WO2016125649A1 - 排熱回収装置、発電システム、及び排熱回収方法 - Google Patents

排熱回収装置、発電システム、及び排熱回収方法 Download PDF

Info

Publication number
WO2016125649A1
WO2016125649A1 PCT/JP2016/052301 JP2016052301W WO2016125649A1 WO 2016125649 A1 WO2016125649 A1 WO 2016125649A1 JP 2016052301 W JP2016052301 W JP 2016052301W WO 2016125649 A1 WO2016125649 A1 WO 2016125649A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
heat recovery
exhaust heat
power generation
temperature
Prior art date
Application number
PCT/JP2016/052301
Other languages
English (en)
French (fr)
Inventor
章弘 三田村
宏幸 高波
大暉 四條
Original Assignee
三菱重工環境・化学エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工環境・化学エンジニアリング株式会社 filed Critical 三菱重工環境・化学エンジニアリング株式会社
Publication of WO2016125649A1 publication Critical patent/WO2016125649A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust heat recovery apparatus, a power generation system, and an exhaust heat recovery method having a seawater electrolysis apparatus that electrolyzes seawater to generate electrolytically treated water containing hypochlorous acid.
  • the present invention relates to a power plant having a seawater electrolyzer that generates electrolyzed water containing hypochlorous acid by electrolyzing seawater.
  • the efficiency of electrolysis in the seawater electrolyzer is improved and the temperature of the heat engine is reduced.
  • An object of the present invention is to provide an exhaust heat recovery device that enables exhaust heat recovery in an area.
  • the exhaust heat recovery device includes a power generation device that generates power using a fluid discharged from a heat engine as a high-temperature source and seawater used for cooling the heat engine as a low-temperature source, and the power generation And a high-temperature seawater line for supplying the seawater heated by the apparatus to an electrolyzer that electrolyzes the seawater to generate electrolytically treated water containing hypochlorous acid.
  • the efficiency of electrolysis in the electrolysis apparatus can be improved by performing electrolysis using heated seawater. Further, even if the fluid discharged from the heat engine is at a low temperature, exhaust heat recovery in a low temperature region is possible by performing power generation using a temperature difference from seawater.
  • the exhaust heat recovery apparatus may include a hydrogen supply line that supplies hydrogen generated in the electrolysis apparatus as fuel to the heat engine.
  • hydrogen generated as a by-product in the electrolysis apparatus can be used as an auxiliary fuel in the heat engine. This eliminates the need to dilute hydrogen to less than the lean flammability limit concentration, thereby reducing facility construction costs and maintenance costs.
  • the exhaust heat recovery device may further include an injection line for injecting the electrolytically treated water containing hypochlorous acid into a seawater intake.
  • the nitrogen component contained in the nitrogen-containing wastewater can be removed by injecting the electrolytically treated water containing hypochlorous acid into the nitrogen-containing wastewater introduced into the nitrogen treatment tank.
  • the power generation system includes any one of the above-described exhaust heat recovery devices.
  • the exhaust heat recovery method uses a fluid discharged from the heat engine as a high temperature source, and generates electricity using seawater used for cooling the heat engine as a low temperature source; An electrolyzed water generation step of electrolyzing the seawater heated in the power generation step to generate electrolyzed water.
  • the efficiency of electrolysis in the electrolyzer can be improved by performing electrolysis using heated seawater. Even if the fluid discharged from the heat engine is at a low temperature, it is possible to recover the exhaust heat in a low temperature region by generating power using a temperature difference from seawater.
  • the power plant 100 of this embodiment is a power plant which employ
  • the power plant 100 includes a heat engine 2 composed of a gas turbine 3, a steam turbine 4, and the like, a seawater intake 5 for taking seawater M used as cooling water in the heat engine 2, and seawater for electrolyzing the seawater M.
  • the electrolysis apparatus 6 (electrolysis apparatus) and the exhaust heat recovery apparatus 1 are provided.
  • the heat engine 2 includes a gas turbine 3, a steam turbine 4, a generator 8 that is driven by the rotational driving force of the steam turbine 4, and a generator that is driven by the rotational driving force of the gas turbine 3 to generate electric power.
  • the gas turbine 3 is an engine that obtains power by burning a fuel F such as natural gas.
  • the gas turbine 3 is driven by a compressor 10 that compresses air, a plurality of combustors 11 that generate combustion gas by burning fuel F in the air compressed by the compressor 10, and a high-temperature and high-pressure combustion gas.
  • a turbine 12 A turbine 12.
  • the exhaust outlet of the gas turbine 3 is connected to an exhaust heat recovery boiler 14 (HRSG) which is a facility that generates steam using exhaust heat of the gas turbine 3 and supplies the steam to the steam turbine 4.
  • HRSG exhaust heat recovery boiler 14
  • Steam generated in the exhaust heat recovery boiler 14 is introduced into the steam turbine 4.
  • the steam turbine 4 is provided with a condenser 15 (heat exchanger). After being driven by expansion work by the steam turbine 4, the steam is discharged to the condenser 15, condensed into condensate, and sent to the exhaust heat recovery boiler 14 via the circulating water line 27.
