation and solar power generation is increasing.
  • Wind power generation and solar power generation have a large output fluctuation, sometimes generating more power than demand and generating surplus power that can not be used.
  • a technology that uses electricity to electrolyze water to produce hydrogen and react with carbon dioxide to convert it to methane fuel is called Power to Gas.
  • surplus electricity can be used as electricity, both CO 2 emission control and surplus electricity utilization can be expected, so in Europe where a lot of surplus electricity of renewable energy is generated, especially Germany is actively promoting several demonstration projects as national policy Promoting
  • the produced methane is supplied to existing infrastructure equipment (pipeline, natural gas storage) as synthetic natural gas.
  • Patent Document 1 JP-A-2015-109767
  • Patent Document 2 JP-A-2016-531973
  • the chemical reaction of synthesizing methane from carbon dioxide and hydrogen (Equation 1) is an exothermic reaction, but in order to start the reaction, it is necessary to preheat the source gas to a methanation reaction initiation temperature of about 300 ° C. is there.
  • a thermal operation in order to separate and recover carbon dioxide from exhaust gas using a solid adsorbent, it is necessary to perform a thermal operation of heating or cooling the solid adsorbent.
  • the purpose can be achieved by using an external heat source or a cold heat source, but the use of an external heat source causes the energy consumption of the entire system to increase and lower the efficiency. .
  • Patent Document 1 describes a system combining a power plant and equipment for separating and recovering carbon dioxide from exhaust gas and converting it to methane, but the method of recovery and utilization of methane formation reaction heat is not clearly indicated .
  • Patent Document 2 describes a system combining a power plant and a facility that separates and recovers carbon dioxide from exhaust gas and converts it to methane, and although there is recovery of the heat of reaction for producing methane, its use method is not clear .
  • An object of the present invention is to provide a methane production system and a methane production method which consume less energy as a whole system in a power plant having equipment for separating and recovering carbon dioxide from flue gas and producing methane.
  • a methane production system comprises a boiler for generating steam, a steam turbine driven by the steam, and a feed water heater for heating and supplying water to the boiler.
  • a facility, a carbon dioxide recovery unit for recovering and desorbing carbon dioxide contained in the exhaust gas of the power generation facility, a reaction between the desorbed carbon dioxide and hydrogen supplied from the outside are converted to methane
  • a methane production system having a methanation reactor, wherein the heat of reaction during methane conversion of the methanation reactor is raised by the steam discharged from the steam turbine, and the reaction heat thus raised is raised After being supplied to hydrogen, the desorbed carbon dioxide and the carbon dioxide recovery device, the hydrogen is supplied to the feed water heater.
  • a carbon dioxide contained in the exhaust gas of the power generation facility includes a power generation facility including a boiler for generating steam, a steam turbine driven by the steam, and a feed water heater for heating and supplying water to the boiler
  • a carbon dioxide recovery device for recovering and desorbing, and a methanation reactor for reacting the desorbed carbon dioxide with hydrogen supplied from the outside to convert it to methane.
  • the reaction heat at the time of methane conversion of the methanation reactor is raised by the steam discharged from the steam turbine, and the heat of reaction raised is said hydrogen, the eliminated carbon dioxide and the carbon dioxide recovery
  • FIG. 1 is an example of a system configuration diagram of the present invention shown in a first embodiment. It is an example of the system block diagram of this invention shown in Example 2.
  • FIG. It is a figure showing an example of a carbon dioxide solid adsorbent adsorption characteristic. It is an operation method conceptual diagram of a two-step carbon dioxide recovery device. It is an example of the system block diagram of this invention shown in Example 3.
  • FIG. It is an example of the system block diagram of this invention shown in Example 4.
  • FIG. 1 is an example of a system configuration diagram of the present invention shown in a first embodiment. It is an example of the system block diagram of this invention shown in Example 2.
  • FIG. It is a figure showing an example of a carbon dioxide solid adsorbent adsorption characteristic. It is an operation method conceptual diagram of a two-step carbon dioxide recovery device. It is an example of the system block diagram of this invention shown in Example 3.
  • FIG. It is an example of the system block diagram of this invention shown in Example 4.
