WO2021131498A1 - 弁装置 - Google Patents

弁装置 Download PDF

Info

Publication number
WO2021131498A1
WO2021131498A1 PCT/JP2020/044314 JP2020044314W WO2021131498A1 WO 2021131498 A1 WO2021131498 A1 WO 2021131498A1 JP 2020044314 W JP2020044314 W JP 2020044314W WO 2021131498 A1 WO2021131498 A1 WO 2021131498A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
pressure
refrigerant
pressure adjusting
expansion
Prior art date
Application number
PCT/JP2020/044314
Other languages
English (en)
French (fr)
Inventor
陽平 長野
陽一郎 河本
安浩 水野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019233071A external-priority patent/JP7302468B2/ja
Priority claimed from JP2020100028A external-priority patent/JP2021195955A/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021131498A1 publication Critical patent/WO2021131498A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/14Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by one actuating member, e.g. a handle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This disclosure relates to a valve device.
  • a valve device including a pressure adjusting unit that adjusts the pressure of the control fluid and a main valve that is displaced according to the pressure of the control fluid is known (see, for example, Patent Document 1).
  • the microvalve assembly constituting the pressure adjusting unit and the spool constituting the main valve are arranged side by side in series along the direction in which the spool is displaced (that is, the valve axis direction). Has been done.
  • valve devices still have room for improvement.
  • the valve device and the valve device are located adjacent to each other in the valve axis direction. It becomes easy to interfere with other arranged parts.
  • the pressure adjusting portion and the main valve which are relatively large parts in the valve device, are arranged side by side in the valve axis direction, the layout of the valve device and other parts is restricted. This is not preferable because it causes a decrease in the degree of freedom in design.
  • the valve device A pressure regulator that adjusts the pressure of the control fluid, A main valve having a valve portion that displaces in a predetermined valve axis direction according to the pressure of the control fluid.
  • the pressure regulator and the main valve are arranged at different positions in the direction orthogonal to the valve axis direction.
  • valve device of the present disclosure the degree of freedom in design can be improved.
  • the valve device A plurality of valve units including a main valve having a pressure adjusting unit for adjusting the pressure of the control fluid and a valve portion displaced in a predetermined valve axis direction according to the pressure of the control fluid are provided.
  • the pressure adjusting unit included in at least one valve unit is oriented in the direction orthogonal to the valve axis direction with respect to the position where the main valve is arranged so as not to overlap the main valve in the valve axis direction. It is placed in a misaligned position.
  • valve device of the present disclosure it becomes difficult for the valve device and other parts arranged at positions adjacent to each other in the valve axis direction of the valve device to interfere with each other, and the degree of freedom in layout of the valve device and other parts is increased. Therefore, according to the valve device of the present disclosure, the degree of freedom in design can be improved.
  • FIG. 8 is a cross-sectional view taken along the line IX-IX of FIG. 8 showing a non-energized state of the micro valve. It is sectional drawing which shows the XX cross section of FIG. FIG. 8 is a cross-sectional view of IX-IX of FIG. 8 showing a state of energization of the microvalve. It is sectional drawing which shows the XII-XII cross section of FIG. It is explanatory drawing for demonstrating the adjustment method of a control pressure. It is a schematic perspective view of each expansion valve which concerns on 2nd Embodiment.
  • FIG. 25 is a cross-sectional view taken along the line XXVI-XXVI of FIG.
  • FIG. 26 is a cross-sectional view taken along the line XXVII-XXVII of FIG.
  • the refrigeration cycle device 30 includes a compressor 31, a condenser 32, a first expansion valve 33, an outdoor heat exchanger 34, a second expansion valve 35, a cooling evaporator 36, and a bypass valve 37. ing. Each of these constituent devices is connected by a refrigerant pipe. Further, the refrigeration cycle device 30 includes a control device 300 that controls the operation of each component device.
  • the refrigeration cycle device 30 uses an HFC-based refrigerant (specifically, R134a) as the refrigerant.
  • Refrigerant oil for lubricating the compressor 31 is mixed in the refrigerant, and a part of the refrigerating machine oil circulates in a cycle together with the refrigerant.
  • an HFO-based refrigerant for example, R1234yf
  • a natural refrigerant for example, R744
  • the compressor 31 sucks in the refrigerant, compresses it, and discharges it in the refrigeration cycle device 30.
  • the compressor 31 is composed of an electric compressor that drives a fixed-capacity compression mechanism with a fixed discharge capacity by an electric motor.
  • the compressor 31 is arranged inside the hood of the vehicle.
  • the operation (for example, rotation speed) of the electric motor constituting the compressor 31 is controlled by a control signal output from the control device 300 described later.
  • the refrigerant inlet side of the condenser 32 is connected to the refrigerant discharge side of the compressor 31.
  • the condenser 32 is a heat exchanger that dissipates heat and condenses the refrigerant discharged from the compressor 31.
  • the condenser 32 includes a refrigerant flow path portion 321 through which the refrigerant flows and a heat medium flow path portion 322 through which the heat medium of the heater circuit HC flows, and heats the refrigerant and the heat medium flowing through the heater circuit HC. It constitutes a heat exchanger for heating that is exchanged to heat a heat medium.
  • the heater circuit HC is a circuit for being used as a heat source for heating the blown air that blows the refrigerant discharged from the compressor 31 into the vehicle interior, warming up the battery, and the like.
  • the heater circuit HC is provided with a heater core for dissipating heat to the air blown into the vehicle interior, a radiator for dissipating heat to the battery, and the like.
  • the heater core is arranged inside the air conditioning case C together with the cooling evaporator 36 described later.
  • a first expansion valve 33 for reducing the pressure of the refrigerant that has passed through the condenser 32 is connected to the refrigerant outlet side of the condenser 32.
  • the first expansion valve 33 is a heating expansion valve that reduces the pressure of the refrigerant that has passed through the condenser 32 during heating and dehumidifying heating of the vehicle interior.
  • the first expansion valve 33 has a structure in which the depressurizing function of the refrigerant is not exhibited in the fully opened state where the throttle opening is maximized.
  • the first expansion valve 33 constitutes a part of the valve device of the present disclosure. The details of the first expansion valve 33 will be described later.
  • the refrigerant inlet side of the outdoor heat exchanger 34 is connected to the refrigerant outlet side of the first expansion valve 33.
  • the outdoor heat exchanger 34 is a heat exchanger that exchanges heat with the outside air blown from the outdoor fan 341 for the refrigerant that has passed through the first expansion valve 33.
  • the outdoor heat exchanger 34 functions as a radiator that dissipates heat to the outside air during cooling, and functions as a heat absorber that absorbs heat from the outside air during heating.
  • the outdoor fan 341 is a blower that generates an air flow that passes through the outdoor heat exchanger 34.
  • a second expansion valve 35 for reducing the pressure of the refrigerant that has passed through the outdoor heat exchanger 34 is connected to the refrigerant outlet side of the outdoor heat exchanger 34.
  • the second expansion valve 35 is a cooling expansion valve that reduces the pressure of the refrigerant that has passed through the outdoor heat exchanger 34 during cooling and dehumidifying and heating of the vehicle interior.
  • the second expansion valve 35 has a structure in which the flow of the refrigerant is blocked in a fully closed state where the throttle opening is minimized.
  • the second expansion valve 35 constitutes a part of the valve device of the present disclosure like the first expansion valve 33. The details of the second expansion valve 35 will be described later.
  • the refrigerant inlet side of the cooling evaporator 36 is connected to the refrigerant outlet side of the second expansion valve 35.
  • the cooling evaporator 36 is an evaporator that evaporates the refrigerant that has passed through the second expansion valve 35.
  • the cooling evaporator 36 is arranged inside the air conditioning case C and exchanges heat between the refrigerant and the air blown from the indoor fan 361 to evaporate the refrigerant.
  • the cooling evaporator 36 is an air cooler that cools the air blown from the indoor fan 361 by exchanging heat with the refrigerant.
  • the cooling evaporator 36 is arranged in the air conditioning case C on the upstream side of the air flow with respect to the heater core.
  • the indoor fan 361 is a blower that blows the air cooled by the cooling evaporator 36 into the vehicle interior.
  • a bypass pipe 38 that bypasses the second expansion valve 35 and the cooling evaporator 36 and leads to the refrigerant suction side of the compressor 31 is connected to the refrigerant outlet side of the outdoor heat exchanger 34. ing.
  • the bypass pipe 38 guides the refrigerant that has passed through the outdoor heat exchanger 34 during heating to the refrigerant suction side of the compressor 31 by bypassing the second expansion valve 35 and the cooling evaporator 36.
  • bypass pipe 38 One end of the bypass pipe 38 is connected to the refrigerant flow path from the refrigerant outlet of the outdoor heat exchanger 34 to the refrigerant inlet of the second expansion valve 35, and the other end is connected to the refrigerant outlet of the cooling evaporator 36 to the refrigerant of the compressor 31. It is connected to the refrigerant flow path leading to the suction port.
  • the bypass pipe 38 is provided with a bypass valve 37.
  • the bypass valve 37 is an on-off valve that opens and closes the refrigerant flow path formed inside the bypass pipe 38.
  • the bypass valve 37 is composed of a solenoid valve that drives the valve body by the electromagnetic attraction force of the solenoid.
  • the opening / closing operation of the bypass valve 37 is controlled by a control signal output from the control device 300 described later.
  • the bypass valve 37 may have a structure in which the valve body is driven by a stepping motor or the like.
  • the control device 300 constituting the electronic control unit of the refrigeration cycle device 30 will be described with reference to FIG.
  • the control device 300 includes a microcomputer including a memory such as a processor, a ROM, and a RAM, and peripheral circuits thereof.
  • the memory of the control device 300 is composed of a non-transitional substantive storage medium.
  • the air conditioning sensor group 301 and the operation panel 302 are connected to the input side of the control device 300.
  • the air conditioning sensor group 301 is composed of a plurality of types of sensors used for controlling the cooling process.
  • the air conditioning sensor group 301 includes, for example, a temperature sensor (such as an evaporator temperature sensor) that detects the refrigerant temperature on the low pressure side of the cycle, a high pressure sensor that detects the refrigerant pressure on the high pressure side of the cycle, and a temperature that detects the temperature of the high pressure refrigerant. Includes sensor.
  • the various operation switches on the operation panel 302 include an auto switch, an operation mode changeover switch, an air volume setting switch, a temperature setting switch, a blowout mode changeover switch, and the like.
  • the control device 300 performs various arithmetic processes based on various information acquired from the air conditioning sensor group 301 and the operation pal 302 and a control program stored in the memory, and controls the operation of each component device connected to the output side. To do.
  • a compressor 31, a first expansion valve 33, an outdoor fan 341, a second expansion valve 35, an indoor fan 361, and a bypass valve 37 are connected to the output side of the control device 300.
  • the control device 300 determines the refrigerant discharge performance (for example, refrigerant pressure) by the compressor 31, the throttle opening of the expansion valves 33 and 35, the ventilation performance of the fans 341 and 361, and the open / closed state of the bypass valve 37 according to the situation. Can be changed. That is, in the refrigeration cycle device 30, the control device 300 desires air to be supplied to the vehicle interior by controlling the operation of the compressor 31, the expansion valves 33, 35, the fans 341, 361, and the bypass valve 37, respectively. It can be adjusted to the temperature of.
  • the refrigeration cycle device 30 appropriately switches the operation mode of the refrigeration cycle device 30 by receiving inputs from the air conditioning sensor group 301 and the operation panel 302. Specifically, the control device 300 switches the operation mode of the refrigeration cycle device 30 by controlling the expansion valves 33, 35, the bypass valve 37, and the like to change the flow of the refrigerant in the refrigeration cycle device 30.
  • the refrigeration cycle device 30 can be set to three operation modes such as indoor cooling, indoor heating, and dehumidifying heating.
  • the indoor cooling is an operation mode in which the air cooled to a desired temperature by the cooling evaporator 36 is blown out into the vehicle interior.
  • the indoor cooling is executed by the refrigerating cycle device 30 when the operation mode is set to the cooling mode by, for example, the operation mode changeover switch. During this indoor cooling, the flow of the heat medium in the heater circuit HC is stopped.
  • the control device 300 appropriately determines the operating state of various devices during indoor cooling by using the detection signal of the air conditioning sensor group 301 and the operation signal of the operation panel 302. For example, as shown in FIG. 3, the control device 300 controls the expansion valves 33 and 35 so that the first expansion valve 33 is in the fully open state and the second expansion valve 35 is in the throttle state. Further, the control device 300 controls the bypass valve 37 in the closed state. The control device 300 appropriately determines control signals for other devices such as the compressor 31, fans 341, and 361 by using the detection signals of the air conditioning sensor group 301 and the operation signals of the operation panel 302.
  • the high-pressure refrigerant discharged from the compressor 31 flows into the condenser 32 during indoor cooling. Since the heat medium does not flow through the heater circuit HC during indoor cooling, the refrigerant that has flowed into the condenser 32 flows into the first expansion valve 33 with almost no heat dissipation.
  • the refrigerant flowing into the first expansion valve 33 flows into the outdoor heat exchanger 34 with almost no decompression.
  • the refrigerant that has flowed into the outdoor heat exchanger 34 dissipates heat to the outside air and condenses.
  • the refrigerant that has passed through the outdoor heat exchanger 34 flows into the second expansion valve 35 and is depressurized by the second expansion valve 35 until it reaches a desired pressure. Since the bypass valve 37 is closed during indoor cooling, the refrigerant does not flow into the bypass pipe 38, and the entire amount of the refrigerant is depressurized by the second expansion valve 35.
  • the refrigerant decompressed by the second expansion valve 35 flows into the cooling evaporator 36.
  • the refrigerant that has flowed into the cooling evaporator 36 absorbs heat from the air blown from the indoor fan 361 and evaporates. Air cooled to a desired temperature is blown out into the vehicle interior by the cooling evaporator 36.
  • the refrigerant that has passed through the cooling evaporator 36 is sucked into the compressor 31.
  • the refrigerant sucked into the compressor 31 is compressed by the compressor 31 until it becomes a high-pressure refrigerant again.
  • the indoor cooling is realized by blowing out the air cooled by the cooling evaporator 36 into the vehicle interior.
  • the interior heating is an operation mode in which air heated to a desired temperature by the heater core is blown into the vehicle interior.
  • the room heating is executed by the refrigeration cycle device 30 when the operation mode is set to the heating mode by the operation mode changeover switch, for example.
  • the heater circuit HC is set in the path through which the heat medium flows with respect to the heater core.
  • the control device 300 appropriately determines the operating state of various devices during indoor heating by using the detection signal of the air conditioning sensor group 301 and the operation signal of the operation panel 302. For example, as shown in FIG. 3, the control device 300 controls the expansion valves 33 and 35 so that the first expansion valve 33 is in the throttle state and the second expansion valve 35 is in the fully closed state. Further, the control device 300 controls the bypass valve 37 in the open state. The control device 300 appropriately determines control signals for other devices such as the compressor 31, fans 341, and 361 by using the detection signals of the air conditioning sensor group 301 and the operation signals of the operation panel 302.
  • the high-pressure refrigerant discharged from the compressor 31 flows into the condenser 32 during indoor heating.
  • the heat medium flowing through the heater circuit HC flows to the heater core, so that the refrigerant flowing into the condenser 32 is dissipated to the air blown into the vehicle interior through the heater core.
  • air heated to a desired temperature by the heater core is blown out into the vehicle interior.
  • the refrigerant that has passed through the condenser 32 flows into the first expansion valve 33, and is depressurized by the first expansion valve 33 until the desired pressure is reached.
  • the refrigerant decompressed by the first expansion valve 33 flows into the outdoor heat exchanger 34.
  • the refrigerant flowing into the outdoor heat exchanger 34 absorbs heat from the air blown from the outdoor fan 341 and evaporates. Since the bypass valve 37 is in the open state during indoor heating, the refrigerant that has passed through the outdoor heat exchanger 34 is sucked into the compressor 31 via the bypass pipe 38. The refrigerant sucked into the compressor 31 is compressed by the compressor 31 until it becomes a high-pressure refrigerant again. Since the second expansion valve 35 is fully closed during indoor heating, the refrigerant does not flow into the cooling evaporator 36, and the entire amount of the refrigerant is sucked into the compressor 31 via the bypass pipe 38. To.
  • the air heated by the heater core is blown into the vehicle interior to realize indoor heating.
  • the dehumidifying heating is an operation mode in which the air is cooled to a temperature lower than the dew point temperature by the cooling evaporator 36, then raised to a desired temperature by the heater core and blown into the vehicle interior.
  • the dehumidifying and heating is executed by the refrigerating cycle device 30 when the operation mode is set to the dehumidifying and heating mode by, for example, the operation mode changeover switch.
  • the heater circuit HC is set in the path through which the heat medium flows with respect to the heater core.
  • the control device 300 appropriately determines the operating state of various devices during dehumidifying and heating by using the detection signal of the air conditioning sensor group 301 and the operation signal of the operation panel 302. For example, as shown in FIG. 3, the control device 300 controls each of the first expansion valve 33 and the second expansion valve 35 in a throttled state. Further, the control device 300 controls the bypass valve 37 in the closed state. The control device 300 appropriately determines control signals for other devices such as the compressor 31, fans 341, and 361 by using the detection signals of the air conditioning sensor group 301 and the operation signals of the operation panel 302.
  • the high-pressure refrigerant discharged from the compressor 31 flows into the condenser 32 during dehumidification and heating.
  • the heat medium flowing through the heater circuit HC flows to the heater core, so that the refrigerant flowing into the condenser 32 is dissipated to the air blown into the vehicle interior via the heater core.
  • air heated to a desired temperature by the heater core is blown out into the vehicle interior.
  • the refrigerant that has passed through the condenser 32 flows into the first expansion valve 33, and is depressurized by the refrigerant that has flowed into the first expansion valve 33 until a desired pressure is reached.
  • the refrigerant decompressed by the first expansion valve 33 flows into the outdoor heat exchanger 34.
  • the refrigerant flowing into the outdoor heat exchanger 34 exchanges heat with the outside air.
  • the refrigerant flowing into the outdoor heat exchanger 34 absorbs heat from the outside air when the temperature of the refrigerant is lower than the outside air, and dissipates heat to the outside air when the temperature of the refrigerant is higher than the outside air.
  • the refrigerant that has passed through the outdoor heat exchanger 34 flows into the second expansion valve 35, and is depressurized by the second expansion valve 35 until it reaches a desired pressure. Since the bypass valve 37 is closed during dehumidifying and heating, the refrigerant does not flow into the bypass pipe 38, and the entire amount of the refrigerant is depressurized by the second expansion valve 35.
  • the refrigerant decompressed by the second expansion valve 35 flows into the cooling evaporator 36.
  • the refrigerant that has flowed into the cooling evaporator 36 absorbs heat from the air blown from the indoor fan 361 and evaporates. As a result, the blown air from the indoor fan 361 is cooled by the cooling evaporator 36 and dehumidified.
  • the air dehumidified by the cooling evaporator 36 is heated to a desired temperature by the heater core and then blown out into the vehicle interior.
  • the refrigerant that has passed through the cooling evaporator 36 is sucked into the compressor 31.
  • the refrigerant sucked into the compressor 31 is compressed by the compressor 31 until it becomes a high-pressure refrigerant again.
  • the air dehumidified by the cooling evaporator 36 is heated by the heater core and then blown out into the vehicle interior to realize indoor dehumidifying and heating.
  • the first expansion valve 33 and the second expansion valve 35 have different control modes, but have the same basic structure. Therefore, in FIG. 4, a reference code indicating a component of the first expansion valve 33 and a reference code indicating a component of the second expansion valve 35 are shown together.
  • the first two digits of the code indicating a part of the components of the first expansion valve 33 are set to "33"
  • the second expansion valve 35 is used.
  • the first two digits of the code indicating a part of the constituent elements of the above are set to "35".
  • each expansion valve 33, 35 includes a body portion 330, 350, a main valve 332, 352, a pressure adjusting portion 337, 357, and a circuit board 338, 358.
  • Each expansion valve 33, 35 changes the throttle opening of the internal flow paths 331, 351 formed inside the body portions 330, 350, and makes the pressure of the refrigerant passing through the expansion valves 33, 35 a desired pressure. It is to adjust to.
  • the body portions 330 and 350 form the outer shells of the expansion valves 33 and 35, respectively.
  • the body portions 330 and 350 are, for example, metal blocks made of an aluminum alloy that have been drilled or the like.
  • Internal flow paths 331, 351 through which the refrigerant flows, valve chambers 333, 353, pressure chambers 334, 354, and the like are formed in the body portions 330 and 350.
  • the internal flow paths 331 and 351 are connected to the inlet portions 330a and 350a and the outlet portions 330b and 350b that open on the side surfaces of the body portions 330 and 350.
  • Valve chambers 333 and 353 are formed in the middle of the internal flow paths 331 and 351. The valve chambers 333 and 353 accommodate a part of the main valves 332 and 352.
  • the valve chambers 333 and 353 communicate with the inlet portions 330a and 350a and the outlet portions 330b and 350b, respectively.
  • the valve chambers 333 and 353 are provided with throttle portions 333a and 353a in which the flow path through which the refrigerant flows is narrowly narrowed.
  • the throttle portions 333a and 353a are flow paths that guide the refrigerant flowing into the valve chambers 333 and 353 from the inlet portions 330a and 350a to the outlet portions 330b and 350b while decompressing and expanding the refrigerant.
  • Valve seats 333b and 353b are formed on the refrigerant inlet side of the throttle portions 333a and 353a so that the valve bodies 332a and 352a of the main valves 332 and 352 come into contact with each other.
  • the flow paths through which the refrigerant flows before passing through the throttle portions 333a and 353a in the internal flow paths 331 and 351 constitute the inlet flow paths 331a and 351a. Further, the flow paths through which the refrigerant flowing out from the throttle portions 333a and 353a in the internal flow paths 331 and 351 flow form the outlet flow paths 331b and 351b.
  • the main valves 332 and 352 have valve bodies 332a and 352a, support portions 332b and 352b, first springs 332c and 352c, second springs 332d and 352d, adjusting screws 332e and 352e, operating rods 332f and 352f, caps 332i and 352i. Have.
  • the valve bodies 332a and 352a adjust the passage area of the throttle portions 333a and 353a by being displaced along the axial center CL of the main valves 332 and 352.
  • the direction extending along the axis CL is referred to as the valve axis direction DRax.
  • the main valves 332 and 352 are arranged in a posture in which the valve axial DRax coincides with the vertical DRg.
  • the valve bodies 332a and 352a are valve portions that are displaced in the valve axis direction DRax in the main valves 332 and 352.
  • the valve bodies 332a and 352a are composed of spherical valve bodies.
  • the expansion valves 33 and 35 are poppet type in which the valve bodies 332a and 352a are displaced in the direction in which they intersect with the valve seats 333b and 353b (for example, in the orthogonal direction) to change the throttle opening of the internal flow paths 331 and 351. It has a valve structure of.
  • the valve bodies 332a and 352a are arranged in the valve chamber 333 and 353 together with the support portions 332b and 352b and the first springs 332c and 352c.
  • the support portions 332b and 352b are fixed to the other side of the valve bodies 332a and 352a in the axial direction.
  • the first springs 332c and 352c are urging members that urge the valve bodies 332a and 352a in the valve closing direction via the support portions 332b and 352b.
  • the load that the first springs 332c and 352c urge on the valve bodies 332a and 352a can be adjusted by the adjusting screws 332e and 352e provided on the body portions 330 and 350.
  • the adjusting screws 332e and 352e are screwed into screw holes that open in the portions of the body portions 330 and 350 that face the first springs 332c and 352c.
