WO2021131430A1 - 音響レンズ用組成物、音響レンズ、音響波プローブ、超音波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置及び超音波内視鏡並びに音響波プローブの製造方法 - Google Patents

音響レンズ用組成物、音響レンズ、音響波プローブ、超音波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置及び超音波内視鏡並びに音響波プローブの製造方法 Download PDF

Info

Publication number
WO2021131430A1
WO2021131430A1 PCT/JP2020/043123 JP2020043123W WO2021131430A1 WO 2021131430 A1 WO2021131430 A1 WO 2021131430A1 JP 2020043123 W JP2020043123 W JP 2020043123W WO 2021131430 A1 WO2021131430 A1 WO 2021131430A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
acoustic lens
composition
acoustic
Prior art date
Application number
PCT/JP2020/043123
Other languages
English (en)
French (fr)
Inventor
中井 義博
壮太郎 猪股
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021566926A priority Critical patent/JP7351929B2/ja
Priority to EP20905808.0A priority patent/EP4084497A4/en
Priority to CN202080085158.7A priority patent/CN114930875A/zh
Publication of WO2021131430A1 publication Critical patent/WO2021131430A1/ja
Priority to US17/805,353 priority patent/US20220289937A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/067Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface which is used as, or combined with, an impedance matching layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/30Sound-focusing or directing, e.g. scanning using refraction, e.g. acoustic lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0292Electrostatic transducers, e.g. electret-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/057Metal alcoholates
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/02Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators

Definitions

  • the present invention relates to a composition for an acoustic lens, an acoustic lens, an acoustic wave probe, an ultrasonic probe, an acoustic wave measuring device, an ultrasonic diagnostic device, a photoacoustic wave measuring device, an ultrasonic endoscope, and a method for manufacturing an acoustic wave probe. ..
  • an acoustic wave probe In an acoustic wave measuring device, an acoustic wave probe is used that irradiates an object or site to be inspected (hereinafter, also referred to as "object to be inspected") with an acoustic wave, receives the reflected wave (echo), and outputs a signal. Be done. The electric signal converted from the reflected wave received by this acoustic wave probe is displayed as an image. As a result, the inside of the test object is visualized and observed.
  • the ultrasonic diagnostic apparatus transmits ultrasonic waves toward the inside of the subject to be examined, receives the ultrasonic waves reflected by the tissue inside the subject to be examined, and displays them as an image.
  • the photoacoustic wave measuring device receives the acoustic wave radiated from the inside of the test object by the photoacoustic effect and displays it as an image.
  • the photoacoustic effect means that when an electromagnetic wave pulse such as visible light, near-infrared light, or microwave is applied to an object to be examined, the object to be examined absorbs the electromagnetic wave, generates heat, and thermally expands. This is a phenomenon in which electromagnetic waves are typically generated.
  • an electromagnetic wave pulse such as visible light, near-infrared light, or microwave
  • the acoustic wave measuring device transmits and receives acoustic waves to and from the living body to be inspected, for example, consistency of acoustic impedance with the living body (typically the human body) is required, and the amount of acoustic wave attenuation is also required. Is required to be suppressed. In addition, a certain level of mechanical strength is required because it is used by rubbing it against a living body.
  • a silicone resin is used as a resin material (base material) for the acoustic lens, and an inorganic filler such as alumina particles is blended to adjust the acoustic impedance, mechanical strength, and the like.
  • Patent Document 1 describes 100 parts by mass of diorganopolysiloxane or a silicone rubber compound containing the same as a main material, and 50 to 150 parts by mass of alumina or titanium oxide powder having an average particle size of 0.1 to 1.0 ⁇ m.
  • a composition for an acoustic lens composed of 10 to 100 parts by mass of a thermoplastic resin powder having an average particle diameter of 0.1 to 50 ⁇ m and a melting point of 80 ° C. or higher, and an acoustic wave lens obtained by curing this composition. Silicone resins are listed.
  • An acoustic wave measuring device equipped with an acoustic wave probe is used not only for examining the inside of the body such as the abdomen and heart, but also for examining tissues near the body surface such as the mammary gland, thyroid gland, peripheral blood vessels, musculoskeletal system, nerves and skin. Be done. Since the tissue near the body surface has a fine structure, a high-resolution inspection image is required. Generally, the resolution of an acoustic wave image increases as the frequency of the acoustic wave increases. Further, the focal length can be shortened by lowering the speed of sound of the acoustic lens constituting the acoustic wave probe, and a higher resolution image of the tissue near the body surface can be obtained.
  • the composition for an acoustic wave lens described in Patent Document 1 is formed by blending a silicone rubber compound with alumina or titanium oxide powder having a specific particle size in combination with a specific thermoplastic resin powder in a specific amount.
  • the desired acoustic impedance is achieved while increasing the sound velocity to 900 to 1100 m / sec.
  • an acoustic wave probe having an acoustic lens whose sound velocity is in the above range it is not possible to obtain sufficiently accurate information required in recent years for living tissues near the body surface.
  • this acoustic wave probe transmits and receives acoustic waves by rubbing against a living body, the acoustic lens wears due to repeated use, and the change in the shape of the acoustic lens due to this wear causes the defocus of the acoustic wave image. It causes it to occur. Therefore, the acoustic lens needs to have a property of being hard to wear even if it is repeatedly rubbed against a living body.
  • the acoustic wave probe is required to have a high degree of cleanliness, and each time it is used, it is disinfected to a high level with a chemical having a strong bactericidal action. Therefore, the acoustic wave probe is required to have durability against chemicals.
  • the present invention is a composition for an acoustic lens that is not easily worn, has excellent durability against a high level of disinfectant, and can realize high-resolution observation with a short focus by suppressing the speed of sound, and this composition.
  • An object of the present invention is to provide an acoustic lens obtained by curing an object.
  • the present invention also provides a method for manufacturing an acoustic wave probe, an ultrasonic probe, an acoustic wave measuring device, an ultrasonic diagnostic device, a photoacoustic wave measuring device, an ultrasonic endoscope, and an acoustic wave probe having the above-mentioned acoustic lens. The challenge is to provide.
  • the present inventors cured a polysiloxane having a vinyl group and a polysiloxane having two or more Si—H groups in the presence of alumina particles treated with a specific surface treatment agent.
  • the obtained cured product not only has excellent wear durability and chemical durability, but also this cured product can sufficiently reduce and control the speed of sound, and an acoustic lens that realizes high-resolution observation with a short focus. It was found that it has excellent properties.
  • the present invention has been completed based on these findings.
  • the aluminum alkoxide compound contains at least one compound represented by the following general formula (1).
  • General formula (1): R 1a m1- Al- (OR 2a ) 3-m1 R 1a represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an aryl group, or an unsaturated aliphatic group.
  • R 2a represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group, or -SO 2 R S1.
  • RS1 indicates a substituent.
  • m1 is an integer of 0 to 2.
  • zirconium alkoxide compound contains at least one compound represented by the following general formula (2).
  • R 1b m2- Zr- (OR 2b ) 4-m2
  • R 1b represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an aryl group, or an unsaturated aliphatic group.
  • R 2b represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group, or -SO 2 R S2.
  • RS2 indicates a substituent.
  • m2 is an integer from 0 to 3.
  • the titanium alkoxide compound contains at least one compound represented by the following general formula (3).
  • R 2c represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group, or -SO 2 R S3.
  • RS3 indicates a substituent.
  • m3 is an integer from 0 to 3.
  • ⁇ 11> The acoustic lens according to any one of ⁇ 1> to ⁇ 10>, wherein the content of the surface treatment agent in the component (C) is 1 to 100 parts by mass with respect to 100 parts by mass of the alumina particles.
  • Composition. ⁇ 12> The composition for an acoustic lens according to any one of ⁇ 1> to ⁇ 11>, wherein the alumina particles constituting the component (C) have an average primary particle size of 10 to 400 nm.
  • ⁇ 13> An acoustic lens obtained by curing the composition for an acoustic lens according to any one of ⁇ 1> to ⁇ 12>.
  • ⁇ 14> An acoustic wave probe having the acoustic lens according to ⁇ 13>.
  • ⁇ 15> An ultrasonic probe having the acoustic lens according to ⁇ 13>.
  • ⁇ 16> An acoustic wave measuring device including the acoustic wave probe according to ⁇ 14>.
  • ⁇ 17> An ultrasonic diagnostic apparatus including the acoustic wave probe according to ⁇ 14>.
  • ⁇ 18> A photoacoustic wave measuring device including the acoustic lens according to ⁇ 13>.
  • An ultrasonic endoscope provided with the acoustic lens according to ⁇ 13>.
  • a method for producing an acoustic wave probe which comprises forming an acoustic lens using the composition for an acoustic lens according to any one of ⁇ 1> to ⁇ 12>.
  • the "metal alkoxide compound (specifically, for example, a titanium alkoxide compound, an aluminum alkoxide compound, and a zirconium alkoxide compound described later)" has a structure in which at least one alkoxy group is bonded to a metal atom.
  • Means a compound having. This alkoxy group may have a substituent.
  • the substituent may be monovalent or divalent (eg, an alkylidene group).
  • two alkoxy groups bonded to one metal atom may be bonded to each other to form a ring.
  • the composition for an acoustic lens of the present invention is not easily worn and has excellent durability against a high level of disinfectant (chemical durability). Further, it is possible to realize an acoustic lens capable of high-resolution observation with a short focus while suppressing the speed of sound. In addition, the acoustic lens of the present invention is not easily worn, has excellent durability against a high level of disinfectant, and can realize high-resolution observation with a short focus. Further, the acoustic wave probe, the ultrasonic probe, the acoustic wave measuring device, the ultrasonic diagnostic device, the photoacoustic wave measuring device and the ultrasonic endoscope of the present invention have an acoustic lens having the above-mentioned excellent characteristics. Further, according to the method for manufacturing an acoustic wave probe of the present invention, an acoustic wave probe including the above acoustic lens can be obtained.
  • FIG. 1 is a perspective transmission view of an example of a convex type ultrasonic probe, which is an aspect of an acoustic wave probe.
  • composition for an acoustic lens of the present invention
  • composition contains the following components (A) to (C).
  • the composition of the present invention contains (A) a polysiloxane having a vinyl group (polyorganosiloxane) and (B) a polysiloxane having two or more Si—H groups in the molecular chain.
  • the composition of the present invention contains at least the component (A), the polyorganosiloxane (component (B)) having two or more Si—H groups in the molecular chain (B), and the component (C). It is preferable to contain it.
  • the acoustic lens of the present invention obtained by curing the composition of the present invention having the above structure realizes a low sound velocity, is not easily worn, and is excellent in durability against chemicals.
  • the reasons for these are not yet clear, but are presumed as follows. That is, in the component (C) contained in the acoustic lens of the present invention, the alumina particles are surface-treated with a specific surface treatment agent, so that the uniform dispersibility in the lens using the silicone resin as a matrix is enhanced. As a result, it is considered that the phase delay generated at the alumina particle interface is increased to effectively reduce the speed of sound.
  • the adhesion between the surface-treated alumina particles and the matrix is enhanced, and even if they are rubbed against a living body. It is thought that the acoustic lens is less likely to wear. Further, it is considered that the acoustic lens is excellent in durability against body fluid because the surface treatment agent itself is excellent in durability against body fluid.
  • a preferred embodiment is (A) a polyorganosiloxane having a vinyl group (component (A)) and (B) a polyorganosiloxane having two or more Si—H groups in the molecular chain. (Component (B)) will be described.
  • component (B) a polyorganosiloxane having two or more Si—H groups in the molecular chain.
  • the component (A) used in the present invention preferably has two or more vinyl groups in the molecular chain.
  • polysiloxane (a1) having at least vinyl groups at both ends of the molecular chain is preferable.
  • the component (A) is hydrosilylated by a reaction with the component (B), for example, in the presence of a platinum catalyst.
  • a crosslinked structure (cured product) can be formed by this hydrosilylation reaction (addition reaction).
  • the content of the vinyl group of the component (A) is not particularly limited. From the viewpoint of forming a sufficient network with each component contained in the composition for an acoustic lens, the content of the vinyl group is preferably, for example, 0.01 to 5 mol%, preferably 0.05 to 2 mol. % Is more preferable.
  • the vinyl group content is the mol% of the vinyl group-containing siloxane unit when all the units constituting the component (A) are 100 mol%.
  • One vinyl group-containing siloxane unit has 1 to 3 vinyl groups. Among them, one vinyl group is preferable for one vinyl group-containing siloxane unit.
  • the amount is 100 mol%.
  • the "unit" of polysiloxane refers to the Si—O unit constituting the main chain and the terminal Si.
  • the component (A) preferably has a phenyl group, and the content of the phenyl group of the polyorganosiloxane (A) is not particularly limited. From the viewpoint of mechanical strength when used as an acoustic lens, it is preferably 1 to 80 mol%, more preferably 2 to 40 mol%, for example.
  • the content of the phenyl group is the mol% of the phenyl group-containing siloxane unit when all the units constituting the component (A) are 100 mol%.
  • One phenyl group-containing siloxane unit has 1 to 3 phenyl groups. Among them, it is preferable that two phenyl groups are used for one phenyl group-containing siloxane unit.
  • the amount is 100 mol%.
  • the component (A) preferably does not have two or more Si—H groups in the molecular chain.
  • the degree of polymerization and specific gravity are not particularly limited. From the viewpoint of improving the mechanical strength (tear strength) and chemical stability of the obtained acoustic lens and the viscosity of the composition before curing, the degree of polymerization is preferably 200 to 3,000, more preferably 400 to 2,000. Preferably, the specific gravity is 0.9 to 1.1.
  • the weight average molecular weight of the component (A) is preferably 20,000 to 200,000, more preferably 40,000 to 150,000, and 45,000 from the viewpoint of the mechanical strength of the acoustic lens and the viscosity before curing of the composition. It is more preferably ⁇ 120,000.
  • a GPC (Gel Permeation Chromatography) apparatus HLC-8220 (trade name, manufactured by Tosoh Co., Ltd.) is prepared, toluene (manufactured by Shonan Wako Junyaku Co., Ltd.) is used as an eluent, and TSKgel G3000HXL + TSKgel G2000HXL (TSKgel G2000HXL). Both can be measured using an RI (Refractive Index) detector under the conditions of a temperature of 23 ° C. and a flow rate of 1 mL / min using a trade name (manufactured by Tosoh Corporation).