  • FIG. 1 shows an embodiment of a coal-fired thermal power generation system according to the present invention.
  • the steam generated in the boiler 101 is guided to the steam turbine 102, and after driving the generator 103, it is returned to water by the condenser 104, pressurized by the feed water pump 105, heated by the feed water heater 106, and then the boiler It is supplied to 101.
  • the exhaust gas generated in the boiler passes through the NOx removal device 110, the heat recovery device 111, the electric precipitator 113, the wet desulfurization device 114, and the exhaust gas reheater 112, and is released from the exhaust tower 130 to the atmosphere.
  • an apparatus 200 for recovering carbon dioxide in exhaust gas and an apparatus 300 for converting the recovered carbon dioxide into methane are described.
  • FIG. 3 shows an example of the adsorption characteristics of the solid adsorbent material CeO 2 of carbon dioxide, and the vertical axis shows the relative value with the adsorption rate at 50 ° C. being 100%.
  • this solid adsorbent has a high CO 2 adsorption rate in the low temperature range of about 50 ° C., releases most of the adsorbed CO 2 at 150 ° C. or higher, and the adsorption rate at high temperature is low.
  • CO 2 can be separated and recovered from the exhaust gas by repeating temperature rising and cooling within a temperature range of about 50 ° C. to 150 ° C. by using a plurality of such solid adsorbents and shifting the time.
  • CO 2 adsorption desorption tower 201a is cooling step by low-temperature exhaust gas
  • CO 2 adsorption desorption tower 201b corresponds to a heating step by extraction steam.
  • the outlet exhaust gas temperature of the wet desulfurization device 114 is close to the saturated steam temperature of the desulfurization liquid, and is a low temperature of, for example, about 40 ° C. If the low temperature exhaust gas at this temperature is discharged into the atmosphere as it is, depending on the weather conditions, the water vapor in the exhaust gas condenses to generate white smoke to generate sulfuric acid mist, or the exhaust gas rising ability by buoyancy is weak.
  • the exhaust gas temperature is usually raised to about 90 ° C. or higher by the exhaust gas reheater 112 and then released from the exhaust tower.
  • the purpose is to cool, so a part of the low temperature exhaust gas is branched by the exhaust gas supply pipe 141 and used for cooling.
  • the low temperature exhaust gas after being used for cooling is mixed with the high temperature exhaust gas heated by the exhaust gas reheater 112 and the joining device 121 and then discharged from the exhaust tower 130.
  • a heating heat source of the CO 2 adsorption desorption column 201b a system is used in which the extracted steam of the steam turbine is indirectly heated as a heat medium via a heat exchanger.
  • the low pressure steam (0.4 MPa, 150 ° C.) extracted from the steam turbine passes through the extraction steam supply pipe 151 to recover and heat up the reaction heat of the methane conversion reaction in the methanation reactor 301.
  • the extracted steam flow rate is controlled using the steam flow controller 150 so that the methanation reaction temperature can be maintained at an appropriate value (for example, 400 to 450 ° C.) by the methanation reaction temperature detector 350.
  • the extracted steam from which the heat of methane conversion reaction has been recovered is subjected to the raw material gas preheating (about 280 ° C.) of methane conversion in the CO 2 preheater 303 and the H 2 preheater 304 and the regeneration process (150 to After utilization at 200 ° C., it is returned to the feed water preheater 106, and condensed to give excess heat of methane conversion reaction heat to the boiler feed water.
  • the heat of reaction in (Equation 1) generates -165 kJ / mol of heat.
  • FIG. 4 is a schematic view showing a carbon dioxide recovery device from exhaust gas in a simplified manner.
  • FIG. 4 shows an example in which the simplest two-step carbon dioxide recovery system can be constructed by sequentially switching the valve 203 to the valve 207 from the valve 203 to the regeneration step by steam heating and the cooling / adsorption step by low temperature exhaust gas.
  • the graph of FIG. 4 is a diagram conceptually showing the temperature change of the adsorbent of the CO 2 adsorption / desorption column 201 a.
  • the adsorbent 202a is heated by the extracted steam and the temperature rises, the adsorbed carbon dioxide is desorbed and released (regeneration step).
  • the temperature of the adsorbent 202a starts to decrease, and carbon dioxide is adsorbed at an adsorption rate corresponding to the temperature of the adsorbent (cooling and adsorption process).
  • the combination of the CO 2 adsorption / desorption column 201 a and the CO 2 adsorption / desorption column 201 b results in a carbon dioxide recovery system.
  • the carbon dioxide recovery system is divided into a regeneration step, a cooling step, and an adsorption step, and a 3-tower type or a purge step for exhausting all the gas in the adsorption device is added. It may be expanded to four towers.