  • the load of the first springs 332c and 352c urging the valve bodies 332a and 352a can be adjusted. ..
  • actuating rods 332f and 352f are arranged on one side of the DRax in the valve axis direction.
  • the operating rods 332f and 352f are metal rods having a substantially cylindrical shape.
  • the operating rods 332f and 352f are arranged inside the throttle portions 333a and 353a in a posture extending along the valve axis direction DRax.
  • stoppers 332g and 352g are fixed to one side of the DRax in the valve axis direction.
  • the stoppers 332g and 352g limit the axial displacement of the operating rods 332f and 352f.
  • Partitions 332h and 352h are provided at one end of the actuating rods 332f and 352f on one side of the DRax in the valve axis direction.
  • the partition portions 332h and 352h partition the internal space of the body portions 330 and 350 on one side of the throttle portions 333a and 353a in the valve axis direction DRax into the pressure chambers 334 and 354 and the low pressure spaces 335 and 355. .
  • the refrigerant pressure-adjusted by the pressure adjusting units 337 and 357 is introduced into the pressure chambers 334 and 354 as a control fluid that presses the valve bodies 332a and 352a toward the valve opening side or the valve closing side.
  • the partition portions 332h and 352h receive the pressure of the control fluid introduced into the pressure chambers 334 and 354.
  • Second springs 332d and 352d are arranged in the pressure chambers 334 and 354.
  • the second springs 332d and 352d are urging members that urge the valve bodies 332a and 352a in the valve opening direction via the partition portions 332h and 352h, the stoppers 332g and 352g, and the operating rods 332f and 352f.
  • the caps 332i and 352i are closing members that close the opening on the upper side of the pressure chambers 334 and 354.
  • the second springs 332d and 352d are arranged between the bottom surfaces of the caps 332i and 352i and the partition portions 332h and 352h.
  • first recesses 330c and 350c, second recesses 330d and 350d, and third recesses 330e and 350e are formed on the side portions of the pressure chambers 334 and 354.
  • the body portions 330 and 350 are formed with first recesses 330c and 350c, second recesses 330d and 350d, and third recesses 330e and 350e on the side portions adjacent to the pressure chambers 334 and 354.
  • the first recesses 330c, 350c, the second recesses 330d, 350d, and the third recesses 330e, 350e are recesses into which the first protrusion Y21, the second protrusion Y22, and the third protrusion Y23 of the valve module Y0, which will be described later, are fitted. Is.
  • the first recesses 330c, 350c, the second recesses 330d, 350d, and the third recesses 330e, 350e are arranged in the order of the third recesses 330e, 350e, the first recess 330c, 350c, the second recess 330d, 350d from the top to the bottom. They are arranged so that they are lined up in a straight line.
  • first through holes 330f and 350f are formed to communicate the first recesses 330c and 350c with the pressure chambers 334 and 354.
  • second through holes 330g and 350g are formed to communicate the second recesses 330d and 350d with the inlet flow paths 331a and 351a.
  • third through holes 330h and 350h are formed to communicate the third recesses 330e and 350e with the outlet flow paths 331b and 351b.
  • the flow path area (that is, the throttle opening) of the internal flow paths 331 and 351 changes depending on the positions of the valve bodies 332a and 352a.
  • the positions of the valve bodies 332a and 352a are determined by the force acting on the valve bodies 332a and 352a.
  • the positions of the valve bodies 332a and 352a are the load Fm due to the pressure of the control fluid in the pressure chambers 334 and 354, the loads Fs1, Fs2 and the valve chambers 333,353 from the springs 332c, 352c, 332d and 352dc, respectively. It is determined by the load Fc and the like due to the refrigerant pressure in.
  • the pressure of the control fluid in the pressure chambers 334 and 354 may be referred to as a control pressure Pm.
  • control pressure Pm of each of the expansion valves 33 and 35 is equal to the refrigerant pressure on the downstream side of the throttle portions 333a and 353a (that is, the low pressure pressure Pl), the pressure on the upstream side of the throttle portions 333a and 353a (that is, that is). , High pressure pressure Ph) and control pressure Pm maximize the pressure difference.
  • the valve bodies 332a and 352a are displaced to the positions where the throttle opening degree is minimized.
  • the expansion valves 33 and 35 have a smaller throttle opening of the internal flow paths 331 and 351 when the control pressure Pm is smaller, and a larger throttle opening when the control pressure Pm is larger. It has a structure.
  • the control pressure Pm of each of the expansion valves 33 and 35 of the present embodiment is adjusted by the pressure adjusting unit 337 and 357.
  • the pressure adjusting portions 337 and 357 are attached to the body portions 330 and 350. Then, the control fluid whose pressure is adjusted by the pressure adjusting units 337 and 357 is introduced into the pressure chambers 334 and 354 via the first through holes 330f and 350f.
  • the pressure adjusting unit 337, 357 includes a micro valve Y1 that functions as a pilot valve for driving the main valves 332 and 352.
  • the pressure adjusting unit 337, 357 is driven by a drive circuit mounted on the circuit board 338, 358.
  • the circuit board 338, 358 is fixed to the opposite side of the pressure adjusting portions 337 and 357, which are attached to the body portions 330 and 350.
  • the circuit boards 338 and 358 are connected to the connection terminals of the pressure adjusting units 337 and 357. Power is supplied to the pressure adjusting units 337 and 357 via the circuit boards 338 and 358.
  • the circuit boards 338 and 358 are connected to the electrical wirings Y6 and Y7 of the valve module Y0 via connection terminals.
  • the main valves 332 and 352 and the pressure adjusting unit 337 and 357 are larger than the others. Therefore, when the main valves 332 and 352 and the pressure adjusting portions 337 and 357 are arranged side by side in the valve axial direction DRax as in the prior art, the expansion valves 33 and 35 and other components arranged around the expansion valves 33 and 35 are arranged. Is likely to interfere with each other, limiting the layout of the expansion valves 33, 35 and other components. This is not preferable because it causes a decrease in the degree of freedom in designing the expansion valves 33 and 35.
  • the first expansion valve 33 is arranged at different positions in the direction in which the main valve 332 and the pressure adjusting unit 337 are orthogonal to the valve axis direction DRax.
  • the second expansion valve 35 is arranged at different positions in the direction in which the main valve 352 and the pressure adjusting unit 357 are orthogonal to the valve axial direction DRax.
  • the pressure adjusting units 337 and 357 are arranged offset with respect to the main valves 332 and 352 in the direction orthogonal to the valve axis direction DRax.
  • the valve axis direction DRax corresponds to the vertical direction DRg. Therefore, the main valves 332 and 352 and the pressure adjusting portions 337 and 357 are arranged at different positions in the horizontal direction.
  • At least a part of the pressure adjusting unit 337, 357 of the present embodiment is arranged so as to overlap the main valves 332 and 352 in the direction orthogonal to the valve axis direction DRax.
  • the pressure adjusting unit 337, 357 has the second springs 332d, 352d and the cap 332i, which are arranged in the pressure chambers 334 and 354 of the main valves 332 and 352 in the direction orthogonal to the valve axis direction DRax. It overlaps with a part of 352i.
  • the pressure adjusting unit 337, 357 and the pressure chamber 334, 354 are arranged adjacent to each other. Therefore, the first through holes 330f and 350f that guide the control fluid from the pressure adjusting portions 337 and 357 to the pressure chambers 334 and 354 can be formed in a hole shape having no bent portion and a small length. By having such a hole shape, the first through holes 330f and 350f have a low pressure loss when the control fluid flows.
  • the pressure adjusting portions 337 and 357 are attached to the portions of the body portions 330 and 350 that are closer to the outlet portions 330b and 350b than the inlet portions 330a and 350a in the vertical DRg.
  • the circuit boards 338 and 358 are connected to the pressure adjusting units 337 and 357 in a posture in which the plate surfaces 338a and 358a of the circuit boards 338 and 358 intersect with each other in the horizontal direction. Specifically, the circuit boards 338 and 358 are connected to the pressure adjusting units 337 and 357 in a posture in which the plate surfaces 338a and 358a extend in parallel with the vertical DRg.
  • circuit boards 338 and 358 are arranged so that the entire circuit boards 338 and 358 overlap the body portions 330 and 350 in the horizontal direction so as not to protrude above the upper ends of the body portions 330 and 350.
  • the pressure adjusting unit 337, 357 is composed of the valve module Y0.
  • the details of the valve module Y0 constituting the pressure adjusting unit 337 and 357 will be described with reference to FIGS. 6 to 13.
  • valve module Y0 has a micro valve Y1, a valve casing Y2, a sealing member Y3, three O-rings Y4, Y5a, Y5b, two electrical wirings Y6, Y7, and a conversion plate Y8. ing.
  • the micro valve Y1 is a valve component having a fluid chamber Y19 for adjusting the pressure of the control fluid (refrigerant in this example) to be introduced into the pressure chambers 334 and 354.
  • the microvalve Y1 has a plate shape, and the entire microvalve Y1 is composed of a semiconductor chip.
  • the length of the microvalve Y1 in the thickness direction is, for example, 2 mm
  • the length in the longitudinal direction orthogonal to the thickness direction is, for example, 10 mm
  • the length in the lateral direction orthogonal to both the longitudinal direction and the thickness direction Is, for example, 5 mm, but is not limited thereto.
  • the electrical wirings Y6 and Y7 extend from the surface of the two plate surfaces of the microvalve Y1 opposite to the valve casing Y2, pass through the sealing member Y3 and the valve casing Y2, and pass through the outside of the valve module Y0. Connected to the power supply at. As a result, electric power is supplied from the power source to the micro valve Y1 through the electric wires Y6 and Y7.
  • the conversion plate Y8 is a plate-shaped member arranged between the micro valve Y1 and the valve casing Y2.
  • the conversion plate Y8 is a glass substrate.
  • One side of the two plate surfaces of the conversion plate Y8 is fixed to the microvalve Y1 with an adhesive, and the other side is fixed to the valve casing Y2 with an adhesive.
  • the conversion plate Y8 is formed with flow paths Y81, Y82, and Y83 for connecting the three refrigerant holes described later of the micro valve Y1 and the three communication holes of the valve casing Y2.
  • the flow paths Y81, Y82, and Y83 are members for absorbing the difference between the pitches of the three refrigerant holes arranged in a row and the pitches of the three communication holes arranged in a row.
  • the flow paths Y81, Y82, and Y83 penetrate from one of the two plate surfaces of the conversion plate Y8 to the other.
  • the valve casing Y2 is a resin casing that houses the microvalve Y1 and the conversion plate Y8.
  • the valve casing Y2 is formed by resin molding containing polyphenylene sulfide as a main component.
  • the valve casing Y2 is configured such that the coefficient of linear expansion is between the coefficient of linear expansion of the microvalve Y1 and the coefficient of linear expansion of the body portions 330 and 350.
  • the valve casing Y2 constitutes a component mounting portion for mounting the micro valve Y1 to the body portions 330 and 350.
  • the valve casing Y2 is a box body having a bottom wall on one side and an open side on the other side.
  • the bottom wall of the valve casing Y2 is interposed between the body portions 330 and 350 and the micro valve Y1 so that the micro valve Y1 and the conversion plate Y8 do not come into direct contact with the body portions 330 and 350. Then, one surface of the bottom wall is in contact with and fixed to the body portions 330 and 350, and the other surface is in contact with and fixed to the conversion plate Y8.
  • valve casing Y2 can absorb the difference in the coefficient of linear expansion between the micro valve Y1 and the body portions 330 and 350. This is because the coefficient of linear expansion of the valve casing Y2 is a value between the coefficient of linear expansion of the microvalve Y1 and the coefficient of linear expansion of the body portions 330 and 350.
  • the coefficient of linear expansion of the conversion plate Y8 is a value between the coefficient of linear expansion of the microvalve Y1 and the coefficient of linear expansion of the valve casing Y2.
  • the bottom wall of the valve casing Y2 has a plate-shaped base portion Y20 facing the micro valve Y1 and a pillar-shaped first protruding portion Y21 and a second protruding portion Y21 protruding from the base portion Y20 in a direction away from the micro valve Y1. It has a portion Y22 and a third protruding portion Y23.
  • the first protruding portion Y21, the second protruding portion Y22, and the third protruding portion Y23 are fitted into the first recesses 330c and 350c, the second recesses 330d and 350d, and the third recesses 330e and 350e formed in the body portions 330 and 350. It has been.
  • the first protruding portion Y21 is formed with a first communication hole YV1 that penetrates from the end on the side of the microvalve Y1 to the end on the opposite side.
  • the second protruding portion Y22 is formed with a second communication hole YV2 that penetrates from the end on the side of the microvalve Y1 to the end on the opposite side.
  • the third protruding portion Y23 is formed with a third communication hole YV3 that penetrates from the end on the side of the microvalve Y1 to the end on the opposite side.
  • the first communication hole YV1, the second communication hole YV2, and the third communication hole YV3 are arranged in a row, and the first communication hole YV1 is located between the second communication hole YV2 and the third communication hole YV3.
  • the micro valve Y1 side end of the first communication hole YV1 communicates with the valve casing Y2 side end of the flow path Y81 formed in the conversion plate Y8.
  • the micro valve Y1 side end of the second communication hole YV2 communicates with the valve casing Y2 side end of the flow path Y82 formed in the conversion plate Y8.
  • the micro valve Y1 side end of the third communication hole YV3 communicates with the valve casing Y2 side end of the flow path Y83 formed in the conversion plate Y8.
  • the sealing member Y3 is a member made of epoxy resin that seals the other open side of the valve casing Y2.
  • the sealing member Y3 covers the entire plate surface of the two front and back surfaces of the micro valve Y1 on the side opposite to the conversion plate Y8 side. Further, the sealing member Y3 covers a part of the plate surface of the conversion plate Y8 on the side opposite to the bottom wall side of the valve casing Y2. Further, the sealing member Y3 covers the electrical wirings Y6 and Y7 to realize waterproofing and insulation of the electrical wirings Y6 and Y7.
  • the sealing member Y3 is formed by resin potting molding or the like.
  • the O-ring Y4 is attached to the outer periphery of the first protruding portion Y21 and seals between the body portions 330 and 350 and the first protruding portion Y21 to suppress leakage of the refrigerant to the outside and to the outside of the refrigerant circuit.
  • the O-ring Y5a is attached to the outer periphery of the second protruding portion Y22, and seals between the body portions 330, 350 and the second protruding portion Y22 to suppress leakage of the refrigerant to the outside and to the outside of the refrigerant circuit. ..
  • the O-ring Y5b is attached to the outer periphery of the third protruding portion Y23 and seals between the body portions 330 and 350 and the third protruding portion Y23 to suppress leakage of the refrigerant to the outside and to the outside of the refrigerant circuit. ..
  • the microvalve Y1 is a MEMS having a first outer layer Y11, an intermediate layer Y12, and a second outer layer Y13, all of which are semiconductors.
  • MEMS is an abbreviation for Micro Electro Mechanical Systems.
  • the first outer layer Y11, the intermediate layer Y12, and the second outer layer Y13 are rectangular plate-shaped members having the same outer shape, and are laminated in the order of the first outer layer Y11, the intermediate layer Y12, and the second outer layer Y13.
  • the second outer layer Y13 is arranged on the side closest to the bottom wall of the valve casing Y2.
  • the structures of the first outer layer Y11, the intermediate layer Y12, and the second outer layer Y13, which will be described later, are formed by a semiconductor manufacturing process such as chemical etching.
  • the first outer layer Y11 is a semiconductor member. As shown in FIG. 7, the first outer layer Y11 is formed with two through holes Y14 and Y15 penetrating the front and back surfaces. The microvalve Y1 side ends of the electrical wirings Y6 and Y7 are inserted into the through holes Y14 and Y15, respectively.
  • the second outer layer Y13 is a semiconductor member. As shown in FIGS. 7, 9, and 10, the second outer layer Y13 is formed with a first refrigerant hole Y16, a second refrigerant hole Y17, and a third refrigerant hole Y18 penetrating the front and back surfaces.
  • the first refrigerant hole Y16, the second refrigerant hole Y17, and the third refrigerant hole Y18 correspond to the first fluid hole, the second fluid hole, and the third fluid hole, respectively.
  • the first refrigerant hole Y16, the second refrigerant hole Y17, and the third refrigerant hole Y18 communicate with the flow paths Y81, Y82, and Y83 of the conversion plate Y8, respectively.
  • the first refrigerant hole Y16, the second refrigerant hole Y17, and the third refrigerant hole Y18 are arranged in a row.
  • the first refrigerant hole Y16 is arranged between the second refrigerant hole Y17 and the third refrigerant hole Y18.
  • the intermediate layer Y12 is a conductive semiconductor member, and is sandwiched between the first outer layer Y11 and the second outer layer Y13. As shown in FIG. 9, the intermediate layer Y12 has a first fixed portion Y121, a second fixed portion Y122, a plurality of first ribs Y123, a plurality of second ribs Y124, a spine Y125, an arm Y126, a beam Y127, and a movable beam. It has a part Y128.
  • the first fixing portion Y121 is a member fixed to the first outer layer Y11 and the second outer layer Y13.
  • the first fixed portion Y121 is formed so as to surround the second fixed portion Y122, the first rib Y123, the second rib Y124, the spine Y125, the arm Y126, the beam Y127, and the movable portion Y128 in the same fluid chamber Y19.
  • the fluid chamber Y19 is a chamber surrounded by a first fixing portion Y121, a first outer layer Y11, and a second outer layer Y13. In the fluid chamber Y19, the refrigerant to be introduced into the first pressure chamber PC1 flows.
  • the first fixed portion Y121, the first outer layer Y11, and the second outer layer Y13 correspond to the base portion as a whole.
  • the electrical wirings Y6 and Y7 are electrical wirings for changing the temperature of the plurality of first ribs Y123 and the plurality of second ribs Y124 to displace them.
  • the refrigerant passes from the fluid chamber Y19 to the microvalve Y1 through other than the first refrigerant hole Y16, the second refrigerant hole Y17, and the third refrigerant hole Y18. It is performed in a form that suppresses leakage.
  • the second fixing portion Y122 is fixed to the first outer layer Y11 and the second outer layer Y13.
  • the second fixed portion Y122 is surrounded by the first fixed portion Y121 and is arranged away from the first fixed portion Y121.
  • the plurality of first ribs Y123, the plurality of second ribs Y124, the spine Y125, the arm Y126, the beam Y127, and the movable portion Y128 are not fixed to the first outer layer Y11 and the second outer layer Y13, and are the first. It can be displaced with respect to the outer layer Y11 and the second outer layer Y13.
  • the spine Y125 has an elongated rod shape extending in the lateral direction in the rectangular shape of the intermediate layer Y12. One end of the spine Y125 in the longitudinal direction is connected to the beam Y127.
  • the plurality of first ribs Y123 are arranged on one side of the spine Y125 in a direction orthogonal to the longitudinal direction of the spine Y125.
  • the plurality of first ribs Y123 are arranged in the longitudinal direction of the spine Y125.
  • Each first rib Y123 has an elongated rod shape and can be expanded and contracted according to temperature.
  • Each first rib Y123 is connected to the first fixing portion Y121 at one end in the longitudinal direction thereof, and is connected to the spine Y125 at the other end.
  • Each of the first ribs Y123 is oblique with respect to the spine Y125 so as to approach the spine Y125 side from the first fixed portion Y121 side so as to be offset toward the beam Y127 side in the longitudinal direction of the spine Y125. ..
  • the plurality of first ribs Y123 extend parallel to each other.
  • the plurality of second ribs Y124 are arranged on the other side of the spine Y125 in a direction orthogonal to the longitudinal direction of the spine Y125.
  • the plurality of second ribs Y124 are arranged in the longitudinal direction of the spine Y125.
  • Each second rib Y124 has an elongated rod shape and can be expanded and contracted according to the temperature.
  • Each second rib Y124 is connected to the second fixing portion Y122 at one end in the longitudinal direction thereof, and is connected to the spine Y125 at the other end.
  • Each of the second ribs Y124 is skewed with respect to the spine Y125 so that the closer the second rib Y124 is to the spine Y125 side, the more the second rib Y124 is offset toward the beam Y127 side in the longitudinal direction of the spine Y125. ..
  • the plurality of second ribs Y124 extend in parallel with each other.
  • the plurality of first ribs Y123, the plurality of second ribs Y124, and the spine Y125 correspond to the drive unit as a whole.
  • the arm Y126 has an elongated rod shape that extends non-orthogonally and parallel to the spine Y125. One end of the arm Y126 in the longitudinal direction is connected to the beam Y127, and the other end is connected to the first fixing portion Y121.
  • the beam Y127 has an elongated rod shape extending in a direction intersecting the spine Y125 and the arm Y126 at about 90 °. One end of the beam Y127 is connected to the movable portion Y128. The arm Y126 and the beam Y127 correspond to the amplification unit as a whole.
  • connection position YP1 between the arm Y126 and the beam Y127, the connection position YP2 between the spine Y125 and the beam Y127, and the connection position YP3 between the beam Y127 and the movable portion Y128 are arranged in this order along the longitudinal direction of the beam Y127. If the connection point between the first fixing portion Y121 and the arm Y126 is a hinge YP0, the connection position from the hinge YP0 is more than the linear distance from the hinge YP0 to the connection position YP2 in the plane parallel to the plate surface of the intermediate layer Y12. The straight line distance to YP3 is longer. For example, the value obtained by dividing the former linear distance by the latter linear distance may be 1/5 or less, or may be 1/10 or less.
  • the movable portion Y128 adjusts the pressure of the refrigerant flowing through the fluid chamber Y19.
  • the movable portion Y128 has a rectangular shape whose outer shape extends in a direction of approximately 90 ° with respect to the longitudinal direction of the beam Y127.
  • the movable portion Y128 can move integrally with the beam Y127 in the fluid chamber Y19.
  • the movable portion Y128 has a frame shape surrounding the through hole Y120 penetrating the front and back of the intermediate layer Y12. Therefore, the through hole Y120 also moves integrally with the movable portion Y128.
  • the through hole Y120 is a part of the fluid chamber Y19.
  • the movable portion Y128 moves as described above to change the opening degree of the second refrigerant hole Y17 with respect to the through hole Y120 and the opening degree of the third refrigerant hole Y18 with respect to the through hole Y120.
  • the first refrigerant hole Y16 always communicates with the through hole Y120 in full opening.
  • the Y1 side end of the micro valve is connected.
  • the microvalve Y1 side end of the electrical wiring Y7 passing through the through hole Y15 of the first outer layer Y11 shown in FIG. 7 is connected to the second application point Y130 of the second fixing portion Y122.
  • valve module Y0 Opera of the valve module Y0 will be described.
  • a voltage is applied between the electrical wirings Y6 and Y7 to the first application point Y129 and the second application point Y130.
  • a current flows through the plurality of first ribs Y123 and the plurality of second ribs Y124. Due to this current, the plurality of first ribs Y123 and the plurality of second ribs Y124 generate heat. As a result, each of the plurality of first ribs Y123 and the plurality of second ribs Y124 expands in the longitudinal direction thereof.
  • connection position YP2 corresponds to the urging position and the pressure adjusting urging position.
  • the member composed of the beam Y127 and the arm Y126 integrally changes the posture with the hinge YP0 as the fulcrum and the connection position YP2 as the power point.
  • the movable portion Y128 connected to the end of the beam Y127 opposite to the arm Y126 also moves in the longitudinal direction to the side where the spine Y125 pushes the beam Y127.
  • the plurality of first ribs Y123 and the plurality of second ribs Y124 urge the spine Y125 to the side opposite to the connection position YP2.
  • the urged spine Y125 pulls the beam Y127 at the connection position YP2.
  • the member composed of the beam Y127 and the arm Y126 integrally changes its posture with the hinge YP0 as a fulcrum and the connection position YP2 as a force point.
  • the movable portion Y128 connected to the end of the beam Y127 opposite to the arm Y126 also moves in the longitudinal direction to the side where the spine Y125 pulls the beam Y127.
  • the movable portion Y128 stops at a predetermined non-energized position.
  • the microvalve Y1 When the microvalve Y1 is energized, the greater the power supplied from the electrical wirings Y6 and Y7 to the microvalve Y1 via the first application point Y129 and the second application point Y130, the more the movable portion with respect to the non-energized position. The amount of movement of Y128 also increases. This is because the higher the electric power supplied to the micro valve Y1, the higher the temperature of the first rib Y123 and the second rib Y124, and the greater the degree of expansion.
  • the larger the duty ratio the larger the amount of movement of the movable portion Y128 with respect to the non-energized state.
  • the through holes Y120 are the first refrigerant holes Y16 and the third refrigerant holes Y18 in the direction orthogonal to the plate surface of the intermediate layer Y12. Although it overlaps, it does not overlap with the second refrigerant hole Y17 in the relevant direction.
  • the second refrigerant hole Y17 overlaps the movable portion Y128 in the direction orthogonal to the plate surface of the intermediate layer Y12. That is, at this time, the first refrigerant hole Y16 and the third refrigerant hole Y18 are fully opened with respect to the through hole Y120, and the second refrigerant hole Y17 is fully closed.
  • the first refrigerant hole Y16 communicates with the third refrigerant hole Y18 via the movable portion Y128, and the second refrigerant hole Y17 is blocked from both the first refrigerant hole Y16 and the third refrigerant hole Y18.