  • the boiler waste water B discharged from the exhaust heat recovery boiler 14 is an ammonia nitrogen-containing waste water containing ammonia nitrogen such as ammonia (NH 3 ) and ammonium ions (NH 4 + ).
  • the boiler waste water B is introduced into the nitrogen treatment tank 16. Nitrogen is removed from the boiler waste water B in the nitrogen treatment tank 16.
  • the boiler waste water B is discharged through the drain line 17 after nitrogen is removed in the nitrogen treatment tank 16.
  • the power plant 100 includes an exhaust duct 20 into which exhaust gas that is a fluid discharged from the exhaust heat recovery boiler 14 is introduced, and a chimney 21 that releases the exhaust gas introduced into the exhaust duct 20 to the atmosphere.
  • the temperature of the exhaust gas introduced into the exhaust duct 20 depends on the exhaust heat recovery efficiency of the exhaust heat recovery boiler 14.
  • the temperature of the exhaust gas introduced into the exhaust duct 20 is about 100 ° C. with a triple pressure exhaust heat recovery boiler and about 200 ° C. with a single pressure exhaust heat recovery boiler.
  • seawater intake 5 and the heat engine 2 are connected via a seawater line 22.
  • Seawater M1 is introduced into the seawater line 22 by a seawater pump 26.
  • Seawater M1 taken through the seawater line 22 is introduced into the condenser 15 and used as cooling water, for example.
  • Seawater M1 used as cooling water is discharged through the drainage line 17.
  • the seawater electrolyzer 6 includes an electrolytic cell 23 and a DC power supply device 24.
  • the seawater electrolyzer 6 is an apparatus that generates electrolyzed water E containing hypochlorous acid (chlorine, sodium hypochlorite) by electrolyzing the seawater M.
  • the electrolytic cell 23 has a plurality of electrodes (not shown).
  • the DC power supply device 24 is a device that supplies a current to be used for electrolysis of the seawater M.
  • the DC power supply device 24 for example, a configuration including a DC power supply and a constant current control circuit can be employed.
  • the DC power source is a power source that outputs DC power.
  • the DC power supply may be configured to rectify and output AC power output from the AC power supply to DC.
  • the seawater electrolysis apparatus 6 of the present embodiment may be a one-through system in which the seawater M is passed through the electrolytic cell 23 only once.
  • the seawater electrolyzer 6 of the present embodiment may be a recycle system that gradually increases the concentration of hypochlorous acid in the electrolyzed water E by circulating the seawater M.
  • hydroxide ions generated at the cathode react with sodium ions in the seawater M to generate sodium hydroxide.
  • sodium hypochlorite having an inhibitory effect on the adhesion of marine products is generated.
  • concentration of sodium hypochlorite is preferably 500 ppm to 5,000 ppm.
  • the electrolyzed water E generated by the seawater electrolyzer 6 is injected into the seawater intake 5 via the injection line 25.
  • the electrolyzed water E sodium hypochlorite
  • the seawater electrolysis apparatus 6 of this embodiment has a function as a marine organism adhesion prevention apparatus.
  • the exhaust heat recovery apparatus 1 includes a thermoelectric converter 29, a seawater branch line 30, a high temperature seawater line 31, and a hydrogen supply line 28.
  • the thermoelectric conversion device 29 is a power generation device that generates power using the temperature difference between the seawater M1 and the exhaust heat of the heat engine 2.
  • the seawater branch line 30 is a line for introducing the seawater M1 into the thermoelectric converter 29.
  • the high-temperature seawater line 31 is a line that introduces seawater M ⁇ b> 2 that has passed through the thermoelectric converter 29 and has increased in temperature into the seawater electrolyzer 6. This is a line for supplying the hydrogen gas H generated by the hydrogen supply line 28 and the seawater electrolysis apparatus 6 to the heat engine 2.
  • the thermoelectric conversion device 29 is provided in the exhaust duct 20.
  • the thermoelectric conversion device 29 is a power generation device including a thermoelectric element unit / thermoelectric element module, a binary power generation system, an ORC power generation system (organic Rankine cycle power generation system), and the like.
  • the thermoelectric conversion device 29 is provided inside the exhaust duct 20.
  • the thermoelectric conversion device 29 is configured using, for example, a thermoelectric element unit / thermoelectric element module in which a semiconductor element is covered with an insulating layer made of a ceramic material having high corrosion resistance and high thermal conductivity. Thereby, power generation / heat recovery can be performed reliably while preventing low-temperature corrosion due to sulfur in the exhaust gas.
  • the seawater branch line 30 is a line that branches off a part of the seawater M1 from the seawater line 22.
  • the seawater branch line 30 is connected to the thermoelectric conversion device 29.
  • a part of the seawater M1 introduced into the seawater line 22 is introduced into the thermoelectric conversion device 29 via the seawater branch line 30.
  • the temperature of the seawater M1 introduced into the thermoelectric converter 29 is 5 ° C., for example.
  • the high-temperature seawater line 31 is a line that introduces seawater M2 introduced from the seawater branch line 30 and used as a low-temperature source in the thermoelectric converter 29 into the electrolytic cell 23.
  • the high temperature (for example, 10 degreeC) seawater M2 after passing the thermoelectric converter 29 is supplied to the electrolytic cell 23 as electrolyzed raw water.