  • FIG. 2 shows another embodiment of the power generation system according to the present invention.
  • Example 1 In the power plant using coal as fuel, installing the wet desulfurization system as described in Example 1 is the mainstream, but in the power plant using natural gas and low sulfur fuel, the wet desulfurization system is not installed Therefore, the temperature of the combustion exhaust gas is often 100 ° C. or higher. In such a situation, cooling of the solid carbon dioxide adsorbent by exhaust gas can not be expected. Therefore, a part of the exhaust gas is branched by the branching device 120 and cooled by the cooler 115 to a temperature close to the steam dew point (for example, 40 ° C.) in the exhaust gas and then used for cooling the carbon dioxide adsorption tower 201a.
  • the branching device 120 a part of the exhaust gas is branched by the branching device 120 and cooled by the cooler 115 to a temperature close to the steam dew point (for example, 40 ° C.) in the exhaust gas and then used for cooling the carbon dioxide adsorption tower 201a.
  • FIG. 2 shows an example in which the steam condenser 305 is not installed.
  • the feed gases supplied to the methanation reactor 301 are carbon dioxide and hydrogen, but when the solid adsorbent is used to separate and recover carbon dioxide from the exhaust gas, the adsorbent also adsorbs some water vapor and feeds it It is considered that carbon contains water vapor. Therefore, in Example 1 of FIG. 1, the example which installed the steam condenser 305 in order to condense and remove the steam mixed with the carbon dioxide was shown.
  • the feed gas from the carbon dioxide recovery apparatus contains almost no water vapor.
  • the water vapor condenser 305 is not required, so the water vapor condenser 305 is not installed.
  • the feed gas from the carbon dioxide recovery device contains water vapor, and if it is desired to remove it, the water vapor condenser 305 may be installed.
  • FIG. 5 shows still another embodiment of the power generation system according to the present invention.
  • the difference from the first embodiment of FIG. 1 is that the extracted steam from the steam turbine is branched by the steam branching apparatus 310 in the middle of the extracted steam supply pipe 151, and a bypass path directly toward the carbon dioxide recovery apparatus 201b is provided. is there.
  • a bleed steam supply pipe 156 is provided so that the amount of feed steam can be adjusted individually. As a result, the time until the system stabilizes and settles can be shortened, and the overall system efficiency can be improved.
  • FIG. 6 shows another embodiment of the power generation system according to the present invention.
  • Example 3 in FIG. 5 The difference from Example 3 in FIG. 5 is that the steam branch pipe recovers the heat of the methanation reactor cooler 302 which adjusts the temperature of the methanation reactor 301 in the middle of the return bleed steam pipe 155 after heat exchange. It is that 157 was provided.
  • the methanation reactor 301 as shown in (Equation 1), 1 mole of methane and 2 moles of steam are produced from 1 mole of carbon dioxide. Since the product gas is a mixed gas of about 400 ° C. containing a large amount of water vapor, the heat of this gas is recovered.
  • a steam branch pipe 157 was provided for the purpose of feeding the recovered gas to the steam turbine feed water. As a result, the heat recovery efficiency of the entire system can be expected.
  • carbon dioxide and hydrogen are used as raw materials in a power generation facility provided with a boiler and a steam turbine having an apparatus for converting carbon dioxide contained in combustion exhaust gas into methane.
  • the heat of heating required for methane production can be covered by the heat of reaction of the methanation reaction, and the excess heat can be recovered by feedwater heating of the steam turbine system, thereby reducing the fuel consumption of the boiler and improving the efficiency of the power plant. be able to.
  • 100 power generation system
  • 101 boiler
  • 102 steam turbine
  • 103 generator
  • 104 condenser
  • 105 water supply pump
  • 106 water supply heater
  • 110 exhaust gas denitration device
  • 111 exhaust gas heat recovery device
  • 112 ...
  • Exhaust gas reheater 113: Electric dust collector, 114: Wet desulfurization device, 115: Cooling device, 120: Branching device, 121: Merging device, 130: Exhaust tower, 141: Exhaust gas supply pipe, 142: Exhaust gas discharge pipe , 150: steam flow control device, 151: bleed steam supply pipe, 152: bleed steam supply pipe, 153: bleed steam supply pipe, 154: bleed steam return pipe, 155: bleed steam return pipe, 156: steam branch pipe, 157 ... Steam branch pipe, 200 ... CO 2 adsorption desorption system, 201 ... CO 2 adsorption desorption column, 202 ... CO 2 adsorbent, 203 ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treating Waste Gases (AREA)