  • RI Refractive Index
  • the kinematic viscosity of the component (A) at 25 ° C. is preferably 1 ⁇ 10 -5 to 10 m 2 / s, more preferably 1 ⁇ 10 -4 to 1 m 2 / s, and 1 ⁇ 10 -3 to 0.5 m 2 / s. s is more preferable.
  • the kinematic viscosity can be determined by measuring at a temperature of 25 ° C. using an Ubbelohde viscometer (for example, manufactured by Shibata Chemical Co., Ltd., trade name SU) according to JIS Z8803.
  • the polyorganosiloxane (a1) having at least vinyl groups at both ends of the molecular chain is preferably a polyorganosiloxane represented by the following general formula (I).
  • Ra 1 represents a vinyl group
  • Ra 2 and Ra 3 independently represent an alkyl group, a cycloalkyl group, an alkenyl group or an aryl group
  • x1 and x2 are each independently an integer of 1 or more.
  • the number of carbon atoms of the alkyl group in R a2 and Ra3 is preferably 1 to 10, more preferably 1 to 4, further preferably 1 or 2, and particularly preferably 1.
  • Alkyl groups include, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, hexyl, octyl, 2-ethylhexyl and decyl.
  • the number of carbon atoms of the cycloalkyl group in R a2 and Ra 3 is preferably 3 to 10, more preferably 5 to 10, and even more preferably 5 or 6.
  • the cycloalkyl group is preferably a 3-membered ring, a 5-membered ring or a 6-membered ring, and more preferably a 5-membered ring or a 6-membered ring.
  • Cycloalkyl groups include, for example, cyclopropyl, cyclopentyl and cyclohexyl.
  • the carbon number of the alkenyl group in Ra2 and Ra3 is preferably 2 to 10, more preferably 2 to 4, and even more preferably 2.
  • Examples of the alkenyl group include vinyl, allyl and butenyl.
  • the aryl group in R a2 and Ra 3 preferably has 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms, and even more preferably 6 to 8 carbon atoms.
  • Aryl groups include, for example, phenyl, tolyl and naphthyl.
  • alkyl groups, cycloalkyl groups, alkenyl groups and aryl groups may have substituents.
  • substituents include a halogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, a silyl group and a cyano group.
  • substituents include a halogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, a silyl group and a cyano group.
  • group having a substituent include an alkyl halide group.
  • R a2 and R a3 are preferably an alkyl group, an alkenyl group or an aryl group, more preferably an alkyl group having 1 to 4 carbon atoms, a vinyl group or a phenyl group, further preferably a methyl group, a vinyl group or a phenyl group, and a methyl group. Alternatively, a phenyl group is particularly preferable. Of these, R a2 is preferably a methyl group. R a3 is methyl group, vinyl group or preferably a phenyl group, more preferably a methyl group or a phenyl group, a phenyl group is particularly preferred.
  • x1 is preferably an integer of 200 to 3,000, more preferably an integer of 400 to 2,000.
  • an integer of 1 to 3,000 is preferable, an integer of 1 to 1,000 is more preferable, an integer of 40 to 1,000 is further preferable, and an integer of 40 to 700 is particularly preferable.
  • x1 is preferably an integer of 1 to 3,000, more preferably an integer of 5 to 1,000.
  • the repeating units "-Si ( Ra3 ) 2- O-" and "-Si ( Ra2 ) 2- O-" in the general formula (I) exist in a block-polymerized form, respectively. It may be in a form that exists randomly.
  • Polyorganosiloxanes having at least vinyl groups at both ends of the molecular chain are, for example, all under the trade name of Gelest, and are in the DMS series (for example, DMS-V31, DMS-V31S15, DMS-V33, DMS-V35, DMS-. V35R, DMS-V41, DMS-V42, DMS-V46, DMS-V51 and DMS-V52), PDV series (eg PDV-0341, PDV-0346, PDV-0535, PDV-0541, PDV-1631, PDV- 1635, PDV-1641 and PDV-2335), PMV-9925, PVV-3522, FMV-4031 and EDV-2022. Since DMS-V31S15 is pre-blended with fumed silica, kneading with a special device is not required.
  • the component (A) may be used alone or in combination of two or more.
  • the component (B) used in the present invention has two or more Si—H groups in the molecular chain.
  • component (B) - if they have structural, "-SiH 2" "- SiH 2 -" SiH groups in the structure is counted as two.
  • - SiH groups "SiH 3" structure is counted as three.
  • a polyorganosiloxane having at least two polymerizable unsaturated groups can be crosslinked.
  • the component (B) preferably does not have a vinyl group.
  • the component (B) includes a polyorganosiloxane having a linear structure and a polyorganosiloxane having a branched structure, and a polyorganosiloxane having a linear structure is preferable.
  • the weight average molecular weight of the component (B) is preferably 500 to 100,000, more preferably 1,500 to 50,000, from the viewpoint of the mechanical strength of the silicone resin and the viscosity of the composition before curing.
  • the weight average molecular weight of the component (B) can be measured in the same manner as the weight average molecular weight of the component (A).
  • the component (B) having a linear structure is preferably a polyorganosiloxane represented by the following general formula (II).
  • R b1 to R b3 independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group or an aryl group.
  • y1 and y2 are each independently an integer of 1 or more. However, it has two or more Si—H groups in the molecular chain.
  • alkyl group cycloalkyl group, alkenyl group and aryl group in R b1 to R b3
  • the alkyl group, cycloalkyl group, alkenyl group and aryl group in Ra 2 and Ra 3 can be adopted.
  • R b1 to R b3 are preferably a hydrogen atom, an alkyl group, an alkenyl group or an aryl group, and more preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a vinyl group or a phenyl group.
  • R b1 and R b2 are preferably a hydrogen atom, an alkyl group, an alkenyl group or an aryl group, more preferably a hydrogen atom or an alkyl group, further preferably a hydrogen atom or a methyl group, and particularly preferably a methyl group.
  • R b3 is preferably a hydrogen atom, an alkyl group, an alkenyl group or an aryl group, more preferably a hydrogen atom or an aryl group, further preferably a hydrogen atom or a phenyl group, and particularly preferably a hydrogen atom.
  • y1 is preferably an integer of 0 to 2,000, more preferably an integer of 0 to 1,000, and even more preferably an integer of 0 to 30.
  • y2 is preferably an integer of 1 to 2,000, more preferably an integer of 1 to 1,000, and even more preferably an integer of 1 to 30.
  • an integer of 5 to 2,000 is preferable, an integer of 7 to 1,000 is more preferable, an integer of 10 to 50 is further preferable, and an integer of 15 to 30 is particularly preferable.
  • R b1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R b2 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R b3 is a combination of a hydrogen atom or an aryl group.
  • the content of the hydrosilyl group represented by y2 / (y1 + y2) is preferably more than 0.1 and 1.0 or less, and more preferably more than 0.2 and 1.0 or less.
  • the components (B) of the linear structure are, for example, HMS-064 (MeHSiO: 5-7 mol%) and HMS-082 (MeHSiO: 5-7 mol%), which are methylhydrosiloxane-dimethylsiloxane copolymers (trimethylsiloxane terminals) manufactured by Gelest. MeHSiO: 7-8 mol%), HMS-301 (MeHSiO: 25-30 mol%), HMS-501 (MeHSiO: 50-55 mol%), HPM-502 (MeHSiO: 45-), which is a methylhydrosiloxane-phenylmethylsiloxane copolymer.
  • MeHSiO 100 mol% which is a methylhydrosiloxane polymer.
  • the mol% of MeHSiO is synonymous with y2 / (y1 + y2) multiplied by 100 in the preferred combination of R b1 to R b3.
  • the branched structure component (B) has a branched structure and two or more hydrosilyl groups (Si—H groups).
  • the specific gravity is preferably 0.9 to 0.95.
  • the component (B) having a branched structure is preferably represented by the following average composition formula (b).
  • R b6 represents an alkyl group, a cycloalkyl group, an alkenyl group or an aryl group, a represents 0.1 to 3, and y3 and y4 each independently represent an integer of 1 or more.
  • alkyl group, cycloalkyl group, alkenyl group and aryl group in R b6 for example, the alkyl group, cycloalkyl group, alkenyl group and aryl group in Ra 2 and Ra 3 can be adopted.
  • a is preferably 1.
  • the content of the hydrosilyl group represented by a / 3 is preferably more than 0.1 and less than 0.6, and more preferably more than 0.1 and less than 0.4.
  • component (B) having a branched structure is represented by a chemical structural formula
  • polyorganosiloxane in which —O—Si (CH 3 ) 2 (H) is bonded to a Si atom constituting the main chain is preferable, and the following is preferable.
  • Those having a structure represented by the general formula (IIb) are more preferable.
  • the components (B) of the branched structure include, for example, HQM-107 (trade name, manufactured by Gelest, hydrogenated Q resin) and HDP-111 (trade name, manufactured by Gelest, polyphenyl- (dimethylhydroxy) siloxane (hydrogen). End), [(HMe 2 SiO) (C 6 H 3 Si) O]: 99-100 mol%).
  • the component (B) may be used alone or in combination of two or more. Further, the linear structure component (B) and the branched structure component (B) may be used in combination.
  • the component (C) was surface-treated with at least one surface treatment agent of an aminosilane compound, a mercaptosilane compound, an isocyanatosilane compound, a thiocyanatosilane compound, an aluminum alkoxide compound, a zirconium alkoxide compound, and a titanium alkoxide compound.
  • Alumina particles was surface-treated with at least one surface treatment agent of an aminosilane compound, a mercaptosilane compound, an isocyanatosilane compound, a thiocyanatosilane compound, an aluminum alkoxide compound, a zirconium alkoxide compound, and a titanium alkoxide compound.
  • the average primary particle size (average particle size) of the alumina particles (alumina particles before surface treatment, hereinafter simply referred to as “alumina particles”) constituting the component (C) used in the present invention is not particularly limited.
  • alumina particles alumina particles before surface treatment
  • 5 to 500 nm is preferable, 10 to 400 nm is more preferable, 10 to 250 nm is more preferable, 10 to 200 nm is more preferable, and 10 to 160 nm is more preferable.
  • 20 to 150 nm is more preferable, 20 to 100 nm is further preferable, and 20 to 80 nm is particularly preferable.
  • the average primary particle size of the component (C) is preferably 5 to 1000 nm, more preferably 10 to 600 nm, further preferably 10 to 300 nm, further preferably 20 to 200 nm, further preferably 30 to 150 nm, and even more preferably 30 to 100 nm. Is particularly preferable.
  • the average primary particle size is described in the catalog of the manufacturer of alumina particles. However, those whose average primary particle size is not described in the catalog or newly manufactured ones can be obtained by averaging the particle sizes measured by a transmission electron microscope (TEM). That is, the shortest diameter and the longest diameter of one alumina particle in the electron micrograph taken by TEM are measured, and the arithmetic mean value thereof is obtained as the particle diameter of one alumina particle. In the present invention, the particle sizes of 300 randomly selected alumina particles are averaged and determined as the average primary particle size.
  • TEM transmission electron microscope
  • alumina particles can be used, and examples thereof include NO series manufactured by IoLiTek and NP-ALO-5-1K manufactured by EM Japan (both are trade names).
  • the surface treatment agent used in the present invention includes aminosilane compounds, mercaptosilane compounds, isocyanatosilane compounds, aluminum alkoxide compounds, zirconium alkoxide compounds and titanium alkoxide compounds in terms of sound velocity, wear durability and chemical durability of acoustic lenses.
  • a mercaptosilane compound, an isocyanatosilane compound, an aluminum alkoxide compound, a zirconium alkoxide compound and a titanium alkoxide compound are more preferable, and an aluminum alkoxide compound, a zirconium alkoxide and a titanium alkoxide compound are further preferable.
  • the surface treatment agent used in the present invention will be specifically described.
  • the aminosilane compound (silane compound having an amino group) is preferably a silane coupling agent having an amino group. However, it is preferable that the aminosilane compound does not have a Si—N—Si structure.
  • the aminosilane compound preferably contains at least one compound represented by the following general formula (A).
  • R 1 and R 2 represent a hydrogen atom or a substituent.
  • L 1a is a single bond, an alkylene group, an alkenylene group, an alkynylene group, an arylene group, -O-, -S-, -NR a- , an ester bond, a thioester bond, an amide bond, a thioamide bond or a sulfonyl group, or a group thereof.
  • a divalent group consisting of a combination of two or more bonds is shown.
  • Ra represents a hydrogen atom or a substituent.
  • Y 1a represents a hydroxy group or an alkoxy group.
  • Y 2a and Y 3a represent a hydroxy group, an alkoxy group, an alkyl group or a ketooxime group.
  • R 1 and R 2 are, for example, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms) and an alkenyl group (preferably 2 to 12 carbon atoms, more preferably carbon atoms). Numbers 2 to 8), alkynyl groups (preferably 2 to 12 carbon atoms, more preferably 2 to 8 carbon atoms), aryl groups (preferably 6 to 20 carbon atoms, more preferably 6 to 10 carbon atoms). .. These substituents may further have a substituent, and examples of such a substituent include the above-mentioned substituents and amino groups mentioned as possible substituents as R 1 and R 2a. Further, R 1 and R 2 may be combined to exhibit an alkylidene group (preferably 2 to 12 carbon atoms, more preferably 2 to 8 carbon atoms).
  • L 1a represents an alkylene group, an alkenylene group, an arylene group, -O- or -NR a - preferably showing a an alkylene group, an arylene group, or -NR a - is more preferable to indicate, that an alkylene group further preferable.
  • Y 1a preferably represents an alkoxy group.
  • Y 2a and Y 3a preferably show a hydroxy group, an alkoxy group or an alkyl group, and more preferably show an alkoxy group or an alkyl group.
  • the alkylene group that can be taken as L 1a may be linear, branched or cyclic.
  • the number of carbon atoms of the alkylene group is preferably 1 to 30, more preferably 1 to 25, more preferably 1 to 20, and even more preferably 1 to 15.
  • Specific examples of the alkylene group include methylene, ethylene, propylene, tert-butylene, pentylene, cyclohexylene, heptylene, octylene, nonylene, decylene and undecylen.