  • thermoelectric conversion device 29 generates power using the exhaust gas sent from the exhaust heat recovery boiler 14 to the chimney 21 as a high heat source and the seawater M1 introduced from the seawater branch line 30 as a low heat source.
  • the thermoelectric converter 29 generates power by the Savebeck effect using the temperature difference between the low temperature seawater M1 and the high temperature exhaust gas.
  • the hydrogen supply line 28 is a line for introducing the hydrogen gas H generated by the seawater electrolyzer 6 into the heat engine 2 as an auxiliary fuel.
  • the seawater electrolyzer 6 and the heat engine 2 are connected by a hydrogen supply line 28.
  • the hydrogen gas H introduced into the heat engine 2 can be used as a fuel for the gas turbine 3, for example. That is, the hydrogen gas H can be introduced into the combustor 11 of the gas turbine 3 together with the fuel F such as natural gas.
  • the hydrogen gas H introduced into the heat engine 2 can also be used as a fuel for fuel cell power generation.
  • the exhaust heat recovery method using the exhaust heat recovery apparatus 1 of the present embodiment includes a power generation process using the thermoelectric converter 29 and an electrolyzed water generation process using the seawater electrolysis apparatus 6.
  • the power generation step is a step of generating power using the exhaust gas that is the fluid discharged from the exhaust heat recovery boiler 14 of the heat engine 2 as a high temperature source and the seawater M1 used for cooling the heat engine 2 as a low temperature source.
  • the electrolyzed water generation step is a step of electrolyzing the seawater M2 heated in the power generation step to generate electrolyzed water E.
  • the efficiency of the electrolysis in the seawater electrolyzer 6 can be improved by performing electrolysis using the heated seawater M2.
  • the temperature of the seawater M required in the seawater electrolyzer 6 is, for example, 8 ° C. to 40 ° C., so that the sea water M is heated even in winter when the temperature of the sea water M is 5 ° C. or in an area where the sea water temperature is low. By doing so, the seawater electrolysis apparatus 6 can be stably operated.
  • the temperature of the seawater M is 8 ° C. or lower, the seawater electrolyzer 6 requires a low load operation because the electrolysis efficiency is significantly reduced. Therefore, the heating of the seawater M is effective.
  • the exhaust heat recovery in a low temperature region can be performed by performing power generation using the temperature difference from the seawater M.
  • the hydrogen gas H generated as a by-product in the seawater electrolyzer 6 can be used as an auxiliary fuel in the heat engine 2. This eliminates the need to dilute hydrogen below the lean flammability limit concentration. Thereby, reduction of equipment construction cost and maintenance cost can be aimed at.
  • the effect by the seawater M being heated in the thermoelectric conversion apparatus 29 is demonstrated.
  • a low temperature range for example, 5 ° C.
  • the chlorine overvoltage increases, and not only chlorine but oxygen is generated on the anode side.
  • Oxygen generation rate increases as the temperature of the seawater M decreases.
  • the seawater M supplied to the electrolytic cell 23 is only the seawater M heated by the thermoelectric conversion device 29.
  • the seawater temperature is not limited to this when the seawater temperature is sufficiently high.
  • a line for supplying seawater M1 directly to the electrolytic cell 23 from the seawater line 22 may be provided.
  • the configuration of the power plant 100 is not limited to the configuration shown in FIG. 1.
  • a single-shaft combined cycle power generation system in which the shaft of the gas turbine and the shaft of the steam turbine are connected coaxially is used. It may be the adopted power plant.
  • thermoelectric conversion device 29 ⁇ / b> B sends low-temperature steam, which is a fluid discharged from the steam turbine 4 of the heat engine 2, to the cooling tower 18.
  • a low temperature steam line 33 is attached.
  • the temperature of the low temperature steam is 200 ° C., for example.
  • thermoelectric conversion device 29 may be installed in any place as long as the fluid discharged from the heat engine 2 can be used as a high temperature source as well as the exhaust duct 20 and the low temperature steam line 33.
  • the thermoelectric conversion device 29 may be installed at a plurality of locations. For example, it may be installed in both the exhaust duct 20 and the low-temperature steam line 33 to further improve the exhaust heat recovery efficiency.
  • the exhaust heat recovery apparatus 1C according to a second embodiment of the present invention will be described with reference to the drawings.
  • the exhaust heat recovery apparatus 1 ⁇ / b> C of the present embodiment has a branch line 34 that branches from an injection line 25 that connects the seawater electrolysis apparatus 6 and the seawater intake 5.
  • the branch line 34 is a line for introducing the electrolytically treated water E into the nitrogen treatment tank 16.
  • the electrolyzed water E generated in the seawater electrolyzer 6 is introduced into the nitrogen treatment tank 16 through the branch line 34 branched from the injection line 25 and mixed with the boiler waste water B.
  • Boiler waste water B and electrolytically treated water E are introduced into the nitrogen treatment tank 16, and ammonia and hypochlorous acid present in the boiler waste water B undergo a solution reaction to be decomposed into nitrogen gas (N 2 ).
  • the seawater electrolysis apparatus 6 of this embodiment has a function as an ammoniacal nitrogen removal apparatus.
  • drain can be removed by inject