Abstract

システム全体として消費エネルギーの少ないメタン製造システム及びメタン製造方法を提供することを目的とする。 蒸気を発生させるボイラ101と、蒸気により駆動される蒸気タービン102と、ボイラ101に水を加熱し供給する給水加熱器106と、を備える発電設備と、発電設備の排出ガスに含まれる二酸化炭素を回収及び脱離を行う二酸化炭素回収装置と、脱離された二酸化炭素と外部から供給された水素とを反応させてメタンに転換するメタン化反応器301と、を有するメタン製造システムであって、蒸気タービン102から排出された蒸気によりメタン化反応器301のメタン転換時の反応熱を昇温し、昇温された反応熱を水素、脱離された二酸化炭素及び二酸化炭素回収装置に供給した後、給水加熱器106へ供給するメタン製造システム。

Description

メタン製造システム及びメタン製造方法
 本発明は、消費エネルギーの少ないメタン製造システム及びメタン製造方法に関する。
 世界のエネルギー消費および温暖化の原因となる二酸化炭素CO2排出量は増加し続けており、気候変動とそれによる人類の生活環境や生態系への深刻な影響が懸念されている。世界のエネルギー起源CO2排出量の約40%は発電等のエネルギー変換部門が占めており、電力産業にとってCO2削減は大きな課題である。特に、石炭を燃料とする火力発電はCO2排出量が多く、発生したCO2を分離回収し地中に戻して貯蔵する技術開発も研究されている。発生したCO2を化学的に燃料に変換して再利用できれば、全体としてのCO2排出量を抑制できることから、CO2を水素H2と反応させメタンに転換する技術が注目されている。
 CO2のメタン化反応として、(数1)に示す反応式が知られている。
  (数1)CO2+4H2 → CH4+2H2O
 CO2は燃焼排ガスから分離回収し、水素は電力を利用してアルカリ水電解や固体高分子形水電解などの水の電気分解により製造することができる。近年、各国で再生可能エネルギーの開発と推進が行われ、欧州では風力発電や太陽光発電などの再生可能エネルギーを用いた発電が増加している。風力発電や太陽光発電は出力変動が大きく、時には需要以上の電力を発生し、利用できない余剰電力が生じることが問題となっている。電力を使用して水を電気分解して水素を製造し、二酸化炭素と反応させてメタン燃料に転換する技術はPower to Gasと呼ばれる。電力として余剰電力が使用できれば、CO2排出量抑制及び余剰電力有効利用の双方が期待できるので、再生可能エネルギーの余剰電力が多く発生する欧州で、とりわけドイツが国策として複数の実証プロジェクトを積極的に推進中である。生成したメタンは合成天然ガスとして、既存のインフラ設備(パイプライン、天然ガス貯蔵所)に供給される。
 発電プラントと排ガスから二酸化炭素を分離回収しメタンに転換する設備を組み合わせたシステムとしては、例えば、特開2015-109767号公報(特許文献1)及び特表2016-531973号公報(特許文献2)に記載されている。
特開2015-109767号公報 特表2016-531973号公報
 二酸化炭素と水素からメタンを合成する(数1)の化学反応は発熱反応であるが、反応が開始するためには原料ガスを約300℃のメタン生成反応開始温度まで予熱して供給する必要がある。また、固体吸着材を利用して排ガスから二酸化炭素を分離回収するには、固体吸着材を加熱したり冷却したりする熱操作が必要になる。これらの熱操作を個別に実施する場合は、外部熱源や冷熱源を利用すれば目的を達成することができるが、外部熱源の利用はシステム全体のエネルギー消費を増大させ効率を低下させる原因となる。
 特許文献1には、発電プラントと排ガスから二酸化炭素を分離回収しメタンに転換する設備を組み合わせたシステムの記載はあっても、メタン生成反応熱の回収、利用方法が明確には示されていない。また、特許文献2には、発電プラントと排ガスから二酸化炭素を分離回収しメタンに転換する設備を組み合わせたシステムの記載、およびメタン生成反応熱の回収はあっても、その利用方法が明確ではない。本発明の目的は、燃焼排ガスから二酸化炭素を分離回収しメタンを製造する設備を有する発電プラントにおいて、システム全体として、消費エネルギーの少ないメタン製造システム及びメタン製造方法を提供することである。
 上記目的を達成するために本発明に係るメタン製造システムは、蒸気を発生させるボイラと、前記蒸気により駆動される蒸気タービンと、前記ボイラに水を加熱し供給する給水加熱器と、を備える発電設備と、前記発電設備の排出ガスに含まれる二酸化炭素を回収及び脱離を行う二酸化炭素回収装置と、脱離された前記二酸化炭素と外部から供給された水素とを反応させてメタンに転換するメタン化反応器と、を有するメタン製造システムであって、前記蒸気タービンから排出された蒸気により前記メタン化反応器のメタン転換時の反応熱を昇温し、昇温された前記反応熱を前記水素、前記脱離された二酸化炭素及び前記二酸化炭素回収装置に供給した後、前記給水加熱器へ供給する。
 また、蒸気を発生させるボイラと、前記蒸気により駆動される蒸気タービンと、前記ボイラに水を加熱し供給する給水加熱器と、を備える発電設備と、前記発電設備の排出ガスに含まれる二酸化炭素を回収及び脱離を行う二酸化炭素回収装置と、脱離された前記二酸化炭素と外部から供給された水素とを反応させてメタンに転換するメタン化反応器と、を有するメタン製造方法であって、前記蒸気タービンから排出された蒸気により前記メタン化反応器のメタン転換時の反応熱を昇温し、昇温された前記反応熱を前記水素、前記脱離された二酸化炭素及び前記二酸化炭素回収装置に供給した後、前記給水加熱器へ供給するメタン製造方法。