  • the alkenylene group that can be taken as L 1a may be either linear or branched.
  • the number of carbon atoms of the alkenylene group is preferably 2 to 20, more preferably 2 to 15, more preferably 2 to 10, and even more preferably 2 to 6.
  • Specific examples of the alkenylene group include ethenylene and propenylene.
  • the alkynylene group that can be taken as L 1a may be either linear or branched.
  • the number of carbon atoms of the alkynylene group is preferably 2 to 20, more preferably 2 to 15, more preferably 2 to 10, and even more preferably 2 to 6.
  • Specific examples of the alkynylene group include ethynylene and propinylene.
  • the number of carbon atoms of the arylene group that can be obtained as L 1a is preferably 6 to 20, more preferably 6 to 15, more preferably 6 to 12, and even more preferably 6 to 10.
  • Specific examples of the arylene group include phenylene and naphthylene.
  • R a of an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms), an alkenyl group (preferably 2 to 12 carbon atoms, more preferably carbon Numbers 2-8), alkynyl groups (preferably 2-12 carbons, more preferably 2-8 carbons), aryl groups (preferably 6-20 carbons, more preferably 6-10 carbons) and heterocycles.
  • the group is mentioned.
  • the heterocycle constituting the heterocyclic group that can be taken as Ra may be a saturated or unsaturated aliphatic heterocycle or an aromatic heterocycle, and may be a monocyclic ring or a condensed ring. It may also be a bridge ring.
  • heterocycle examples include an oxygen atom, a nitrogen atom and a sulfur atom.
  • the number of heteroatoms contained in one heterocycle is not particularly limited, but is preferably 1 to 3, and more preferably 1 or 2.
  • the heterocycle preferably has 2 to 10 carbon atoms, more preferably 4 or 5 carbon atoms.
  • the heterocycle is preferably a 3- to 7-membered ring, more preferably a 3- to 6-membered ring, and even more preferably a 3- to 5-membered ring.
  • Specific examples of the heterocycle include an epoxy ring, a 3,4-epoxycyclohexane ring, a furan ring and a thiophene ring.
  • -NR a- examples include -NH-.
  • L 1a the group or made by combining the coupling of two or more divalent group (hereinafter, also referred to as "group formed in combination can be taken as L 1a".) Constituting, or linking combined
  • the number of is preferably 2 to 8, more preferably 2 to 6, and even more preferably 2 to 4.
  • the molecular weight of the combined group that can be taken as L 1a is preferably 20 to 1000, more preferably 30 to 500, and even more preferably 40 to 200.
  • Examples of the combined group that can be taken as L 1a include urea bond, thiourea bond, carbamate group, sulfonamide bond, arylene-alkylene, -O-alkylene, amide bond-alkylene, -S-alkylene, alkylene-O.
  • alkylene-amide bond-alkylene alkenylene-amide bond-alkylene, alkylene-ester bond-alkylene, arylene-ester bond-alkylene,-(alkylene-O)-, alkylene-O- (alkylene-O) )-Alkylene (“(alkylene-O)” is a repeating unit), arylene-sulfonyl-O-alkylene and ester bond-alkylene.
  • the alkyl group constituting the alkoxy group that can be taken as Y 1a to Y 3a may be linear, branched or cyclic, and may have a combination of these forms.
  • the alkyl group is preferably a straight chain alkyl group.
  • the number of carbon atoms of the alkyl group constituting the alkoxy group is preferably 1 to 15, more preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 or 2.
  • Specific examples of the alkyl group constituting the alkoxy group include methyl, ethyl, propyl, t-butyl, pentyl and cyclohexyl.
  • Examples of the alkyl group that can be taken as Y 2a and Y 3a include an alkyl group that constitutes an alkoxy group that can be taken as Y 1a to Y 3a , and a preferred form also constitutes an alkoxy group that can be taken as Y 1a to Y 3a. It is the same as the preferred form of the alkyl group.
  • ketooxime group that can be obtained as Y 2a and Y 3a is a substituent having the following structure.
  • R 11 and R 12 indicate a substituent, and * indicates a bond to a silicon atom.
  • R 11 and R 12 can take, and a substituted group in the R a, the same as the preferred form of the substituent which may take the preferred form as R a.
  • ketooxime group examples include a dimethyl keto oxime group, a methyl ethyl keto oxime group, a diethyl keto oxime group and the like.
  • aminosilane compound used in the present invention is not limited thereto.
  • 3-Aminopropyltrimethoxysilane 3-Aminopropyldimethylmethoxysilane 3-Aminopropylmethyldimethoxysilane 3-Aminopropylmethyldiethoxysilane 3-Aminopropyltrimethoxysilane 3-Aminopropyltriethoxysilane N- (2-aminoethyl) ) -3-Aminopropylmethyldimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldiethoxysilane N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-Aminopropyltrimethoxysilane N- (2-aminoethyl) -3-Aminopropyltrimethoxysilane N- (2-amin
  • the mercaptosilane compound (silane compound having a mercapto group (sulfanyl group)) is preferably a silane coupling agent having a mercapto group.
  • the alumina particles surface-treated with the mercaptosilane compound preferably have a mercapto group derived from the mercaptosilane compound.
  • the mercaptosilane compound preferably contains at least one compound represented by the following general formula (B).
  • L 1b , Y 1b , Y 2b and Y 3b are synonymous with L 1a , Y 1a , Y 2a and Y 3a of the above general formula (A), respectively, and the preferable ranges are also the same.
  • the isocyanatosilane compound (preferably a silane compound having an isocyanate group) is preferably a silane coupling agent having an isocyanate group.
  • the alumina particles surface-treated with the isocyanate silane compound preferably have an isocyanate group derived from the isocyanate silane compound.
  • the isocyanato compound preferably contains at least one compound represented by the following general formula (C).
  • L 1c , Y 1c , Y 2c and Y 3c are synonymous with L 1a , Y 1a , Y 2a and Y 3a of the above general formula (A), respectively, and the preferable ranges are also the same.
  • the isocyanato compound it is also preferable to use a condensate of the compound represented by the general formula (C) and a compound in which the isocyanato group of the general formula (C) is protected by a substituent.
  • the above-mentioned substituent can be introduced by, for example, an alcohol compound, a phenol compound, an aromatic amine, lactam and an oxime.
  • an alcohol compound include alkyl alcohols (preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms).
  • the phenol compound include phenol and cresol.
  • lactam include ⁇ -caprolactam.
  • R 4 represents a substituent, and examples thereof include an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms).
  • the thiocyanatosilane compound (silane compound having a thiocyanato group) is preferably a silane coupling agent having a thiocyanato group.
  • the alumina particles surface-treated with the thiocyanatosilane compound preferably have a thiocyanato group derived from the thiocyanatosilane compound.
  • the thiocyanato compound preferably contains at least one compound represented by the following general formula (D).
  • L 1d , Y 1d , Y 2d and Y 3d are synonymous with L 1a , Y 1a , Y 2a and Y 3a of the above general formula (A), respectively, and the preferable ranges are also the same.
  • the aluminum alkoxide compound preferably contains an aluminum alkoxide compound containing at least one of an acetonate structure and an acetylate structure.
  • the aluminum alkoxide compound preferably contains at least one of the compounds represented by the following general formula (1).
  • R 1a represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an aryl group, or an unsaturated aliphatic group.
  • the alkyl group that can be taken as R 1a includes a linear alkyl group, a branched alkyl group, and an aralkyl group.
  • the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, further preferably 1 to 10 carbon atoms, particularly preferably 1 to 8 carbon atoms, and preferably 7 to 30 carbon atoms in the case of an aralkyl group.
  • this alkyl group examples include, for example, methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, decyl, tridecyl, octadecyl, benzyl, and phenethyl. Can be mentioned. It is also preferable that the alkyl group that can be taken as R 1a has an oxylan ring.
  • the number of ring members of the cycloalkyl group (cycloalkyl group having a structure in which an oxylan ring is condensed) in the epoxy cycloalkylalkyl group that can be taken as R 1a is preferably 4 to 8, more preferably 5 or 6, and 6 (that is, epoxy). It is a cyclohexyl group) is more preferable.
  • the alkyl group that can be taken as R 1a preferably has a group selected from an amino group, an isocyanato group, a mercapto group, an ethylenically unsaturated group, and an acid anhydride group.
  • the cycloalkyl group that can be taken as R 1a preferably has 3 to 20 carbon atoms, more preferably 3 to 15 carbon atoms, further preferably 3 to 10 carbon atoms, and particularly preferably 3 to 8 carbon atoms.
  • Preferred specific examples of this cycloalkyl group include, for example, cyclopropyl, cyclopentyl, and cyclohexyl.
  • the acyl group that can be obtained as R 1a preferably has 2 to 40 carbon atoms, more preferably 2 to 30 carbon atoms, further preferably 2 to 20 carbon atoms, and particularly preferably 2 to 18 carbon atoms.
  • the aryl group that can be taken as R 1a preferably has 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms, further preferably 6 to 12 carbon atoms, and particularly preferably 6 to 10 carbon atoms.
  • Preferred specific examples of this aryl group include, for example, phenyl and naphthyl, with phenyl being even more preferred.
  • the unsaturated aliphatic group that can be obtained as R 1a preferably has 1 to 5 carbon-carbon unsaturated bonds, more preferably 1 to 3, further preferably 1 or 2, and particularly preferably 1. preferable.
  • the unsaturated aliphatic group may contain a heteroatom, and is preferably a hydrocarbon group.
  • the number of carbon atoms is preferably 2 to 20, more preferably 2 to 15, further preferably 2 to 10, further preferably 2 to 8, and preferably 2 to 5. ..
  • the unsaturated aliphatic group is more preferably an alkenyl group or an alkynyl group.
  • R 1a is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and more preferably an alkyl group or a cycloalkyl group.
  • the compound of the general formula (1) has two or more R 1a , the two R 1a may be connected to each other to form a ring.
  • R 2a represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group (phosphonic acid group), or -SO 2 R S1.
  • RS1 indicates a substituent.
  • the alkyl group, cycloalkyl group, acyl group, and aryl group that can be taken as R 2a are synonymous with the alkyl group, cycloalkyl group, acyl group, and aryl group that can be taken as R 1a, respectively, and the preferred forms of each group. Is the same. Further, the alkyl group that can be taken as R 2a preferably has an amino group as a substituent.
  • the alkenyl group that can be taken as R 2a includes a linear alkenyl group and a branched alkenyl group.
  • the alkenyl group preferably has 2 to 18 carbon atoms, more preferably 2 to 7 carbon atoms, and even more preferably 2 to 5 carbon atoms.
  • Preferred specific examples of this alkenyl group include, for example, vinyl, allyl, butenyl, pentenyl and hexenyl.
  • the alkenyl group is preferably a substituted alkenyl group.
  • RP1 and RP2 represent a hydrogen atom or a substituent, and the substituent is preferably an alkyl group or a phosphonate group.
  • the alkyl group that can be taken as R P1 and R P2 is synonymous with the alkyl group that can be taken as R 1a described above, and the preferred form of the alkyl group is also the same.
  • Phosphonate group, which may take as R P1 and R P2 are the same as the phosphonate group can take as R 2a, a preferred form also the same.
  • R P1 or R P2 is a phosphonate group
  • R P1 and R P2 constituting the phosphonate group is preferably an alkyl group.
  • the phosphonate group that can be taken as R 2a it is preferable that both RP1 and RP2 are alkyl groups, or RP1 is a hydrogen atom and RP2 is a phosphonate group. Since the phosphonate group is tautomerized with the phosphite group (phosphorous acid group), the phosphonate group in the present invention means to include the phosphite group.
  • R S1 which can be taken as R 2a
  • an alkyl group or an aryl group is preferable as the substituent R S1.
  • Preferred embodiments of the alkyl group and an aryl group which may take as R S1, respectively, may be mentioned preferred form of the alkyl and aryl groups which can be taken as R 1a described above.
  • R S1 is phenyl having as a substituent an alkyl group is preferable.
  • the preferred form of this alkyl group is the same as the preferred form of the alkyl group that can be taken as R 1a described above.
  • the two R 2a may be connected to each other to form a ring.
  • M1 is an integer of 0 to 2.
  • OR 2a has an acetonato structure.
  • This acetnat structure means a structure in which one hydrogen ion is removed from a compound having a structure in which acetone or acetone has a substituent and is coordinated with Al.
  • the coordination atom coordinated to Al is usually an oxygen atom.
  • a structure coordinated to Al as a coordinating atom that is, an acetylacetonato structure) is preferable.
  • the above-mentioned "having an acetylacetone structure as a basic structure” means that, in addition to the above-mentioned acetylacetone structure, a structure in which a hydrogen atom of the above-mentioned acetylacetone structure is substituted with a substituent is included.
  • Examples of the form in which OR 2a has an acetonato structure include compounds SL-2 and SL-3, which will be described later. In the above general formula (1), it is preferable that at least one of OR 2a has an acetato structure.
  • the acetato structure is obtained by removing one hydrogen ion from acetic acid or acetic acid ester or a compound having a substituent (including a form in which the methyl group of acetic acid has an alkyl group as a substituent). It means a structure coordinated with.
  • the coordination atom coordinated to Al is usually an oxygen atom.
  • alkyl group which may be an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms.))
  • a basic structure and hydrogen is obtained from the alkyl group.
  • a structure in which one ion is removed and an oxygen atom is used as a coordinating atom to coordinate Al (that is, an alkylacetacetate structure) is preferable.
  • the above-mentioned "using an alkylacetacetate structure as a basic structure” means that, in addition to the above-mentioned alkylacetate-acetate structure, a structure in which a hydrogen atom of the above-mentioned alkylacetate-acetate structure is substituted with a substituent is included.
  • Examples of the form in which OR 2a has an acetato structure include compounds SL-3, SL-4, and SL-5, which will be described later.
  • Each group that can be taken as R 1a or R 2a may have an anionic group having a counter cation (salt-type substituent) as a substituent.
  • the anionic group means a group capable of forming an anion.
  • Examples of the anionic group having a counter cation include a carboxylic acid ion group having an ammonium ion as a counter cation.