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

 熱機関(2)から排出される流体を高温源とし、熱機関(2)の冷却に用いられる海水(M1)を低温源として発電する発電装置(29)と、発電装置(29)により加熱された海水(M2)を、海水を電気分解して次亜塩素酸を含む電解処理水(E)を生成する海水電解装置(6)に供給する高温海水ライン(31)と、を有する排熱回収装置(1)を提供する。

Description

排熱回収装置、発電システム、及び排熱回収方法
 本発明は、海水を電気分解して次亜塩素酸を含む電解処理水を生成する海水電解装置を有する排熱回収装置、発電システム、及び排熱回収方法に関する。
 本願は、2015年2月4日に出願された特願2015-020273号について優先権を主張し、その内容をここに援用する。
 従来、海水を多量に使用する火力発電所、原子力発電所などの発電プラントにおいては、海水取水口や配管、復水器、各種冷却器などの海水と接する部分の藻類や貝類の付着繁殖が課題となっている。
 この課題を解決するために、天然の海水に電気分解を施すことで次亜塩素酸を生成し、次亜塩素酸を海水取水口に注入することにより海洋生物の付着を抑制する海水電解装置が提案されている(例えば特許文献1参照)。
特開昭61-57287号公報
 ところで、海水電解処理においては、海水の温度が低い場合に電気分解の効率が低下し、海水電解装置を運用する際のランニングコストが増加するという課題がある。
 また、発電プラントにおいては、例えば、蒸気タービンから排出される低温蒸気や、熱機関の排熱回収ボイラから排出される排ガスが導入される排気ダクトなどの低温域の排熱回収が十分に行われていない。よって、この低温域の排熱回収を行うことによってエネルギー回収効率を向上させる余地があると考えられている。
 この発明は、海水を電気分解することにより次亜塩素酸を含有する電解処理水を生成する海水電解装置を有する発電プラントにおいて、海水電解装置における電気分解の効率を向上させるとともに、熱機関の低温域での排熱回収を可能とする排熱回収装置を提供することを目的とする。
 本発明の第一の態様によれば、排熱回収装置は、熱機関から排出される流体を高温源とし、前記熱機関の冷却に用いられる海水を低温源として発電する発電装置と、前記発電装置により加熱された前記海水を、海水を電気分解して次亜塩素酸を含む電解処理水を生成する電解装置に供給する高温海水ラインと、を有することを特徴とする。
 このような構成によれば、加熱された海水を用いて電気分解を行うことによって、電解装置における電気分解の効率を向上させることができる。また、熱機関から排出される流体が低温であっても、海水との温度差を用いて発電を行うことで、低温域での排熱回収が可能となる。
 また、上記排熱回収装置において、前記電気分解装置で発生した水素を前記熱機関へ燃料として供給する水素供給ラインと、を有してよい。
 このような構成によれば、電解装置にて副生成物として生じる水素を熱機関にて補助燃料として利用することができる。これにより、水素を希薄可燃限界濃度未満まで希釈する必要がなくなるため、設備建設費や維持費の低減を図ることができる。
 また、上記排熱回収装置において、前記次亜塩素酸を含む電解処理水を海水取水口に注入する注入ラインと、を有してよい。
 このような構成によれば、加熱された海水を電気分解して生成された温度の高い電解処理水を海水取水口に注入することによって、海水取水口における海洋生物の付着防止効果を高めることができる。
 また、上記排熱回収装置において、前記熱機関から排出される窒素含有排水が導入される窒素処理槽と、前記注入ラインから分岐して前記電解処理水を前記窒素処理槽に注入する分岐ラインと、を有してよい。
 このような構成によれば、窒素処理槽に導入される窒素含有排水に次亜塩素酸を含む電解処理水が注入されることによって、窒素含有排水に含まれる窒素成分を除去することができる。
 また、本発明の第二の態様によれば、発電システムは、上記いずれかの排熱回収装置を備えることを特徴とする。
 また、本発明の第三の態様によれば、排熱回収方法は、熱機関から排出される流体を高温源とし、前記熱機関の冷却に用いられる海水を低温源として発電する発電工程と、前記発電工程にて加熱された前記海水を、電気分解して電解処理水を生成する電解処理水生成工程と、を有することを特徴とする。
 本発明によれば、加熱された海水を用いて電気分解を行うことによって、電解装置における電気分解の効率を向上させることができる。熱機関から排出される流体が低温であっても、海水との温度差を用いて発電を行うことで、低温域での排熱回収が可能となる。
本発明の第一実施形態の排熱回収装置を有する発電プラントの系統図である。 本発明の第一実施形態の変形例の排熱回収装置を有する発電プラントの系統図である。 本発明の第二実施形態の排熱回収装置を有する発電プラントの系統図である。
(第一実施形態)
 以下、本発明の実施形態の排熱回収装置1を備える発電プラント100について図面を参照して詳細に説明する。
 図1に示すように、本実施形態の発電プラント100は、例えば、ガスタービン3と蒸気タービン4とを組み合わせたコンバインドサイクル発電方式を採用した発電所である。発電プラント100は、ガスタービン3、蒸気タービン4などから構成される熱機関2と、熱機関2において、冷却水として用いられる海水Mを取水する海水取水口5と、海水Mを電気分解する海水電解装置6(電気分解装置)と、排熱回収装置1と、を有している。
 熱機関2は、ガスタービン3と、蒸気タービン4と、蒸気タービン4の回転駆動力により駆動されて発電される発電機8と、ガスタービン3の回転駆動力により駆動されて発電される発電機9と、を有している。
 ガスタービン3は、天然ガスなどの燃料Fを燃やして動力を得る機関である。ガスタービン3は、空気を圧縮する圧縮機10と、圧縮機10で圧縮された空気中で燃料Fを燃焼させて燃焼ガスを生成する複数の燃焼器11と、高温高圧の燃焼ガスにより駆動するタービン12と、を備えている。
 ガスタービン3の排気出口には、ガスタービン3の排熱を利用して蒸気を発生し、 蒸気タービン4へ供給する設備である排熱回収ボイラ14(HRSG)が接続されている。排熱回収ボイラ14で発生した蒸気は、蒸気タービン4に導入される。蒸気タービン4には、復水器15(熱交換器)が設けられている。蒸気タービン4で膨張仕事をして駆動した後の蒸気は、を復水器15に排出されて復水に凝縮し、循環水ライン27を介して排熱回収ボイラ14に送られる。