 本発明によれば、システム全体として消費エネルギーの少ないメタン製造システム及びメタン製造方法を提供することが可能である。
実施例1に示す本発明のシステム構成図の一例である。 実施例2に示す本発明のシステム構成図の一例である。 二酸化炭素固体吸着材吸着特性の例を示した図である。 2工程の二酸化炭素回収装置の運用方法概念図である。 実施例3に示す本発明のシステム構成図の一例である。 実施例4に示す本発明のシステム構成図の一例である。
 以下、本発明の実施の形態について実施例を挙げて説明するが、本発明は、以下の実施形態に限定されるものではない。
 図1は本発明に関わる石炭焚き火力発電システムの一実施例を示したものである。ボイラ101で発生した蒸気は蒸気タービン102に導かれ、発電機103を駆動した後、復水器104で水に戻り、給水ポンプ105で加圧され、給水加熱器106で加熱されたのち、ボイラ101に供給される。ボイラで発生した排ガスは脱硝装置110、熱回収器111、電気集塵器113、湿式脱硫装置114、排ガス再加熱器112を経て排気塔130から大気に放出される。図1には、排ガス中の二酸化炭素を回収する装置200と、回収した二酸化炭素をメタンに転換する装置300が記載されている。二酸化炭素を回収する装置200では、湿式脱硫装置114から出たボイラ排ガスの一部が分岐装置120で分岐され、CO2吸着材が充填されたCO2吸着脱離塔201aに導かれる。図3は二酸化炭素の固体吸着材CeO2の吸着特性の一例を示したもので、縦軸は50℃における吸着率を100%とした相対値で示してある。図3に示すように、この固体吸着材は50℃程度の低温域のCO2吸着率が高く、150℃以上では吸着していたCO2の大部分を放出し、高温での吸着率は低い値となっている。そのため、この固体吸着材を複数個利用して、時間をずらして、50℃から150℃程度の温度範囲で昇温冷却を繰り返すことにより、排ガスからCO2を分離回収できる。
 図1に戻ると、CO2吸着脱離塔201aは低温排ガスによる冷却工程、CO2吸着脱離塔201bは抽気蒸気による加熱工程に対応している。湿式脱硫装置を有する石炭火力発電プラント100では、湿式脱硫装置114の出口排ガス温度は脱硫液の飽和水蒸気温度に近く、例えば40℃程度の低温になっている。この温度の低温排ガスをそのまま大気中に放出すると、気象条件によっては排ガス中の水蒸気が凝縮して白煙を発生し硫酸ミストが生じたり、浮力による排ガス上昇能力が弱いため、十分な拡散ができず、排ガスが地表付近に滞留する可能性があるため、通常は排ガス再加熱器112で排ガス温度を90℃程度以上に昇温したのち、排気塔から放出している。ただし、今回の二酸化炭素回収装置では、冷却を目的としているので、この低温排ガスの一部を排ガス供給管141で分岐して冷却に利用する。冷却に使用した後の低温排ガスは排ガス再加熱器112で昇温された高温の排ガスと、合流装置121で混合された後、排気塔130から排出される。
 一方、CO2吸着脱離塔201bの加熱熱源としては、蒸気タービンの抽気蒸気を熱媒体として熱交換器を介して間接加熱する方式とする。蒸気タービンから抽気された低圧蒸気(0.4MPa、150℃)は抽気蒸気供給管151を通りメタン化反応器301でメタン転換反応の反応熱を回収し昇温する。抽気蒸気流量は蒸気流量制御装置150を使用してメタン化反応温度検出器350でメタン化反応温度が適切な値(たとえば400~450℃)を維持できるように制御する。メタン転換反応熱を回収した抽気蒸気は、CO2予熱器303及びH2予熱器304でメタン転換の原料ガス予熱(280℃程度)およびCO2吸着脱離工程304で二酸化炭素回収装置の再生工程(150~200℃)に利用した後、給水予熱器106に戻され、凝縮してメタン転換反応熱の余剰熱をボイラ給水に与える。具体的には、(数1)において反応熱としては-165kJ/molの発熱を行う。そのとき、メタン化反応熱および冷却回収熱としては3600kWであり、水素及びCO2予熱量としては500kW使用され、固体吸着材再生時加熱量として1600kW使用される。よって1500kWがプロセス余剰熱として、復水系給水加熱器に回収されることとなる。これは燃料削減の観点で0.2%に相当する。重量当たりのメタン発熱量は石炭の約2倍であるため、石炭火力CO2の1%をメタン化し再利用すれば石炭使用量が2%削減される。
 図4は排ガスからの二酸化炭素回収装置を簡略化して示した概念図である。図4では、蒸気加熱による再生工程と低温排ガスによる冷却・吸着工程を弁203から弁207を順次切り替えることで、最も単純な2工程の二酸化炭素回収システムが構築できる例を示している。図4のグラフはCO2吸着脱離塔201aの吸着剤温度変化を概念的に示した図である。抽気蒸気で吸着材202aが加熱され温度が上昇すると吸着している二酸化炭素が脱離し放出される(再生工程)。弁が切替えられ低温排ガスが供給されると吸着材202aの温度は低下をはじめ、吸着材の温度に応じた吸着率で二酸化炭素が吸着されるようになる(冷却・吸着工程)。CO2吸着脱離塔201aとCO2吸着脱離塔201bを組合わせることで二酸化炭素回収システムになる。ここでは示さないが、必要とする二酸化炭素の純度に応じて、二酸化炭素回収システムを、再生工程、冷却工程、吸着工程に分ける3塔式や吸着装置内の気体を全量排出するパージ工程を加えた4塔式に拡張してもよい。