  • the counter cation may be present in the compound represented by the above general formula (1) so that the charge of the entire compound becomes zero. This also applies to the compound represented by the general formula (2) and the compound represented by the general formula (3), which will be described later.
  • the zirconium alkoxide compound preferably contains a zirconium alkoxide compound containing at least one of an acetonate structure, an acetato structure and a lactoto structure, and more preferably contains a zirconium alkoxide compound containing at least one of the acetnat structure and the acetato structure.
  • the zirconium alkoxide compound preferably contains at least one of the compounds represented by the following general formula (2).
  • R 1b represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an aryl group, or an unsaturated aliphatic group.
  • an alkyl group, a cycloalkyl group, an acyl group, an aryl group and an unsaturated aliphatic group for example, an alkyl group, a cycloalkyl group, an acyl group, an aryl group and an unsaturated fat which can be taken as R 1a of the above general formula (1).
  • Aryl groups can be adopted.
  • R 2b represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group, or -SO 2 R S2.
  • RS2 indicates a substituent.
  • an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group and a phosphonate group for example, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, which can be taken as R 2a of the above general formula (1), A phosphonate group can be adopted.
  • R S2 for example, it can be adopted a substituent which can be taken as R S1 of the general formula (1).
  • M2 is an integer from 0 to 3.
  • OR 2b has an acetonato structure.
  • This acetonato structure is synonymous with the acetonato structure described by the general formula (1).
  • Examples of the form in which OR 2b has an acetonato structure include compounds SZ-3 and SZ-6, which will be described later.
  • This acetato structure is synonymous with the acetato structure described by the general formula (1).
  • Examples of the form in which OR 2b has an acetato structure include SZ-7, which will be described later.
  • the compound SZ-5 corresponds to the form in which R 2b is an acyl group in the general formula (1). Further, in the above general formula (2), it is preferable that at least one of OR 2b has a lacto structure.
  • This lacto structure means a structure in which a lactic acid ion (lactoto) is used as a basic structure, and one hydrogen ion is removed from the lactic acid ion (lactoto) to coordinate to Zr.
  • the above-mentioned "having a lactic acid ion as a basic structure” means that the structure includes a structure in which a hydrogen atom of the lactic acid ion is substituted with a substituent in addition to the above-mentioned lactic acid ion.
  • zirconium alkoxide compound used in the present invention is not limited thereto.
  • Tetrapropoxyzirconium also known as zirconium tetra n-propoxide
  • Tetrabutoxyzirconium also known as zirconium tetra n-butoxide
  • Zirconium Tetraacetylacetone Zirconium Tributoxy Monoacetylacetone
  • Zirconium Dibutoxybis Acetylacetoneate
  • Zirconium Tributoxyethyl Acetylacetate
  • Zirconium Monobutoxyacetylacetone Bis (Ethylacetacetate)
  • Zirconium tributoxy monostearate also known as zirconium stearate n-butoxide
  • Zirconium lactate ammonium salt zirconium monoacetylacetone
  • the titanium alkoxide compound preferably contains a titanium alkoxide compound containing at least one atom of N, P and S. Further, it is also preferable that the titanium alkoxide compound contains a titanium alkoxide compound having an acetato structure.
  • the titanium alkoxide compound preferably contains at least one of the compounds represented by the following general formula (3).
  • R 1c represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an aryl group, or an unsaturated aliphatic group.
  • an alkyl group, a cycloalkyl group, an acyl group, an aryl group and an unsaturated aliphatic group for example, an alkyl group, a cycloalkyl group, an acyl group, an aryl group and an unsaturated fat which can be taken as R 1a of the above general formula (1).
  • Aryl groups can be adopted.
  • R 2c represents a hydrogen atom, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, a phosphonate group, or -SO 2 R S3.
  • RS3 indicates a substituent.
  • an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group and a phosphonate group for example, an alkyl group, a cycloalkyl group, an acyl group, an alkenyl group, an aryl group, which can be taken as R 2a of the above general formula (1), A phosphonate group can be adopted.
  • the substituent which can be taken as R S3 for example, it can be adopted a substituent which can be taken as R S1 of the general formula (1).
  • M3 is an integer from 0 to 3.
  • the compound represented by the above general formula (3) preferably contains at least one atom of N, P and S.
  • N it is preferable to have this N as an amino group.
  • P it is preferable to have this P as a phosphate group (phosphoric acid group) or a phosphonate group (phosphonic acid group).
  • S it is preferable to have this S as a sulfonyl group (-SO 2-).
  • R 2c acyl group
  • OR 2c acyl group as R 2c
  • Isopropyltriisostearoyl titanate Isopropyltridodecylbenzenesulfonyl titanate
  • Isopropyltrioctanoyl titanate Isopropyltri (dioctylphosphate) Titanate
  • Titanate Isopropyltri (dioctylsulfate) Titanate
  • Isopropyltricumylphenyl titanate Isopropyltri (N- Aminoethyl-aminoethyl) titanate isopropyl dimethacryl isostearoyl titanate isopropyl isostearoyl diacrylic titanate isobutyltrimethyl titanate diisostearoyl ethylene titanate diiso
  • the mass ratio of the alumina particles to the surface treatment agent in the component (C) is not particularly limited, and for example, the surface treatment agent is preferably 5 to 100 parts by mass with respect to 100 parts by mass of the alumina particles, and 10 to 10 to 100 parts by mass. It is more preferably 80 parts by mass, more preferably 10 to 50 parts by mass, and more preferably 20 to 50 parts by mass from the viewpoint of sound velocity and wear durability of the acoustic lens, and 20 to 45 parts by mass. It is more preferable to have.
  • the mass ratio of the alumina particles in the component (C) to the surface treatment agent is synonymous with the mass ratio of the amount of the alumina particles used in the surface treatment to the surface treatment agent.
  • the mass ratio of the alumina particles in the component (C) to the surface treatment agent is such that the organic component is removed by heating the component (C) to 500 ° C. or higher by thermogravimetric analysis (TGA) or the like to remove the inorganic component (alumina particles). ), And it can be calculated from the mass of the alumina particles and the mass of the component (C).
  • TGA thermogravimetric analysis
  • a surface treatment agent other than the above-mentioned surface treatment agent may be used as long as the effect of the present invention is not impaired.
  • the surface treatment method itself can be carried out by a conventional method.
  • the component (C) it is not necessary that the entire surface of the alumina particles is treated with a surface treatment agent.
  • 50% or more of the surface area of 100% of the alumina particles is preferably surface-treated, and 70%. The above is more preferable, and 90% or more is further preferable.
  • the component (C) may be used alone or in combination of two or more.
  • the lower limit of the content of the component (C) is 1 part by mass or more from the viewpoint of sound velocity, wear durability and chemical durability of the acoustic lens. Is preferable, 15 parts by mass or more is more preferable, 20 parts by mass or more is more preferable, 30 parts by mass or more is more preferable, and 40 parts by mass or more is further preferable.
  • the upper limit is preferably 80 parts by mass or less, more preferably 70 parts by mass or less, and further preferably 60 parts by mass or less.
  • the contents of the components (A) and (B) in 100 parts by mass of the total contents of the components (A) to (C) are preferably in the following range.
  • the lower limit of the content of the component (A) is preferably 20 parts by mass or more, more preferably 30 parts by mass or more, and further preferably 35 parts by mass or more.
  • the upper limit is preferably 80 parts by mass or less, more preferably 65 parts by mass or less, and further preferably 55 parts by mass or less.
  • the lower limit of the content of the component (B) is preferably 0.1 part by mass or more, more preferably 0.2 part by mass or more, and further preferably 0.3 part by mass or more.
  • the upper limit is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and even more preferably 3 parts by mass or less.
  • the composition for an acoustic lens of the present invention includes a catalyst for an addition polymerization reaction, a curing retarder, a solvent, a dispersant, a pigment, a dye, an antioxidant, an antioxidant, and the like. At least one kind of flame retardant, thermal conductivity improver and the like can be appropriately blended.
  • the catalyst examples include platinum or a platinum-containing compound (hereinafter, also simply referred to as a platinum compound).
  • platinum or the platinum compound ordinary ones can be used. Specifically, platinum black or platinum supported on an inorganic compound or carbon black or the like, an alcohol solution of chloroplatinic acid or chloroplatinic acid, a complex salt of chloroplatinic acid and olefin, and chloroplatinic acid and vinylsiloxane. Examples include complex salt. Only one type of catalyst may be used alone, or two or more types may be used in combination.
  • the catalyst is preferably used in a hydrosilylation reaction (addition curing reaction) in which the Si—H group of the component (B) is added to the vinyl group of the component (A).
  • the catalyst may be contained in the composition for an acoustic lens of the present invention, or may be brought into contact with the composition for an acoustic lens without being contained in the composition for an acoustic lens.
  • platinum catalyst e.g., platinum compounds (trade name: PLATINUM CYCLOVINYLMETHYLSILOXANE COMPLEX IN CYCLIC METHYLVINYLSILOXANES (SIP6832.2), Pt concentration 2 wt% and trade name: PLATINUM DIVINYLTETRAMETHYLDISILOXANE COMPLEX IN VINYL-TERMINATED POLYDIMETHYLSILOXANE (SIP6830.3), Pt concentration of 3% by mass, both manufactured by Gelest).
  • platinum compounds trade name: PLATINUM CYCLOVINYLMETHYLSILOXANE COMPLEX IN CYCLIC METHYLVINYLSILOXANES (SIP6832.2), Pt concentration 2 wt% and trade name: PLATINUM DIVINYLTETRAMETHYLDISILOXANE COMPLEX IN VINYL-TERMINATED POLYDIMETHYLSILOXANE (SIP6830.3), Pt concentration of
  • the content of the catalyst is not particularly limited, and from the viewpoint of reactivity, it is 0 with respect to a total of 100 parts by mass of the components (A) to (C). It is preferably 0.0001 to 0.05 parts by mass, more preferably 0.00001 to 0.01 parts by mass, further preferably 0.00002 to 0.01 parts by mass, and particularly preferably 0.00005 to 0.005 parts by mass.
  • the curing temperature can be adjusted by selecting an appropriate platinum catalyst.
  • platinum-vinyldisiloxane is used for room temperature curing (RTV) at 50 ° C or lower
  • platinum-cyclic vinylsiloxane is used for high temperature curing (HTV) at 130 ° C or higher.
  • a curing retarder for the curing reaction can be appropriately used.
  • the curing retarder is used for delaying the addition curing reaction, and examples thereof include low molecular weight vinyl methylsiloxane homopolymers (trade name: VMS-005, manufactured by Gelest).
  • VMS-005 low molecular weight vinyl methylsiloxane homopolymers
  • the curing rate that is, the working time can be adjusted.
  • the viscosity of the composition for an acoustic lens before curing reaction is preferably low. From the point of measuring the viscosity before curing, the viscosity of the composition for an acoustic lens before adding the catalyst for initiating the curing reaction is measured. Specifically, it can be measured by the method described in International Publication No. 2017/130890.
  • the viscosity (23 ° C.) is preferably 5,000 Pa ⁇ s or less, more preferably 1,000 Pa ⁇ s or less, and particularly preferably 200 Pa ⁇ s or less.
  • the practical lower limit is 10 Pa ⁇ s or more.
  • the composition for an acoustic lens of the present invention can be prepared by a conventional method.
  • the components constituting the composition for an acoustic lens can be obtained by kneading with a kneader, a pressure kneader, a Banbury mixer (continuous kneader), and a kneading device of two rolls.
  • the mixing order of each component is not particularly limited.
  • the conditions for kneading the polyorganosiloxane mixture in which the component (C) is dispersed are not particularly limited as long as the component (C) is dispersed, but for example, kneading at 10 to 50 ° C. for 1 to 72 hours is preferable. ..
  • a silicone resin can be obtained by curing the composition for an acoustic lens of the present invention thus obtained.
  • a silicone resin can be obtained by heat-curing at 20 to 200 ° C. for 5 to 500 minutes.
  • the shape of the silicone resin is not particularly limited, and for example, it may be a preferable shape as an acoustic lens by the mold at the time of curing, and it is desired by obtaining a sheet-shaped silicone resin and cutting this resin or the like. It may be used as an acoustic lens.
  • composition for an acoustic lens of the present invention is useful for medical members, and can be preferably used for, for example, an acoustic wave probe and an acoustic wave measuring device.
  • the acoustic wave measuring device of the present invention is not limited to the ultrasonic diagnostic device or the photoacoustic wave measuring device, but refers to a device that receives an acoustic wave reflected or generated by an object and displays it as an image or a signal intensity.
  • the composition for an acoustic lens of the present invention is used as a material for an acoustic lens of a probe for an ultrasonic diagnostic apparatus, a material for an acoustic lens in an optical acoustic wave measuring device or an ultrasonic endoscope, and a capacitive micromachine as an ultrasonic transducer array. It can be suitably used as a material for an acoustic lens in an ultrasonic probe provided with an ultrasonic transducer (cMUT: Capacitive Micromachined Ultrasonic Transducers).
  • the acoustic lens of the present invention is described in, for example, the ultrasonic diagnostic apparatus described in JP-A-2003-169802, and JP-A-2013-202050, JP-A-2013-188465, and the like. It is preferably applied to an acoustic wave measuring device such as a photoacoustic wave measuring device of.
  • the acoustic wave probe of the present invention can be produced by a conventional method except that an acoustic lens is formed by using the composition for an acoustic lens of the present invention.
  • the configuration of the acoustic wave probe of the present invention will be described in more detail below based on the configuration of the ultrasonic probe in the ultrasonic diagnostic apparatus described in FIG.
  • the ultrasonic probe is a probe that uses an ultrasonic wave as an acoustic wave in the acoustic wave probe. Therefore, the basic structure of the ultrasonic probe can be applied as it is to the acoustic wave probe.
  • the ultrasonic probe 10 is a main component of an ultrasonic diagnostic apparatus, and has a function of generating ultrasonic waves and transmitting and receiving an ultrasonic beam. As shown in FIG. 1, the structure of the ultrasonic probe 10 is provided in the order of the acoustic lens 1, the acoustic matching layer 2, the piezoelectric element layer 3, and the backing material 4 from the tip (the surface in contact with the living body to be inspected). ing. In recent years, for the purpose of receiving high-order harmonics, a transmitting ultrasonic vibrator (piezoelectric element) and a receiving ultrasonic vibrator (piezoelectric element) are made of different materials to form a laminated structure. Has also been proposed.