  • the movable portion Y128 when the movable portion Y128 is located at the position farthest from the non-energized position due to the energization of the micro valve Y1, the position of the movable portion Y128 at that time is referred to as the maximum energized position. ..
  • the electric power supplied to the micro valve Y1 becomes the maximum within the control range.
  • the duty ratio becomes the maximum value (for example, 100%) within the control range in the above-mentioned PWM control.
  • the through hole Y120 overlaps the first refrigerant hole Y16 and the second refrigerant hole Y17 in the direction orthogonal to the plate surface of the intermediate layer Y12, but the third refrigerant hole Y17 is in that direction. It does not overlap with Y18.
  • the third refrigerant hole Y18 overlaps the movable portion Y128 in the direction orthogonal to the plate surface of the intermediate layer Y12. That is, at this time, the first refrigerant hole Y16 and the second refrigerant hole Y17 are fully opened with respect to the through hole Y120, and the third refrigerant hole Y18 is fully closed.
  • the first refrigerant hole Y16 communicates with the second refrigerant hole Y17 via the movable portion Y128, and the third refrigerant hole Y18 is blocked from both the first refrigerant hole Y16 and the second refrigerant hole Y17.
  • the movable portion Y128 can be stopped at any intermediate position between the non-energized position and the maximum energized position.
  • the electric power supplied to the micro valve Y1 is the maximum value within the control range. It should be half.
  • the duty ratio of PWM control may be 50%.
  • the first refrigerant hole Y16, the second refrigerant hole Y17, and the third refrigerant hole Y18 all communicate with the through hole Y120.
  • the second refrigerant hole Y17 and the third refrigerant hole Y18 are not fully opened with respect to the through hole Y120, and have an opening degree of less than 100% and larger than 0%.
  • the opening degree of the third refrigerant hole Y18 with respect to the through hole Y120 decreases, and the opening degree of the second refrigerant hole Y17 increases.
  • the microvalve Y1 functions as a lever in which the beam Y127 and the arm Y126 have the hinge YP0 as a fulcrum, the connection position YP2 as a force point, and the connection position YP3 as an action point.
  • the linear distance from the hinge YP0 to the connection position YP3 is longer than the linear distance from the hinge YP0 to the connection position YP2 in the plane parallel to the plate surface of the intermediate layer Y12. Therefore, the amount of movement of the connection position YP3, which is the point of action, is larger than the amount of movement of the connection position YP2, which is the point of effort. Therefore, the amount of displacement due to thermal expansion is amplified by the lever and transmitted to the movable portion Y128.
  • the flow path of the refrigerant in the micro valve Y1 has a U-turn structure. Specifically, the refrigerant flows into the microvalve Y1 from one surface of the microvalve Y1, passes through the microvalve Y1, and flows out of the microvalve Y1 from the same surface of the microvalve Y1.
  • the flow path of the refrigerant in the valve module Y0 also has a U-turn structure. Specifically, the refrigerant flows into the valve module Y0 from one surface of the valve module Y0, passes through the valve module Y0, and flows out of the valve module Y0 from the same side surface of the valve module Y0.
  • the direction orthogonal to the plate surface of the intermediate layer Y12 is the stacking direction of the first outer layer Y11, the intermediate layer Y12, and the second outer layer Y13.
  • the first refrigerant hole Y16 communicates with the pressure chambers 334 and 354 via the first communication holes YV1, the first recesses 330c, and the first through holes 330f and 350f of 350c.
  • the second refrigerant hole Y17 communicates with the inlet flow paths 331a and 351a via the second through holes 330g and 350g of the second communication holes YV2 and the second recesses 330d and 350d.
  • the third refrigerant hole Y18 communicates with the outlet flow paths 331b and 351b through the third through holes 330h and 350h of the third communication holes YV3 and the third recesses 330e and 350e.
  • the first refrigerant hole Y16 and the third refrigerant hole Y18 communicate with each other, and the pressure chambers 334 and 354 are in the internal flow paths 331 and 351. It communicates with the outlet flow paths 331b and 351b.
  • the pressure in the pressure chambers 334 and 354 that is, the control pressure Pm
  • Pl the low pressure Pl equivalent to the outlet flow paths 331b and 351b in the internal flow paths 331 and 351.
  • the refrigerant holes Y16, Y17, and Y18 communicate with each other, and the pressure chambers 334 and 354 communicate with the inlet flow path 331a. , 351a and outlet flow paths 331b, 354b.
  • the pressure in the pressure chambers 334 and 354 (that is, the control pressure Pm) becomes an intermediate pressure larger than the low pressure pressure Pl and smaller than the high pressure pressure Ph.
  • the first refrigerant hole Y16 and the second refrigerant hole Y17 communicate with each other, and the pressure chambers 334 and 354 communicate with the inlet flow paths 331a and 351a. Communicate.
  • the pressure in the pressure chambers 334 and 354 that is, the control pressure Pm
  • the control pressure Pm becomes a high pressure pressure Ph equivalent to that on the upstream side of the first throttle portions 333a and 353a.
  • the control pressure Pm is changed by changing the voltage applied to the micro valve Y1 by PWM control.
  • the refrigeration cycle apparatus 30 increases the control pressure Pm by increasing the duty ratio of PWM control, and decreases the control pressure Pm by decreasing the duty ratio of PWM control.
  • control device 300 controls the first expansion valve 33 to the fully open state by maximizing the duty ratio of the PWM control to the micro valve Y1 of the first expansion valve 33 during indoor cooling. Further, the control device 300 controls the second expansion valve 35 in the throttled state by setting the duty ratio of the PWM control to the micro valve Y1 of the second expansion valve 35 to an intermediate value during indoor cooling.
  • the control device 300 controls the first expansion valve 33 in the throttled state by setting the duty ratio of the PWM control to the micro valve Y1 of the first expansion valve 33 to an intermediate value during indoor heating. Further, the control device 300 controls the second expansion valve 35 to the fully closed state by minimizing the duty ratio of the PWM control to the micro valve Y1 of the second expansion valve 35 at the time of indoor heating.
  • the control device 300 controls the first expansion valve 33 in a throttled state by setting the duty ratio of PWM control to the micro valve Y1 of the first expansion valve 33 to an intermediate value during dehumidifying and heating. Further, the control device 300 controls the second expansion valve 35 to the throttled state by setting the duty ratio of the PWM control to the micro valve Y1 of the second expansion valve 35 to an intermediate value during dehumidifying and heating.
  • the main valves 332 and 352 and the pressure adjusting portions 337 and 357 are arranged at different positions in the direction orthogonal to the valve axial direction DRax.
  • the pressure adjusting unit 337, 357 and the main valves 332, 352 are laid out so as not to overlap the valve axial direction DRax, they are arranged around the expansion valves 33, 35 and the expansion valves 33, 35. It becomes difficult for it to interfere with other parts.
  • the degree of freedom in the layout of the expansion valves 33, 35 and other parts is increased, so that the degree of freedom in design can be improved.
  • Other components arranged around the expansion valves 33 and 35 include a condenser 32 located before and after the flow direction of the refrigerant, an outdoor heat exchanger 34, a cooling evaporator 36, and the like.
  • each expansion valve 33, 35 needs a space for displacing the main valves 332, 352 in the valve axial direction DRax. Therefore, if the pressure adjusting portions 337 and 357 and the main valves 332 and 352 overlap each other in the valve axial direction DRax, it is inevitable that the physique of each of the expansion valves 33 and 35 in the valve axial direction DRax is increased.
  • the pressure adjusting unit 337, 357 of the present embodiment has a layout in which at least a part of the pressure adjusting unit 337 and 357 overlaps the main valves 332 and 352 in the direction orthogonal to the valve axial direction DRax.
  • the layout is such that at least a part of the pressure adjusting portions 337 and 357 and the main valves 332 and 352 overlap in the direction perpendicular to the valve axis direction DRax, the valve axis direction DRax of each of the expansion valves 33 and 35 It is possible to suppress the increase in size of the physique in.
  • circuit boards 338 and 358 of the expansion valves 33 and 35 of the present embodiment are connected to the pressure adjusting units 337 and 357 in a posture in which the plate surfaces 338a and 358a intersect with each other in the horizontal direction.
  • the pressure adjusting unit 337, 357 can adjust the pressure of the control fluid by utilizing the pressure difference of the refrigerant flowing in different parts of the refrigeration cycle device 30. As described above, if the structure is such that the pressure of the control fluid is adjusted by utilizing the pressure difference of the refrigerant in the refrigeration cycle device 30, the pressure of the control fluid is adjusted by another element different from the constituent elements of the refrigeration cycle device 30.
  • the expansion valves 33 and 35 can be simplified as compared with the ones.
  • the pressure adjusting unit 337, 357 is composed of the valve module Y0.
  • the valve module Y0 is smaller than the solenoid valve and the electric valve because the valve bodies 332a and 352a are displaced to the valve opening side or the valve closing side by adjusting the pressure of the pressure chambers 334 and 354 by the micro valve Y1.
  • the microvalve Y1 is formed of a semiconductor chip as described above. Further, as described above, the displacement amount due to thermal expansion can be amplified by using a lever, and it is possible to configure the valve to be smaller than an electromagnetic valve or an electric valve that does not use such a lever.
  • the pressure adjusting parts 337 and 357 can be made compact, the ratio of the pressure adjusting parts 337 and 357 in each of the expansion valves 33 and 35 becomes small, and the setting of parts other than the pressure adjusting parts 337 and 357 can be examined in a wider range. It becomes possible to do. Therefore, the degree of freedom in designing each of the expansion valves 33 and 35 can be sufficiently increased.
  • the micro valve Y1 has a configuration in which the opening degrees of the second refrigerant hole Y17 and the third refrigerant hole Y18 are adjusted by the movable portion Y128 to change the pressure in the pressure chambers 334 and 354.
  • the valve bodies 332a and 352a can be displaced to the valve closing side and the valve opening side by adjusting the pressure of the pressure chambers 334 and 354 by the micro valve Y1.
  • the micro valve Y1 and the valve module Y0 have a refrigerant flow path having a U-turn structure, it is possible to reduce the digging of the body portions 330 and 350. That is, the depth of the dents formed in the body portions 330 and 350 for arranging the valve module Y0 can be suppressed. The reason is as follows.
  • the valve module Y0 does not have a refrigerant flow path having a U-turn structure
  • the refrigerant inlet is on the surface of the valve module Y0 on the body portions 330 and 350
  • the refrigerant outlet is on the surface opposite to the valve module Y0.
  • the electrical wirings Y6 and Y7 are arranged on the surface of both sides of the microvalve Y1 opposite to the surface on which the first refrigerant holes Y16 and the second refrigerant holes Y17 are formed, the electrical wirings Y6 and Y7 are placed in the atmosphere. Can be placed closer to the atmosphere. Therefore, a sealing structure such as a hermetic for reducing the influence of the refrigerant atmosphere on the electric wirings Y6 and Y7 becomes unnecessary. As a result, the microvalve Y1 can be miniaturized.
  • the micro valve Y1 is lightweight, the expansion valves 33 and 35 are reduced in weight. Since the power consumption of the micro valve Y1 is small, the power consumption of the expansion valves 33 and 35 is reduced.
  • expansion valves 33 and 35 having the same basic structure are illustrated, but the expansion valves 33 and 35 are not limited thereto.
  • the expansion valves 33 and 35 may have different structures.
  • one expansion valve is configured in the same manner as described in the first embodiment, and the other expansion valve is an electric expansion valve including a solenoid and an electric motor. It may be configured.
  • the second expansion valve 35 may not have a fully closed function.
  • expansion valves 33 and 35 those in which the plate surfaces 338a and 358a of the circuit boards 338 and 358 are connected to the pressure adjusting units 337 and 357 in a posture parallel to the vertical DRg are illustrated.
  • the expansion valves 33 and 35 are not limited to this.
  • Each expansion valve 33, 35 may be connected to the pressure adjusting unit 337, 357, for example, in a posture in which the plate surfaces 338a, 358a of the circuit board 338, 358 intersect the vertical DRg and the horizontal direction, respectively. This also allows the circuit boards 338 and 358 to be cooled by natural convection.
  • the expansion valves 33 and 35 are illustrated to be substantially the same, but the expansion valves 33 and 35 are not limited to this.
  • the expansion valves 33 and 35 may have at least a partially different structure. This also applies to embodiments different from the first embodiment.
  • substantially the same means that they are the same to the extent that they can be produced by the manufacturing technology at the time of filing the present application. Therefore, the differences caused by errors and the like that may occur in the manufacturing technology at the time of filing the present application can be interpreted as the same.
  • each expansion valve 33, 35 includes rectangular parallelepiped body portions 330, 350.
  • Through holes 330j and 350j penetrating from the upper surface to the lower surface and bottomed holes 330k and 350k extending downward from the upper surface are formed in the body portions 330 and 350.
  • the through holes 330j and 350j and the bottomed holes 330k and 350k are formed at different positions in the body portions 330 and 350 in the direction orthogonal to the valve axis direction DRax.
  • the main valves 332 and 352 are arranged in the through holes 330j and 350j, and the pressure adjusting portions 337 and 357 are arranged in the bottomed holes 330k and 350k.
  • the main valves 332 and 352 and the pressure adjusting portions 337 and 357 are arranged at different positions in the direction orthogonal to the valve axis direction DRax.
  • the pressure adjusting units 337 and 357 are arranged offset with respect to the main valves 332 and 352 in the direction orthogonal to the valve axis direction DRax.
  • At least a part of the pressure adjusting unit 337, 357 is arranged so as to overlap the main valves 332 and 352 in the direction orthogonal to the valve axis direction DRax. As a result, the pressure adjusting unit 337, 357 and the pressure chamber 334, 354 are arranged adjacent to each other.
  • the main valves 332 and 352 have valve bodies 332a and 352a, support portions 332b and 352b, first springs 332c and 352c, second springs 332d and 352d, adjusting screws 332e and 352e, and operating rods 332f. It has 352f and caps 332i and 352i.
  • Caps 332i, 352i, second springs 332d, 352d, operating rods 332f, 352f, valve bodies 332a, 352a, support portions 332b, 352b, first springs 332c, 352c, adjusting screws 332e, 352e They are arranged side by side in the DRax.
  • the stoppers 332g and 352g are fixed to the ends of the operating rods 332f and 352f via the partition portions 332h and 352h. That is, in the main valves 332 and 352, the stoppers 332g and 352g, the partition portions 332h and 352h, and the operating rods 332f and 352f are arranged in this order in the valve axial direction DRax.
  • An O-ring S1 as a sealing member is provided on the outer periphery of the partition portions 332h and 352h. Further, O-rings S2, S3, and S4 as sealing members are also provided on the outer circumferences of the caps 332i and 352i and the outer circumferences of the adjusting screws 332e and 352e.
  • the first connecting pipes 339a, 359a, the second connecting pipes 339b, 359b, and the third connecting pipes 339c, 359c are connected to the body portions 330 and 350.
  • the first connecting pipe 339a, 359a, the second connecting pipe 339b, 359b, and the third connecting pipe 339c, 359c are composed of thin tubes such as capillary tubes.
  • the first connecting pipes 339a and 359a are pipes that communicate the second flow path Z23, which will be described later, with the pressure chambers 334 and 354.
  • the second connecting pipe 339b, 359b is a pipe that communicates the first flow path Z22, which will be described later, with the inlet flow paths 331a and 351a.
  • the third connecting pipes 339c and 359c are pipes that communicate the third flow path Z24, which will be described later, with the outlet flow paths 331b and 351b.
  • the pressure adjusting unit 337, 357 is composed of the valve module Z0 shown in FIGS. 16 and 17.
  • the valve module Z0 has an outer shape corresponding to the bottomed holes 330k and 350k so that it can be fitted into the bottomed holes 330k and 350k.
  • the valve module Z0 of this embodiment has a micro valve Z1, a valve casing Z2, three O-rings Z4, Z5a, Z5b, two terminals Z6, Z7, and a lid Z8.
  • the valve casing Z2 has a substantially cylindrical shape.
  • the valve casing Z2 has a recess Z21 formed at the lower end portion constituting the bottom portion, which is recessed toward the upper end portion.
  • the valve casing Z2 is formed with a first flow path Z22, a second flow path Z23, and a third flow path Z24.
  • the first flow path Z22 is formed by the space inside the recess Z21 of the valve casing Z2.
  • the first flow path Z22 communicates with the inlet flow paths 331a and 351a via the second communication pipes 339b and 359b.
  • the second flow path Z23 penetrates the valve casing Z2 from the side surface to the lower end of the valve casing Z2.
  • the second flow path Z23 communicates with the pressure chambers 334 and 354 via the first connecting pipes 339a and 359a.
  • the second flow path Z23 has a second horizontal hole Z23a and a second vertical hole Z23b.
  • the second lateral hole Z23a is a through hole extending in a direction intersecting the axial center CLm of the valve casing Z2.
  • the second vertical hole Z23b branches in the middle of the second horizontal hole Z23a and extends to the lower end along the axial center CLm of the valve casing Z2.
  • the second flow path Z23 is opened at a position substantially intermediate between the upper end portion and the lower end portion on the side surface of the valve casing Z2. Further, as shown in FIG. 17, the second flow path Z23 is open to the bottom surface of the recess Z21.
  • the third flow path Z24 penetrates the valve casing Z2 from the side surface to the lower end of the valve casing Z2.
  • the third flow path Z24 communicates with the outlet flow paths 331b and 351b via the third connecting pipes 339c and 359c.
  • the third flow path Z24 has a third horizontal hole Z24a and a third vertical hole Z24b.
  • the third lateral hole Z24a is a through hole extending in a direction intersecting the axial center CLm of the valve casing Z2.
  • the third vertical hole Z24b branches in the middle of the third horizontal hole Z24a and extends to the lower end along the axial center CLm of the valve casing Z2.
  • the third flow path Z24 opens at a position closer to the upper end portion than the opening of the second flow path Z23 on the side surface of the valve casing Z2. Further, as shown in FIG. 17, the third flow path Z24 is opened at a position different from the opening of the second flow path Z23 on the bottom surface of the recess Z21.
  • the second flow path Z23 and the third flow path Z24 are formed at different positions in the valve casing Z2 so as not to communicate with each other.
  • a first groove portion Z25, a second groove portion Z26, and a third groove portion Z27 are formed on the side surface of the valve casing Z2.
  • the first groove portion Z25, the second groove portion Z26, and the third groove portion Z27 extend along the circumferential direction of the valve casing Z2.
  • the first groove portion Z25 is formed below the position where the second flow path Z23 opens on the side surface of the valve casing Z2.
  • An O-ring Z4 is attached to the first groove portion Z25.
  • the O-ring Z4 suppresses refrigerant leakage from the gap between the valve casing Z2 and the bottomed holes 330k and 350k.
  • the second groove portion Z26 is formed between the opening of the second flow path Z23 and the opening of the third flow path Z24 on the side surface of the valve casing Z2.
  • An O-ring Z5a is attached to the second groove portion Z26.
  • the O-ring Z5a suppresses refrigerant leakage from the gap between the valve casing Z2 and the bottomed holes 330k and 350k.
  • the third groove portion Z27 is formed above the position where the third flow path Z24 opens on the side surface of the valve casing Z2.
  • An O-ring Z5b is attached to the third groove portion Z27.
  • the O-ring Z5b suppresses refrigerant leakage from the gap between the valve casing Z2 and the bottomed holes 330k and 350k.
  • the second flow path Z23 has a first connecting pipe 339a, through a gap between the opening on which the second flow path Z23 is formed and the inner walls of the bottomed holes 330k and 350k on the side surface of the valve casing Z2. Communicate with 359a.
  • the third flow path Z24 communicates with the third connecting pipes 339c and 359c through a gap between the opening formed by the third flow path Z24 and the inner walls of the bottomed holes 330k and 350k on the side surface of the valve casing Z2. To do.
  • the lid Z8 is arranged at the upper end portion, and a part of the terminals Z6 and Z7 protrudes from the upper end portion.
  • the terminals Z6 and Z7 are wiring components that electrically connect the circuit board 338 and 358 and the microvalve Z1.
  • the terminals Z6 and Z7 are insert-molded into the valve casing Z2 so that a part thereof protrudes from the upper end portion of the valve casing Z2.
  • the lid Z8 is an annular component having a window portion Z81 formed substantially in the center.
  • the lid Z8 is fixed to the bottomed holes 330k and 350k by joining means such as caulking, screwing, and welding.
  • the window portion Z81 of the lid Z8 is an insertion hole through which the terminals Z6 and Z7 pass.
  • the micro valve Z1 of the present embodiment has the same configuration as the micro valve Y1 described in the first embodiment.
  • those common to the components of the micro valve Y1 of the first embodiment are described by changing "Y1" at the beginning of the reference numeral to "Z1".
  • those corresponding to the first refrigerant hole Y16, the second refrigerant hole Y17, and the third refrigerant hole Y18 of the first embodiment are the first refrigerant hole Z16 and the second refrigerant hole Z17.
  • the third refrigerant hole Z18 is the first refrigerant hole Z16 and the second refrigerant hole Z17.
  • the micro valve Z1 is arranged in the recess Z21 of the valve casing Z2. Although not shown, the microvalve Z1 is supported by a support member provided in the recess Z21.
  • the surface of the microvalve Z1 on which the first refrigerant hole Z16, the second refrigerant hole Z17, and the third refrigerant hole Z18 are formed is arranged inside the recess Z21 in a posture facing the bottom surface of the recess Z21.
  • the first refrigerant hole Z16 faces the opening of the second flow path Z23
  • the second refrigerant hole Z17 faces the first flow path Z22
  • the third refrigerant hole Z18 faces the opening. It is arranged inside the recess Z21 so as to face the opening of the three flow paths Z24.
  • the first refrigerant hole Z16 communicates with the second flow path Z23
  • the second refrigerant hole Z17 communicates with the first flow path Z22
  • the third refrigerant hole Z18 communicates with the third flow path Z24.
  • the micro valve Z1 is provided with an electrode Z28 on the opposite side of the surface on which the first refrigerant hole Z16, the second refrigerant hole Z17, and the third refrigerant hole Z18 are formed.
  • the electrode Z28 is a component that electrically connects the microvalve Z1 to the terminals Z6 and Z7. A part of the electrode Z28 and a part of the microvalve Z1 are sealed by the mold resin part Z29.
  • the micro valve Z1 is connected to the circuit board 338 and 358 via the electrodes Z28, terminals Z6 and Z7.
  • the microvalve Z1 is driven by the power supply from the circuit boards 338 and 358.
  • the circuit boards 338 and 358 are connected to the terminals Z6 and Z7 of the pressure adjusting units 337 and 357 in a posture in which the plate surfaces 338a and 358a of the circuit boards 338 and 358 are horizontally parallel to each other. ..
  • the expansion valves 33 and 35 are provided with main valves 332 and 352 from the vertical DRg in the through holes 330j and 350j of the body portions 330 and 350, and the pressure adjusting portions 337 from the vertical DRg in the bottomed holes 330k and 350k. It has a structure to attach 357. According to this, the assembly work of the main valves 332 and 352 and the pressure adjusting portions 337 and 357 with respect to the body portions 330 and 350 becomes easy.
  • the through holes 330j and 350j and the bottomed holes 330k and 350k of the body portions 330 and 350 extend along the vertical DRg, but the body portions 330 and 350 are limited to this. Not done.
  • the body portions 330 and 350 have different modes from those described above, for example, if the through holes 330j and 350j and the bottomed holes 330k and 350k are formed at different positions in the direction orthogonal to the valve axis direction DRax. May be good.
  • the circuit boards 338 and 358 are connected to the pressure adjusting units 337 and 357 in a posture in which the plate surfaces 338a and 358a of the circuit boards 338 and 358 extend in the horizontal direction.
  • the circuit boards 338 and 358 may be connected to the pressure adjusting units 337 and 357 in a posture in which the plate surfaces 338a and 358a intersect with each other in the horizontal direction.
  • the refrigeration cycle device 30 of the present embodiment is capable of cooling the equipment for cooling the equipment to be cooled such as the battery mounted on the vehicle by the endothermic action at the time of evaporation of the refrigerant.
  • the refrigeration cycle device 30 has a third expansion valve 39 and an equipment evaporator so as to be parallel to the second expansion valve 35 and the cooling evaporator 36 on the refrigerant outlet side of the condenser 32. 40 is connected.
  • the third expansion valve 39 is provided in a branch pipe branching from the refrigerant pipe connecting the outdoor heat exchanger 34 and the second expansion valve 35.
  • the third expansion valve 39 is an expansion valve for cooling the equipment that reduces the pressure of the refrigerant that has passed through the outdoor heat exchanger 34 when the equipment is cooled.
  • the third expansion valve 39 has a structure in which the flow of the refrigerant is blocked in a fully closed state where the throttle opening is minimized.
  • the first expansion valve 33, the second expansion valve 35, and the third expansion valve 39 of the present embodiment are configured as one integrated valve VD in which some parts are integrated.