 排熱回収ボイラ14のボイラ水には、腐食の要因となる酸素を除去するための脱酸素剤としてアンモニアが使用されている。よって、排熱回収ボイラ14から排出されるボイラ排水Bは、アンモニア(NH)、アンモニウムイオン(NH )等のアンモニア性窒素を含むアンモニア性窒素含有排水である。
 ボイラ排水Bは、窒素処理槽16に導入される。ボイラ排水Bは、窒素処理槽16にて窒素が除去される。ボイラ排水Bは、窒素処理槽16にて窒素が除去された後、排水ライン17を介して放流される。
 発電プラント100は、排熱回収ボイラ14から排出される流体である排ガスが導入される排気ダクト20と、排気ダクト20に導入された排ガスを大気へ放出する煙突21と、を有している。排気ダクト20に導入される排ガスの温度は、コンバインドサイクル発電方式の場合、排熱回収ボイラ14の排熱回収効率に依存する。排気ダクト20に導入される排ガスの温度は、三重圧の排熱回収ボイラで100℃程度、単圧の排熱回収ボイラで200℃程度になる。
 海水取水口5と熱機関2とは、海水ライン22を介して接続されている。海水ライン22には、海水ポンプ26によって海水M1が導入される。海水ライン22を介して取水された海水M1は、例えば、復水器15に導入されて冷却水として使用される。冷却水として使用された海水M1は、排水ライン17を介して放流される。
 海水電解装置6は、電解槽23と、直流電源装置24と、を有している。海水電解装置6は、海水Mを電気分解することによって、次亜塩素酸(塩素、次亜塩素酸ナトリウム)を含む電解処理水Eを生成する装置である。電解槽23は、複数の電極(図示せず)を有している。
 電解槽23の内部に配置される電極、特に、陽極としては、一般にチタン基板に白金を主体とした複合金属、即ち、白金主体コーティング材をコーティングしたものが使用されている。
 直流電源装置24は、海水Mの電気分解に供される電流を供給する装置である。直流電源装置24としては、例えば、直流電源と定電流制御回路とを備える構成を採用することができる。直流電源は、直流電力を出力する電源である。直流電源は、例えば交流電源から出力される交流電力を直流に整流して出力する構成であってもよい。
 本実施形態の海水電解装置6は、海水Mを電解槽23に一回のみ通すワンスルー方式としてよい。本実施形態の海水電解装置6は、海水Mを循環させることによって、徐々に電解処理水Eの次亜塩素酸濃度を上昇させるリサイクル方式としてよい。
 海水電解装置6の作用について説明する。
 海水Mが電解槽23に導入されると、電解槽23内の電極が海水Mに浸漬される。
 電極間の海水M内を電流が流通することで海水Mに対して電気分解が施される。
 陽極においては、下記(1)式に示すように、海水M中の塩化物イオンから電子eが奪われ酸化が起こり、塩素が生成される。
 2Cl → Cl + 2e   …(1)
 陰極においては、下記(2)式に示すように、海水M中の水に電子が与えられて還元が起こり、水酸化イオンと水素ガスHが生成される。
 2HO + 2e → 2OH + H   …(2)
 下記(3)式に示すように、陰極で生成された水酸化イオンは海水M中のナトリウムイオンと反応して水酸化ナトリウムが生成される。
 2Na + 2OH → 2NaOH   …(3)
 さらに、(4)式に示すように、水酸化ナトリウムと塩素とが反応することにより、次亜塩素酸、塩化ナトリウム及び水が生成される。
 Cl + 2NaOH → NaClO + NaCl + HO   …(4)
 このように、海水Mの電気分解に基づいて、海洋生成物の付着に対して抑制効果を有する次亜塩素酸ナトリウムが生成される。
 次亜塩素酸ナトリウムの濃度は、500ppm~5,000ppmであることが好ましい。
 海水電解装置6にて生成された電解処理水Eは、注入ライン25を介して海水取水口5に注入される。電解処理水E(次亜塩素酸ナトリウム)が海水取水口5に注入されることによって、海水取水口5に対する海洋生物の付着を抑制することができる。即ち、本実施形態の海水電解装置6は、海洋生物付着防止装置としての機能を有する。
 次に、本実施形態の排熱回収装置1について説明する。排熱回収装置1は、熱電変換装置29と、海水分岐ライン30と、高温海水ライン31と、水素供給ライン28と、を有している。
 熱電変換装置29は、海水M1と熱機関2の排熱との温度差を用いて発電する発電装置である。海水分岐ライン30は、海水M1を熱電変換装置29に導入するラインである。高温海水ライン31は、熱電変換装置29を通過して温度が上昇した海水M2を海水電解装置6に導入するラインである。水素供給ライン28と、海水電解装置6にて生成された水素ガスHを熱機関2に供給するラインである。
 熱電変換装置29は、排気ダクト20に設けられている。熱電変換装置29は、熱電素子ユニット/熱電素子モジュール、バイナリ発電システム、ORC発電システム(オーガニックランキンサイクル発電システム)などから構成される発電装置である。
 熱電変換装置29は、排気ダクト20の内部に設けられている。熱電変換装置29は、例えば、耐腐食性及び熱伝導率が高いセラミックなどを素材とする絶縁層で半導体素子を被覆した熱電素子ユニット/熱電素子モジュール等を用いて構成されている。これにより、排ガス中の硫黄分による低温腐食を防止しつつ確実に発電/熱回収が行える。
 海水分岐ライン30は、海水ライン22から海水M1の一部を分岐して取り出すラインである。海水分岐ライン30は、熱電変換装置29に接続されている。海水ライン22に導入された海水M1の一部は、海水分岐ライン30を介して熱電変換装置29に導入される。熱電変換装置29に導入された海水M1の温度は、例えば、5℃である。
 高温海水ライン31は、海水分岐ライン30から導入されて熱電変換装置29にて低温源として使用された海水M2を電解槽23に導入するラインである。熱電変換装置29を通過後の高温(例えば10℃)の海水M2は、電解原水として電解槽23に供給される。
 熱電変換装置29は、排熱回収ボイラ14から煙突21に送られる排ガスを高熱源、海水分岐ライン30から導入される海水M1を低熱源として発電を行う。熱電変換装置29は、低温の海水M1と高温の排ガスの温度差を利用したセーベック効果などによって発電を行う。
 水素供給ライン28は、海水電解装置6にて生成された水素ガスHを補助燃料として熱機関2に導入するラインである。海水電解装置6と熱機関2とは水素供給ライン28で接続されている。