以上、図1で見てきたように、燃焼排ガスに含まれる二酸化炭素をメタンに転換する装置を有するボイラおよび蒸気タービンを備えた発電設備において、蒸気タービンの低圧抽気蒸気を利用してメタン化反応の反応熱を回収し、その熱を各種加熱工程の熱源に使用した後、給水加熱に利用することと、二酸化炭素の固体吸着材の冷却に低温排ガスを利用することで、システム全体の消費エネルギーを低減した発電プラントを構築できる。
 図2は本発明に関わる発電システムの別な一実施例を示したものである。
 石炭を燃料とする発電プラントでは、実施例1に示したように湿式脱硫装置を設置することが主流となっているが、天然ガスや低硫黄燃料を使用した発電プラントでは湿式脱硫装置は設置されないので、燃焼排ガス温度は100℃以上となっている場合が多い。このような状況では、排ガスによる二酸化炭素固体吸着材の冷却は期待できない。そこで、排ガスの一部を分岐装置120で分岐し冷却器115により排ガス温度を排ガス中の水蒸気露点温度(たとえば40℃)近くまで冷却してから二酸化炭素吸着塔201aの冷却に使用する。冷却に使用した後の低温排ガスは、分岐しなかった排ガスと合流装置121で混合した後、排気塔130から排出する。また、図2では、水蒸気凝縮器305が設置されていない例を示している。メタン化反応器301に供給する原料ガスは二酸化炭素と水素であるが、固体吸着材を利用して排ガスから二酸化炭素を分離回収する場合、吸着材にはいくらかの水蒸気も吸着し、供給する二酸化炭素に水蒸気が含まれることが考えられる。そのため図1の実施例1では、二酸化炭素と混合している水蒸気を凝縮させ除去する目的で水蒸気凝縮器305を設置した例を示した。一方、固体吸着材の種類によっては二酸化炭素のみを選択的に吸着し、水蒸気は吸着しない場合も考えられる。図2は二酸化炭素回収装置からの供給ガスに水蒸気がほとんど含まれない場合を想定し、この場合には水蒸気凝縮器305が不要になるため水蒸気凝縮器305を設置していない。当然ながら、実施例2においても、二酸化炭素回収装置からの供給ガスに水蒸気が含まれ、それを除去したい場合には水蒸気凝縮器305を設置してもかまわない。
 図5は本発明に関わる発電システムのさらに別な一実施例を示す。
 図1の実施例1との違いは、蒸気タービンからの抽気蒸気を抽気蒸気供給管151の途中で蒸気分岐装置310により分岐し、直接、二酸化炭素回収装置201bに向かうバイパス経路を設けたことである。システム起動時に、機器の熱容量が相対的に大きな場合は、安定状態に達するまでに長時間を要することが想定される。そのような場合に供給蒸気量を個別に調整できるように抽気蒸気供給管156を設けた。これによりシステムが安定して静定するまでの時間を短縮でき、全体としてのシステム効率を向上できる。
 図6は本発明に関わる発電システムのさらに別な一実施例を示す。
 図5の実施例3との違いは、熱交換をした後の戻り抽気蒸気管155の途中でメタン化反応器301の温度を調整するメタン化反応器冷却器302の熱を回収する蒸気分岐管157を設けたことである。メタン化反応器301では(数1)に示すように、二酸化炭素1モルからメタン1モルと水蒸気2モルが製造される。生成ガスは水蒸気を多量に含んだ約400℃の混合ガスであるため、このガスの熱を回収する。回収されたガスを蒸気タービン給水に与えることを目的に、蒸気分岐管157を設けた。これによりシステム全体としての熱回収効率が期待できる。
 以上より、上記実施例記載の発明によって、本発明によれば、燃焼排ガスに含まれる二酸化炭素をメタンに転換する装置を有するボイラおよび蒸気タービンを備えた発電設備において、二酸化炭素と水素を原料としたメタン製造に必要な加熱熱量をメタン化反応の反応熱でまかなうことができ、余剰熱を蒸気タービン系の給水加熱で回収できるので、ボイラの燃料消費量を削減でき発電プラントの効率を改善することができる。
100…発電システム、101…ボイラ、102…蒸気タービン、103…発電機、104…復水器、105…給水ポンプ、106…給水加熱器、110…排ガス脱硝装置、111…排ガス熱回収器、112…排ガス再加熱器、113…電気集塵器、114…湿式脱硫装置、115…冷却器、120…分岐装置、121…合流装置、130…排気塔、141…排ガス供給管、142…排ガス排出管、150…蒸気流量制御装置、151…抽気蒸気供給管、152…抽気蒸気供給管、153…抽気蒸気供給管、154…抽気蒸気戻り管、155…抽気蒸気戻り管、156…蒸気分岐管、157…蒸気分岐管、200…CO2吸着脱離システム、201…CO2吸着脱離塔、202…CO2吸着材、203…排ガス入口側弁、204…排ガス出口側弁、205…CO2出口側弁、206…再生蒸気入口側弁、207…再生蒸気出口側弁、212…CO2排出管、300…メタン化システム、301…メタン化反応器、302…冷却器、303…CO2予熱器、304…H2予熱器、305…水蒸気凝縮器、306…H2供給装置、310…蒸気分岐装置、311…蒸気合流装置、320…蒸気分岐装置、321…蒸気合流装置、350…メタン化反応温度検出器