  • the integrated valve VD constitutes the valve device of the present disclosure. Details of the integrated valve VD will be described later.
  • An equipment evaporator 40 is connected to the refrigerant outlet side of the third expansion valve 39.
  • the equipment evaporator 40 is a heat exchanger that evaporates the refrigerant that has passed through the third expansion valve 39.
  • the equipment evaporator 40 includes a refrigerant flow path portion 401 through which the refrigerant flows and a heat medium flow path portion 402 through which the heat medium of the cooling circuit LC flows, and the refrigerant and the heat medium flowing through the cooling circuit LC.
  • a cooling heat exchanger is configured to cool the heat medium by exchanging heat.
  • the cooling circuit LC is a circuit for using the latent heat of vaporization of the refrigerant as a cooling heat source for cooling the equipment to be cooled.
  • the cooling circuit LC is provided with a heat absorber or the like for absorbing heat from the battery.
  • the refrigerant outlet side of the equipment evaporator 40 is connected to the refrigerant pipe connecting the cooling evaporator 36 and the compressor 31 via the evaporation pressure adjusting valve 41.
  • the evaporation pressure adjusting valve 41 maintains the pressure of the refrigerant passing through the equipment evaporator 40 to be equal to or higher than a predetermined set pressure value.
  • the evaporative pressure regulating valve 41 is composed of, for example, a bellows type valve.
  • the refrigeration cycle device 30 includes the evaporation pressure adjusting valve 41, for example, when cooling the equipment to be cooled and cooling the vehicle interior at the same time, cooling while maintaining the pressure of the refrigerant passing through the equipment evaporator 40.
  • the pressure of the refrigerant passing through the evaporator 36 can be reduced.
  • the device cooling sensor 303 is connected to the input side of the control device 300 in addition to the air conditioning sensor group 301.
  • the device cooling sensor 303 includes, for example, a temperature sensor that detects the temperature of the device to be cooled.
  • a compressor 31, a first expansion valve 33, an outdoor fan 341, a second expansion valve 35, an indoor fan 361, a bypass valve 37, and a third expansion valve 39 are connected to the output side of the control device 300.
  • the control device 300 can change the throttle opening degree of the third expansion valve 39 according to the situation.
  • the refrigeration cycle device 30 appropriately switches the operation mode of the refrigeration cycle device 30 by receiving inputs from the air conditioning sensor group 301, the operation panel 302, and the equipment cooling sensor 303.
  • control device 300 controls the expansion valves 33, 35, 39, the bypass valve 37, and the like to change the flow of the refrigerant in the refrigeration cycle device 30, thereby changing the operation mode of the refrigeration cycle device 30.
  • the refrigeration cycle device 30 of the present embodiment can be set to four operation modes such as indoor cooling, indoor heating, dehumidifying heating, and equipment cooling.
  • the third expansion valve 39 is controlled to be in a fully closed state by the control device 300, and the first expansion valve 33, the second expansion valve 33, the second.
  • the expansion valve 35 is controlled in the same manner as in the first embodiment.
  • the operation of the refrigeration cycle device 30 when performing indoor cooling, indoor heating, and dehumidifying heating is the same as that of the first embodiment.
  • the operation of the refrigeration cycle device 30 when the equipment is cooled will be described.
  • the equipment cooling is an operation mode in which the equipment to be cooled is cooled to a desired temperature while blowing air cooled to a desired temperature by the cooling evaporator 36 into the vehicle interior.
  • the equipment cooling is executed by the refrigeration cycle device 30 when the temperature of the equipment to be cooled exceeds an appropriate temperature, for example, in a state where the operation mode is set to the cooling mode by the operation mode changeover switch.
  • the flow of the heat medium in the heater circuit HC is stopped.
  • the control device 300 appropriately determines the operating state of various devices during indoor cooling by using the detection signals of the air conditioning sensor group 301, the device cooling sensors 303, and the operation signals of the operation panel 302. For example, in the control device 300, as shown in FIG. 23, the expansion valves 33, 35, 39 so that the first expansion valve 33 is in the fully open state and the second expansion valve 35 and the third expansion valve 39 are in the throttle state. To control. Further, the control device 300 controls the bypass valve 37 in the closed state. The control device 300 appropriately determines control signals for other devices such as the compressor 31, fans 341, and 361 by using the detection signals of the air conditioning sensor group 301 and the operation signals of the operation panel 302.
  • the high-pressure refrigerant discharged from the compressor 31 flows into the condenser 32 when the equipment is cooled. Since the heat medium does not flow through the heater circuit HC when the equipment is cooled, the refrigerant that has flowed into the condenser 32 flows into the first expansion valve 33 with almost no heat dissipation.
  • the refrigerant flowing into the first expansion valve 33 flows into the outdoor heat exchanger 34 with almost no decompression.
  • the refrigerant that has flowed into the outdoor heat exchanger 34 dissipates heat to the outside air and condenses.
  • the second expansion valve 35 and the third expansion valve 39 are in the throttled state, so that the refrigerant that has passed through the outdoor heat exchanger 34 flows into the second expansion valve 35 and the third expansion valve 39, respectively.
  • the refrigerant flowing into the second expansion valve 35 is depressurized by the second expansion valve 35 until it reaches a desired pressure.
  • the refrigerant decompressed by the second expansion valve 35 flows into the cooling evaporator 36.
  • the refrigerant that has flowed into the cooling evaporator 36 absorbs heat from the air blown from the indoor fan 361 and evaporates. Air cooled to a desired temperature is blown out into the vehicle interior by the cooling evaporator 36.
  • the refrigerant decompressed by the third expansion valve 39 flows into the equipment evaporator 40.
  • the refrigerant flowing into the equipment evaporator 40 absorbs heat from the heat medium flowing through the cooling circuit LC and evaporates.
  • the equipment to be cooled is cooled by the heat medium cooled by the equipment evaporator 40.
  • the refrigerant that has passed through the cooling evaporator 36 and the equipment evaporator 40 is sucked into the compressor 31.
  • the refrigerant sucked into the compressor 31 is compressed by the compressor 31 until it becomes a high-pressure refrigerant again.
  • the air cooled by the cooling evaporator 36 is blown into the vehicle interior, and the equipment to be cooled is cooled by the heat medium cooled by the equipment evaporator 40.
  • the integrated valve VD integrates the body portion BP and the circuit board CB of the expansion valves 33, 35, and 39.
  • the body portion BP forms the outer shell of each expansion valve 33, 35, 39.
  • the body portion BP is, for example, a metal block made of an aluminum alloy that has been subjected to a hole-drilling process or the like. As shown in FIGS. 26 and 27, the body portion BP is formed with a first internal flow path 331, a second internal flow path 351 and a third internal flow path 391.
  • the first internal flow path 331 is a refrigerant flow path that forms a part of the first expansion valve 33, and the refrigerant that has passed through the condenser 32 passes through.
  • the second internal flow path 351 is a refrigerant flow path that forms a part of the second expansion valve 35, through which the refrigerant that has passed through the outdoor heat exchanger 34 passes.
  • the third internal flow path 391 is a refrigerant flow path that forms a part of the third expansion valve 39, and the refrigerant that has passed through the outdoor heat exchanger 34 passes through the third internal flow path 391.
  • an inlet portion 330a and an outlet portion 330b of the first internal flow path 331, an outlet portion 350b of the second internal flow path 351 and an outlet portion of the third internal flow path 391 are provided in front of the body portion BP.
  • 390b is formed in front of the body portion BP.
  • An inlet portion 350a of the second internal flow path 351 and an inlet portion 391a of the third internal flow path 391 are formed on the side surface of the body portion BP.
  • the body portion BP is formed with three through holes 330j, 350j, 390j penetrating from the front surface to the back surface of the body portion BP, and three bottomed holes 330k350k, 390k extending downward from the upper surface. There is.
  • the three through holes 330j, 350j, 390j extend in the horizontal direction so as to line up in a horizontal row.
  • the three bottomed holes 330k, 350k, and 390k extend in the vertical DR so as to line up in a vertical row.
  • the three through holes 330j, 350j, 390j and the three bottomed holes 330k, 350k, and 390k are formed at different positions in the body portion BP in the direction orthogonal to the valve axis direction DRax.
  • the valve axis direction DRax is a direction in which the valve portions of the main valves 332, 352, and 392 of the expansion valves 33, 35, and 39 are displaced.
  • the displacement directions of the valve portions of the main valves 332, 352, and 392 of the expansion valves 33, 35, and 39 are the same.
  • the valve axial direction DRax is different for the expansion valves 33, 35, and 39.
  • the integrated valve VD includes a plurality of valve units UT1, UT2, and UT3 in which the pressure adjusting unit 337, 357, 397 and the main valves 332, 352, and 392 are a set.
  • the integrated valve VD includes a first valve unit UT1, a second valve unit UT2, and a third valve unit UT3.
  • the first valve unit UT1 is a valve unit that includes a pressure adjusting unit 337 of the first expansion valve 33 and a main valve 332 as a set.
  • the main valve 332 is arranged in the through hole 330j, and the pressure adjusting portion 337 is arranged in the bottomed hole 330k.
  • the main valve 332 and the pressure adjusting unit 337 of the first expansion valve 33 are arranged at different positions in the direction orthogonal to the valve axis direction DRax.
  • the pressure adjusting portion 337 of the first expansion valve 33 is arranged offset with respect to the main valve 332 of the first expansion valve 33 in a direction orthogonal to the valve axial direction DRax.
  • the pressure adjusting unit 337 is arranged at a position overlapping the throttle unit 333a in a direction orthogonal to the valve axis direction DRax. As a result, the physique of the first valve unit UT1 in the direction orthogonal to the valve axis direction DRax is suppressed.
  • the main valve 332 and the pressure adjusting unit 337 of the first expansion valve 33 are configured in the same manner as in the second embodiment.
  • the second valve unit UT2 is a valve unit that includes a pressure adjusting unit 357 and a main valve 352 of the second expansion valve 35 as a set.
  • the main valve 352 is arranged in the through hole 350j, and the pressure adjusting portion 357 is arranged in the bottomed hole 350k.
  • the main valve 352 and the pressure adjusting unit 357 of the second expansion valve 35 are arranged at different positions in the direction orthogonal to the valve axis direction DRax.
  • the pressure adjusting portion 357 of the second expansion valve 35 is arranged offset with respect to the main valve 352 of the second expansion valve 35 in a direction orthogonal to the valve axial direction DRax.
  • the pressure adjusting portion 357 is arranged at a position overlapping the throttle portion 353a in a direction orthogonal to the valve axis direction DRax. As a result, the physique of the second valve unit UT2 in the direction orthogonal to the valve axis direction DRax is suppressed.
  • the main valve 352 and the pressure adjusting unit 357 of the second expansion valve 35 are configured in the same manner as in the second embodiment.
  • the third valve unit UT3 is a valve unit that includes a pressure adjusting unit 397 and a main valve 392 of the third expansion valve 39 as a set.
  • the main valve 392 is arranged in the through hole 390i, and the pressure adjusting unit 397 is arranged in the bottomed hole 390k.
  • the main valve 392 and the pressure adjusting unit 397 of the third expansion valve 39 are arranged at different positions in the direction orthogonal to the valve axis direction DRax.
  • the pressure adjusting unit 397 of the third expansion valve 39 is arranged offset with respect to the main valve 392 of the third expansion valve 39 in a direction orthogonal to the valve axial direction DRax.
  • the pressure adjusting unit 397 is arranged at a position overlapping the throttle unit 393a in a direction orthogonal to the valve axis direction DRax. As a result, the physique of the third valve unit UT3 in the direction orthogonal to the valve axis direction DRax is suppressed.
  • the main valve 392 of the third expansion valve 39 includes a valve body 392a, a support portion 392b, a first spring 392c, a second spring 392d, an adjusting screw 392e, an operating rod 392f, and a stopper 392g. It has a partition portion 392h and a cap 392i.
  • valve body 392a, the support portion 392b, and the first spring 392c are housed in a valve chamber 393 provided in the middle of the internal flow path 391.
  • the valve chamber 393 is provided with a throttle portion 393a, and a valve seat 393b of the valve body 392a is formed.
  • the second spring 392d is arranged in the pressure chamber 394.
  • a refrigerant whose pressure is adjusted by the pressure adjusting unit 397 of the third expansion valve 39 is introduced into the pressure chamber 394 as a control fluid. Since the other components of the main valve 392 are the same as those of the main valves 332 and 352 described in the first and second embodiments, detailed description thereof will be omitted.
  • the pressure adjusting unit 397 of the third expansion valve 39 is composed of the valve module Z0. Since the valve module Z0 is the same as that described in the second embodiment, the description thereof will be omitted.
  • the body portion BP is formed with a first pressure introduction path Lp1 that communicates the second flow path Z23 of the pressure adjusting portion 397 of the third expansion valve 39 with the pressure chamber 394.
  • the body portion BP has a first pressure introduction path for communicating the second flow path Z23 of the pressure adjusting portion 337 of the first expansion valve 33 and the pressure chamber 334, and the pressure adjusting portion 357 of the second expansion valve 35.
  • a first pressure introduction path is formed to communicate the second flow path Z23 and the pressure chamber 354.
  • the body portion BP has a high-pressure flow path L1 through which a high-pressure refrigerant having a pressure equivalent to that of the refrigerant discharged from the compressor 31 flows, and a pressure equivalent to that of the refrigerant sucked into the compressor 31.
  • the high pressure flow path L1 is connected to the first flow path Z22 of the pressure adjusting portions 337, 357, 397 of the expansion valves 33, 35, 39 via the second pressure introduction path Lp2 formed in the body portion BP. .. As a result, the pressure of the high-pressure refrigerant is introduced into the first flow path Z22 of each of the expansion valves 33, 35, 39.
  • the low pressure flow path L2 is connected to the third flow path Z24 of the pressure adjusting portions 337, 357, 397 of the expansion valves 33, 35, 39 via the third pressure introduction path Lp3 formed in the body portion BP. ing.
  • the pressure of the low-pressure refrigerant is introduced into the third flow path Z24 of each of the expansion valves 33, 35, 39.
  • the terminals Z6 and Z7 of the pressure adjusting portions 337, 357 and 397 of the expansion valves 33, 35 and 39 are connected to one circuit board CB.
  • the drive circuits of the pressure adjusting portions 337, 357, and 397 of the expansion valves 33, 35, and 39 are mounted on the circuit board CB.
  • the circuit board CB has a posture in which the plate surface extends along the alignment direction of the pressure adjusting portions 337, 357, 397 of the expansion valves 33, 35, 39, and is attached to the terminals Z6, Z7 of the pressure adjusting portions 337, 357, 397. It is connected.
  • Each of the expansion valves 33, 35, 39 of the present embodiment obtains the same effect as that of the first embodiment and the second embodiment from the same configuration or the equivalent configuration as that of the first embodiment and the second embodiment. be able to.
  • the expansion valves 33, 35, and 39 are integrated as one integrated valve VD. According to this, the expansion valves 33, 35, and 39 can be simply realized, and the mountability of the refrigeration cycle device 30 can be improved.
  • the pressure adjusting portions 337, 357, and 397 of the valve units UT1, UT2, and UT3 are arranged so as not to overlap with the main valves 332, 352, and 392 in the valve axial direction DRax. That is, the pressure adjusting portions 337, 357, and 397 of the valve units UT1, UT2, and UT3 are arranged at positions shifted in the direction orthogonal to the valve axis direction DRax with respect to the positions where the main valves 332, 352, and 392 are arranged.
  • the integrated valve VD and other parts arranged around the integrated valve VD are less likely to interfere with each other, and the degree of freedom in layout of the integrated valve VD and other parts is increased, so that the degree of freedom in design is improved. Can be planned.
  • the pressure adjusting portions 337, 357, and 397 of the valve units UT1, UT2, and UT3 are arranged so as not to overlap with the main valves 332, 352, and 392 in the valve axial DRax.
  • the integrated valve VD is not limited to this. In the integrated valve VD, for example, among the valve units UT1, UT2, and UT3, some pressure adjusting portions 337, 357, and 397 are arranged so as not to overlap with the main valves 332, 352, and 392 in the valve axial DRax. You may be.
  • the expansion valves 33, 35, and 39 are integrated, but the integrated valve VD is not limited to this, and other devices such as the bypass valve 37 are integrated. A part of each expansion valve 33, 35, 39 may be integrated.
  • the drive circuits of the expansion valves 33, 35, and 39 are mounted on a common circuit board CB, but the present invention is not limited to this, and for example, the expansion valves 33, The drive circuits 35 and 39 may be mounted on different boards.
  • the pressure adjusting portions 337, 357, 397 and the main valves 332, 352, 392 of the expansion valves 33, 35, 39 are exemplified, but each expansion is made substantially the same.
  • the valves 33, 35 and 39 are not limited to this.
  • Each of the expansion valves 33, 35, 39 may have a structure in which at least a part of the pressure adjusting portions 337, 357, 397 and the main valves 332, 352, 392 is different.
  • the circuit board CB is connected to the pressure adjusting unit 337, 357, 397 in a posture in which the plate surface of the circuit board CB extends along the horizontal direction, but the present invention is not limited to this.
  • the circuit board CB may be connected to the pressure adjusting unit 337, 357, 397 in a posture in which the plate surfaces intersect with each other in the horizontal direction.
  • the equipment cooling is executed in the cooling mode, but the equipment cooling is not limited to this, and may be executed in the heating mode or the dehumidifying heating mode. Further, the equipment cooling may be performed in a situation where the room is not air-conditioned.
  • the main valves 332, 352, 392 of the expansion valves 33, 35, 39 and the pressure adjusting portions 337, 357, 397 are overlapped in the direction orthogonal to the valve axial direction DRax.
  • Each expansion valve 33, 35, 39 is not limited to this. At least one of the expansion valves 33, 35, 39 does not have to overlap the main valves 332, 352, 392 and the pressure adjusting portions 337, 357, 397 in the direction orthogonal to the valve axial direction DRax.
  • the postures of the expansion valves 33, 35, and 39 are not limited to those shown in the above-described embodiment.
  • the expansion valves 33, 35, and 39 may be mounted in a posture in which the valve axial DRax intersects the vertical DRg and extends.
  • micro valves Y1 and Z1 of the above-described embodiment may be configured not as a normally closed valve having a minimum throttle opening when not energized, but as a normally open valve having a maximum throttle opening when not energized.
  • a plurality of first ribs Y123 and a plurality of second ribs Y124 are energized to generate heat, and the heat generation causes the temperature to rise to expand.
  • these members may be made of a shape memory material whose length changes as the temperature changes.
  • the pressure difference of the refrigerant in the refrigerating cycle apparatus 30 is used to adjust the pressure of the control fluid, but the pressure adjusting unit 337, 357, 397 is not limited to this.
  • the pressure adjusting unit 337, 357, 397 may adjust the pressure of the control fluid by utilizing, for example, the pressure difference of the fluid generated by a device different from the refrigerating cycle device 30.
  • the pressure adjusting unit 337, 357, 397 may adjust the pressure of the pressure chambers 334, 354, 394 by using the output of, for example, an electric motor, a magnetic coupling, or the like.
  • each expansion valve 33, 35, 39 has a poppet type valve structure, but each expansion valve 33, 35, 39 has, for example, a spool type valve structure or a slide type. It may have a valve structure of.
  • valve device of the present disclosure is applied to the vapor compression refrigeration cycle device 30
  • valve device of the present disclosure is widely applied to various systems other than the refrigeration cycle device 30. It is possible.
  • the elements constituting the embodiment are not necessarily essential except when it is clearly stated that they are essential and when they are clearly considered to be essential in principle.
  • the controls and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done.
  • the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the control unit and its method described in the present disclosure are composed of a combination of a processor and memory programmed to execute one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers.
  • the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
  • the valve device has a pressure adjusting unit for adjusting the pressure of the control fluid and a predetermined valve axial direction according to the pressure of the control fluid. It comprises a main valve having a displaceable valve member. The pressure regulator and the main valve are arranged at different positions in the direction orthogonal to the valve axis direction.
  • the pressure adjusting part in the pressure adjusting part, at least a part of the pressure adjusting part overlaps with the main valve in the direction orthogonal to the valve axis direction.
  • the valve device needs a space to displace the main valve in the valve axis direction, and if the pressure adjusting part and the main valve are laid out so as to overlap in the valve axis direction, the physique of the valve device in the valve axis direction is large. It is inevitable that it will change.
  • the layout is such that at least a part of the pressure adjusting part and the main valve overlap in the direction perpendicular to the valve axis direction, it is possible to suppress the increase in body size of the valve device in the valve axis direction. can do.
  • the valve device includes a plurality of main valves having a pressure adjusting unit that adjusts the pressure of the control fluid and a valve portion that displaces in a predetermined valve axis direction according to the pressure of the control fluid. It is equipped with a valve unit.
  • the pressure adjusting unit included in at least one valve unit is oriented in the direction orthogonal to the valve axis direction with respect to the position where the main valve is arranged so as not to overlap the main valve in the valve axis direction. It is placed in a misaligned position.
  • the valve device includes a body portion to which the pressure adjusting portion is attached and a circuit board on which a drive circuit for driving the pressure adjusting portion is formed.
  • the circuit board is connected to the pressure adjusting unit in a posture in which the plate surfaces of the circuit board intersect with each other in the horizontal direction.
  • Natural convection occurs around the circuit board due to the heat generated by the drive circuit.
  • the board surfaces of the circuit board are in a posture of intersecting with each other in the horizontal direction, natural convection causes an upward air flow along the board surface of the circuit board. Therefore, if the board surfaces of the circuit board are arranged so as to intersect with each other in the horizontal direction, the circuit board can be cooled by natural convection.
  • the pressure adjusting unit includes a valve component having a fluid chamber for adjusting the pressure of the control fluid.
  • the valve component transmits the base where the fluid chamber is formed, the drive unit that displaces when its own temperature changes, the amplification unit that amplifies the displacement due to the temperature change of the drive unit, and the displacement amplified by the amplification unit. It has a movable part that adjusts the pressure of the refrigerant flowing through the fluid chamber by moving.
  • the drive unit urges the amplification unit at the urging position, so that the amplification unit is displaced with the hinge as the fulcrum and the amplification unit and the movable unit are connected.
  • the amplification part urges the movable part at the position.
  • the distance from the hinge to the connection position is longer than the distance from the hinge to the urging position.
  • the amplification part of the valve component functions as a lever. Therefore, the amount of displacement corresponding to the temperature change of the drive unit is amplified by the lever and transmitted to the movable unit.
  • the valve component whose displacement amount due to thermal expansion is amplified by using a lever can be configured to be smaller than that using a solenoid valve or an electric valve that does not use such a lever. It becomes. If the valve parts of the pressure adjusting part can be made compact, the ratio of the pressure adjusting part in the valve device becomes small, and the setting of parts other than the pressure adjusting part can be examined in a wider range. The degree of freedom in designing can be increased.
  • the valve component is composed of a semiconductor chip. If the valve component is composed of a semiconductor chip in this way, the pressure adjusting unit including the valve component can be miniaturized.
  • the valve device is applied to a vapor compression refrigeration cycle device.
  • the pressure adjusting unit can adjust the pressure of the control fluid by utilizing the pressure difference of the refrigerant flowing in different parts of the refrigeration cycle device. If the structure is such that the pressure of the control fluid is adjusted by using the pressure difference of the refrigerant in the refrigeration cycle device, the valve is compared with the one in which the pressure of the control fluid is adjusted by another element different from the components of the refrigeration cycle device.
  • the device can be simplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