 熱機関2に導入された水素ガスHは、例えば、ガスタービン3の燃料として用いることができる。即ち、天然ガスなどの燃料Fと共に、水素ガスHをガスタービン3の燃焼器11に導入することができる。熱機関2に導入された水素ガスHは、燃料電池発電用の燃料として用いることもできる。
 本実施形態の排熱回収装置1を用いた排熱回収方法は、熱電変換装置29を用いた発電工程と、海水電解装置6を用いた電解処理水生成工程と、を有する。発電工程は、熱機関2の排熱回収ボイラ14から排出される流体である排ガスを高温源とし、熱機関2の冷却に用いられる海水M1を低温源として発電する工程である。電解処理水生成工程は、発電工程にて加熱された海水M2を電気分解して電解処理水Eを生成する工程である。
 上記実施形態によれば、加熱された海水M2を用いて電気分解を行うことによって、海水電解装置6における電気分解の効率を向上させることができる。
 海水電解装置6において要求される海水Mの温度は、例えば、8℃~40℃であるため、海水Mの温度が5℃などとなる冬季や、海水温の低い地域においても、海水Mを加熱することによって海水電解装置6の安定した運転が可能となる。特に、海水電解装置6は、海水Mの温度が8℃以下になると、電解効率が著しく低下して低負荷の運転が要求される。よって、海水Mの加熱は有効である。
 また、熱機関2の排熱回収ボイラ14から排出される排ガスが低温であっても、海水Mとの温度差を用いて発電を行うことで、低温域での排熱回収が可能となる。
 また、海水電解装置6にて副生成物として生じる水素ガスHを熱機関2にて補助燃料として利用することができる。これにより、水素を希薄可燃限界濃度未満まで希釈する必要がなくなる。これにより、設備建設費や維持費の低減を図ることができる。
 また、加熱された海水M2を電気分解して生成された温度の高い電解処理水Eを海水取水口5に注入することによって、海水取水口5における海洋生物の付着防止効果を高めることができる。
 また、熱電変換装置29において海水Mが加熱されることによる効果を説明する。
 海水温度が低温域(例えば、5℃)になると、塩素過電圧が上昇し、陽極側で塩素だけでなく酸素が発生するようになる。酸素は、海水Mの温度が低下するに従って発生割合が増加する。
 一方、陰極側においては、海水Mの温度に関わらず水素が発生するため、海水温度が低温域でない場合には海水電解により発生する気体はほぼ100%が水素である。よって、陰極側は、水素ガスHの爆発範囲4~75%からは外れており、電解槽23内での爆発の可能性を排除することが可能である。
 しかし、海水Mが低温域に入り、陽極より酸素発生が始まると、水素+酸素のガスとなる。水温低下で酸素発生割合が増加すると、水素濃度が75%以下に低下してしまい、爆発範囲に入る可能性がある。熱電変換装置29により海水M1が加熱され、この加熱された海水M2を海水電解装置6に供給することにより、この可能性を低減することができる。
 また、陽極側で発生させる酸素が、陽極側の表面コーティングに使用されている白金族系材料の一部の消耗を早めるため、酸素を発生させない様な海水温度域での運転は、電極寿命の観点からも有効である。
 なお、上記実施形態では、電解槽23に供給される海水Mは、熱電変換装置29によって加熱された海水Mのみとしたが、海水温度が十分に高い場合はこれに限ることはない。例えば、海水ライン22から、海水M1を直接電解槽23に供給するラインを設けてもよい。
 また、発電プラント100の構成は、図1に示したような構成に限ることはなく、例えば、ガスタービンの軸と蒸気タービンの軸とを同軸となるように接続した一軸型コンバインドサイクル発電方式を採用した発電所としてもよい。
 次に、第一実施形態の変形例の排熱回収装置1Bを有する発電プラント100について説明する。
 図2に示すように、第一実施形態の変形例の排熱回収装置1Bは、熱電変換装置29Bが、熱機関2の蒸気タービン4から排出される流体である低温蒸気を冷却塔18に送る低温蒸気ライン33に取り付けられている。低温蒸気の温度は、例えば、200℃である。
 上記変形例によれば、蒸気タービン4から排出される低温蒸気が低温であっても、海水Mとの温度差を用いて発電を行うことで、低温域での排熱回収が可能となる。
 熱電変換装置29は、排気ダクト20や低温蒸気ライン33のみならず、熱機関2から排出される流体を高温源として利用できれば、どのような場所に設置してもよい。
 熱電変換装置29は、複数個所に設置してもよい。例えば、排気ダクト20と低温蒸気ライン33の両方に設置して、更なる排熱回収効率の向上を図ってもよい。
(第二実施形態)
 以下、本発明の第二実施形態の排熱回収装置1Cを図面に基づいて説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図3に示すように本実施形態の排熱回収装置1Cは、海水電解装置6と海水取水口5とを接続する注入ライン25から分岐する分岐ライン34を有している。分岐ライン34は、電解処理水Eを窒素処理槽16に導入するラインである。海水電解装置6にて生成された電解処理水Eは、注入ライン25から分岐する分岐ライン34を介して窒素処理槽16に導入されて、ボイラ排水Bと混合される。
 窒素処理槽16には、ボイラ排水Bと電解処理水Eが導入されて、ボイラ排水B中に存在するアンモニアと次亜塩素酸とが溶液反応して窒素ガス(N)まで分解される。本実施形態の海水電解装置6は、アンモニア性窒素除去装置としての機能を有する。
 上記実施形態によれば、窒素処理槽16に導入されるボイラ排水Bに次亜塩素酸を含む電解処理水Eが注入されることによって、窒素含有排水に含まれる窒素成分を除去することができる。
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、クレームの範囲によってのみ限定される。
 1,1B,1C 排熱回収装置
 2 熱機関
 3 ガスタービン
 4 蒸気タービン
 5 海水取水口
 6 海水電解装置
 8,9 発電機
 10 圧縮機
 11 燃焼器
 12 タービン
 14 排熱回収ボイラ
 15 復水器
 16 窒素処理槽
 17 排水ライン
 20 排気ダクト
 21 煙突
 22 海水ライン
 23 電解槽
 24 直流電源装置
 25 注入ライン
 26 海水ポンプ
 27 循環水ライン
 28 水素供給ライン
 29,29B 熱電変換装置(発電装置)
 30 海水分岐ライン
 31 高温海水ライン
 33 低温蒸気ライン
 34 分岐ライン
 100 発電プラント
 B ボイラ排水
 E 電解処理水
 F 燃料
 H 水素ガス
 M,M1,M2 海水