Claims (9)

  1.  蒸気を発生させるボイラと、
     前記蒸気により駆動される蒸気タービンと、
     前記ボイラに水を加熱し供給する給水加熱器と、を備える発電設備と、
     前記発電設備の排出ガスに含まれる二酸化炭素を回収及び脱離を行う二酸化炭素回収装置と、
     脱離された前記二酸化炭素と外部から供給された水素とを反応させてメタンに転換するメタン化反応器と、を有するメタン製造システムであって
     前記蒸気タービンから排出された蒸気により前記メタン化反応器のメタン転換時の反応熱を昇温し、昇温された前記反応熱を前記水素、前記脱離された二酸化炭素及び前記二酸化炭素回収装置に供給した後、前記給水加熱器へ供給するメタン製造システム。
  2.  請求項1に記載のメタン製造システムであって、
     前記反応熱で前記水素及び前記脱離された二酸化炭素を前記メタン転換反応の開始に適正な温度まで加熱することを特徴とするメタン製造システム。
  3.  請求項1または2に記載のメタン製造システムであって、
     前記二酸化炭素回収装置を前記排ガスで冷却することを特徴とするメタン製造システム。
  4.  請求項1ないし3のいずれか1項に記載のメタン製造システムであって、
     前記二酸化炭素回収装置内の回収材と前記蒸気とが接触しないことを特徴とするメタン製造システム。
  5.  請求項1ないし4のいずれか1項に記載のメタン製造システムであって、
     前記発電設備が石炭焚き火力発電プラントであることを特徴とするメタン製造システム。
  6.  請求項1ないし5のいずれか1項に記載のメタン製造システムであって、
     前記脱離された二酸化炭素を冷却し、前記二酸化炭素と混合している水蒸気を凝縮させる冷却器を有することを特徴とするメタン製造システム。
  7.  請求項1ないし6のいずれか1項に記載のメタン製造システムであって、
     前記蒸気タービンから排出された蒸気が前記二酸化炭素回収装置に供給されることを特徴とするメタン製造システム。
  8.  請求項1ないし7のいずれか1項に記載のメタン製造システムであって、
     メタン化反応器の温度を冷却するメタン化反応器冷却器を備え、前記メタン化反応器冷却器により回収された反応熱を前記給水加熱器へ供給するメタン製造システム。
  9.  蒸気を発生させるボイラと、
     前記蒸気により駆動される蒸気タービンと、
     前記ボイラに水を加熱し供給する給水加熱器と、を備える発電設備と、
     前記発電設備の排出ガスに含まれる二酸化炭素を回収及び脱離を行う二酸化炭素回収装置と、
     脱離された前記二酸化炭素と外部から供給された水素とを反応させてメタンに転換するメタン化反応器と、を有するメタン製造方法であって、
     前記蒸気タービンから排出された蒸気により前記メタン化反応器のメタン転換時の反応熱を昇温し、昇温された前記反応熱を前記水素、前記脱離された二酸化炭素及び前記二酸化炭素回収装置に供給した後、前記給水加熱器へ供給するメタン製造方法。
PCT/JP2018/032809 2017-10-10 2018-09-05 メタン製造システム及びメタン製造方法 WO2019073722A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017196534A JP7028600B2 (ja) 2017-10-10 2017-10-10 メタン製造システム及びメタン製造方法
JP2017-196534 2017-10-10