弁装置(33、35、39、VD)は、制御流体の圧力を調整する圧力調整部(337、357、397)と、制御流体の圧力に応じて所定の弁軸方向に変位する弁部分を有する主弁(332、352、392)と、を備える。圧力調整部および主弁は、弁軸方向に直交する方向において異なる位置に配置されている。

Description

弁装置 関連出願への相互参照
 本出願は、2019年12月24日に出願された日本特許出願番号2019-233071号と、2020年6月9日に出願された日本特許出願番号2020-100028号とに基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、弁装置に関する。
 従来、制御流体の圧力を調整する圧力調整部、制御流体の圧力に応じて変位する主弁を備える弁装置が知られている(例えば、特許文献1参照)。この特許文献1に開示された弁装置は、圧力調整部を構成するマイクロバルブアセンブリおよび主弁を構成するスプールが、スプールが変位する方向(すなわち、弁軸方向)に沿って直列に並んで配置されている。
米国特許出願公開2017/0219259号明細書
 しかしながら、従来技術の弁装置は、依然として改善の余地がある。例えば、従来技術の如く、弁装置において比較的大きい部品である圧力調整部と主弁とが弁軸方向に並んで配置されていると、弁装置と弁装置の弁軸方向に隣接する位置に配置される他の部品とが干渉し易くなる。このように、弁装置において比較的大きい部品である圧力調整部と主弁とが弁軸方向に並んで配置されていると、弁装置や他の部品のレイアウトが制限される。これは、設計の自由度の低下を招く要因となることから好ましくない。これらのことは、本発明者らの鋭意検討の末に見い出された。
 本開示は、設計の自由度の向上を図ることが可能な弁装置を提供することを1つの目的とする。
 本開示の1つの観点によれば、
 弁装置は、
 制御流体の圧力を調整する圧力調整部と、
 制御流体の圧力に応じて所定の弁軸方向に変位する弁部分を有する主弁と、を備え、
 圧力調整部および主弁は、弁軸方向に直交する方向において異なる位置に配置されている。
 このように、圧力調整部と主弁とが弁軸方向に重ならないレイアウトになっていれば、弁装置と弁装置の弁軸方向に隣接する位置に配置される他の部品とが干渉し難くなり、弁装置および他の部品のレイアウトの自由度が高まる。したがって、本開示の弁装置によれば、設計の自由度の向上を図ることができる。
 本開示の別の観点によれば、
 弁装置は、
 制御流体の圧力を調整する圧力調整部および制御流体の圧力に応じて所定の弁軸方向に変位する弁部分を有する主弁を一組とする複数の弁ユニットを備え、
 複数の弁ユニットのうち、少なくとも1つの弁ユニットに含まれる圧力調整部は、弁軸方向において主弁と重ならないように、主弁が配置される位置に対して弁軸方向に直交する方向にずれた位置に配置されている。
 これによれば、弁装置と弁装置の弁軸方向に隣接する位置に配置される他の部品とが干渉し難くなり、弁装置および他の部品のレイアウトの自由度が高まる。したがって、本開示の弁装置によれば、設計の自由度の向上を図ることができる。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態の冷凍サイクル装置の概略構成図である。 第1実施形態の冷凍サイクル装置の電子制御部を示すブロック図である。 第1実施形態の冷凍サイクル装置の運転モードと各膨張弁等の状態との関係を説明するための説明図である。 第1実施形態に係る各膨張弁の模式的な断面図である。 制御圧力と各膨張弁の絞り開度との関係を説明するための説明図である。 第1実施形態に係る各膨張弁の圧力調整部の模式的な断面図である。 圧力調整部に用いられるマイクロバルブの模式的な分解図である。 圧力調整部に用いられるマイクロバルブの模式的な側面図である。 図8のIX-IX断面を示すものであって、マイクロバルブへの非通電状態を示す断面図である。 図9のX-X断面を示す断面図である。 図8のIX-IX断面を示すものであって、マイクロバルブへの通電状態を示す断面図である。 図11のXII-XII断面を示す断面図である。 制御圧力の調整方法を説明するための説明図である。 第2実施形態に係る各膨張弁の模式的な斜視図である。 第2実施形態に係る各膨張弁の主弁モジュールの模式的な斜視図である。 第2実施形態に係る各膨張弁の圧力調整部の模式的な斜視図である。 第2実施形態に係る各膨張弁の圧力調整部の模式的な分解斜視図である。 第2実施形態に係る各膨張弁の圧力調整部の模式的な側面図である。 第2実施形態に係る各膨張弁の圧力調整部の模式的な断面図である。 第2実施形態に係る各膨張弁の圧力調整部の模式的な下面図である。 第3実施形態の冷凍サイクル装置の概略構成図である。 第3実施形態の冷凍サイクル装置の電子制御部を示すブロック図である。 第3実施形態の冷凍サイクル装置の運転モードと各膨張弁等の状態との関係を説明するための説明図である。 第3実施形態に係る統合弁の模式的な分解斜視図である。 第3実施形態に係る統合弁の模式的な正面図である。 図25のXXVI-XXVI断面図である。 図26のXXVII-XXVII断面図である。
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。
 (第1実施形態)
 本実施形態について、図1~図13を参照して説明する。本実施形態では、本開示の弁装置を自動車に搭載される冷凍サイクル装置30に適用した例について説明する。
 図1に示すように、冷凍サイクル装置30は、圧縮機31、凝縮器32、第1膨張弁33、室外熱交換器34、第2膨張弁35、冷房用蒸発器36、バイパス弁37を備えている。これらの各構成機器同士は、冷媒配管によって接続されている。また、冷凍サイクル装置30は、各構成機器の動作を制御する制御装置300を備えている。
 冷凍サイクル装置30は、冷媒として、HFC系冷媒(具体的には、R134a)が採用されている。冷媒には圧縮機31を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。なお、冷媒としては、HFO系冷媒(例えば、R1234yf)や自然冷媒(例えば、R744)等が採用されていてもよい。
 圧縮機31は、冷凍サイクル装置30において、冷媒を吸入し、圧縮して吐出するものである。圧縮機31は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて駆動する電動圧縮機で構成されている。圧縮機31は、車両のボンネットの内側に配置される。なお、圧縮機31を構成する電動モータは、後述の制御装置300から出力される制御信号によって、その作動(例えば、回転数)が制御される。
 圧縮機31の冷媒吐出側には、凝縮器32の冷媒入口側が接続されている。凝縮器32は、圧縮機31から吐出された冷媒を放熱して凝縮させる熱交換器である。具体的には、凝縮器32は、冷媒が流通する冷媒流路部321とヒータ回路HCの熱媒体が流通する熱媒体流路部322を備え、冷媒とヒータ回路HCを流れる熱媒体とを熱交換させて、熱媒体を加熱する加熱用熱交換器を構成している。
 ヒータ回路HCは、圧縮機31から吐出された冷媒を車室内へ送風する送風空気の加熱、バッテリの暖機等を行うための熱源として利用するための回路である。図示しないが、ヒータ回路HCには、熱媒体を車室内への送風空気に放熱させるためのヒータコア、熱媒体をバッテリに放熱させるための放熱器等が設けられている。なお、ヒータコアは、後述の冷房用蒸発器36とともに空調ケースCの内側に配置されている。
 凝縮器32の冷媒出口側には、凝縮器32を通過した冷媒を減圧させる第1膨張弁33が接続されている。第1膨張弁33は、車室内の暖房時および除湿暖房時に、凝縮器32を通過した冷媒を減圧する暖房用膨張弁である。第1膨張弁33は、絞り開度が最大となる全開状態において、冷媒の減圧機能が発揮されない構造になっている。本実施形態では、第1膨張弁33が本開示の弁装置の一部を構成している。なお、第1膨張弁33の詳細は後述する。
 第1膨張弁33の冷媒出口側には、室外熱交換器34の冷媒入口側が接続されている。室外熱交換器34は、第1膨張弁33を通過した冷媒を室外ファン341から送風される外気と熱交換させる熱交換器である。室外熱交換器34は、冷房時に外気に放熱させる放熱器として機能し、暖房時に外気から吸熱する吸熱器として機能する。なお、室外ファン341は、室外熱交換器34を通過する気流を発生させる送風機である。
 室外熱交換器34の冷媒出口側には、室外熱交換器34を通過した冷媒を減圧させる第2膨張弁35が接続されている。第2膨張弁35は、車室内の冷房時および除湿暖房時に、室外熱交換器34を通過した冷媒を減圧する冷房用膨張弁である。第2膨張弁35は、絞り開度が最小となる全閉状態において、冷媒の流れが遮断される構造になっている。本実施形態では、第2膨張弁35が第1膨張弁33と同様に本開示の弁装置の一部を構成している。なお、第2膨張弁35の詳細は後述する。
 第2膨張弁35の冷媒出口側には、冷房用蒸発器36の冷媒入口側が接続されている。冷房用蒸発器36は、第2膨張弁35を通過した冷媒を蒸発させる蒸発器である。冷房用蒸発器36は、空調ケースCの内側に配置され、冷媒と室内ファン361から送風される空気とを熱交換させて冷媒を蒸発させる。換言すると、冷房用蒸発器36は、室内ファン361からの送風空気を冷媒と熱交換させて冷却する空気冷却器である。冷房用蒸発器36は、空調ケースCにおいてヒータコアよりも空気流れ上流側に配置されている。なお、室内ファン361は、冷房用蒸発器36で冷却された空気を車室内へ送風する送風機である。
 ここで、冷凍サイクル装置30は、室外熱交換器34の冷媒出口側に、第2膨張弁35および冷房用蒸発器36を迂回して圧縮機31の冷媒吸入側に導くバイパス配管38が接続されている。バイパス配管38は、暖房時に室外熱交換器34を通過した冷媒を第2膨張弁35および冷房用蒸発器36を迂回して圧縮機31の冷媒吸入側に導く。バイパス配管38は、一端側が室外熱交換器34の冷媒出口から第2膨張弁35の冷媒入口に至る冷媒流路に接続され、他端側が冷房用蒸発器36の冷媒出口から圧縮機31の冷媒吸入口に至る冷媒流路に接続されている。
 バイパス配管38には、バイパス弁37が設けられている。バイパス弁37は、バイパス配管38の内側に形成される冷媒流路を開閉する開閉弁である。バイパス弁37は、ソレノイドの電磁吸引力により弁体を駆動する電磁弁で構成されている。バイパス弁37は、後述の制御装置300から出力される制御信号によって、開閉作動が制御される。なお、バイパス弁37は、ステッピングモータ等により弁体が駆動される構造になっていてもよい。
 次に、冷凍サイクル装置30の電子制御部を構成する制御装置300について図2を参照して説明する。図2に示すように、制御装置300は、プロセッサ、ROMおよびRAM等のメモリを含むマイクロコンピュータとその周辺回路で構成されている。なお、制御装置300のメモリは、非遷移的実体的記憶媒体で構成される。
 制御装置300の入力側には、空調用センサ群301および操作パネル302が接続されている。空調用センサ群301は、冷房処理の制御に用いられる複数種類のセンサによって構成されている。
空調用センサ群301は、例えば、サイクルの低圧側における冷媒温度を検出する温度センサ(蒸発器温度センサ等)、サイクルの高圧側の冷媒圧力を検出する高圧センサ、高圧冷媒の温度を検出する温度センサを含んでいる。操作パネル302の各種操作スイッチには、オートスイッチ、運転モード切替スイッチ、風量設定スイッチ、温度設定スイッチ、吹出モード切替スイッチ等が含まれている。
 制御装置300は、空調用センサ群301および操作パル302から取得した各種情報、およびメモリに記憶された制御プログラムに基づいて各種演算処理を行い、出力側に接続された各構成機器の作動を制御する。
 制御装置300の出力側には、圧縮機31、第1膨張弁33、室外ファン341、第2膨張弁35、室内ファン361、バイパス弁37が接続されている。制御装置300は、圧縮機31による冷媒吐出性能(例えば、冷媒圧力)、各膨張弁33、35の絞り開度、各ファン341、361の送風性能、バイパス弁37の開閉状態を状況に応じて変更することができる。すなわち、冷凍サイクル装置30は、制御装置300が、圧縮機31、各膨張弁33、35、各ファン341、361、バイパス弁37それぞれの動作を制御することで、車室内に供給する空気を所望の温度に調整することができる。
 冷凍サイクル装置30は、空調用センサ群301および操作パネル302による入力を受け付けることで、冷凍サイクル装置30の運転モードを適宜切り替える。具体的には、制御装置300は、各膨張弁33、35およびバイパス弁37等を制御して冷凍サイクル装置30における冷媒の流れ方を変更することで、冷凍サイクル装置30の運転モードを切り替える。
 以下、冷凍サイクル装置30の作動について説明する。冷凍サイクル装置30は、室内冷房、室内暖房、除湿暖房といった3つの運転モードに設定可能になっている。
 [室内冷房]
 室内冷房は、冷房用蒸発器36で所望の温度に冷却した空気を車室内へ吹き出す運転モードである。室内冷房は、例えば、運転モード切替スイッチによって運転モードが冷房モードに設定されると冷凍サイクル装置30によって実行される。この室内冷房時には、ヒータ回路HCにおける熱媒体の流れが停止される。
 制御装置300は、室内冷房時における各種機器の作動状態を空調用センサ群301の検出信号および操作パネル302の操作信号を用いて適宜決定する。例えば、制御装置300は、図3に示すように、第1膨張弁33が全開状態となり、第2膨張弁35が絞り状態となるように各膨張弁33、35を制御する。また、制御装置300は、バイパス弁37を閉状態に制御する。制御装置300は、圧縮機31、各ファン341、361等の他の機器に対する制御信号について、空調用センサ群301の検出信号および操作パネル302の操作信号を用いて適宜決定する。
 冷凍サイクル装置30は、室内冷房時に、圧縮機31から吐出された高圧冷媒が凝縮器32に流入する。室内冷房時には、ヒータ回路HCに熱媒体が流れていないので、凝縮器32に流入した冷媒は、殆ど放熱することなく第1膨張弁33に流入する。
 室内冷房時には、第1膨張弁33が全開状態になっているので、第1膨張弁33に流入した冷媒は、殆ど減圧されることなく室外熱交換器34に流入する。室外熱交換器34に流入した冷媒は、外気に放熱して凝縮する。室外熱交換器34を通過した冷媒は、第2膨張弁35に流入し、第2膨張弁35にて所望の圧力となるまで減圧される。なお、室内冷房時は、バイパス弁37が閉状態になっているので、冷媒がバイパス配管38に流入せず、冷媒の全量が第2膨張弁35にて減圧される。
 第2膨張弁35で減圧された冷媒は、冷房用蒸発器36に流入する。冷房用蒸発器36に流入した冷媒は、室内ファン361からの送風空気から吸熱して蒸発する。車室内には、冷房用蒸発器36で所望の温度に冷却された空気が吹き出される。冷房用蒸発器36を通過した冷媒は、圧縮機31に吸入される。圧縮機31に吸入された冷媒は、圧縮機31にて再び高圧冷媒となるまで圧縮される。
 以上の如く、室内冷房時には、冷房用蒸発器36で冷却された空気が車室内に吹き出されることによって、室内の冷房が実現される。
 [室内暖房]
 室内暖房は、ヒータコアで所望の温度に加熱した空気を車室内へ吹き出す運転モードである。室内暖房は、例えば、運転モード切替スイッチによって運転モードが暖房モードに設定されると冷凍サイクル装置30によって実行される。この室内暖房時には、ヒータ回路HCがヒータコアに対して熱媒体が流れる経路に設定される。
 制御装置300は、室内暖房時における各種機器の作動状態を空調用センサ群301の検出信号および操作パネル302の操作信号を用いて適宜決定する。例えば、制御装置300は、図3に示すように、第1膨張弁33が絞り状態となり、第2膨張弁35が全閉状態となるように各膨張弁33、35を制御する。また、制御装置300は、バイパス弁37を開状態に制御する。制御装置300は、圧縮機31、各ファン341、361等の他の機器に対する制御信号について、空調用センサ群301の検出信号および操作パネル302の操作信号を用いて適宜決定する。
 冷凍サイクル装置30は、室内暖房時に、圧縮機31から吐出された高圧冷媒が凝縮器32に流入する。室内暖房時には、ヒータ回路HCを流れる熱媒体がヒータコアに流れるので、凝縮器32に流入した冷媒は、ヒータコアを介して車室内へ吹き出す空気に放熱する。これにより、車室内には、ヒータコアで所望の温度に加熱された空気が吹き出される。
 凝縮器32を通過した冷媒は、第1膨張弁33に流入し、第1膨張弁33にて所望の圧力となるまで減圧される。第1膨張弁33で減圧された冷媒は、室外熱交換器34に流入する。
 室外熱交換器34に流入した冷媒は、室外ファン341からの送風空気から吸熱して蒸発する。室内暖房時には、バイパス弁37が開状態になっているので、室外熱交換器34を通過した冷媒は、バイパス配管38を介して圧縮機31に吸入される。圧縮機31に吸入された冷媒は、圧縮機31にて再び高圧冷媒となるまで圧縮される。なお、室内暖房時は、第2膨張弁35が全閉状態となっているので、冷媒が冷房用蒸発器36に流入せず、冷媒の全量がバイパス配管38を介して圧縮機31に吸入される。
 以上の如く、室内暖房時には、ヒータコアで加熱された空気が車室内に吹き出されることによって、室内の暖房が実現される。
 [除湿暖房]
 除湿暖房は、冷房用蒸発器36で露点温度よりも低い温度まで空気を冷却した後、ヒータコアで所望の温度まで昇温させて車室内へ吹き出す運転モードである。除湿暖房は、例えば、運転モード切替スイッチによって運転モードが除湿暖房モードに設定されると冷凍サイクル装置30によって実行される。この除湿暖房時には、ヒータ回路HCがヒータコアに対して熱媒体が流れる経路に設定される。
 制御装置300は、除湿暖房時における各種機器の作動状態を空調用センサ群301の検出信号および操作パネル302の操作信号を用いて適宜決定する。例えば、制御装置300は、図3に示すように、第1膨張弁33および第2膨張弁35それぞれを絞り状態に制御する。また、制御装置300は、バイパス弁37を閉状態に制御する。制御装置300は、圧縮機31、各ファン341、361等の他の機器に対する制御信号について、空調用センサ群301の検出信号および操作パネル302の操作信号を用いて適宜決定する。
 冷凍サイクル装置30は、除湿暖房時に、圧縮機31から吐出された高圧冷媒が凝縮器32に流入する。除湿暖房時には、ヒータ回路HCを流れる熱媒体がヒータコアに流れるので、凝縮器32に流入した冷媒は、ヒータコアを介して車室内へ吹き出す空気に放熱する。これにより、車室内には、ヒータコアで所望の温度に加熱された空気が吹き出される。
 凝縮器32を通過した冷媒は、第1膨張弁33に流入し、第1膨張弁33に流入した冷媒にて所望の圧力となるまで減圧される。第1膨張弁33で減圧された冷媒は、室外熱交換器34に流入する。室外熱交換器34に流入した冷媒は、外気と熱交換する。室外熱交換器34に流入した冷媒は、外気よりも冷媒の温度が低いと外気から吸熱し、外気よりも冷媒の温度が高いと外気に放熱する。
 室外熱交換器34を通過した冷媒は、第2膨張弁35に流入し、第2膨張弁35にて所望の圧力となるまで減圧される。なお、除湿暖房時は、バイパス弁37が閉状態になっているので、冷媒がバイパス配管38に流入せず、冷媒の全量が第2膨張弁35にて減圧される。
 第2膨張弁35で減圧された冷媒は、冷房用蒸発器36に流入する。冷房用蒸発器36に流入した冷媒は、室内ファン361からの送風空気から吸熱して蒸発する。これにより、室内ファン361からの送風空気は、冷房用蒸発器36で冷却されて除湿される。冷房用蒸発器36で除湿された空気は、ヒータコアで所望の温度まで加熱された後、車室内へ吹き出される。冷房用蒸発器36を通過した冷媒は、圧縮機31に吸入される。圧縮機31に吸入された冷媒は、圧縮機31にて再び高圧冷媒となるまで圧縮される。
 以上の如く、除湿暖房時には、冷房用蒸発器36で除湿された空気がヒータコアで加熱された後に車室内に吹き出されることによって、室内の除湿暖房が実現される。
 [膨張弁の詳細]
 次に、本実施形態の第1膨張弁33および第2膨張弁35の詳細について図4を参照して説明する。図4に示す上下を示す矢印は、第1膨張弁33および第2膨張弁35を車両に取り付けた状態での上下方向DRgを示している。
 第1膨張弁33および第2膨張弁35は、制御態様は異なるものの、基本構造は同様に構成されている。このため、図4では、第1膨張弁33の構成要素を示す参照符号および第2膨張弁35の構成要素を示す参照符号を併記している。なお、図4では、各膨張弁33、35の構成要素を区別するために、第1膨張弁33の構成要素の一部を示す符号の上二桁を「33」とし、第2膨張弁35の構成要素の一部を示す符号の上二桁を「35」としている。
 各膨張弁33、35は、図4に示すように、ボデー部330、350、主弁332、352、圧力調整部337、357、回路基板338、358を備える。各膨張弁33、35は、ボデー部330、350の内側に形成された内部流路331、351の絞り開度を変化させて、各膨張弁33、35を通過する冷媒の圧力を所望の圧力に調整するものである。
 ボデー部330、350は、各膨張弁33、35の外殻を形成するものである。ボデー部330、350は、例えば、アルミニウム合金製の金属ブロックに孔開け加工等が施されたものである。ボデー部330、350には、冷媒が流れる内部流路331、351、弁室333、353、圧力室334、354等が形成されている。
 内部流路331、351は、ボデー部330、350の側面に開口する入口部330a、350aおよび出口部330b、350bに連なっている。内部流路331、351の途中には、弁室333、353が形成されている。弁室333、353は、主弁332、352の一部が収容されている。
 弁室333、353は、入口部330a、350aおよび出口部330b、350bそれぞれに連通している。弁室333、353には、冷媒が流れる流路が細く絞られた絞り部333a、353aが設けられている。絞り部333a、353aは、入口部330a、350aから弁室333、353に流入した冷媒を減圧膨張させながら出口部330b、350bに導く流路である。絞り部333a、353aの冷媒入口側には、主弁332、352の弁体332a、352aが接離する弁座333b、353bが形成されている。
 ここで、本実施形態では、内部流路331、351における絞り部333a、353aを通過する前の冷媒が流れる流路が入口流路331a、351aを構成する。また、内部流路331、351における絞り部333a、353aから流出した冷媒が流れる流路が出口流路331b、351bを構成している。
 主弁332、352は、弁体332a、352a、支持部332b、352b、第1バネ332c、352c、第2バネ332d、352d、調整ネジ332e、352e、作動棒332f、352f、キャップ332i、352iを有している。
 弁体332a、352aは、主弁332、352の軸心CLに沿って変位することで、絞り部333a、353aの通路面積を調整するものである。本開示では、軸心CLに沿って延びる方向を弁軸方向DRaxとする。本実施形態の各膨張弁33、35は、弁軸方向DRaxが上下方向DRgと一致する姿勢で主弁332、352が配置される。弁体332a、352aは、主弁332、352において弁軸方向DRaxに変位する弁部分である。
 弁体332a、352aは、球状の弁体で構成されている。各膨張弁33、35は、弁体332a、352aが弁座333b、353bに対して交差する方向(例えば、直交方向)に変位して内部流路331、351の絞り開度が変化するポペット式の弁構造になっている。
 弁体332a、352aは、支持部332b、352bおよび第1バネ332c、352cとともに弁室333、353に配置されている。支持部332b、352bは、弁体332a、352aの軸方向の他方側に固定されている。第1バネ332c、352cは、支持部332b、352bを介して弁体332a、352aを閉弁方向に付勢する付勢部材である。
 第1バネ332c、352cが弁体332a、352aに対して付勢する荷重は、ボデー部330、350に設けられた調整ネジ332e、352eによって調整可能になっている。調整ネジ332e、352eは、ボデー部330、350のうち、第1バネ332c、352cと対向する部位に開口するネジ孔に螺合されている。調整ネジ332e、352eを回転させ、第1バネ332c、352cの取付長さを変更することで、第1バネ332c、352cが弁体332a、352aに対して付勢する荷重を調整することができる。
 弁体332a、352aのうち弁軸方向DRaxの一方側には、作動棒332f、352fが配置されている。作動棒332f、352fは、略円柱形状の金属棒である。作動棒332f、352fは、弁軸方向DRaxに沿って延びた姿勢で絞り部333a、353aの内側に配置されている。
 作動棒332f、352fのうち弁軸方向DRaxの一方側には、ストッパ332g、352gが固定されている。ストッパ332g、352gは、作動棒332f、352fの軸方向の変位を制限するものである。
 作動棒332f、352fのうち弁軸方向DRaxの一方側の端部には、仕切部332h、352hが設けられている。この仕切部332h、352hは、ボデー部330、350のうち絞り部333a、353aよりも弁軸方向DRaxの一方側にある内部空間を圧力室334、354と低圧空間335、355に仕切るものである。
 圧力室334、354には、圧力調整部337、357によって圧力調整された冷媒が、弁体332a、352aを開弁側または閉弁側に押圧する制御流体として導入される。仕切部332h、352hは、圧力室334、354に導入される制御流体の圧力を受ける。
 圧力室334、354には、第2バネ332d、352dが配置されている。第2バネ332d、352dは、仕切部332h、352h、ストッパ332g、352g、作動棒332f、352fを介して弁体332a、352aを開弁方向に付勢する付勢部材である。
 キャップ332i、352iは、圧力室334、354の上方側にある開口を閉塞する閉塞部材である。キャップ332i、352iの底面と仕切部332h、352hとの間に第2バネ332d、352dが配置されている。
 ボデー部330、350には、圧力室334、354の側方部位に、第1凹部330c、350c、第2凹部330d、350d、第3凹部330e、350eが形成されている。
 ボデー部330、350には、圧力室334、354に隣接する側方部位に、第1凹部330c、350c、第2凹部330d、350d、第3凹部330e、350eが形成されている。
 第1凹部330c、350c、第2凹部330d、350d、第3凹部330e、350eは、後述するバルブモジュールY0の第1突出部Y21、第2突出部Y22、第3突出部Y23が嵌め合わされる凹部である。
 第1凹部330c、350c、第2凹部330d、350d、第3凹部330e、350eは、上方から下方に向けて第3凹部330e、350e、第1凹部330c、350c、第2凹部330d、350dの順に直線状に並ぶように配置されている。
 第1凹部330c、350cの底部には、第1凹部330c、350cと圧力室334、354とを連通させる第1貫通孔330f、350fが形成されている。第2凹部330d、350dの底部には、第2凹部330d、350dと入口流路331a、351aとを連通させる第2貫通孔330g、350gが形成されている。第3凹部330e、350eの底部には、第3凹部330e、350eと出口流路331b、351bとを連通させる第3貫通孔330h、350hが形成されている。
 このように構成される各膨張弁33、35は、内部流路331、351の流路面積(すなわち、絞り開度)が弁体332a、352aの位置によって変化する。そして、弁体332a、352aの位置は、弁体332a、352aに作用する力によって決定される。
 具体的には、弁体332a、352aの位置は、圧力室334、354内の制御流体の圧力による荷重Fm、各バネ332c、352c、332d、352dcからの荷重Fs1、Fs2、弁室333、353での冷媒圧力による荷重Fc等によって決定される。以下では、圧力室334、354内の制御流体の圧力を制御圧力Pmと呼ぶことがある。
 各膨張弁33、35は、制御圧力Pmが絞り部333a、353aの下流側の冷媒圧力(すなわち、低圧圧力Pl)と同等の圧力となる場合、絞り部333a、353aの上流側の圧力(すなわち、高圧圧力Ph)と制御圧力Pmとの圧力差が最大となる。この場合、弁体332a、352aは、絞り開度が最小となる位置に変位する。
 この状態から制御圧力Pmが低圧圧力Plよりも高くなると、高圧圧力Phと制御圧力Pmとの圧力差が小さくなることで、弁体332a、352aが絞り開度が大きくなる位置に変位する。そして、制御圧力Pmが高圧圧力Phと同等の圧力となると、弁体332a、352aが絞り開度が最大となる位置に変位する。
 これにより、各膨張弁33、35は、図5に示すように、制御圧力Pmが小さくなると内部流路331、351の絞り開度が小さくなり、制御圧力Pmが大きくなると絞り開度が大きくなる構造になっている。
 本実施形態の各膨張弁33、35は、制御圧力Pmが圧力調整部337、357によって調整される。圧力調整部337、357は、ボデー部330、350に対して取り付けられている。そして、圧力調整部337、357で圧力調整された制御流体は、第1貫通孔330f、350fを介して圧力室334、354に導入される。圧力調整部337、357は、主弁332、352を駆動するパイロット弁として機能するマイクロバルブY1を含んでいる。
 圧力調整部337、357は、回路基板338、358に実装された駆動回路によって駆動される。回路基板338、358は、圧力調整部337、357のうち、ボデー部330、350に対して取り付けられる部位の反対側に固定されている。図示しないが、回路基板338、358は、圧力調整部337、357の接続端子が接続されている。圧力調整部337、357は、回路基板338、358を介して電力が供給される。具体的には、回路基板338、358には、接続端子を介してバルブモジュールY0の電気配線Y6、Y7に接続されている。
 ここで、各膨張弁33、35では、主弁332、352および圧力調整部337、357が他に比べて大型である。このため、従来技術の如く、主弁332、352および圧力調整部337、357が弁軸方向DRaxに並んで配置されていると、各膨張弁33、35とその周囲に配置される他の部品とが干渉し易くなり、各膨張弁33、35や他の部品のレイアウトが制限される。これは、各膨張弁33、35の設計の自由度が低くなる要因となることから好ましくない。
 これらを考慮し、第1膨張弁33は、主弁332および圧力調整部337が弁軸方向DRaxに直交する方向において異なる位置に配置されている。同様に、第2膨張弁35は、主弁352および圧力調整部357が弁軸方向DRaxに直交する方向において異なる位置に配置されている。換言すれば、圧力調整部337、357は、主弁332、352に対して弁軸方向DRaxに直交する方向にオフセットして配置されている。本実施形態では、弁軸方向DRaxが上下方向DRgに一致する。このため、主弁332、352および圧力調整部337、357は、水平方向において異なる位置に配置されている。
 本実施形態の圧力調整部337、357は、少なくとも一部が、弁軸方向DRaxに直交する方向において主弁332、352と重なり合うように配置されている。具体的には、圧力調整部337、357は、弁軸方向DRaxに直交する方向において、主弁332、352のうち、圧力室334、354に配置される第2バネ332d、352dおよびキャップ332i、352iの一部と重なり合っている。
 この場合、圧力調整部337、357と圧力室334、354とが隣接して配置される構造となる。このため、圧力調整部337、357からの制御流体を圧力室334、354に導く第1貫通孔330f、350fを、曲り部がなく、且つ、長さが小さい孔形状で構成することができる。このような孔形状を有することで、第1貫通孔330f、350fは、制御流体が流通する際の圧力損失が低くなっている。
 具体的には、圧力調整部337、357は、上下方向DRgにおいて、ボデー部330、350における入口部330a、350aよりも出口部330b、350bに近い部位に取り付けられている。
 回路基板338、358は、回路基板338、358の板面338a、358aが水平方向に対して交差する姿勢で圧力調整部337、357に接続されている。具体的には、回路基板338、358は、その板面338a、358aが上下方向DRgに並行に延びる姿勢で圧力調整部337、357に接続されている。
 また、回路基板338、358は、ボデー部330、350の上端よりも上方に突き出ないように、回路基板338、358の全体が水平方向においてボデー部330、350と重なり合うように配置されている。
 圧力調整部337、357は、バルブモジュールY0によって構成されている。以下、圧力調整部337、357を構成するバルブモジュールY0の詳細について図6~図13を参照しつつ説明する。
 [バルブモジュールY0の構成]