Claims (6)

  1.  熱機関から排出される流体を高温源とし、前記熱機関の冷却に用いられる海水を低温源として発電する発電装置と、
     前記発電装置により加熱された前記海水を、海水を電気分解して次亜塩素酸を含む電解処理水を生成する電解装置に供給する高温海水ラインと、を有する排熱回収装置。
  2.  前記電気分解装置で発生した水素を前記熱機関へ燃料として供給する水素供給ラインと、を有する請求項1に記載の排熱回収装置。
  3.  前記次亜塩素酸を含む電解処理水を海水取水口に注入する注入ラインと、を有する請求項1又は請求項2に記載の排熱回収装置。
  4.  前記熱機関から排出される窒素含有排水が導入される窒素処理槽と、
     前記注入ラインから分岐して前記電解処理水を前記窒素処理槽に注入する分岐ラインと、を有する請求項3に記載の排熱回収装置。
  5.  請求項1から請求項4のいずれか一項に記載の排熱回収装置を備える発電システム。
  6.  熱機関から排出される流体を高温源とし、前記熱機関の冷却に用いられる海水を低温源として発電する発電工程と、
     前記発電工程にて加熱された前記海水を電気分解して電解処理水を生成する電解処理水生成工程と、を有する排熱回収方法。
PCT/JP2016/052301 2015-02-04 2016-01-27 排熱回収装置、発電システム、及び排熱回収方法 WO2016125649A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015020273A JP2016141868A (ja) 2015-02-04 2015-02-04 排熱回収装置、発電システム、及び排熱回収方法
JP2015-020273 2015-09-11

Publications (1)

Publication Number Publication Date
WO2016125649A1 true WO2016125649A1 (ja) 2016-08-11

Family

ID=56563998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052301 WO2016125649A1 (ja) 2015-02-04 2016-01-27 排熱回収装置、発電システム、及び排熱回収方法

Country Status (3)

Country Link
JP (1) JP2016141868A (ja)
TW (1) TWI593870B (ja)
WO (1) WO2016125649A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106677870A (zh) * 2016-12-26 2017-05-17 天津大学 回收排气能量改善汽车冷起动排放的运行装置及控制方法
CN109923064A (zh) * 2016-11-22 2019-06-21 舍弗勒技术股份两合公司 以碳酸肼的形式储存能量的方法
JP2019127250A (ja) * 2018-01-24 2019-08-01 三輪 保 Co2削減システム
WO2021132126A1 (ja) * 2019-12-25 2021-07-01 三菱重工業株式会社 アンモニア誘導体製造プラント及びアンモニア誘導体の製造方法
WO2022042876A1 (de) * 2020-08-27 2022-03-03 Linde Gmbh Wärmerückgewinnung bei elektrolyseprozessen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7349266B2 (ja) * 2019-05-31 2023-09-22 三菱重工業株式会社 ガスタービンおよびその制御方法並びにコンバインドサイクルプラント