  • the piezoelectric element layer 3 is a portion that generates ultrasonic waves, and electrodes are attached to both sides of the piezoelectric element, and when a voltage is applied, the piezoelectric element repeatedly expands and contracts and expands to vibrate, thereby generating ultrasonic waves. To do.
  • the material constituting the piezoelectric element quartz, single crystal such as LiNbO 3, LiTaO 3 and KNbO 3, thin film and Pb (Zr, Ti), such as ZnO and AlN sintered body such as O 3 system was polarized, So-called ceramic inorganic piezoelectric materials are widely used.
  • piezoelectric ceramics such as PZT: lead zirconate titanate having high conversion efficiency are used.
  • the piezoelectric element that detects the received wave on the high frequency side needs to have a sensitivity with a wider bandwidth. Therefore, as a piezoelectric element suitable for high frequency and wide band, an organic piezoelectric material using an organic polymer substance such as polyvinylidene fluoride (PVDF) is used as a piezoelectric element suitable for high frequency and wide band.
  • PVDF polyvinylidene fluoride
  • Japanese Patent Application Laid-Open No. 2011-071842 and the like utilize MEMS (Micro Electro Mechanical Systems) technology, which exhibits excellent short pulse characteristics and wideband characteristics, is excellent in mass productivity, and can obtain an array structure with little variation in characteristics.
  • MEMS Micro Electro Mechanical Systems
  • cMUT is described.
  • any piezoelectric element material can be preferably used.
  • the backing material 4 is provided on the back surface of the piezoelectric element layer 3 and shortens the pulse width of the ultrasonic wave by suppressing excessive vibration, which contributes to the improvement of the distance resolution in the ultrasonic diagnostic image.
  • the acoustic matching layer 2 is provided in order to reduce the difference in acoustic impedance between the piezoelectric element layer 3 and the test object and to efficiently transmit and receive ultrasonic waves.
  • the acoustic lens 1 is provided to focus ultrasonic waves in the slice direction by utilizing refraction and improve the resolution. Further, it is required to be in close contact with the living body to be inspected and to match the ultrasonic wave with the acoustic impedance of the living body (1.4 to 1.7 Milly in the human body). That is, as the material of the acoustic lens 1, the sound velocity is sufficiently lower than the sound velocity of the human body, and the acoustic impedance is close to the value of the skin of the human body, so that the transmission / reception sensitivity of ultrasonic waves is improved.
  • the composition for an acoustic lens of the present invention can be preferably used as an acoustic lens material.
  • the operation of the ultrasonic probe 10 having such a configuration will be described.
  • a voltage is applied to the electrodes provided on both sides of the piezoelectric element layer 3 to resonate the piezoelectric element layer 3, and an ultrasonic signal is transmitted from the acoustic lens 1 to the subject to be inspected.
  • the piezoelectric element layer 3 is vibrated by the reflected signal (echo signal) from the test object, and this vibration is electrically converted into a signal to obtain an image.
  • the acoustic lens obtained from the composition for an acoustic lens of the present invention can confirm a remarkable sensitivity improving effect at an ultrasonic transmission frequency of about 10 MHz or more as a general medical ultrasonic transducer. Especially at the transmission frequency of ultrasonic waves of 15 MHz or more, a particularly remarkable effect of improving sensitivity can be expected.
  • the acoustic lens obtained from the composition for an acoustic lens of the present invention can reduce the speed of sound to, for example, 800 m / s or more and less than 870 m / s, and has an ultrasonic frequency of 10 MHz or more and 30 MHz or less, and is 0 from the body surface. .
  • Photoacoustic wave measuring device using photoacoustic wave imaging- Photoacoustic wave imaging (PAI: Photo Acoustic Imaging) described in JP2013-158435, etc. irradiates the inside of the human body with light (electromagnetic waves), and is generated when the human body tissue undergoes adiabatic expansion due to the irradiated light. An image of sound waves or the signal strength of ultrasonic waves is displayed.
  • PAI Photo Acoustic Imaging
  • an amplifier circuit, an AD conversion IC, or the like can be installed at the tip of the transducer.
  • the ultrasonic endoscope since the ultrasonic endoscope is used by inserting it into the body, the installation space of the transducer is narrow, and it is difficult to install the amplifier circuit, AD conversion IC, etc. at the tip of the transducer.
  • the piezoelectric single crystal used in the transducer in the ultrasonic diagnostic apparatus for the body surface is difficult to apply to the transducer having an ultrasonic transmission frequency of 10 to 15 MHz or more due to its physical characteristics and process suitability. ..
  • ultrasonic waves for endoscopes are generally probes having an ultrasonic wave transmission frequency of 10 to 15 MHz or higher, it is difficult to improve the sensitivity by using a piezoelectric single crystal material.
  • an acoustic lens obtained from the composition for an acoustic lens of the present invention it is possible to improve the sensitivity of the ultrasonic transducer for an endoscope. Further, even when the same ultrasonic transmission frequency (for example, 15 MHz) is used, it is particularly effective when an acoustic lens obtained from the composition for an acoustic lens of the present invention is used in an ultrasonic transducer for an endoscope. Will be done.
  • the present invention will be described in more detail below based on an example in which ultrasonic waves are used as acoustic waves.
  • the present invention is not limited to ultrasonic waves, and an acoustic wave having an audible frequency may be used as long as an appropriate frequency is selected according to the test object, measurement conditions, and the like.
  • ED-7 type auto-excel homogenizer (trade name) manufactured by Nippon Seiki Co., Ltd.
  • the mixture is stirred at a rotation speed of 10,000 rpm for 60 minutes while cooling so that the liquid temperature does not exceed 50 ° C.
  • surface treatment was performed while crushing.
  • the mixture after stirring and pulverizing above was filtered off, and the obtained solid was heated and dried at 100 ° C. for 30 minutes to obtain powdery surface-treated alumina particles (C-1) (component (C)). ..
  • the surface-treated alumina particles (C-2) In the preparation of the surface-treated alumina particles (C-1), the surface-treated alumina particles (C-2) to the same as the surface-treated alumina particles (C-1) except that the raw materials were used in the compositions shown in Table 1 below. (C-30), (C-32) to (C-34) and surface-treated silica particles (C-31) were prepared.
  • SA-1 3-Aminopropyltrimethoxysilane (manufactured by Gelest, trade name "SIA0611.0")
  • SM-1 3-Mercaptopropyltrimethoxysilane (manufactured by Gelest, trade name "SIM6476.0")
  • SM-2 11-Mercaptoundecyltrimethoxysilane (manufactured by Gelest, trade name "SIM6480.0”
  • SIsocyanatosilane compound> SI-1): 3-Isocyanatopropyltrimethoxysilane (manufactured by Gelest, trade name "SII6456.0")
  • SI-2) Isocyanatomethyltrimethoxysilane (manufactured by Gelest, trade name "SII6453.8”)
  • SL-1 Aluminum trisec-butyrate (manufactured by Kawaken Fine Chemicals, trade name "ASBD”)
  • ⁇ Surface treatment agent used in the comparative example> sa-2: N-trimethoxysilylpropyl-N, N, N-trimethylammonium chloride (manufactured by Gelest, trade name "SIT8415.0", 50% aqueous methanol solution)
  • sc-1 Methyltrichlorosilane (reagent manufactured by Tokyo Kasei Co., Ltd.)
  • sc-2 Vinyltrichlorosilane (reagent manufactured by Tokyo Kasei Co., Ltd.)
  • st-4 Titanium tetrachloride (Fujifilm Wako Pure Chemical Industries, Ltd. reagent)