 図6に示すように、バルブモジュールY0は、マイクロバルブY1、バルブケーシングY2、封止部材Y3、3つのOリングY4、Y5a、Y5b、2本の電気配線Y6、Y7、変換プレートY8を有している。
 マイクロバルブY1は、圧力室334、354に導入する制御流体(本例では冷媒)の圧力を調整するための流体室Y19を有する弁部品である。マイクロバルブY1は、板形状であり、その全体が半導体チップによって構成されている。
 マイクロバルブY1の厚さ方向の長さは例えば2mmであり、厚さ方向に直交する長手方向の長さは例えば10mmであり、長手方向にも厚さ方向にも直交する短手方向の長さは例えば5mmであるが、これに限定されない。マイクロバルブY1への供給電力が変動することで、マイクロバルブY1の流路構成が変化する。
 電気配線Y6、Y7は、マイクロバルブY1の2つの板面のうち、バルブケーシングY2とは反対側の面から伸びて、封止部材Y3、バルブケーシングY2内を通過して、バルブモジュールY0の外部にある電源に接続される。これにより、電気配線Y6、Y7を通して、電源からマイクロバルブY1に電力が供給される。
 変換プレートY8は、マイクロバルブY1とバルブケーシングY2の間に配置される板形状の部材である。変換プレートY8は、ガラス基板である。変換プレートY8の2つの板面の一方側は、マイクロバルブY1に対して接着剤で固定され、他方側はバルブケーシングY2に対して接着剤で固定されている。変換プレートY8には、マイクロバルブY1の後述する3つの冷媒孔とバルブケーシングY2の3つの連通孔とを繋げるための流路Y81、Y82、Y83が形成されている。これら流路Y81、Y82、Y83は、一列に並ぶ上記3つの冷媒孔のピッチと一列に並ぶ上記3つの連通孔のピッチの違いを吸収するための部材である。流路Y81、Y82、Y83は、変換プレートY8の2つの板面の一方から他方に貫通している。
 バルブケーシングY2は、マイクロバルブY1および変換プレートY8を収容する樹脂製のケーシングである。バルブケーシングY2は、ポリフェニレンサルファイドを主成分として樹脂成形によって形成されている。バルブケーシングY2は、線膨張係数が、マイクロバルブY1の線膨張係数とボデー部330、350の線膨張係数の間の値となるように構成されている。なお、バルブケーシングY2は、マイクロバルブY1をボデー部330、350に対して取り付けるための部品取付部を構成している。バルブケーシングY2は、一方側に底壁を有し、他方側が開放された箱体である。バルブケーシングY2の底壁は、マイクロバルブY1および変換プレートY8がボデー部330、350に直に接しないように、ボデー部330、350とマイクロバルブY1の間に介在する。そして、この底壁の一方側の面がボデー部330、350に接触して固定され、他方側の面が変換プレートY8に接触して固定される。
 このようになっていることで、マイクロバルブY1とボデー部330、350の線膨張係数の違いをバルブケーシングY2が吸収できる。これは、バルブケーシングY2の線膨張係数が、マイクロバルブY1の線膨張係数とボデー部330、350の線膨張係数の間の値となっているからである。なお、変換プレートY8の線膨張係数は、マイクロバルブY1の線膨張係数とバルブケーシングY2の線膨張係数の間の値となっている。
 また、バルブケーシングY2の底壁は、マイクロバルブY1に対向する板形状のベース部Y20と、マイクロバルブY1から離れる方向に当該ベース部Y20から突出する柱形状の第1突出部Y21、第2突出部Y22、第3突出部Y23を有する。
 第1突出部Y21、第2突出部Y22、第3突出部Y23は、ボデー部330、350に形成された第1凹部330c、350c、第2凹部330d、350d、第3凹部330e、350eに嵌め込まれている。第1突出部Y21には、マイクロバルブY1側端からその反対側端まで貫通する第1連通孔YV1が形成されている。第2突出部Y22には、マイクロバルブY1側端からその反対側端まで貫通する第2連通孔YV2が形成されている。第3突出部Y23には、マイクロバルブY1側端からその反対側端まで貫通する第3連通孔YV3が形成されている。第1連通孔YV1、第2連通孔YV2、第3連通孔YV3は一列に並んでおり、第2連通孔YV2と第3連通孔YV3の間に第1連通孔YV1が位置する。
 第1連通孔YV1のマイクロバルブY1側端は、変換プレートY8に形成された流路Y81のバルブケーシングY2側端に連通している。第2連通孔YV2のマイクロバルブY1側端は、変換プレートY8に形成された流路Y82のバルブケーシングY2側端に連通している。第3連通孔YV3のマイクロバルブY1側端は、変換プレートY8に形成された流路Y83のバルブケーシングY2側端に連通している。
 封止部材Y3は、バルブケーシングY2の開放された上記他方側を封止するエポキシ樹脂製の部材である。封止部材Y3は、マイクロバルブY1の表裏の2つの板面のうち、変換プレートY8側とは反対側の板面の全体を覆う。また、封止部材Y3は、変換プレートY8の2つの板面のうち、バルブケーシングY2の底壁側とは反対側の板面の一部を覆う。また、封止部材Y3は、電気配線Y6、Y7を覆うことで、電気配線Y6、Y7の防水および絶縁を実現する。封止部材Y3は樹脂ポッティング成形等によって形成される。
 OリングY4は、第1突出部Y21の外周に取り付けられ、ボデー部330、350と第1突出部Y21の間を封止することで、外部かつ冷媒回路の外部への冷媒の漏出を抑制する。OリングY5aは、第2突出部Y22の外周に取り付けられ、ボデー部330、350と第2突出部Y22の間を封止することで、外部かつ冷媒回路の外部への冷媒の漏出を抑制する。OリングY5bは、第3突出部Y23の外周に取り付けられ、ボデー部330、350と第3突出部Y23の間を封止することで、外部かつ冷媒回路の外部への冷媒の漏出を抑制する。
 [マイクロバルブY1の構成]
 ここで、マイクロバルブY1の構成について更に説明する。マイクロバルブY1は、図7、図8に示すように、いずれも半導体である第1外層Y11、中間層Y12、第2外層Y13を備えたMEMSである。なお、「MEMS」は、Micro Electro Mechanical Systemsの略称である。
 第1外層Y11、中間層Y12、第2外層Y13は、それぞれが同じ外形を有する長方形の板形状の部材であり、第1外層Y11、中間層Y12、第2外層Y13の順に積層されている。第1外層Y11、中間層Y12、第2外層Y13のうち、第2外層Y13が、バルブケーシングY2の底壁に最も近い側に配置される。後述する第1外層Y11、中間層Y12、第2外層Y13の構造は、化学的エッチング等の半導体製造プロセスによって形成される。
 第1外層Y11は、半導体部材である。第1外層Y11には、図7に示すように、表裏に貫通する2つの貫通孔Y14、Y15が形成されている。この貫通孔Y14、Y15に、それぞれ、電気配線Y6、Y7のマイクロバルブY1側端が挿入される。
 第2外層Y13は、半導体部材である。第2外層Y13には、図7、図9、図10に示すように、表裏に貫通する第1冷媒孔Y16、第2冷媒孔Y17、第3冷媒孔Y18が形成されている。第1冷媒孔Y16、第2冷媒孔Y17、第3冷媒孔Y18は、それぞれ、第1流体孔、第2流体孔、第3流体孔に対応する。
 図10に示すように、第1冷媒孔Y16、第2冷媒孔Y17、第3冷媒孔Y18は、それぞれ、変換プレートY8の流路Y81、Y82、Y83に連通する。第1冷媒孔Y16、第2冷媒孔Y17、第3冷媒孔Y18は、一列に並んでいる。第2冷媒孔Y17と第3冷媒孔Y18の間に第1冷媒孔Y16が配置される。
 中間層Y12は、導電性の半導体部材であり、第1外層Y11と第2外層Y13に挟まれている。中間層Y12は、図9に示すように、第1固定部Y121、第2固定部Y122、複数本の第1リブY123、複数本の第2リブY124、スパインY125、アームY126、梁Y127、可動部Y128を有している。
 第1固定部Y121は、第1外層Y11、第2外層Y13に対して固定された部材である。第1固定部Y121は、第2固定部Y122、第1リブY123、第2リブY124、スパインY125、アームY126、梁Y127、可動部Y128を同じ1つの流体室Y19内に囲むように形成されている。流体室Y19は、第1固定部Y121、第1外層Y11、第2外層Y13によって囲まれた室である。流体室Y19は、第1圧力室PC1に導入する冷媒が流通する。第1固定部Y121、第1外層Y11、第2外層Y13は、全体として基部に対応する。なお、電気配線Y6、Y7は複数の第1リブY123および複数の第2リブY124の温度を変化させて変位させるための電気配線である。
 第1固定部Y121の第1外層Y11および第2外層Y13に対する固定は、冷媒が流体室Y19から第1冷媒孔Y16、第2冷媒孔Y17、第3冷媒孔Y18以外を通ってマイクロバルブY1から漏出することを抑制するような形態で、行われている。
 第2固定部Y122は、第1外層Y11、第2外層Y13に対して固定される。第2固定部Y122は、第1固定部Y121に取り囲まれると共に、第1固定部Y121から離れて配置される。
 複数本の第1リブY123、複数本の第2リブY124、スパインY125、アームY126、梁Y127、可動部Y128は、第1外層Y11、第2外層Y13に対して固定されておらず、第1外層Y11、第2外層Y13に対して変位可能である。
 スパインY125は、中間層Y12の矩形形状の短手方向に伸びる細長い棒形状を有している。スパインY125の長手方向の一端は、梁Y127に接続されている。
 複数本の第1リブY123は、スパインY125の長手方向に直交する方向におけるスパインY125の一方側に配置される。そして、複数本の第1リブY123は、スパインY125の長手方向に並んでいる。各第1リブY123は、細長い棒形状を有しており、温度に応じて伸縮可能となっている。
 各第1リブY123は、その長手方向の一端で第1固定部Y121に接続され、他端でスパインY125に接続される。そして、各第1リブY123は、第1固定部Y121側からスパインY125側に近付くほど、スパインY125の長手方向の梁Y127側に向けてオフセットされるよう、スパインY125に対して斜行している。そして、複数の第1リブY123は、互いに対して平行に伸びている。
 複数本の第2リブY124は、スパインY125の長手方向に直交する方向におけるスパインY125の他方側に配置される。そして、複数本の第2リブY124は、スパインY125の長手方向に並んでいる。各第2リブY124は、細長い棒形状を有しており、温度に応じて伸縮可能となっている。
 各第2リブY124は、その長手方向の一端で第2固定部Y122に接続され、他端でスパインY125に接続される。そして、各第2リブY124は、第2固定部Y122側からスパインY125側に近付くほど、スパインY125の長手方向の梁Y127側に向けてオフセットされるよう、スパインY125に対して斜行している。そして、複数の第2リブY124は、互いに対して平行に伸びている。
 複数本の第1リブY123、複数本の第2リブY124、スパインY125は、全体として、駆動部に対応する。
 アームY126は、スパインY125と非直交かつ平行に伸びる細長い棒形状を有している。アームY126の長手方向の一端は梁Y127に接続されており、他端は第1固定部Y121に接続されている。
 梁Y127は、スパインY125およびアームY126に対して約90°で交差する方向に伸びる細長い棒形状を有している。梁Y127の一端は、可動部Y128に接続されている。アームY126と梁Y127は、全体として、増幅部に対応する。
 アームY126と梁Y127の接続位置YP1、スパインY125と梁Y127の接続位置YP2、梁Y127と可動部Y128の接続位置YP3は、梁Y127の長手方向に沿って、この順に並んでいる。そして、第1固定部Y121とアームY126との接続点をヒンジYP0とすると、中間層Y12の板面に平行な面内におけるヒンジYP0から接続位置YP2までの直線距離よりも、ヒンジYP0から接続位置YP3までの直線距離の方が、長い。例えば、前者の直線距離を後者の直線距離で除算した値は、1/5以下であってもよいし、1/10以下であってもよい。
 可動部Y128は、流体室Y19を流れる冷媒の圧力を調整するものである。可動部Y128は、その外形が、梁Y127の長手方向に対して概ね90°の方向に伸びる矩形形状を有している。この可動部Y128は、流体室Y19内において梁Y127と一体に動くことができる。そして、可動部Y128は、中間層Y12の表裏に貫通する貫通孔Y120を囲む枠形状となっている。したがって、貫通孔Y120も、可動部Y128と一体的に移動する。貫通孔Y120は、流体室Y19の一部である。
 可動部Y128は、上記のように動くことで、第2冷媒孔Y17の貫通孔Y120に対する開度および第3冷媒孔Y18の貫通孔Y120に対する開度を変更する。第1冷媒孔Y16は、貫通孔Y120に対して常に全開で連通している。
 また、第1固定部Y121のうち、複数の第1リブY123と接続する部分の近傍の第1印加点Y129には、図7に示した第1外層Y11の貫通孔Y14を通った電気配線Y6のマイクロバルブY1側端が接続される。また、第2固定部Y122の第2印加点Y130には、図7に示した第1外層Y11の貫通孔Y15を通った電気配線Y7のマイクロバルブY1側端が接続される。
 [バルブモジュールY0の作動]
 ここで、バルブモジュールY0の作動について説明する。マイクロバルブY1への通電が開始されると、電気配線Y6、Y7から第1印加点Y129、第2印加点Y130の間に電圧が印加される。すると、複数の第1リブY123、複数の第2リブY124を電流が流れる。この電流によって、複数の第1リブY123、複数の第2リブY124が発熱する。その結果、複数の第1リブY123、複数の第2リブY124の各々が、その長手方向に膨張する。
 このような熱的な膨張の結果、複数の第1リブY123、複数の第2リブY124は、スパインY125を接続位置YP2側に付勢する。付勢されたスパインY125は、接続位置YP2において、梁Y127を押す。このように、接続位置YP2は付勢位置および調圧用付勢位置に対応する。
 そして、梁Y127とアームY126から成る部材は、ヒンジYP0を支点として、接続位置YP2を力点として、一体に姿勢を変える。その結果、梁Y127のアームY126とは反対側の端部に接続された可動部Y128も、その長手方向の、スパインY125が梁Y127を押す側に、移動する。
 また、マイクロバルブY1への通電が停止されたときは、電気配線Y6、Y7から第1印加点Y129、第2印加点Y130への電圧印加が停止される。すると、複数の第1リブY123、複数の第2リブY124を電流が流れなくなり、複数の第1リブY123、複数の第2リブY124の温度が低下する。その結果、複数の第1リブY123、複数の第2リブY124の各々が、その長手方向に収縮する。
 このような熱的な収縮の結果、複数の第1リブY123、複数の第2リブY124は、スパインY125を接続位置YP2とは反対側に付勢する。付勢されたスパインY125は、接続位置YP2において、梁Y127を引っ張る。その結果、梁Y127とアームY126から成る部材は、ヒンジYP0を支点として、接続位置YP2を力点として、一体に姿勢を変える。その結果、梁Y127のアームY126とは反対側の端部に接続された可動部Y128も、その長手方向の、スパインY125が梁Y127を引っ張る側に、移動する。その移動の結果、可動部Y128は、所定の非通電時位置で停止する。
 このようなマイクロバルブY1への通電時、電気配線Y6、Y7から第1印加点Y129、第2印加点Y130を介してマイクロバルブY1に供給される電力が大きいほど、非通電時位置に対する可動部Y128の移動量も大きくなる。これは、マイクロバルブY1に供給される電力が高いほど、第1リブY123、第2リブY124の温度が高くなり、膨張度合いが大きいからである。
 例えば電気配線Y6、Y7から第1印加点Y129、第2印加点Y130へ印加される電圧がPWM制御される場合、デューティ比が大きいほど非通電時に対する可動部Y128の移動量も大きくなる。
 図9、図10に示すように、可動部Y128が非通電時位置にある場合、貫通孔Y120は、中間層Y12の板面に直交する方向に第1冷媒孔Y16、第3冷媒孔Y18と重なるが、当該方向に第2冷媒孔Y17とは重ならない。第2冷媒孔Y17は、中間層Y12の板面に直交する方向に可動部Y128と重なる。つまりこのとき、貫通孔Y120に対して第1冷媒孔Y16、第3冷媒孔Y18は全開になり、第2冷媒孔Y17は全閉になる。したがってこの場合、第1冷媒孔Y16が第3冷媒孔Y18に可動部Y128を介して連通し、第2冷媒孔Y17は第1冷媒孔Y16とも第3冷媒孔Y18とも遮断される。この結果、第1連通孔YV1と第3連通孔YV3との間で、流路Y81、第1冷媒孔Y16、貫通孔Y120、第3冷媒孔Y18、流路Y83を介した、冷媒の流通が可能となる。
 また、図11、図12に示すように、マイクロバルブY1への通電によって可動部Y128が非通電時位置から最も遠ざかった位置にある場合、そのときの可動部Y128の位置を最大通電時位置という。可動部Y128が最大通電時位置にある場合は、マイクロバルブY1へ供給される電力が制御範囲内の最大となる。例えば、可動部Y128が最大通電時位置にある場合、上述のPWM制御においてデューティ比が制御範囲内の最大値(例えば100%)となる。
 可動部Y128が最大通電時位置にある場合、貫通孔Y120は、中間層Y12の板面に直交する方向に第1冷媒孔Y16、第2冷媒孔Y17と重なるが、当該方向に第3冷媒孔Y18とは重ならない。第3冷媒孔Y18は、中間層Y12の板面に直交する方向に可動部Y128と重なる。つまりこのとき、貫通孔Y120に対して第1冷媒孔Y16、第2冷媒孔Y17は全開になり、第3冷媒孔Y18は全閉になる。したがってこの場合、第1冷媒孔Y16が第2冷媒孔Y17に可動部Y128を介して連通し、第3冷媒孔Y18は第1冷媒孔Y16とも第2冷媒孔Y17とも遮断される。この結果、第1連通孔YV1と第2連通孔YV2との間で、流路Y81、第1冷媒孔Y16、貫通孔Y120、第2冷媒孔Y17、流路Y83を介した、冷媒の流通が可能となる。
 また、マイクロバルブY1に供給される電力を、例えばPWM制御で調整することで、可動部Y128を、非通電時位置と最大通電時位置の間のどの中間位置にでも、停止させることができる。例えば、最大通電時位置と非通電時位置からも等距離の位置(すなわち、中央位置)で可動部Y128を停止させるには、マイクロバルブY1に供給される電力が、制御範囲内の最大値の半分であればいい。例えば、PWM制御のデューティ比が50%であればいい。
 可動部Y128が中間位置に停止している場合、第1冷媒孔Y16、第2冷媒孔Y17、第3冷媒孔Y18は、いずれも貫通孔Y120に連通している。しかし、第2冷媒孔Y17および第3冷媒孔Y18は、貫通孔Y120に対して全開状態ではなく、100%未満かつ0%よりも大きい開度となっている。可動部Y128が中間位置において最大通電時位置に近づくほど、貫通孔Y120に対する第3冷媒孔Y18の開度が減少し、第2冷媒孔Y17の開度が増大する。
 マイクロバルブY1は、梁Y127およびアームY126が、ヒンジYP0を支点とし、接続位置YP2を力点とし、接続位置YP3を作用点とする梃子として機能する。上述の通り、中間層Y12の板面に平行な面内におけるヒンジYP0から接続位置YP2までの直線距離よりも、ヒンジYP0から接続位置YP3までの直線距離の方が、長い。したがって、力点である接続位置YP2の移動量よりも、作用点である接続位置YP3の移動量の方が大きくなる。したがって、熱的な膨張による変位量が、梃子によって増幅されて可動部Y128に伝わる。
 また、マイクロバルブY1における冷媒の流路は、Uターン構造を有している。具体的には、冷媒は、マイクロバルブY1の一方側の面からマイクロバルブY1内に流入し、マイクロバルブY1内を通って、マイクロバルブY1の同じ側の面からマイクロバルブY1外に流出する。そして同様にバルブモジュールY0における冷媒の流路も、Uターン構造を有している。具体的には、冷媒は、バルブモジュールY0の一方側の面からバルブモジュールY0内に流入し、バルブモジュールY0内を通って、バルブモジュールY0の同じ側の面からバルブモジュールY0外に流出する。なお、中間層Y12の板面に直交する方向は、第1外層Y11、中間層Y12、第2外層Y13の積層方向である。
 ここで、バルブモジュールY0は、第1冷媒孔Y16が、第1連通孔YV1、第1凹部330c、350cの第1貫通孔330f、350fを介して圧力室334、354に連通している。また、第2冷媒孔Y17が、第2連通孔YV2、第2凹部330d、350dの第2貫通孔330g、350gを介して入口流路331a、351aに連通している。そして、第3冷媒孔Y18が、第3連通孔YV3、第3凹部330e、350eの第3貫通孔330h、350hを介して出口流路331b、351bに連通している。
 このため、例えば、マイクロバルブY1の可動部Y128が非通電時位置にある場合、第1冷媒孔Y16と第3冷媒孔Y18とが連通し、圧力室334、354が内部流路331、351における出口流路331b、351bに連通する。これにより、圧力室334、354の圧力(すなわち、制御圧力Pm)が内部流路331、351における出口流路331b、351bと同等の低圧圧力Plに低下する。
 この状態からマイクロバルブY1への通電によって、可動部Y128が非通電時位置から最大通電時位置に近づくと、各冷媒孔Y16、Y17、Y18が連通し、圧力室334、354が入口流路331a、351aおよび出口流路331b、354bと連通する。これにより、圧力室334、354の圧力(すなわち、制御圧力Pm)が低圧圧力Plよりも大きく高圧圧力Phよりも小さい中間圧力となる。
 また、マイクロバルブY1への通電によって、可動部Y128が最大通電時位置にある場合、第1冷媒孔Y16と第2冷媒孔Y17が連通し、圧力室334、354が入口流路331a、351aと連通する。これにより、圧力室334、354の圧力(すなわち、制御圧力Pm)が第1絞り部333a、353aの上流側と同等の高圧圧力Phとなる。
 これらを加味して、本実施形態の冷凍サイクル装置30では、マイクロバルブY1に印加される電圧をPWM制御によって変更することで、制御圧力Pmを変化させる。冷凍サイクル装置30は、例えば、図13に示すように、PWM制御のデューティ比を大きくすることで制御圧力Pmを大きくし、PWM制御のデューティ比を小さくすることで制御圧力Pmを小さくする。
 具体的には、制御装置300は、室内冷房時に、第1膨張弁33のマイクロバルブY1に対するPWM制御のデューティ比を最大値にすることで、第1膨張弁33を全開状態に制御する。また、制御装置300は、室内冷房時に、第2膨張弁35のマイクロバルブY1に対するPWM制御のデューティ比を中間値にすることで、第2膨張弁35を絞り状態に制御する。
 制御装置300は、室内暖房時に、第1膨張弁33のマイクロバルブY1に対するPWM制御のデューティ比を中間値にすることで、第1膨張弁33を絞り状態に制御する。また、制御装置300は、室内暖房時に、第2膨張弁35のマイクロバルブY1に対するPWM制御のデューティ比を最小値にすることで、第2膨張弁35を全閉状態に制御する。
 制御装置300は、除湿暖房時に、第1膨張弁33のマイクロバルブY1に対するPWM制御のデューティ比を中間値にすることで、第1膨張弁33を絞り状態に制御する。また、制御装置300は、除湿暖房時に、第2膨張弁35のマイクロバルブY1に対するPWM制御のデューティ比を中間値にすることで、第2膨張弁35を絞り状態に制御する。
 以上説明した各膨張弁33、35は、主弁332、352と圧力調整部337、357とが弁軸方向DRaxに直交する方向において異なる位置に配置されている。このように、圧力調整部337、357と主弁332、352とが弁軸方向DRaxに重ならないレイアウトになっていれば、各膨張弁33、35と各膨張弁33、35の周囲に配置される他の部品とが干渉し難くなる。これにより、各膨張弁33、35および他の部品のレイアウトの自由度が高まるので、設計の自由度の向上を図ることができる。なお、各膨張弁33、35の周囲に配置される他の部品は、冷媒の流れ方向の前後に位置する凝縮器32、室外熱交換器34、冷房用蒸発器36等が挙げられる。
 ここで、各膨張弁33、35には、弁軸方向DRaxにおいて主弁332、352を変位させる空間が必要となる。このため、圧力調整部337、357と主弁332、352とが弁軸方向DRaxにおいて重なり合っていると、各膨張弁33、35の弁軸方向DRaxにおける体格の大型化が避けられない。
 これに対して、本実施形態の圧力調整部337、357は、少なくとも一部が主弁332、352と弁軸方向DRaxに直交する方向に重なり合うレイアウトになっている。このように、圧力調整部337、357の少なくとも一部と主弁332、352とが弁軸方向DRaxに直行する方向に重なり合うレイアウトになっていれば、各膨張弁33、35の弁軸方向DRaxにおける体格の大型化を抑制することができる。
 また、本実施形態の各膨張弁33、35の回路基板338、358は、その板面338a、358aが水平方向に対して交差する姿勢で圧力調整部337、357に接続されている。
 回路基板338、358の周囲には、回路基板338、358に実装される駆動回路の発熱に伴って自然対流が生ずる。回路基板338、358の板面338a、358aが水平方向に対して交差する姿勢になっていると、自然対流によって板面338a、358aに沿って上方に向かう気流が生ずる。このため、回路基板338、358の板面338a、358aが水平方向に対して交差する姿勢で配置されていれば、自然対流によって回路基板338、358を冷却することができる。
 圧力調整部337、357は、冷凍サイクル装置30のうち異なる箇所を流れる冷媒の圧力差を利用して制御流体の圧力を調整可能になっている。このように、冷凍サイクル装置30における冷媒の圧力差を利用して制御流体の圧力を調整する構造とすれば、冷凍サイクル装置30の構成要素とは異なる別の要素によって制御流体の圧力を調整するものに比べて、各膨張弁33、35の簡素化を図ることができる。
 また、圧力調整部337、357は、バルブモジュールY0で構成されている。バルブモジュールY0は、マイクロバルブY1による圧力室334、354の圧力調整によって、弁体332a、352aを開弁側または閉弁側に変位させる構成になっているので、電磁弁や電動弁よりも小型に構成することができる。その理由の1つは、マイクロバルブY1が上述の通り半導体チップにより形成されているということである。また、上述の通り、梃子を利用して熱的な膨張による変位量が増幅されることも、そのような梃子を利用しない電磁弁や電動弁と比べて小型に構成することが可能となる。圧力調整部337、357を小型に構成できると、各膨張弁33、35における圧力調整部337、357が占める割合が小さくなり、圧力調整部337、357以外の部品の設定をより広い範囲で検討することが可能となる。したがって、各膨張弁33、35の設計の自由度を充分に高めることができる。
 具体的には、マイクロバルブY1は、可動部Y128によって第2冷媒孔Y17および第3冷媒孔Y18の開度を調整して圧力室334、354の圧力を変化させる構成になっている。これによれば、マイクロバルブY1による圧力室334、354の圧力調整によって、弁体332a、352aを閉弁側および開弁側に変位させることができる。
 また、マイクロバルブY1およびバルブモジュールY0はUターンの構造の冷媒流路を有しているので、ボデー部330、350の掘り込みを少なくすることができる。つまり、バルブモジュールY0を配置するためにボデー部330、350に形成された凹みの深さを抑えることができる。その理由は以下の通りである。
 例えば、バルブモジュールY0がUターンの構造の冷媒流路を有しておらず、バルブモジュールY0のボデー部330、350側の面に冷媒入口があり、バルブモジュールY0の反対側の面に冷媒出口があったとする。その場合、バルブモジュールY0の両面に、冷媒流路を形成する必要がある。したがって、バルブモジュールY0の両面の冷媒流路までボデー部330、350に収容しようとすると、バルブモジュールY0を配置するためにボデー部330、350に形成しなければならない凹みが深くなってしまう。また、マイクロバルブY1自体が小型であるので、ボデー部330、350の掘り込みを更に低減することができる。
 また、マイクロバルブY1の両面のうち、第1冷媒孔Y16、第2冷媒孔Y17が形成される面とは反対側の面に電気配線Y6、Y7を配置した場合、電気配線Y6、Y7を大気雰囲気により近い側に置くことができる。したがって、電気配線Y6、Y7への冷媒雰囲気の影響を低減するためのハーメチック等のシール構造が不要となる。その結果、マイクロバルブY1の小型化が実現できる。
 また、マイクロバルブY1が軽量であることから、各膨張弁33、35が軽量化される。マイクロバルブY1の消費電力が小さいので、各膨張弁33、35が省電力化される。
 (第1実施形態の変形例)
 第1実施形態では、各膨張弁33、35として、基本構造が同様に構成されているものを例示したが、各膨張弁33、35は、これに限定されない。各膨張弁33、35は、異なる構造になっていてもよい。例えば、第1膨張弁33および第2膨張弁35は、一方の膨張弁が第1実施形態で説明したものと同様に構成され、他方の膨張弁がソレノイドや電動モータを含む電気式膨張弁で構成されていてもよい。なお、第2膨張弁35は、全閉機能が付いていないものであってもよい。
 第1実施形態では、各膨張弁33、35として、回路基板338、358の板面338a、358aが上下方向DRgに並行となる姿勢で圧力調整部337、357に接続されているものを例示したが、各膨張弁33、35は、これに限定されない。各膨張弁33、35は、例えば、回路基板338、358の板面338a、358aが上下方向DRgおよび水平方向それぞれに交差する姿勢で圧力調整部337、357に接続されていてもよい。これによっても、自然対流によって回路基板338、358を冷却することができる。
 第1実施形態では、各膨張弁33、35が実質的に同じもので構成されているものを例示したが、各膨張弁33、35はこれに限定されない。各膨張弁33、35は、少なくとも一部が異なる構造になっていてもよい。このことは、第1実施形態と異なる実施形態においても同様である。なお、「実質的に同じ」とは、本件の出願時点での製造技術において制作可能な程度に同一であることを意味するものである。このため、本件の出願時点での製造技術において生じ得る誤差等により生ずる差は同一として解釈することができる。
 (第2実施形態)
 本実施形態について、図14~図20を参照して説明する。本実施形態の冷凍サイクル装置30は、各膨張弁33、35の一部が第1実施形態で説明したものと異なっている。本実施形態では、第1実施形態と異なる部分について主に説明する。
 図14に示すように、各膨張弁33、35は、直方体形状のボデー部330、350を備える。ボデー部330、350には、上面から下面まで貫通する貫通孔330j、350j、上面から下方に向かう有底孔330k、350kが形成されている。貫通孔330j、350jと有底孔330k、350kとは、ボデー部330、350において、弁軸方向DRaxに直交する方向において異なる位置に形成されている。
 各膨張弁33、35は、貫通孔330j、350jに主弁332、352が配置され、有底孔330k、350kに圧力調整部337、357が配置されている。これにより、主弁332、352および圧力調整部337、357は、弁軸方向DRaxに直交する方向において異なる位置に配置される。換言すれば、圧力調整部337、357は、主弁332、352に対して弁軸方向DRaxに直交する方向にオフセットして配置される。
 圧力調整部337、357は、少なくとも一部が、弁軸方向DRaxに直交する方向において主弁332、352と重なり合うように配置されている。これにより、圧力調整部337、357と圧力室334、354とが隣接して配置される構造になっている。
 図15に示すように、主弁332、352は、弁体332a、352a、支持部332b、352b、第1バネ332c、352c、第2バネ332d、352d、調整ネジ332e、352e、作動棒332f、352f、キャップ332i、352iを有する。
 キャップ332i、352i、第2バネ332d、352d、作動棒332f、352f、弁体332a、352a、支持部332b、352b、第1バネ332c、352c、調整ネジ332e、352eは、この順序で弁軸方向DRaxに並んで配置されている。
 本実施形態の主弁332、352は、ストッパ332g、352gが仕切部332h、352hを介して作動棒332f、352fの端部に固定されている。すなわち、主弁332、352は、ストッパ332g、352g、仕切部332h、352h、作動棒332f、352fが、この順序で弁軸方向DRaxに並んでいる。仕切部332h、352hの外周には、シール部材としてのOリングS1が設けられている。また、キャップ332i、352iの外周および調整ネジ332e、352eの外周にもシール部材としてのOリングS2、S3、S4が設けられている。