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258074A (en) * 1975-11-07 1977-05-13 Daiki Engineering Co Apparatus for preventing marine creatures from clinging
JPS60227885A (ja) * 1984-04-26 1985-11-13 Hitachi Plant Eng & Constr Co Ltd ヒドラジン含有廃水の処理方法
JPH1197750A (ja) * 1997-09-16 1999-04-09 Toshiba Corp 熱電材料、その製造方法、および熱電発電システム
JP2007064856A (ja) * 2005-08-31 2007-03-15 Toshiba Corp 試料採取装置および試料採取方法並びに試料採取装置を備えた火力発電プラント
JP2014028985A (ja) * 2012-07-31 2014-02-13 Panasonic Corp エネルギーシステム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760084A (en) * 1980-09-29 1982-04-10 Mitsubishi Heavy Ind Ltd Electrolytic method
JPH0874083A (ja) * 1994-09-07 1996-03-19 Mitsubishi Heavy Ind Ltd 海水電解装置
JPH109774A (ja) * 1996-06-24 1998-01-16 Mitsubishi Heavy Ind Ltd 発電プラントの塩素発生設備
US6269645B1 (en) * 1998-05-14 2001-08-07 Yyl Corporation Power plant
JP2007069199A (ja) * 2005-08-09 2007-03-22 Sanyo Electric Co Ltd 水処理装置
JP2007146766A (ja) * 2005-11-29 2007-06-14 Noboru Shoda 熱サイクル装置及び複合熱サイクル発電装置
US8146354B2 (en) * 2009-06-29 2012-04-03 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
JP2011056345A (ja) * 2009-09-07 2011-03-24 Toshiba Corp 淡水化システム
CN105239090B (zh) * 2010-11-22 2018-06-05 三菱重工环境·化学工程株式会社 海水电解系统及海水电解方法
US8584462B2 (en) * 2011-07-21 2013-11-19 Kalex, Llc Process and power system utilizing potential of ocean thermal energy conversion
JP5801663B2 (ja) * 2011-09-15 2015-10-28 一般財団法人航空宇宙技術振興財団 海水淡水化装置
CN103787464B (zh) * 2014-01-10 2015-04-08 河海大学 一种基于浓度差的介质可循环的海水淡化系统
CN103993922B (zh) * 2014-05-30 2016-03-30 西安交通大学 一种低温余热co2朗肯循环系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258074A (en) * 1975-11-07 1977-05-13 Daiki Engineering Co Apparatus for preventing marine creatures from clinging
JPS60227885A (ja) * 1984-04-26 1985-11-13 Hitachi Plant Eng & Constr Co Ltd ヒドラジン含有廃水の処理方法
JPH1197750A (ja) * 1997-09-16 1999-04-09 Toshiba Corp 熱電材料、その製造方法、および熱電発電システム
JP2007064856A (ja) * 2005-08-31 2007-03-15 Toshiba Corp 試料採取装置および試料採取方法並びに試料採取装置を備えた火力発電プラント
JP2014028985A (ja) * 2012-07-31 2014-02-13 Panasonic Corp エネルギーシステム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923064A (zh) * 2016-11-22 2019-06-21 舍弗勒技术股份两合公司 以碳酸肼的形式储存能量的方法
JP2020513385A (ja) * 2016-11-22 2020-05-14 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG エネルギーを炭酸ヒドラジンの形態で貯蔵する方法
JP7086049B2 (ja) 2016-11-22 2022-06-17 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲー エネルギーを炭酸ヒドラジンの形態で貯蔵する方法
CN106677870A (zh) * 2016-12-26 2017-05-17 天津大学 回收排气能量改善汽车冷起动排放的运行装置及控制方法
JP2019127250A (ja) * 2018-01-24 2019-08-01 三輪 保 Co2削減システム
WO2021132126A1 (ja) * 2019-12-25 2021-07-01 三菱重工業株式会社 アンモニア誘導体製造プラント及びアンモニア誘導体の製造方法
JP2021102532A (ja) * 2019-12-25 2021-07-15 三菱重工業株式会社 アンモニア誘導体製造プラント及びアンモニア誘導体の製造方法
JP7353163B2 (ja) 2019-12-25 2023-09-29 三菱重工業株式会社 アンモニア誘導体製造プラント及びアンモニア誘導体の製造方法
WO2022042876A1 (de) * 2020-08-27 2022-03-03 Linde Gmbh Wärmerückgewinnung bei elektrolyseprozessen

Also Published As

Publication number Publication date
TWI593870B (zh) 2017-08-01
JP2016141868A (ja) 2016-08-08
TW201638457A (zh) 2016-11-01

Similar Documents

Publication Publication Date Title
WO2016125649A1 (ja) 排熱回収装置、発電システム、及び排熱回収方法
CN104145420B (zh) 可再生能源发电系统
JP2016141868A5 (ja) 排熱回収装置、発電プラント、及び排熱回収方法
JP2009043487A (ja) 発電システム
CN110467232B (zh) 一种脱除盐分和有机物的低能耗废水处理装置及方法
CN102964017A (zh) 微波电催化氧化处理高盐度有机废水方法
TWI717277B (zh) 電解海水氫氣應用發電系統
JP6331145B2 (ja) アンモニア処理システム
CN202430296U (zh) 用于风电海水淡化系统的电解海水制氯装置
CN113502485A (zh) 火电厂电解海水制氢系统和方法
JP5657620B2 (ja) 処理装置および処理方法
US9657600B2 (en) Heat exchanger, a purifier, an electrode-containing pipe, a power generation system, a control method for heat exchanger and a scale removing method
KR20190069945A (ko) 해수 전해장치로부터 생성된 수소 처리 시스템
JPH1172028A (ja) 電力平準化発電方法
KR20230025424A (ko) 해상에 설치되는 담수를 이용한 연료생산장치
CN215403602U (zh) 一种海水资源开发系统
TWI448435B (zh) Drainage treatment method
JP2009215608A (ja) 水素製造プラント
JP6388124B2 (ja) 電解システム
RU2506687C2 (ru) Использование отходящего тепла
US11214486B2 (en) Desalination methods and devices using geothermal energy
KR102432774B1 (ko) 해수의 전기분해모듈을 활용한 연계 시스템
Tontu et al. Thermo-economic analysis of chlor-alkali electrolysis for hydrogen production in the electrochlorination plant: Real case
KR20190107360A (ko) 해수의 전기분해모듈을 이용한 발전 시스템
CN106591874B (zh) 一种氯酸盐电解氢气的综合利用系统及其综合利用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746480

Country of ref document: EP

Kind code of ref document: A1