  • sl-6 Aluminum chloride (Fujifilm Wako Pure Chemical Industries, Ltd. reagent)
  • sz-7 Zirconium oxychloride octahydrate (reagent manufactured by Yoneyama Yakuhin Kogyo Co., Ltd.)
  • Example 1 Vinyl-terminated dimethylsiloxane polymer (component (A) in Table 1 below, “DMS-V41” (trade name) manufactured by Gelest, weight average molecular weight 62,7000) 49.4 parts by mass, methylhydrosiloxane polymer (Table 1 below) Component (B), "HMS-991” (trade name) manufactured by Gelest, weight average molecular weight 1,600, Si—H equivalent 67 g / mol) 0.6 parts by mass, surface-treated alumina particles prepared in the above preparation example ( C-1) (50.0 parts by mass of the component (C) in Table 1 below) was kneaded with a kneader at a temperature of 23 ° C.
  • a platinum catalyst solution (SIP6832.2 manufactured by Gelest, platinum concentration 2%) was added at 500 ppm (10 ppm as platinum), mixed, defoamed under reduced pressure, placed in a metal mold of 150 mm ⁇ 150 mm, and placed at 60 ° C. for 3 The time heat treatment was carried out to obtain a silicone resin sheet having a thickness of 2.0 mm.
  • the silicone resin sheets of Examples 2 to 31 and Comparative Examples 1 to 9 were prepared in the same manner as the silicone resin sheet of Example 1 except that the compositions shown in Table 2 below were adopted.
  • the silicone resin sheet was prepared for the sound velocity measurement test and two sheets were prepared for the chemical durability test.
  • one disc-shaped silicone resin sheet (diameter 16 mm ⁇ thickness 6 mm) was prepared for the abrasion durability test.
  • Abrasion durability test A test piece (disk-shaped silicone resin sheet) conforming to JIS K6264-2 (2005) A method using an Akron wear tester (“AB-1511” (trade name) manufactured by Ueshima Seisakusho Co., Ltd.) for the silicone resin sheet. ) The wear volume (mL) per 1000 rotations was determined. The test conditions were an environment of 23 ° C., a load force of 27.0 N, a tilt angle of 15 °, and a rotation speed of the test piece of 75 rpm. The wear volume (mL) was applied to the following evaluation criteria to evaluate the wear durability. "A" to "C” pass this test.
  • A-1 Polydimethylsiloxane containing vinyl groups at both ends (manufactured by Gelest, trade name “DMS-V41", weight average molecular weight 62,700)
  • A-2 Polydimethylsiloxane containing vinyl groups at both ends (manufactured by Gelest, trade name “DMS-V46", weight average molecular weight 117,000)
  • A-3 Polysiloxane containing both terminal vinyl groups and phenyl group (manufactured by Gelest, trade name "PDV-0541", weight average molecular weight 60,000, diphenylsiloxy unit 5 mol%)
  • B-1 Polymethylhydrosiloxane (manufactured by Gelest, trade name "HMS-991", weight average molecular weight 1,600, methylhydroxysiloxy unit 100 mol%, Si—H equivalent 67 g / mol)
  • B-2 Methylhydrosiloxane-phenylmethylsiloxane copolymer (manufactured by Gelest, trade name "HPM-502", weight average molecular weight 4,500, methylhydroxysiloxy unit 45-50 mol%, Si—H equivalent 165 g / mol)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

音響レンズ用組成物は、摩耗しにくく、また高水準の消毒薬に対する耐久性にも優れ、さらに、音速が抑えられて短焦点の高解像度観察を実現することができる。音響レンズ用組成物は下記成分(A)~(C)を含有する。 (A)ビニル基を有するポリシロキサン、 (B)分子鎖中に2個以上のSi-H基を有するポリシロキサン、 (C)アミノシラン化合物、メルカプトシラン化合物、イソシアナトシラン化合物、チオシアナトシラン化合物、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうちの少なくとも1種の表面処理剤で表面処理されたアルミナ粒子

Description

音響レンズ用組成物、音響レンズ、音響波プローブ、超音波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置及び超音波内視鏡並びに音響波プローブの製造方法
 本発明は、音響レンズ用組成物、音響レンズ、音響波プローブ、超音波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置及び超音波内視鏡並びに音響波プローブの製造方法に関する。
 音響波測定装置においては、音響波を被検対象若しくは部位(以下、「被検対象等」とも称する)に照射し、その反射波(エコー)を受信して信号を出力する音響波プローブが用いられる。この音響波プローブで受信した反射波から変換された電気信号を画像として表示する。これにより、被検対象内部が映像化して観察される。
 音響波としては、超音波及び光音響波など、被検対象等又は測定条件などに応じて適切な周波数を有するものが選択される。
 例えば、超音波診断装置は、被検対象内部に向けて超音波を送信し、被検対象内部の組織で反射された超音波を受信し、画像として表示する。光音響波測定装置は、光音響効果によって被検対象内部から放射される音響波を受信し、画像として表示する。光音響効果とは、可視光、近赤外光又はマイクロ波等の電磁波パルスを被検対象に照射した際に、被検対象が電磁波を吸収して発熱し熱膨張することにより、音響波(典型的には超音波)が発生する現象である。
 音響波測定装置は、被検対象である生体との間で音響波の送受信を行うため、例えば、生体(典型的には人体)との音響インピーダンスの整合性が要求され、また音響波減衰量の抑制が求められる。また、生体にこすり付けて使用するため一定の機械強度も求められる。これらの要求を満たすために、音響レンズには樹脂材料(母材)としてシリコーン樹脂が用いられ、アルミナ粒子等の無機フィラーを配合して音響インピーダンス、機械強度などを調整している。
 例えば、特許文献1には、ジオルガノポリシロキサンまたはこれを主材とするシリコーンゴムコンパウンド100質量部、平均粒子径が0.1~1.0μmである、アルミナまたは酸化チタン粉末50~150質量部、平均粒子径が0.1~50μmで、かつ融点が80℃以上である熱可塑性樹脂粉末10~100質量部とからなる音響レンズ用組成物及びこの組成物を硬化してなる音響波レンズ用シリコーン樹脂が記載されている。
特開昭62-11897号公報
 音響波プローブを具備する音響波測定装置は、腹部、心臓などの身体内部の検査ばかりでなく、乳腺、甲状腺、末梢血管、筋骨格、神経及び皮膚等の体表付近の組織の検査にも用いられる。体表付近にある上記組織は微細な構造を持つことから、高解像度の検査画像が求められる。
 一般に音響波画像は、音響波の周波数が高いほど解像度が高くなる。さらに、音響波プローブを構成する音響レンズの音速を低下させることにより焦点距離を短くでき、体表付近の組織のより高解像度の画像を得ることができる。つまり、音響レンズの音速を低下させることで体表付近にある生体組織について、より精度の高い情報を得ることができる。しかし、上記特許文献1記載の音響波レンズ用組成物は、シリコーンゴムコンパウンドに、特定の粒径のアルミナまたは酸化チタン粉末を特定の熱可塑性樹脂粉末と組み合わせて各々特定量配合してなるもので、音速を900~1100m/秒へと高めながら所望の音響インピーダンスを実現している。しかし、音速が上記範囲にある音響レンズを有する音響波プローブによっては、体表付近にある生体組織については近年求められる十分な精度の情報を得ることができない。
 この音響波プローブは、生体にこすり付けるようにして音響波の送受信を行うため、繰り返し使用することにより音響レンズが摩耗し、この摩耗による音響レンズの形状の変化は音響波画像の焦点のズレを生じる原因となる。したがって、音響レンズには、繰り返し生体にこすり付けられても摩耗しにくい特性が必要である。
 また音響波プローブには、高度の清浄性が求められ、使用の度に殺菌作用の強い薬品による高水準の消毒がなされる。そのため、音響波プローブには薬品に対する耐久性が求められる。
 本発明は、摩耗しにくく、また高水準の消毒薬に対する耐久性にも優れ、さらに、音速が抑えられて短焦点の高解像度観察を実現することができる音響レンズ用組成物、及び、この組成物を硬化させてなる音響レンズを提供することを課題とする。
 また、本発明は、上記の音響レンズを有する、音響波プローブ、超音波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置及び超音波内視鏡並びに音響波プローブの製造方法を提供することを課題とする。
 本発明者らは上記課題に鑑み鋭意検討した結果、ビニル基を有するポリシロキサンとSi-H基を2個以上有するポリシロキサンとを、特定の表面処理剤で処理したアルミナ粒子の存在下で硬化反応させることにより、得られる硬化物が摩耗耐久性に優れ、薬品耐久性にも優れるばかりでなく、この硬化物は音速を十分に低減、制御でき、短焦点の高解像度観察を実現する音響レンズとして優れた特性を有することを見出した。本発明は、これらの知見に基づき完成されるに至ったものである。
 本発明の上記課題は下記の手段により解決された。
<1>
 下記成分(A)~(C)を含有する音響レンズ用組成物。
 (A)ビニル基を有するポリシロキサン、
 (B)分子鎖中に2個以上のSi-H基を有するポリシロキサン、
 (C)アミノシラン化合物、メルカプトシラン化合物、イソシアナトシラン化合物、チオシアナトシラン化合物、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうちの少なくとも1種の表面処理剤で表面処理されたアルミナ粒子
<2>
 上記表面処理剤が、アミノシラン化合物、メルカプトシラン化合物、イソシアナトシラン化合物、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうちの少なくとも1種である、<1>に記載の音響レンズ用組成物。
<3>
 上記表面処理剤が、メルカプトシラン化合物、イソシアナトシラン化合物、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうちの少なくとも1種である、<1>又は<2>に記載の音響レンズ用組成物。
<4>
 上記表面処理剤が、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうちの少なくとも1種である、<1>~<3>のいずれか1つに記載の音響レンズ用組成物。
<5>
 上記アルミニウムアルコキシド化合物が、アセトナト構造及びアセタト構造のうちの少なくとも1種を含むアルミニウムアルコキシド化合物を含む、<1>~<4>のいずれか1つに記載の音響レンズ用組成物。
<6>
 上記アルミニウムアルコキシド化合物が、下記一般式(1)で表される化合物の少なくとも1種を含む、<1>~<5>のいずれか1つに記載の音響レンズ用組成物。
       一般式(1): R1a m1-Al-(OR2a3-m1
 R1aは水素原子、アルキル基、シクロアルキル基、アシル基、アリール基、又は不飽和脂肪族基を示す。
 R2aは水素原子、アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基、又は-SOS1を示す。RS1は置換基を示す。
 m1は0~2の整数である。
<7>
 上記ジルコニウムアルコキシド化合物が、アセトナト構造及びアセタト構造のうちの少なくとも1種を含むジルコニウムアルコキシド化合物を含む、<1>~<6>のいずれか1つに記載の音響レンズ用組成物。
<8>
 上記ジルコニウムアルコキシド化合物が、下記一般式(2)で表される化合物の少なくとも1種を含む、<1>~<7>のいずれか1つに記載の音響レンズ用組成物。
       一般式(2): R1b m2-Zr-(OR2b4-m2
 R1bは水素原子、アルキル基、シクロアルキル基、アシル基、アリール基、又は不飽和脂肪族基を示す。
 R2bは水素原子、アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基、又は-SOS2を示す。RS2は置換基を示す。
 m2は0~3の整数である。
<9>
 上記チタンアルコキシド化合物が、N、P及びSの少なくとも1種の原子を含むチタンアルコキシド化合物を含む、<1>~<8>のいずれか1つに記載の音響レンズ用組成物。
<10>
 上記チタンアルコキシド化合物が、下記一般式(3)で表される化合物の少なくとも1種を含む、<1>~<9>のいずれか1つに記載の音響レンズ用組成物。
       一般式(3): R1c m3-Ti-(OR2c4-m3
 R1cは水素原子、アルキル基、シクロアルキル基、アシル基、アリール基、又は不飽和脂肪族基を示す。
 R2cは水素原子、アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基、又は-SOS3を示す。RS3は置換基を示す。
 m3は0~3の整数である。
<11>
 上記成分(C)中、上記表面処理剤の含有量が、アルミナ粒子100質量部に対し、1~100質量部である、<1>~<10>のいずれか1つに記載の音響レンズ用組成物。
<12>
 上記成分(C)を構成するアルミナ粒子の平均一次粒子径が10~400nmである、<1>~<11>のいずれか1つに記載の音響レンズ用組成物。
<13>
 <1>~<12>のいずれか1つに記載の音響レンズ用組成物を硬化してなる音響レンズ。
<14>
 <13>に記載の音響レンズを有する音響波プローブ。
<15>
 <13>に記載の音響レンズを有する超音波プローブ。
<16>
 <14>に記載の音響波プローブを備える音響波測定装置。
<17>
 <14>に記載の音響波プローブを備える超音波診断装置。
<18>
 <13>に記載の音響レンズを備える光音響波測定装置。
<19>
 <13>に記載の音響レンズを備える超音波内視鏡。
<20>
 <1>~<12>のいずれか1つに記載の音響レンズ用組成物を用いて音響レンズを形成することを含む、音響波プローブの製造方法。
 本明細書の説明において、「金属アルコキシド化合物(具体的には、例えば、後述のチタンアルコキシド化合物、アルミニウムアルコキシド化合物及びジルコニウムアルコキシド化合物)」とは、金属原子にアルコキシ基が少なくとも1つ結合した構造を有する化合物を意味する。このアルコキシ基は置換基を有していてもよい。この置換基は1価でもよく、2価(例えばアルキリデン基)でもよい。また、1つの金属原子に結合する2つのアルコキシ基が互いに結合して環を形成していてもよい。
 本明細書の説明において、特に断りがない限り、化合物を示す一般式に複数の同一符号の基が存在する場合、これらは互いに同一であっても異なってもよく、また、各基で特定する基(例えば、アルキル基)はさらに置換基を有していてもよい。また、「Si-H基」はケイ素原子上に3つの結合手を有する基を意味するが、この結合手の記載を省き、表記を簡略化している。同様に、「Si-N-Si構造」において、各ケイ素原子は結合手を3つ有し、窒素原子は結合手を1つ有する。