 ボデー部330、350には、第1連接管339a、359a、第2連接管339b、359b、第3連接管339c、359cが接続されている。第1連接管339a、359a、第2連接管339b、359b、第3連接管339c、359cは、キャピラリチューブ等の細管によって構成されている。第1連接管339a、359aは、後述の第2流路Z23と圧力室334、354とを連通させる管である。第2連接管339b、359bは、後述の第1流路Z22と入口流路331a、351aとを連通させる管である。第3連接管339c、359cは、後述の第3流路Z24と出口流路331b、351bとを連通させる管である。
 圧力調整部337、357は、図16および図17に示すバルブモジュールZ0で構成されている。バルブモジュールZ0は、有底孔330k、350kに嵌め込むことが可能なように、有底孔330k、350kに対応する外形状を有している。
 本実施形態のバルブモジュールZ0は、マイクロバルブZ1、バルブケーシングZ2、3つのOリングZ4、Z5a、Z5b、2本のターミナルZ6、Z7、リッドZ8を有している。
 図18および図19に示すように、バルブケーシングZ2は、略円柱形状になっている。バルブケーシングZ2は、底部を構成する下端部に、上端部に向かって窪んだ凹部Z21が形成されている。図19に示すように、バルブケーシングZ2には、第1流路Z22、第2流路Z23、第3流路Z24が形成されている。
 第1流路Z22は、バルブケーシングZ2の凹部Z21の内側の空間によって形成されている。第1流路Z22は、第2連接管339b、359bを介して入口流路331a、351aに連通している。
 第2流路Z23は、バルブケーシングZ2の側面から下端部までバルブケーシングZ2を貫通する。第2流路Z23は、第1連接管339a、359aを介して圧力室334、354に連通している。第2流路Z23は、第2横孔Z23aと第2縦孔Z23bを有する。第2横孔Z23aは、バルブケーシングZ2の軸心CLmに交差する方向に延びる貫通孔である。第2縦孔Z23bは、第2横孔Z23aの途中で分岐してバルブケーシングZ2の軸心CLmに沿って下端部まで延びている。第2流路Z23は、バルブケーシングZ2の側面のうち、上端部と下端部との略中間となる位置に開口している。また、第2流路Z23は、図17に示すように、凹部Z21の底面に開口している。
 第3流路Z24は、バルブケーシングZ2の側面から下端部までバルブケーシングZ2を貫通する。第3流路Z24は、第3連接管339c、359cを介して出口流路331b、351bに連通している。第3流路Z24は、第3横孔Z24aと第3縦孔Z24bを有する。第3横孔Z24aは、バルブケーシングZ2の軸心CLmに交差する方向に延びる貫通孔である。第3縦孔Z24bは、第3横孔Z24aの途中で分岐してバルブケーシングZ2の軸心CLmに沿って下端部まで延びている。第3流路Z24は、バルブケーシングZ2の側面のうち、第2流路Z23の開口よりも上端部に近い位置に開口している。また、第3流路Z24は、図17に示すように、凹部Z21の底面のうち、第2流路Z23の開口とは異なる位置に開口している。なお、第2流路Z23および第3流路Z24は、互いに連通しないように、バルブケーシングZ2において異なる位置に形成されている。
 図19に示すように、バルブケーシングZ2の側面には、第1溝部Z25、第2溝部Z26、第3溝部Z27が形成されている。第1溝部Z25、第2溝部Z26、第3溝部Z27は、バルブケーシングZ2の周方向に沿って延びている。
 第1溝部Z25は、バルブケーシングZ2の側面のうち、第2流路Z23が開口する位置の下方に形成されている。第1溝部Z25には、OリングZ4が取り付けられている。このOリングZ4は、バルブケーシングZ2と有底孔330k、350kとの隙間からの冷媒漏れを抑制する。
 第2溝部Z26は、バルブケーシングZ2の側面のうち、第2流路Z23の開口と第3流路Z24の開口との間に形成されている。第2溝部Z26には、OリングZ5aが取り付けられている。このOリングZ5aは、バルブケーシングZ2と有底孔330k、350kとの隙間からの冷媒漏れを抑制する。
 第3溝部Z27は、バルブケーシングZ2の側面のうち、第3流路Z24が開口する位置よりも上方に形成されている。第3溝部Z27には、OリングZ5bが取り付けられている。このOリングZ5bは、バルブケーシングZ2と有底孔330k、350kとの隙間からの冷媒漏れを抑制する。
 ここで、第2流路Z23は、バルブケーシングZ2の側面のうち第2流路Z23が形成された開口と有底孔330k、350kの内壁との間の隙間を介して第1連接管339a、359aに連通する。第3流路Z24は、バルブケーシングZ2の側面のうち第3流路Z24が形成された開口と有底孔330k、350kの内壁との間の隙間を介して第3連接管339c、359cに連通する。
 バルブケーシングZ2は、上端部にリッドZ8が配置されるとともに、上端部からターミナルZ6、Z7の一部が突き出ている。ターミナルZ6、Z7は、回路基板338、358とマイクロバルブZ1とを電気的に接続する配線部品である。ターミナルZ6、Z7は、一部がバルブケーシングZ2の上端部から突き出るように、バルブケーシングZ2にインサート成形される。リッドZ8は、略中央に窓部Z81が形成された環状の部品である。リッドZ8は、有底孔330k、350kに対してカシメ、ネジ、溶接等の接合手段によって固定される。リッドZ8の窓部Z81は、ターミナルZ6、Z7が通すための挿通孔である。
 本実施形態のマイクロバルブZ1は、第1実施形態で説明したマイクロバルブY1と同様に構成されている。本実施形態のマイクロバルブZ1の構成要素のうち、第1実施形態のマイクロバルブY1の構成要素と共通するものは、符号の先頭に付した「Y1」を「Z1」に変更して表記する。例えば、マイクロバルブZ1の構成要素のうち、第1実施形態の第1冷媒孔Y16、第2冷媒孔Y17、第3冷媒孔Y18に対応するものは、第1冷媒孔Z16、第2冷媒孔Z17、第3冷媒孔Z18と表記する。
 図20に示すように、マイクロバルブZ1は、バルブケーシングZ2の凹部Z21に配置されている。図示しないが、マイクロバルブZ1は、凹部Z21に設けられた支持部材によって支持されている。
 マイクロバルブZ1は、第1冷媒孔Z16、第2冷媒孔Z17、第3冷媒孔Z18が形成された面が、凹部Z21の底面に向く姿勢で凹部Z21の内側に配置されている。具体的には、マイクロバルブZ1は、第1冷媒孔Z16が第2流路Z23の開口と向き合うとともに、第2冷媒孔Z17が第1流路Z22と向き合い、さらに、第3冷媒孔Z18が第3流路Z24の開口と向き合うように、凹部Z21の内側に配置されている。これにより、マイクロバルブZ1は、第1冷媒孔Z16が第2流路Z23に連通し、第2冷媒孔Z17が第1流路Z22に連通し、第3冷媒孔Z18が第3流路Z24に連通する。
 また、マイクロバルブZ1は、第1冷媒孔Z16、第2冷媒孔Z17、第3冷媒孔Z18が形成された面の反対側に電極Z28が設けられている。この電極Z28は、マイクロバルブZ1をターミナルZ6、Z7に電気的に接続する部品である。電極Z28の一部およびマイクロバルブZ1の一部は、モールド樹脂部Z29によって封止されている。
 マイクロバルブZ1は、電極Z28、ターミナルZ6、Z7を介して回路基板338、358に接続されている。マイクロバルブZ1は、回路基板338、358からの電力供給によって駆動される。
 図14に示すように、回路基板338、358は、回路基板338、358の板面338a、358aが水平方向に並行となる姿勢で圧力調整部337、357のターミナルZ6、Z7に接続されている。
 その他の構成は、第1実施形態と同様である。本実施形態の各膨張弁33、35は、第1実施形態と共通の構成または均等な構成から奏される効果を第1実施形態と同様に得ることができる。
 特に、各膨張弁33、35は、ボデー部330、350の貫通孔330j、350jに上下方向DRgから主弁332、352を取り付けるとともに、有底孔330k、350kに上下方向DRgから圧力調整部337、357を取り付ける構造になっている。これによると、ボデー部330、350に対する主弁332、352および圧力調整部337、357の組付け作業が容易となる。
 (第2実施形態の変形例)
 第2実施形態では、ボデー部330、350の貫通孔330j、350jおよび有底孔330k、350kが上下方向DRgに沿って延びているものを例示したが、ボデー部330、350は、これに限定されない。ボデー部330、350は、例えば、貫通孔330j、350jおよび有底孔330k、350kが弁軸方向DRaxに直交する方向において異なる位置に形成されていれば、上記のものと異なる態様になっていてもよい。
 第2実施形態では、回路基板338、358の板面338a、358aが水平方向に沿って延びる姿勢で圧力調整部337、357に回路基板338、358が接続されているものを例示したが、これに限定されない。回路基板338、358は、その板面338a、358aが水平方向に対して交差する姿勢で圧力調整部337、357に接続されていてもよい。
 (第3実施形態)
 本実施形態について、図21~図27を参照して説明する。本実施形態では、第2実施形態と異なる部分について主に説明する。
 本実施形態の冷凍サイクル装置30は、冷媒の蒸発時の吸熱作用によって車両に搭載されたバッテリ等の冷却対象機器を冷却する機器冷却を実行可能になっている。図21に示すように、冷凍サイクル装置30は、凝縮器32の冷媒出口側に、第2膨張弁35および冷房用蒸発器36と並列になるように、第3膨張弁39および機器用蒸発器40が接続されている。
 第3膨張弁39は、室外熱交換器34と第2膨張弁35とを繋ぐ冷媒配管から分岐する分岐配管に設けられている。第3膨張弁39は、機器冷却時に、室外熱交換器34を通過した冷媒を減圧する機器冷却用の膨張弁である。第3膨張弁39は、絞り開度が最小となる全閉状態において、冷媒の流れが遮断される構造になっている。
 本実施形態の第1膨張弁33、第2膨張弁35、および第3膨張弁39は、一部の部品が統合された1つの統合弁VDとして構成されている。統合弁VDは、本開示の弁装置を構成している。統合弁VDの詳細は後述する。
 第3膨張弁39の冷媒出口側には、機器用蒸発器40が接続されている。機器用蒸発器40は、第3膨張弁39を通過した冷媒を蒸発させる熱交換器である。具体的には、機器用蒸発器40は、冷媒が流通する冷媒流路部401と冷却回路LCの熱媒体が流通する熱媒体流路部402を備え、冷媒と冷却回路LCを流れる熱媒体とを熱交換させて、熱媒体を冷却する冷却用熱交換器を構成している。なお、冷却回路LCは、冷媒の蒸発潜熱を冷却対象機器の冷却を行うための冷熱源として利用するための回路である。図示しないが、冷却回路LCには、バッテリから吸熱するための吸熱器等が設けられている。
 機器用蒸発器40の冷媒出口側には、蒸発圧力調整弁41を介して、冷房用蒸発器36と圧縮機31とを接続する冷媒配管に接続されている。蒸発圧力調整弁41は、機器用蒸発器40を通過する冷媒の圧力を所定の設定圧力値以上に維持するものである。蒸発圧力調整弁41は、例えば、ベローズ式の弁で構成される。冷凍サイクル装置30は、蒸発圧力調整弁41を備えることで、例えば、冷却対象機器の冷却と車室内の冷房を同時に行う際、機器用蒸発器40を通過する冷媒の圧力を維持しつつ、冷房用蒸発器36を通過する冷媒の圧力を低下させることができる。
 続いて、制御装置300は、図22に示すように、制御装置300の入力側に、空調用センサ群301に加えて、機器冷却用センサ303が接続されている。機器冷却用センサ303は、例えば、冷却対象機器の温度を検出する温度センサを含んでいる。
 制御装置300の出力側には、圧縮機31、第1膨張弁33、室外ファン341、第2膨張弁35、室内ファン361、バイパス弁37、第3膨張弁39が接続されている。制御装置300は、第3膨張弁39の絞り開度を状況に応じて変更することができる。
 冷凍サイクル装置30は、空調用センサ群301、操作パネル302、機器冷却用センサ303による入力を受け付けることで、冷凍サイクル装置30の運転モードを適宜切り替える。
 具体的には、制御装置300は、各膨張弁33、35、39およびバイパス弁37等を制御して冷凍サイクル装置30における冷媒の流れ方を変更することで、冷凍サイクル装置30の運転モードを切り替える。本実施形態の冷凍サイクル装置30は、室内冷房、室内暖房、除湿暖房、機器冷却といった4つの運転モードに設定可能になっている。
 ここで、室内冷房、室内暖房、および除湿暖房を行う際には、図23に示すように、制御装置300によって第3膨張弁39が全閉状態に制御され、第1膨張弁33、第2膨張弁35が第1実施形態と同様に制御される。室内冷房、室内暖房、および除湿暖房を行う際の冷凍サイクル装置30の作動は第1実施形態と同様である。以下、機器冷却時の冷凍サイクル装置30の作動について説明する。
 [機器冷却]
 機器冷却は、冷房用蒸発器36で所望の温度に冷却した空気を車室内へ吹き出しつつ、冷却対象機器を所望の温度に冷却する運転モードである。機器冷却は、例えば、運転モード切替スイッチによって運転モードが冷房モードに設定された状態で、冷却対象機器の温度が適正温度を上回ると冷凍サイクル装置30によって実行される。この機器冷却時には、ヒータ回路HCにおける熱媒体の流れが停止される。
 制御装置300は、室内冷房時における各種機器の作動状態を空調用センサ群301、機器冷却用センサ303の検出信号および操作パネル302の操作信号を用いて適宜決定する。例えば、制御装置300は、図23に示すように、第1膨張弁33が全開状態となり、第2膨張弁35および第3膨張弁39が絞り状態となるように各膨張弁33、35、39を制御する。また、制御装置300は、バイパス弁37を閉状態に制御する。制御装置300は、圧縮機31、各ファン341、361等の他の機器に対する制御信号について、空調用センサ群301の検出信号および操作パネル302の操作信号を用いて適宜決定する。
 冷凍サイクル装置30は、機器冷却時に、圧縮機31から吐出された高圧冷媒が凝縮器32に流入する。機器冷却時には、ヒータ回路HCに熱媒体が流れていないので、凝縮器32に流入した冷媒は、殆ど放熱することなく第1膨張弁33に流入する。
 機器冷却時には、第1膨張弁33が全開状態になっているので、第1膨張弁33に流入した冷媒は、殆ど減圧されることなく室外熱交換器34に流入する。室外熱交換器34に流入した冷媒は、外気に放熱して凝縮する。
 機器冷却時には、第2膨張弁35および第3膨張弁39が絞り状態になっているので、室外熱交換器34を通過した冷媒が第2膨張弁35および第3膨張弁39それぞれに流入する。
 第2膨張弁35に流入した冷媒は、第2膨張弁35にて所望の圧力となるまで減圧される。第2膨張弁35で減圧された冷媒は、冷房用蒸発器36に流入する。冷房用蒸発器36に流入した冷媒は、室内ファン361からの送風空気から吸熱して蒸発する。車室内には、冷房用蒸発器36で所望の温度に冷却された空気が吹き出される。
 一方、第3膨張弁39で減圧された冷媒は、機器用蒸発器40に流入する。機器用蒸発器40に流入した冷媒は、冷却回路LCを流れる熱媒体から吸熱して蒸発する。この際、冷媒の蒸発時の吸熱作用によって冷却回路LCを流れる熱媒体が冷却されるので、機器用蒸発器40で冷却された熱媒体によって冷却対象機器が冷却される。
 冷房用蒸発器36および機器用蒸発器40を通過した冷媒は、圧縮機31に吸入される。圧縮機31に吸入された冷媒は、圧縮機31にて再び高圧冷媒となるまで圧縮される。
 以上の如く、機器冷却時には、冷房用蒸発器36で冷却された空気が車室内に吹き出されるとともに、機器用蒸発器40で冷却された熱媒体によって冷却対象機器が冷却される。
 次に、統合弁VDの詳細について図24~図27を参照しつつ説明する。図24および図25に示すように、統合弁VDは、各膨張弁33、35、39におけるボデー部BPおよび回路基板CBが統合されている。
 ボデー部BPは、各膨張弁33、35、39の外殻を形成するものである。ボデー部BPは、例えば、アルミニウム合金製の金属ブロックに孔開け加工等が施されたものである。図26および図27に示すように、ボデー部BPには、第1内部流路331、第2内部流路351、第3内部流路391が形成されている。
 第1内部流路331は、第1膨張弁33の一部を構成する冷媒流路であって、凝縮器32を通過した冷媒が通過する。第2内部流路351は、第2膨張弁35の一部を構成する冷媒流路であって、室外熱交換器34を通過した冷媒が通過する。第3内部流路391は、第3膨張弁39の一部を構成する冷媒流路であって、室外熱交換器34を通過した冷媒が通過する。
 図25に示すように、ボデー部BPの正面には、第1内部流路331の入口部330aと出口部330b、第2内部流路351の出口部350b、第3内部流路391の出口部390bが形成されている。ボデー部BPの側面には、第2内部流路351の入口部350aおよび第3内部流路391の入口部391aが形成されている。
 図24に示すように、ボデー部BPには、ボデー部BPの正面から背面まで貫通する3つの貫通孔330j、350j、390j、上面から下方に向かう3つの有底孔330k350k、390kが形成されている。
 3つの貫通孔330j、350j、390jは、横一列に並ぶように水平方向に延びている。3つの有底孔330k、350k、390kは、縦一列に並ぶように上下方向DRに延びている。3つの貫通孔330j、350j、390jおよび3つの有底孔330k、350k、390kは、ボデー部BPにおいて、弁軸方向DRaxに直交する方向において異なる位置に形成されている。弁軸方向DRaxは、各膨張弁33、35、39の主弁332、352、392の弁部分が変位する方向である。本実施形態では、各膨張弁33、35、39の主弁332、352、392の弁部分の変位する方向が同じ方向になっている。なお、各膨張弁33、35、39の主弁332、352、392の弁部分の変位する方向が異なる場合、弁軸方向DRaxは、各膨張弁33、35、39で異なる方向となる。
 統合弁VDは、圧力調整部337、357、397および主弁332、352、392を一組とする複数の弁ユニットUT1、UT2、UT3を備える。具体的には、統合弁VDは、第1弁ユニットUT1、第2弁ユニットUT2、第3弁ユニットUT3を備える。
 第1弁ユニットUT1は、第1膨張弁33の圧力調整部337および主弁332を一組とする弁ユニットである。第1膨張弁33は、貫通孔330jに主弁332が配置され、有底孔330kに圧力調整部337が配置されている。これにより、第1膨張弁33の主弁332および圧力調整部337は、弁軸方向DRaxに直交する方向において異なる位置に配置される。換言すれば、第1膨張弁33の圧力調整部337は、第1膨張弁33の主弁332に対して弁軸方向DRaxに直交する方向にオフセットして配置される。圧力調整部337は、弁軸方向DRaxに直交する方向において、絞り部333aと重なり合う位置に配置されている。これにより、第1弁ユニットUT1は、弁軸方向DRaxに直交する方向の体格が抑えられている。なお、第1膨張弁33の主弁332および圧力調整部337は、第2実施形態と同様に構成されている。
 第2弁ユニットUT2は、第2膨張弁35の圧力調整部357および主弁352を一組とする弁ユニットである。第2膨張弁35は、貫通孔350jに主弁352が配置され、有底孔350kに圧力調整部357が配置されている。これにより、第2膨張弁35の主弁352および圧力調整部357は、弁軸方向DRaxに直交する方向において異なる位置に配置される。換言すれば、第2膨張弁35の圧力調整部357は、第2膨張弁35の主弁352に対して弁軸方向DRaxに直交する方向にオフセットして配置される。圧力調整部357は、弁軸方向DRaxに直交する方向において、絞り部353aと重なり合う位置に配置されている。これにより、第2弁ユニットUT2は、弁軸方向DRaxに直交する方向の体格が抑えられている。なお、第2膨張弁35の主弁352および圧力調整部357は、第2実施形態と同様に構成されている。
 第3弁ユニットUT3は、第3膨張弁39の圧力調整部397および主弁392を一組とする弁ユニットである。第3膨張弁39は、貫通孔390iに主弁392が配置され、有底孔390kに圧力調整部397が配置されている。これにより、第3膨張弁39の主弁392および圧力調整部397は、弁軸方向DRaxに直交する方向において異なる位置に配置される。換言すれば、第3膨張弁39の圧力調整部397は、第3膨張弁39の主弁392に対して弁軸方向DRaxに直交する方向にオフセットして配置される。圧力調整部397は、弁軸方向DRaxに直交する方向において、絞り部393aと重なり合う位置に配置されている。これにより、第3弁ユニットUT3は、弁軸方向DRaxに直交する方向の体格が抑えられている。
 ここで、図26に示すように、第3膨張弁39の主弁392は、弁体392a、支持部392b、第1バネ392c、第2バネ392d、調整ネジ392e、作動棒392f、ストッパ392g、仕切部392h、キャップ392iを有する。
 弁体392a、支持部392b、第1バネ392cは、内部流路391の途中に設けられた弁室393に収容されている。弁室393には、絞り部393aが設けられるとともに、弁体392aの弁座393bが形成されている。また、第2バネ392dは、圧力室394に配置されている。この圧力室394には、第3膨張弁39の圧力調整部397によって圧力調整された冷媒が制御流体として導入される。なお、主弁392の他の構成要素は、第1、第2実施形態で説明した主弁332、352と同様であるため、詳細な説明を省略する。
 第3膨張弁39の圧力調整部397は、バルブモジュールZ0で構成されている。バルブモジュールZ0は、第2実施形態で説明したものと同様であるため、その説明を省略する。
 図26に示すように、ボデー部BPには、第3膨張弁39の圧力調整部397の第2流路Z23と圧力室394とを連通させる第1圧力導入路Lp1が形成されている。図示しないが、ボデー部BPには、第1膨張弁33の圧力調整部337の第2流路Z23と圧力室334とを連通させる第1圧力導入路および第2膨張弁35の圧力調整部357の第2流路Z23と圧力室354とを連通させる第1圧力導入路が形成されている。これにより、各膨張弁33、35、39の圧力調整部337、357、397で調整された制御流体の圧力が、各膨張弁33、35、39の圧力室334、354、394に導入される。
 また、図27に示すように、ボデー部BPには、圧縮機31から吐出される冷媒と同等の圧力を有する高圧冷媒が流れる高圧流路L1、圧縮機31に吸入される冷媒と同等の圧力を有する低圧冷媒が流れる低圧流路L2が形成されている。
 高圧流路L1は、ボデー部BPに形成された第2圧力導入路Lp2を介して各膨張弁33、35、39の圧力調整部337、357、397の第1流路Z22に接続されている。これにより、各膨張弁33、35、39の第1流路Z22には、高圧冷媒の圧力が導入される。
 一方、低圧流路L2は、ボデー部BPに形成された第3圧力導入路Lp3を介して各膨張弁33、35、39の圧力調整部337、357、397の第3流路Z24に接続されている。これにより、各膨張弁33、35、39の第3流路Z24には、低圧冷媒の圧力が導入される。
 また、図27に示すように、各膨張弁33、35、39の圧力調整部337、357、397のターミナルZ6、Z7は、1つの回路基板CBに接続されている。この回路基板CBには、各膨張弁33、35、39の圧力調整部337、357、397それぞれの駆動回路が実装されている。
 回路基板CBは、その板面が各膨張弁33、35、39の圧力調整部337、357、397の並び方向に沿って延びる姿勢で、圧力調整部337、357、397のターミナルZ6、Z7に接続されている。
 その他の構成は、第2実施形態と同様である。本実施形態の各膨張弁33、35、39は、第1実施形態および第2実施形態と共通の構成または均等な構成から奏される効果を第1実施形態および第2実施形態と同様に得ることができる。
 本実施形態の冷凍サイクル装置30は、各膨張弁33、35、39が1つの統合弁VDとして統合されている。これによると、各膨張弁33、35、39を簡素に実現できるとともに、冷凍サイクル装置30の搭載性を向上させることができる。
 この統合弁VDは、各弁ユニットUT1、UT2、UT3の圧力調整部337、357、397が、弁軸方向DRaxにおいて主弁332、352、392と重ならないように配置されている。すなわち、各弁ユニットUT1、UT2、UT3の圧力調整部337、357、397は、主弁332、352、392が配置される位置に対して弁軸方向DRaxに直交する方向にずれた位置に配置されている。これによれば、統合弁VDと統合弁VDの周囲に配置される他の部品とが干渉し難くなり、統合弁VDおよび他の部品のレイアウトの自由度が高まるので、設計の自由度の向上を図ることができる。
 (第3実施形態の変形例)
 第3実施形態では、各弁ユニットUT1、UT2、UT3の圧力調整部337、357、397が、弁軸方向DRaxにおいて主弁332、352、392と重ならないように配置されているものを例示したが、統合弁VDは、これに限定されない。統合弁VDは、例えば、各弁ユニットUT1、UT2、UT3のうち、一部の圧力調整部337、357、397が、弁軸方向DRaxにおいて主弁332、352、392と重ならないように配置されていてもよい。
 第3実施形態では、各膨張弁33、35、39が統合されたものを例示したが、統合弁VDは、これに限らず、例えば、バイパス弁37等の他の機器が統合されていたり、各膨張弁33、35、39の一部が統合されていたりしてもよい。
 また、第3実施形態で説明した統合弁VDは、各膨張弁33、35、39の駆動回路が共通の回路基板CBに実装されているが、これに限らず、例えば、各膨張弁33、35、39の駆動回路が異なる基板に実装されていてもよい。
 第3実施形態では、各膨張弁33、35、39の圧力調整部337、357、397および主弁332、352、392が実質的に同じもので構成されているものを例示したが、各膨張弁33、35、39はこれに限定されない。各膨張弁33、35、39は、圧力調整部337、357、397および主弁332、352、392の少なくとも一部が異なる構造になっていてもよい。
 第3実施形態では、回路基板CBの板面が水平方向に沿って延びる姿勢で圧力調整部337、357、397に回路基板CBが接続されているものを例示したが、これに限定されない。回路基板CBは、その板面が水平方向に対して交差する姿勢で圧力調整部337、357、397に接続されていてもよい。
 第3実施形態では、冷房モード時に機器冷却が実行されるものを例示したが、機器冷却は、これに限らず、暖房モード時や除湿暖房モード時に実行されるようになっていてもよい。また、機器冷却は、室内の空調を行っていない状況下で実行されるようになっていてもよい。
 (他の実施形態)
 以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
 上述の実施形態では、各膨張弁33、35、39の主弁332、352、392と圧力調整部337、357、397とが弁軸方向DRaxに直交する方向に重なり合っているものを例示したが、各膨張弁33、35、39は、これに限定されない。各膨張弁33、35、39は、少なくとも1つが、主弁332、352、392と圧力調整部337、357、397とが弁軸方向DRaxに直交する方向に重なり合っていなくてもよい。また、各膨張弁33、35、39の姿勢は、上述の実施形態で示したものに限定されない。例えば、各膨張弁33、35、39は、弁軸方向DRaxが上下方向DRgと交差して延びる姿勢で搭載されていてもよい。
 上述の実施形態等のマイクロバルブY1、Z1は、非通電時に絞り開度が最小となる常閉弁ではなく、非通電時に絞り開度が最大となる常開弁として構成されていてもよい。
 上述の実施形態では、複数本の第1リブY123、複数本の第2リブY124が通電されることで発熱し、その発熱によって自らの温度が上昇することで膨張する。しかし、これら部材は、温度が変化すると長さが変化する形状記憶材料から構成されていてもよい。
 上述の実施形態では、冷凍サイクル装置30における冷媒の圧力差を利用して制御流体の圧力を調整するものを例示したが、圧力調整部337、357、397は、これに限定されない。圧力調整部337、357、397は、例えば、冷凍サイクル装置30とは異なる機器で生ずる流体の圧力差を利用して制御流体の圧力を調整するようになっていてもよい。
 上述の実施形態の如く、圧力調整部337、357、397にマイクロバルブY1、Z1を用いることが望ましいが、圧力調整部337、357、397は、これに限定されない。圧力調整部337、357、397は、例えば、電動モータ、磁気カップリング等の出力を利用して圧力室334、354、394の圧力を調整するようになっていてもよい。
 上述の実施形態では、各膨張弁33、35、39がポペット式の弁構造になっているものを例示したが、各膨張弁33、35、39は、例えば、スプール式の弁構造またはスライド式の弁構造になっていてもよい。
 上述の実施形態では、本開示の弁装置を蒸気圧縮式の冷凍サイクル装置30に適用した例について説明したが、本開示の弁装置は、冷凍サイクル装置30以外の様々なシステムに対して広く適用可能である。
 上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。
 上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路で構成されたプロセッサとの組合せにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、弁装置は、制御流体の圧力を調整する圧力調整部と、制御流体の圧力に応じて所定の弁軸方向に変位する弁部材を有する主弁と、を備える。圧力調整部および主弁は、弁軸方向に直交する方向において異なる位置に配置されている。
 第2の観点によれば、圧力調整部は、圧力調整部の少なくとも一部が主弁と弁軸方向に直交する方向に重なり合っている。
 弁装置には、弁軸方向において主弁を変位させる空間が必要であり、圧力調整部と主弁とが弁軸方向において重なり合うレイアウトになっていると、弁装置の弁軸方向における体格の大型化が避けられない。
 これに対して、上記の如く、圧力調整部の少なくとも一部と主弁とが弁軸方向に直行する方向に重なり合うレイアウトになっていれば、弁装置の弁軸方向における体格の大型化を抑制することができる。
 第3の観点によれば、弁装置は、制御流体の圧力を調整する圧力調整部および制御流体の圧力に応じて所定の弁軸方向に変位する弁部分を有する主弁を一組とする複数の弁ユニットを備える。複数の弁ユニットのうち、少なくとも1つの弁ユニットに含まれる圧力調整部は、弁軸方向において主弁と重ならないように、主弁が配置される位置に対して弁軸方向に直交する方向にずれた位置に配置されている。
 第4の観点によれば、弁装置は、圧力調整部が取り付けられるボデー部と、圧力調整部を駆動するための駆動回路が形成された回路基板と、を備える。回路基板は、回路基板の板面が水平方向に対して交差する姿勢で圧力調整部に接続されている。
 回路基板の周囲には、駆動回路の発熱に伴って自然対流が生ずる。回路基板の板面が水平方向に対して交差する姿勢になっていると、自然対流によって回路基板の板面に沿って上方に向かう気流が生ずる。このため、回路基板の板面が水平方向に対して交差する姿勢で配置されていれば、自然対流によって回路基板を冷却することができる。
 第5の観点によれば、圧力調整部は、制御流体の圧力を調整するための流体室を有する弁部品を含む。弁部品は、流体室が形成される基部と、自らの温度が変化すると変位する駆動部と、駆動部の温度の変化による変位を増幅する増幅部と、増幅部によって増幅された変位が伝達されて動くことで、流体室を流れる冷媒の圧力を調整する可動部と、を有する。弁部品では、駆動部が温度の変化によって変位したときに、駆動部が付勢位置において増幅部を付勢することで、増幅部がヒンジを支点として変位するとともに、増幅部と可動部の接続位置で増幅部が可動部を付勢する。弁部品では、ヒンジから付勢位置までの距離よりも、ヒンジから接続位置までの距離の方が長くなっている。
 これによると、弁部品の増幅部は、梃子として機能する。このため、駆動部の温度変化に応じた変位量が、梃子によって増幅されて可動部に伝わる。このように、梃子を利用して熱的な膨張による変位量が増幅される弁部品は、そのような梃子を利用しない電磁弁や電動弁を用いたものに比べて小型に構成することが可能となる。圧力調整部の弁部品を小型に構成できると、弁装置における圧力調整部が占める割合が小さくなり、圧力調整部以外の部品の設定をより広い範囲で検討することが可能となるので、弁装置の設計の自由度を高めることができる。
 第6の観点によれば、弁部品は、半導体チップによって構成されている。このように、弁部品を半導体チップで構成すれば、弁部品を含む圧力調整部の小型化を実現することができる。
 第7の観点によれば、弁装置は、蒸気圧縮式の冷凍サイクル装置に適用される。圧力調整部は、冷凍サイクル装置のうち異なる箇所を流れる冷媒の圧力差を利用して制御流体の圧力を調整可能になっている。冷凍サイクル装置における冷媒の圧力差を利用して制御流体の圧力を調整する構造とすれば、冷凍サイクル装置の構成要素とは異なる別の要素によって制御流体の圧力を調整するものに比べて、弁装置の簡素化を図ることができる。