Publications (1)

Publication Number Publication Date
WO2019073722A1 true WO2019073722A1 (ja) 2019-04-18

Family

ID=66101335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032809 WO2019073722A1 (ja) 2017-10-10 2018-09-05 メタン製造システム及びメタン製造方法

Country Status (2)

Country Link
JP (1) JP7028600B2 (ja)
WO (1) WO2019073722A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102112660B1 (ko) * 2012-08-29 2020-05-19 가부시끼 가이샤 구보다 콤바인 및 볏짚 줄기 일으킴 장치
JP7432997B2 (ja) * 2019-05-24 2024-02-19 三菱重工業株式会社 合成物生産システム及び合成物生産方法
WO2021220455A1 (ja) * 2020-04-30 2021-11-04 株式会社 ユーリカ エンジニアリング 気化利用炭化水素製造システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024448A (ja) * 2008-07-16 2010-02-04 Kellogg Brown & Root Llc 代替天然ガスの製造設備及び方法
JP2015051954A (ja) * 2013-09-09 2015-03-19 千代田化工建設株式会社 水素及び合成天然ガスの製造装置及び製造方法
JP2015109767A (ja) * 2013-12-05 2015-06-11 株式会社Ihi 発電システム
JP2016531973A (ja) * 2013-07-09 2016-10-13 ミツビシ ヒタチ パワー システムズ ヨーロッパ ゲーエムベーハー メタネーション方法および電力プラント煙道ガスの二酸化炭素メタネーションを備える電力プラント

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024448A (ja) * 2008-07-16 2010-02-04 Kellogg Brown & Root Llc 代替天然ガスの製造設備及び方法
JP2016531973A (ja) * 2013-07-09 2016-10-13 ミツビシ ヒタチ パワー システムズ ヨーロッパ ゲーエムベーハー メタネーション方法および電力プラント煙道ガスの二酸化炭素メタネーションを備える電力プラント
JP2015051954A (ja) * 2013-09-09 2015-03-19 千代田化工建設株式会社 水素及び合成天然ガスの製造装置及び製造方法
JP2015109767A (ja) * 2013-12-05 2015-06-11 株式会社Ihi 発電システム

Also Published As

Publication number Publication date
JP2019069917A (ja) 2019-05-09
JP7028600B2 (ja) 2022-03-02

Similar Documents

Publication Publication Date Title
US10421913B2 (en) Production process and production system for producing methane / gaseous and/or liquid hydrocarbons
US20070282021A1 (en) Producing ethanol and saleable organic compounds using an environmental carbon dioxide reduction process
US20110185701A1 (en) Turbine equipment and power generating plant
US9278312B2 (en) System for recovering high-purity CO2 from gasification gas containing CO, CO2, COS and H2S
JP7353163B2 (ja) アンモニア誘導体製造プラント及びアンモニア誘導体の製造方法
JP2018168205A (ja) メタン製造方法および設備
JP2021035909A (ja) メタン製造方法及び設備
CA2852655A1 (en) Chemical looping integration with a carbon dioxide gas purification unit
JP2014223628A (ja) アンモニアベースのco2吸収性溶液からの不揮発物の除去
WO2019073722A1 (ja) メタン製造システム及びメタン製造方法
CN105431219A (zh) 用于在包括固体氧化物燃料电池的发电设备中的可持续生产能量的方法
JP4744971B2 (ja) 低質廃熱回収システム
WO2014127410A1 (en) A method of regenerating an absorbent for capture of carbon dioxide
Tian et al. Economic cost and performance analysis of a novel trigeneration scheme utilizing CO2 capture and solid oxide electrolysis units
JP7117971B2 (ja) メタン製造方法及びメタン製造設備
WO2017114882A1 (en) Energy efficient method for concurrent methanisation and carbon dioxide recovery
JP2017048087A (ja) 化石燃料からの水素製造方法及び水素製造装置
US20240001296A1 (en) Method and system to capture co2 in flue gases emitted intermittently
CN109153565A (zh) 生产合成气的方法
CN113292394A (zh) 一种焦炉煤气耦合垃圾焚烧发电制甲醇系统
MX2013010818A (es) Proceso y sistema para extraer azufre de corrientes gaseosas que contienen azufre.
CN117326914A (zh) 一种热电厂耦合清洁能源制氢并合成甲醇的工艺
WO2023041541A1 (en) Method for capturing co2 from a flue gas from a district heating plant
CN116667423A (zh) 一种基于内燃机的调频电源及发电系统
CN117123026A (zh) 一种电制气与二氧化碳捕集高效耦合工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867173

Country of ref document: EP

Kind code of ref document: A1