 また、本明細書において「~」とは、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本発明の音響レンズ用組成物は、摩耗しにくく、また高水準の消毒薬に対する耐久性(薬品耐久性)にも優れる。さらに、音速を抑えて短焦点の高解像度観察が可能な音響レンズを実現することができる。
 また、本発明の音響レンズは、摩耗しにくく、また高水準の消毒薬に対する耐久性にも優れ、短焦点の高解像度観察を実現することができる。
 また、本発明の、音響波プローブ、超音波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置及び超音波内視鏡は、上記優れた特性を有する音響レンズを有する。
 また、本発明の音響波プローブの製造方法によれば、上記音響レンズを備える音響波プローブを得ることができる。
図1は、音響波プローブの一態様であるコンベックス型超音波プローブの一例についての斜視透過図である。
<<音響レンズ用組成物>>
 本発明の音響レンズ用組成物(以下、単に「組成物」とも称す。)は、下記成分(A)~(C)を含有する。
 (A)ビニル基を有するポリシロキサン(成分(A))
 (B)分子鎖中に2個以上のSi-H基を有するポリシロキサン(成分(B))
 (C)アミノシラン化合物、メルカプトシラン化合物、イソシアナトシラン化合物、チオシアナトシラン化合物、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうちの少なくとも1種の表面処理剤で表面処理されたアルミナ粒子(成分(C))
 本発明の組成物は、上記のとおり、(A)ビニル基を有するポリシロキサン(ポリオルガノシロキサン)及び(B)分子鎖中に2個以上のSi-H基を有するポリシロキサンを含む。ただし、(B)分子鎖中に2個以上のSi-H基を有するポリシロキサンは、(B)分子鎖中に2個以上のSi-H基を有するポリオルガノシロキサンが好ましい。
 従って、本発明の組成物は、成分(A)と、(B)分子鎖中に2個以上のSi-H基を有するポリオルガノシロキサン(成分(B))と、成分(C)とを少なくとも含有することが好ましい。
 上記構成を有する本発明の組成物を硬化して得られる本発明の音響レンズは、低い音速を実現するとともに、摩耗しにくく、また、薬品に対する耐久性にも優れる。これらの理由は未だ定かではないが以下のように推定される。
 すなわち、本発明の音響レンズが含有する成分(C)は、アルミナ粒子が特定の表面処理剤で表面処理されていることにより、シリコーン樹脂をマトリックスとするレンズ中への均一分散性が高められる。結果、アルミナ粒子界面で生じる位相の遅れを大きくして音速を効果的に低下させるものと考えられる。また、モース硬度が高く本来的に摩耗しにくいアルミナ粒子を、さらに特定の表面処理剤で表面処理することにより、この表面処理アルミナ粒子とマトリックスとの密着性も高まり、生体にこすり付けられても音響レンズが摩耗しにくくなると考えられる。また、上記表面処理剤自身が体液に対する耐久性に優れること等により、上記音響レンズが体液に対する耐久性に優れると考えられる。
 以降の詳細な説明においては、好ましい態様である、(A)ビニル基を有するポリオルガノシロキサン(成分(A))及び(B)分子鎖中に2個以上のSi-H基を有するポリオルガノシロキサン(成分(B))について記載する。ただし、本発明は以下に記載する態様に限定されるものではない。
<(A)ビニル基を有するポリオルガノシロキサン(成分(A))>
 本発明に用いられる成分(A)は、分子鎖中に2個以上のビニル基を有することが好ましい。
 成分(A)としては、例えば、少なくとも分子鎖両末端にビニル基を有するポリシロキサン(a1)(以下、単に成分(a1)とも称す。)、又は末端を除く分子鎖中に-O-Si(CH(CH=CH)を少なくとも2つ有するポリシロキサン(a2)(以下、単にポリシロキサン(a2)とも称す。)が挙げられる。なかでも、少なくとも分子鎖両末端にビニル基を有するポリシロキサン(a1)が好ましい。
 ポリシロキサン(a2)は、-O-Si(CH(CH=CH)が主鎖を構成するSi原子に結合しているポリシロキサン(a2)が好ましい。
 成分(A)は、例えば白金触媒の存在下、成分(B)との反応によりヒドロシリル化される。このヒドロシリル化反応(付加反応)により、架橋構造(硬化体)が形成されうる。
 成分(A)のビニル基の含有量は、特に限定されない。なお、音響レンズ用組成物に含まれる各成分との間に十分なネットワークを形成する観点から、ビニル基の含有量は、例えば、0.01~5モル%が好ましく、0.05~2モル%がより好ましい。
 ここで、ビニル基の含有量とは、成分(A)を構成する全ユニットを100モル%としたときのビニル基含有シロキサンユニットのモル%である。1つのビニル基含有シロキサンユニットは、1~3個のビニル基を有する。なかでも、ビニル基含有シロキサンユニット1つに対して、ビニル基1つであることが好ましい。例えば、主鎖を構成するSi-O単位及び末端のSiの全てのSi原子がビニル基を少なくとも1つずつ有する場合、100モル%となる。
 なお、ポリシロキサンの「ユニット」とは、主鎖を構成するSi-O単位及び末端のSiを言う。
 また、成分(A)は、フェニル基を有することも好ましく、ポリオルガノシロキサン(A)のフェニル基の含有量は、特に限定されない。音響レンズとしたときの機械的強度の観点から、例えば、好ましくは1~80モル%であり、より好ましくは2~40モル%である。
 ここで、フェニル基の含有量とは、成分(A)を構成する全ユニットを100モル%としたときのフェニル基含有シロキサンユニットのモル%である。1つのフェニル基含有シロキサンユニットは、1~3個のフェニル基を有する。なかでも、フェニル基含有シロキサンユニット1つに対して、フェニル基2つであることが好ましい。例えば、主鎖を構成するSi-O単位及び末端のSiの全てのSi原子がフェニル基を少なくとも1つずつ有する場合、100モル%となる。
 成分(A)は分子鎖中に2個以上のSi-H基を有さないことが好ましい。
 重合度及び比重は、特に限定されるものではない。得られる音響レンズの機械強度(引裂強度)及び化学的安定性、ならびに組成物の硬化前粘度等の向上の点からは、重合度は200~3,000が好ましく、400~2,000がより好ましく、比重は0.9~1.1が好ましい。
 成分(A)の重量平均分子量は、音響レンズの機械強度及び組成物の硬化前粘度の点から、20,000~200,000が好ましく、40,000~150,000がより好ましく、45,000~120,000がさらに好ましい。
 重量平均分子量は、例えば、GPC(Gel Permeation Chromatography)装置HLC-8220(商品名、東ソー社製)を用意し、溶離液としてトルエン(湘南和光純薬社製)を用い、カラムとしてTSKgel G3000HXL+TSKgel G2000HXL(いずれも商品名、東ソー社製)を用い、温度23℃、流量1mL/minの条件下、RI(Refractive Index)検出器を用いて測定することができる。
 成分(A)の25℃における動粘度は、1×10-5~10m/sが好ましく、1×10-4~1m/sがより好ましく、1×10-3~0.5m/sがさらに好ましい。
 なお、動粘度は、JIS Z8803に従い、ウベローデ型粘度計(例えば、柴田化学社製、商品名SU)を用い、温度25℃にて測定して求めることができる。
 少なくとも分子鎖両末端にビニル基を有するポリオルガノシロキサン(a1)は、下記一般式(I)で表されるポリオルガノシロキサンが好ましい。
Figure JPOXMLDOC01-appb-C000001
 一般式(I)において、Ra1はビニル基を示し、Ra2及びRa3は各々独立に、アルキル基、シクロアルキル基、アルケニル基又はアリール基を示す。x1及びx2は各々独立に1以上の整数である。
 Ra2及びRa3におけるアルキル基の炭素数は1~10が好ましく、1~4がより好ましく、1又は2がさらに好ましく、1が特に好ましい。アルキル基は、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、ヘキシル、オクチル、2-エチルへキシル及びデシルが挙げられる。
 Ra2及びRa3におけるシクロアルキル基の炭素数は3~10が好ましく、5~10がより好ましく、5又は6がさらに好ましい。また、シクロアルキル基は、3員環、5員環又は6員環が好ましく、5員環又は6員環がより好ましい。シクロアルキル基は、例えば、シクロプロピル、シクロペンチル及びシクロへキシルが挙げられる。
 Ra2及びRa3におけるアルケニル基の炭素数は2~10が好ましく、2~4がより好ましく、2がさらに好ましい。アルケニル基は、例えば、ビニル、アリル及びブテニルが挙げられる。
 Ra2及びRa3におけるアリール基の炭素数は6~12が好ましく、6~10がより好ましく、6~8がさらに好ましい。アリール基は、例えば、フェニル、トリル及びナフチルが挙げられる。
 これらのアルキル基、シクロアルキル基、アルケニル基及びアリール基は置換基を有していてもよい。このような置換基は、例えば、ハロゲン原子、アルキル基、シクロアルキル基、アルケニル基、アリール基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、シリル基及びシアノ基が挙げられる。
 置換基を有する基としては、例えば、ハロゲン化アルキル基が挙げられる。
 Ra2及びRa3は、アルキル基、アルケニル基又はアリール基が好ましく、炭素数1~4のアルキル基、ビニル基又はフェニル基がより好ましく、メチル基、ビニル基又はフェニル基がさらに好ましく、メチル基又はフェニル基が特に好ましい。
 Ra2はなかでもメチル基が好ましい。Ra3はなかでもメチル基、ビニル基又はフェニル基が好ましく、メチル基又はフェニル基がより好ましく、フェニル基が特に好ましい。
 x1は200~3,000の整数が好ましく、400~2,000の整数がより好ましい。
 x2は、1~3,000の整数が好ましく、1~1,000の整数がより好ましく、40~1,000の整数がさらに好ましく、40~700の整数が特に好ましい。
 また、別の態様としては、x1は1~3,000の整数が好ましく、5~1,000の整数がより好ましい。
 本発明において、上記一般式(I)中の繰り返し単位「-Si(Ra3-O-」と「-Si(Ra2-O-」は、それぞれ、ブロック重合した形態で存在していてもよいし、ランダムに存在する形態であってもよい。
 少なくとも分子鎖両末端にビニル基を有するポリオルガノシロキサンは、例えば、いずれもGelest社製の商品名で、DMSシリーズ(例えば、DMS-V31、DMS-V31S15、DMS-V33、DMS-V35、DMS-V35R、DMS-V41、DMS-V42、DMS-V46、DMS-V51及びDMS-V52)、PDVシリーズ(例えば、PDV-0341、PDV-0346、PDV-0535、PDV-0541、PDV-1631、PDV-1635、PDV-1641及びPDV-2335)、PMV-9925、PVV-3522、FMV-4031及びEDV-2022が挙げられる。
 なお、DMS-V31S15は、予めフュームドシリカが配合されているため、特別な装置での混練は不要である。
 本発明において、成分(A)は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<(B)分子鎖中に2個以上のSi-H基を有するポリオルガノシロキサン(成分(B))>
 本発明に用いられる成分(B)は、分子鎖中に2個以上のSi-H基を有する。ここで、成分(B)が「-SiH-」構造を有する場合、「-SiH-」構造中のSi-H基は2個と数えられる。また、成分(B)が「-SiH」構造を有する場合、「-SiH」構造中のSi-H基は3個と数えられる。
 分子鎖中にSi-H基を2つ以上有することで、重合性不飽和基を少なくとも2つ有するポリオルガノシロキサンを架橋することができる。
 成分(B)はビニル基を有さないことが好ましい。
 成分(B)には、直鎖状構造を有するポリオルガノシロキサンと分岐状構造を有するポリオルガノシロキサンが存在し、直鎖状構造を有するポリオルガノシロキサンが好ましい。
 成分(B)の重量平均分子量は、シリコーン樹脂の機械強度及び組成物の硬化前粘度の点から、500~100,000が好ましく、1,500~50,000がより好ましい。成分(B)の重量平均分子量は、成分(A)の重量平均分子量と同様にして測定することができる。
 直鎖状構造を有する成分(B)は、下記一般式(II)で表されるポリオルガノシロキサンが好ましい。
Figure JPOXMLDOC01-appb-C000002
 一般式(II)において、Rb1~Rb3は各々独立に、水素原子、アルキル基、シクロアルキル基、アルケニル基又はアリール基を示す。y1及びy2は各々独立に1以上の整数である。ただし、分子鎖中に2個以上のSi-H基を有する。
 Rb1~Rb3におけるアルキル基、シクロアルキル基、アルケニル基及びアリール基としては、例えば、Ra2及びRa3におけるアルキル基、シクロアルキル基、アルケニル基及びアリール基を採用することができる。
 Rb1~Rb3は水素原子、アルキル基、アルケニル基又はアリール基が好ましく、水素原子、炭素数1~4のアルキル基、ビニル基又はフェニル基がより好ましい。
 このうち、Rb1及びRb2は、水素原子、アルキル基、アルケニル基又はアリール基が好ましく、水素原子又はアルキル基がより好ましく、水素原子又はメチル基がさらに好ましく、メチル基が特に好ましい。
 Rb3は、水素原子、アルキル基、アルケニル基又はアリール基が好ましく、水素原子又はアリール基がより好ましく、水素原子又はフェニル基がさらに好ましく、水素原子が特に好ましい。
 y1は、0~2,000の整数が好ましく、0~1,000の整数がより好ましく、0~30の整数がさらに好ましい。
 y2は、1~2,000の整数が好ましく、1~1,000の整数がより好ましく、1~30の整数がさらに好ましい。
 y1+y2は5~2,000の整数が好ましく、7~1,000の整数がより好ましく、10~50の整数がさらに好ましく、15~30の整数がなかでも好ましい。
 本発明において、上記一般式(II)中の「-Si(Rb2-O-」と「-Si(Rb2)(Rb3-O-」は、それぞれ、ポリシロキサン中にブロック重合した形態で存在していてもよいし、ランダムに存在する形態であってもよい。
 Rb1~Rb3の組み合わせとしては、Rb1が水素原子又は炭素数1~4のアルキル基、Rb2が水素原子又は炭素数1~4のアルキル基、Rb3が水素原子又はアリール基の組み合わせが好ましい。
 この好ましい組み合わせにおいては、y2/(y1+y2)で表されるヒドロシリル基の含有量は、0.1を超え1.0以下が好ましく、0.2を超え1.0以下がより好ましい。
 直鎖状構造の成分(B)は、例えば、いずれもGelest社製のメチルヒドロシロキサン-ジメチルシロキサンコポリマー(トリメチルシロキサン末端)である、HMS-064(MeHSiO:5-7mol%)、HMS-082(MeHSiO:7-8mol%)、HMS-301(MeHSiO:25-30mol%)、HMS-501(MeHSiO:50-55mol%)、メチルヒドロシロキサン-フェニルメチルシロキサンコポリマーであるHPM-502(MeHSiO:45-50mol%)及びメチルヒドロシロキサンポリマーであるHMS-991(MeHSiO:100mol%)が挙げられる。
 ここで、MeHSiOのmol%は、上記Rb1~Rb3の好ましい組み合わせにおけるy2/(y1+y2)に100を乗じたものと同義である。
 分岐状構造の成分(B)は、分岐構造と2個以上のヒドロシリル基(Si-H基)を有する。
 比重は、0.9~0.95が好ましい。
 分岐状構造の成分(B)は、下記平均組成式(b)で表されるものが好ましい。
 平均組成式(b):[H(Rb63‐aSiO1/2y3[SiO4/2y4
 ここで、Rb6は、アルキル基、シクロアルキル基、アルケニル基又はアリール基を示し、aは0.1~3を表し、y3およびy4は各々独立に1以上の整数を表す。
 Rb6におけるアルキル基、シクロアルキル基、アルケニル基およびアリール基としては、例えば、Ra2およびRa3におけるアルキル基、シクロアルキル基、アルケニル基およびアリール基を採用することができる。
 aは、好ましくは1である。
 a/3で表されるヒドロシリル基の含有量は、0.1を超え0.6未満が好ましく、0.1を超え0.4未満がより好ましい。
 一方、分岐状構造の成分(B)を化学構造式で表すと、-O-Si(CH(H)が主鎖を構成するSi原子に結合しているポリオルガノシロキサンが好ましく、下記一般式(IIb)で表される構造を有するものがより好ましい。
Figure JPOXMLDOC01-appb-C000003
 一般式(IIb)において、*は少なくともシロキサンのSi原子と結合することを意味する。
 分岐状構造の成分(B)は、例えば、HQM-107(商品名、Gelest社製、水素化Qレジン)およびHDP-111(商品名、Gelest社製、ポリフェニル-(ジメチルヒドロキシ)シロキサン(水素末端)、[(HMeSiO)(CSi)O]:99-100mol%)が挙げられる。
 成分(B)は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、直鎖状構造の成分(B)と分岐状構造の成分(B)とを組み合わせて用いてもよい。
<表面処理されたアルミナ粒子(成分(C))>
 成分(C)は、アミノシラン化合物、メルカプトシラン化合物、イソシアナトシラン化合物、チオシアナトシラン化合物、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうちの少なくとも1種の表面処理剤で表面処理されたアルミナ粒子である。
 本発明に用いられる成分(C)を構成するアルミナ粒子(表面処理前のアルミナ粒子、以下、単に「アルミナ粒子」と称する。)の平均一次粒子径(平均粒径)は特に制限されるものではなく、音響レンズの音速、接着性及び薬品耐久性の点から、5~500nmが好ましく、10~400nmがより好ましく、10~250nmがより好ましく、10~200nmがより好ましく、10~160nmがより好ましく、20~150nmがより好ましく、20~100nmが更に好ましく、20~80nmが特に好ましい。