Claims (7)

  1.  弁装置であって、
     制御流体の圧力を調整する圧力調整部(337、357、397)と、
     前記制御流体の圧力に応じて所定の弁軸方向に変位する弁部分を有する主弁(332、352、392)と、を備え、
     前記圧力調整部および前記主弁は、前記弁軸方向に直交する方向において異なる位置に配置されている弁装置。
  2.  前記圧力調整部は、前記圧力調整部の少なくとも一部が前記主弁と前記弁軸方向に直交する方向に重なり合っている請求項1に記載の弁装置。
  3.  弁装置であって、
     制御流体の圧力を調整する圧力調整部(337、357、397)および前記制御流体の圧力に応じて所定の弁軸方向に変位する弁部分を有する主弁(332、352、392)を一組とする複数の弁ユニット(UT1、UT2、UT3)を備え、
     複数の前記弁ユニットのうち、少なくとも1つの前記弁ユニットに含まれる前記圧力調整部は、前記弁軸方向において前記主弁と重ならないように、前記主弁が配置される位置に対して前記弁軸方向に直交する方向にずれた位置に配置されている弁装置。
  4.  前記圧力調整部が取り付けられるボデー部(330、350、BP)と、
     前記圧力調整部を駆動するための駆動回路が形成された回路基板(338、358)と、を備え、
     前記回路基板は、前記回路基板の板面が水平方向に対して交差する姿勢で前記圧力調整部に接続されている請求項1ないし3のいずれか1つに記載の弁装置。
  5.  前記圧力調整部は、前記制御流体の圧力を調整するための流体室(Y19)を有する弁部品(Y1)を含み、
     前記弁部品は、
     前記流体室(Y19)が形成される基部(Y121、Y11、Y13)と、
     自らの温度が変化すると変位する駆動部(Y123、Y124、Y125)と、
     前記駆動部の温度の変化による変位を増幅する増幅部(Y126、Y127)と、
     前記増幅部によって増幅された変位が伝達されて動くことで、前記流体室を流れる冷媒の圧力を調整する可動部(Y128)と、を有し、
     前記駆動部が温度の変化によって変位したときに、前記駆動部が付勢位置において前記増幅部を付勢することで、前記増幅部がヒンジを支点として変位するとともに、前記増幅部と前記可動部の接続位置で前記増幅部が前記可動部を付勢し、
     前記ヒンジから前記付勢位置までの距離よりも、前記ヒンジから前記接続位置までの距離の方が長くなっている請求項1ないし4のいずれか1つに記載の弁装置。
  6.  前記弁部品は、半導体チップによって構成されている請求項5に記載の弁装置。
  7.  蒸気圧縮式の冷凍サイクル装置(30)に適用されるものであって、
     前記圧力調整部は、前記冷凍サイクル装置のうち異なる箇所を流れる冷媒の圧力差を利用して前記制御流体の圧力を調整可能になっている請求項1ないし6のいずれか1つに記載の弁装置。
PCT/JP2020/044314 2019-12-24 2020-11-27 弁装置 WO2021131498A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019233071A JP7302468B2 (ja) 2019-12-24 2019-12-24 弁装置、冷凍サイクル装置
JP2019-233071 2019-12-24
JP2020-100028 2020-06-09
JP2020100028A JP2021195955A (ja) 2020-06-09 2020-06-09 弁装置

Publications (1)

Publication Number Publication Date
WO2021131498A1 true WO2021131498A1 (ja) 2021-07-01

Family

ID=76574357

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/044313 WO2021131497A1 (ja) 2019-12-24 2020-11-27 弁装置、冷凍サイクル装置
PCT/JP2020/044314 WO2021131498A1 (ja) 2019-12-24 2020-11-27 弁装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044313 WO2021131497A1 (ja) 2019-12-24 2020-11-27 弁装置、冷凍サイクル装置

Country Status (1)

Country Link
WO (2) WO2021131497A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563175A (zh) * 2010-12-25 2012-07-11 浙江三花股份有限公司 一种先导式电磁阀
US20130192704A1 (en) * 2012-01-30 2013-08-01 GM Global Technology Operations LLC Mems valve operating profile

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343083A (ja) * 1986-08-09 1988-02-24 Nippon Denso Co Ltd パイロツト式電磁弁

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563175A (zh) * 2010-12-25 2012-07-11 浙江三花股份有限公司 一种先导式电磁阀
US20130192704A1 (en) * 2012-01-30 2013-08-01 GM Global Technology Operations LLC Mems valve operating profile

Also Published As

Publication number Publication date
WO2021131497A1 (ja) 2021-07-01

Similar Documents

Publication Publication Date Title
US20180222289A1 (en) Refrigeration cycle device
WO2018043060A1 (ja) 冷凍サイクル装置
WO2016075897A1 (ja) 冷凍サイクル装置
WO2022264770A1 (ja) ヒートポンプモジュール
JP2022190675A (ja) ヒートポンプモジュール
JP2012124222A (ja) 熱媒体加熱装置
JP2000081157A (ja) 圧力制御弁
WO2023026869A1 (ja) 圧縮機モジュール
JP4179231B2 (ja) 圧力制御弁と蒸気圧縮式冷凍サイクル
WO2021131498A1 (ja) 弁装置
CN110274053B (zh) 流体切换装置及热管理系统
JP6572695B2 (ja) 統合弁
WO2022091816A1 (ja) 冷凍サイクル装置
JP2021195955A (ja) 弁装置
JP2020139680A (ja) 冷凍サイクル装置
JP6992777B2 (ja) 冷凍サイクル装置、蒸発圧力調整弁
JP7302468B2 (ja) 弁装置、冷凍サイクル装置
JP2020139561A (ja) 弁装置
JP7014239B2 (ja) 弁装置
WO2017213224A1 (ja) 切替弁
JP6973431B2 (ja) 統合弁
JP2022522521A (ja) 熱管理ユニット及び熱管理システム
JP7074097B2 (ja) 弁装置
JP2020139678A (ja) 冷凍サイクル装置
CN110274052B (zh) 流体切换装置及热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905015

Country of ref document: EP

Kind code of ref document: A1