 なお、成分(C)の平均一次粒子径は、5~1000nmが好ましく、10~600nmがより好ましく、10~300nmがより好ましく、20~200nmが更に好ましく、30~150nmが更に好ましく、30~100nmが特に好ましい。
 平均一次粒子径は、アルミナ粒子の製造メーカーのカタログに記載されている。ただし、カタログに平均一次粒子径が記載されていないもの、又は、新たに製造したものは、透過型電子顕微鏡(Transmission Electron Microscopy:TEM)により測定した粒子径を平均することで求めることができる。すなわち、TEMにより撮影した電子顕微鏡写真の1つのアルミナ粒子について、最短径と最長径を測定し、その算術平均値を1つのアルミナ粒子の粒子径として求める。本発明においては、無作為に選択した300個のアルミナ粒子の粒子径を平均し、平均一次粒子径として求める。
 アルミナ粒子は市販のものを用いることができ、例えば、IoLiTek社製NOシリーズ及びEMジャパン社製NP-ALO-5-1K(いずれも商品名)が挙げられる。
 本発明に用いられる表面処理剤は、音響レンズの音速、摩耗耐久性及び薬品耐久性の点から、アミノシラン化合物、メルカプトシラン化合物、イソシアナトシラン化合物、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物が好ましく、メルカプトシラン化合物、イソシアナトシラン化合物、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物がより好ましく、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド及びチタンアルコキシド化合物が更に好ましい。
 以下、本発明に用いられる表面処理剤について具体的に説明する。
(アミノシラン化合物)
 アミノシラン化合物(アミノ基を有するシラン化合物)は、好ましくはアミノ基を有するシランカップリング剤である。ただし、上記アミノシラン化合物はSi-N-Si構造を有しないことが好ましい。
 アミノシラン化合物は、下記一般式(A)で表される化合物を少なくとも1種含むことが好ましい。
Figure JPOXMLDOC01-appb-C000004
 式中、R及びRは水素原子又は置換基を示す。L1aは単結合、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、-O-、-S-、-NR-、エステル結合、チオエステル結合、アミド結合、チオアミド結合若しくはスルホニル基又はこれらの基若しくは結合を2つ以上組合せてなる2価の基を示す。Rは、水素原子又は置換基を示す。Y1aはヒドロキシ基又はアルコキシ基を示す。Y2a及びY3aはヒドロキシ基、アルコキシ基、アルキル基又はケトオキシム基を示す。
 R及びRとして採り得る置換基は、例えば、アルキル基(好ましくは炭素数1~12、より好ましくは炭素数1~8)、アルケニル基(好ましくは炭素数2~12、より好ましくは炭素数2~8)、アルキニル基(好ましくは炭素数2~12、より好ましくは炭素数2~8)、アリール基(好ましくは炭素数6~20、より好ましくは炭素数6~10)が挙げられる。これらの置換基は更に置換基を有してもよく、このような置換基としては、R及びR2aとして採り得る置換基として挙げた上記置換基及びアミノ基が挙げられる。
 また、R及びRが組み合わされて、アルキリデン基(好ましくは炭素数2~12、より好ましくは炭素数2~8)を示してもよい。
 L1aはアルキレン基、アルケニレン基、アリーレン基、-O-又は-NR-を示すことが好ましく、アルキレン基、アリーレン基又は-NR-を示すことがより好ましく、アルキレン基を示すことが更に好ましい。
 Y1aはアルコキシ基を示すことが好ましい。
 Y2a及びY3aはヒドロキシ基、アルコキシ基又はアルキル基を示すことが好ましく、アルコキシ基又はアルキル基を示すことがより好ましい。
 L1aとして採り得るアルキレン基は、直鎖、分岐及び環状のいずれでもよい。アルキレン基の炭素数は、1~30が好ましく、1~25がより好ましく、1~20がより好ましく、1~15がより好ましい。アルキレン基の具体例として、メチレン、エチレン、プロピレン、tert-ブチレン、ペンチレン、シクロへキシレン、へプチレン、オクチレン、ノニレン、デシレン及びウンデシレンが挙げられる。
 L1aとして採り得るアルケニレン基は、直鎖及び分岐のいずれでもよい。アルケニレン基の炭素数は、2~20が好ましく、2~15がより好ましく、2~10がより好ましく、2~6がさらに好ましい。アルケニレン基の具体例として、エテニレン及びプロぺニレンが挙げられる。
 L1aとして採り得るアルキニレン基は、直鎖及び分岐のいずれでもよい。アルキニレン基の炭素数は、2~20が好ましく、2~15がより好ましく、2~10がより好ましく、2~6がさらに好ましい。アルキニレン基の具体例として、エチニレン及びプロピニレンが挙げられる。
 L1aとして採り得るアリーレン基の炭素数は6~20が好ましく、6~15がより好ましく、6~12がより好ましく、6~10がさらに好ましい。アリーレン基の具体例として、例えば、フェニレン及びナフチレンを挙げることができる。
 -NR-のRとして採り得る置換基は、アルキル基(好ましくは炭素数1~12、より好ましくは炭素数1~8)、アルケニル基(好ましくは炭素数2~12、より好ましくは炭素数2~8)、アルキニル基(好ましくは炭素数2~12、より好ましくは炭素数2~8)、アリール基(好ましくは炭素数6~20、より好ましくは炭素数6~10)及び複素環基が挙げられる。Rとして採り得る複素環基を構成する複素環は、飽和又は不飽和の脂肪族複素環でも芳香族複素環でもよく、単環でも縮合環でもよい。また、橋かけ環でもよい。複素環が有するヘテロ原子は、例えば、酸素原子、窒素原子及び硫黄原子が挙げられる。1つの複素環が含むヘテロ原子の数は、特に制限されないが、1~3個が好ましく、1又は2個がより好ましい。複素環の炭素数は2~10が好ましく、4又は5がより好ましい。複素環は3~7員環が好ましく、3~6員環がより好ましく、3~5員環がさらに好ましい。複素環の具体例として、エポキシ環、3,4-エポキシシクロヘキサン環、フラン環及びチオフェン環が挙げられる。
 -NR-としては、例えば、-NH-が挙げられる。
 L1aとして採り得る、上記基若しくは上記結合を2つ以上組合せてなる2価の基(以下、「L1aとして採り得る組合わせてなる基」とも称す。)を構成する、組合わせる基若しくは結合の数は、2~8が好ましく、2~6がより好ましく、2~4がさらに好ましい。
 また、L1aとして採り得る組合わせてなる基の分子量は、20~1000が好ましく、30~500がより好ましく、40~200がさらに好ましい。
 L1aとして採り得る組合わせてなる基としては、例えば、ウレア結合、チオウレア結合、カルバメート基、スルホンアミド結合、アリーレン-アルキレン、-O-アルキレン、アミド結合-アルキレン、-S-アルキレン、アルキレン-O-アミド結合-アルキレン、アルキレン-アミド結合-アルキレン、アルケニレン-アミド結合-アルキレン、アルキレン-エステル結合-アルキレン、アリーレン-エステル結合-アルキレン、-(アルキレン-O)-、アルキレン-O-(アルキレン-O)-アルキレン(「(アルキレン-O)」はいずれも繰り返し単位)、アリーレン-スルホニル-O-アルキレン及びエステル結合-アルキレンが挙げられる。
 Y1a~Y3aとして採り得るアルコキシ基を構成するアルキル基は、直鎖、分岐及び環状のいずれでもよく、これらの形態を組合わせて有してもよい。本発明において、このアルキル基は直鎖のアルキル基であることが好ましい。アルコキシ基を構成するアルキル基の炭素数は、1~15が好ましく、1~10がより好ましく、1~5がより好ましく、1又は2がさらに好ましい。アルコキシ基を構成するアルキル基の具体例として、メチル、エチル、プロピル、t-ブチル、ペンチル及びシクロヘキシルが挙げられる。
 Y2a及びY3aとして採り得るアルキル基としては、Y1a~Y3aとして採り得るアルコキシ基を構成するアルキル基を挙げることができ、好ましい形態もY1a~Y3aとして採り得るアルコキシ基を構成するアルキル基の好ましい形態と同じである。
 Y2a及びY3aとして採り得るケトオキシム基は下記構造を有する置換基である。
Figure JPOXMLDOC01-appb-C000005
 上記構造中、R11及びR12は置換基を示し、*はケイ素原子に対する結合部を示す。
 R11及びR12が採り得る置換基として、上記Rにおける置換基が挙げられ、好ましい形態もRとして採り得る置換基の好ましい形態と同じである。
 ケトオキシム基として例えば、ジメチルケトオキシム基、メチルエチルケトオキシム基及びジエチルケトオキシム基等が挙げられる。
 以下、本発明に用いられるアミノシラン化合物の具体例を挙げるが、本発明はこれらに限定されない。
3-アミノプロピルトリメトキシシラン
3-アミノプロピルジメチルメトキシシラン
3-アミノプロピルメチルジメトキシシラン
3-アミノプロピルメチルジエトキシシラン
3-アミノプロピルトリメトキシシラン
3-アミノプロピルトリエトキシシラン
N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン
N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン
N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン
N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン
3-メチルジメトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン
3-メチルジエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン
3-トリメトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン
3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン
N-フェニル-3-アミノプロピルメチルジエトキシシラン
N-フェニル-3-アミノプロピルメチルジエトキシシラン
N-フェニル-3-アミノプロピルトリメトキシシラン
N-フェニル-3-アミノプロピルトリエトキシシラン
N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン
(メルカプトシラン化合物)
 メルカプトシラン化合物(メルカプト基(スルファニル基)を有するシラン化合物)は、好ましくはメルカプト基を有するシランカップリング剤である。メルカプトシラン化合物で表面処理されたアルミナ粒子は、メルカプトシラン化合物由来のメルカプト基を有することが好ましい。
 メルカプトシラン化合物は、下記一般式(B)で表される化合物を少なくとも1種含むことが好ましい。
Figure JPOXMLDOC01-appb-C000006
 L1b、Y1b、Y2b及びY3bは、上記一般式(A)のL1a、Y1a、Y2a及びY3aとそれぞれ同義であり、好ましい範囲も同じである。
 以下、本発明に用いられるメルカプトシラン化合物の具体例を挙げるが、本発明はこれらに限定されない。
3-メルカプトプロピルトリメトキシシラン
3-メルカプトプロピルトリエトキシシラン
3-メルカプトプロピルメチルジメトキシシラン
メルカプトメチルメチルジエトキシシラン
(メルカプトメチル)メチルジメトキシシラン
(メルカプトメチル)ジメチルエトキシシラン
11-メルカプトウンデシルトリメトキシシラン
(イソシアナトシラン化合物)
 イソシアナトシラン化合物(好ましくは、イソシアナト基を有するシラン化合物)は、好ましくはイソシアナト基を有するシランカップリング剤である。イソシアナトシラン化合物で表面処理されたアルミナ粒子は、イソシアナトシラン化合物由来のイソシアナト基を有することが好ましい。
 イソシアナト化合物は、下記一般式(C)で表される化合物を少なくとも1種含むことが好ましい。
Figure JPOXMLDOC01-appb-C000007
 L1c、Y1c、Y2c及びY3cは、上記一般式(A)のL1a、Y1a、Y2a及びY3aとそれぞれ同義であり、好ましい範囲も同じである。
 また、本発明においては、イソシアナト化合物として、上記一般式(C)で表される化合物の縮合物及び上記一般式(C)のイソシアナト基が置換基で保護された化合物を用いることも好ましい。上記置換基は、例えば、アルコール化合物、フェノール化合物、芳香族アミン、ラクタム及びオキシムにより導入することができる。このようなアルコール化合物としては、例えば、アルキルアルコール(好ましくは炭素数1~12、より好ましくは炭素数1~8)が挙げられる。また、フェノール化合物としては、例えば、フェノール及びクレゾールが挙げられる。また、ラクタムとしては、例えば、ε-カプロラクタムが挙げられる。
 「上記一般式(C)のイソシアナト基が置換基で保護された化合物」とは、上記一般式(C)の-NCOを-NHC(=O)ORに置き換えた化合物である。Rは置換基を示し、例えば、アルキル基(好ましくは炭素数1~12、より好ましくは炭素数1~8)が挙げられる。
 以下、本発明に用いられるイソシアナトシラン化合物の具体例を挙げるが、本発明はこれらに限定されない。
3-イソシアナトプロピルトリメトキシシラン
3-イソシアナトプロピルトリエトキシシラン
イソシアナトメチルトリメトキシシラン
(以下は、縮合や置換基により保護されたイソシアナトシラン化合物)
トリス(3-トリメトキシシリルプロピル)イソシアヌレート
(3-トリエトキシシリルプロピル)-t-ブチルカルバメート
トリエトキシシリルプロピルエチルカルバメート
(チオシアナトシラン化合物)
 チオシアナトシラン化合物(チオシアナト基を有するシラン化合物)は、好ましくはチオシアナト基を有するシランカップリング剤である。チオシアナトシラン化合物で表面処理されたアルミナ粒子は、チオシアナトシラン化合物由来のチオシアナト基を有することが好ましい。
 チオシアナト化合物は、下記一般式(D)で表される化合物を少なくとも1種含むことが好ましい。
Figure JPOXMLDOC01-appb-C000008
 L1d、Y1d、Y2d及びY3dは、上記一般式(A)のL1a、Y1a、Y2a及びY3aとそれぞれ同義であり、好ましい範囲も同じである。
 以下、本発明に用いられるチオシアナトシラン化合物の具体例を挙げるが、本発明はこれらに限定されない。
3-チオシアナトプロピルトリメトキシシラン
3-チオシアナトプロピルトリエトキシシラン
チオシアナトメチルトリメトキシシラン
(アルミニウムアルコキシド化合物)
 アルミニウムアルコキシド化合物は、アセトナト構造及びアセタト構造の少なくとも1種を含むアルミニウムアルコキシド化合物を含むことが好ましい。
 アルミニウムアルコキシド化合物は、下記一般式(1)で表される化合物の少なくとも1種を含むことが好ましい。
       一般式(1): R1a m1-Al-(OR2a3-m1
 R1aは水素原子、アルキル基、シクロアルキル基、アシル基、アリール基、又は不飽和脂肪族基を示す。
 R1aとして採り得るアルキル基は、直鎖アルキル基及び分岐アルキル基並びにアラルキル基を含む。このアルキル基の炭素数は1~20が好ましく、1~15がより好ましく、1~10がさらに好ましく、1~8が特に好ましいが、アラルキル基の場合は7~30が好ましい。このアルキル基の好ましい具体例として、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、sec-ブチル、イソブチル、tert-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、デシル、トリデシル、オクタデシル、ベンジル、及びフェネチルが挙げられる。
 R1aとして採り得るアルキル基はオキシラン環を有していることも好ましい。R1aとして採り得るエポキシシクロアルキルアルキル基におけるシクロアルキル基(オキシラン環が縮合した構造のシクロアルキル基)の環員数は4~8が好ましく、5又は6がより好ましく、6であること(すなわちエポキシシクロヘキシル基であること)がさらに好ましい。
 また、R1aとして採り得るアルキル基はアミノ基、イソシアナト基、メルカプト基、エチレン性不飽和基、及び酸無水物基から選ばれる基を有することも好ましい。
 R1aとして採り得るシクロアルキル基は、炭素数が3~20が好ましく、3~15がより好ましく、3~10がさらに好ましく、3~8が特に好ましい。このシクロアルキル基の好ましい具体例としては、例えば、シクロプロピル、シクロペンチル、及びシクロヘキシルが挙げられる。
 R1aとして採り得るアシル基は、炭素数が2~40が好ましく、2~30がより好ましく、2~20がさらに好ましく、2~18が特に好ましい。
 R1aとして採り得るアリール基は、炭素数が6~20が好ましく、6~15がより好ましく、6~12がさらに好ましく、6~10が特に好ましい。このアリール基の好ましい具体例としては、例えば、フェニル及びナフチルが挙げられ、フェニルがさらに好ましい。
 R1aとして採り得る不飽和脂肪族基は、炭素-炭素不飽和結合の数が1~5であることが好ましく、1~3がより好ましく、1又は2がさらに好ましく、1であることが特に好ましい。不飽和脂肪族基はヘテロ原子を含んでもよく、炭化水素基であることも好ましい。不飽和脂肪族基が炭化水素基の場合、炭素数は2~20が好ましく、2~15がより好ましく、2~10がさらに好ましく、2~8がさらに好ましく、2~5であることも好ましい。不飽和脂肪族基はより好ましくはアルケニル基又はアルキニル基である。
 R1aは水素原子、アルキル基、シクロアルキル基、又はアリール基が好ましく、アルキル基、又はシクロアルキル基がより好ましい。
 一般式(1)の化合物がR1aを2つ以上有する場合、2つのR1aは互いに連結して環を形成していてもよい。
 R2aは水素原子、アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基(ホスホン酸基)、又は-SOS1を示す。RS1は置換基を示す。
 R2aとして採り得るアルキル基、シクロアルキル基、アシル基、及びアリール基は、それぞれ、R1aとして採り得るアルキル基、シクロアルキル基、アシル基、及びアリール基と同義であり、各基の好ましい形態も同じである。また、R2aとして採り得るアルキル基は、置換基としてアミノ基を有することも好ましい。
 R2aとして採り得るアルケニル基は、直鎖アルケニル基及び分岐アルケニル基を含む。このアルケニル基の炭素数は好ましくは2~18であり、より好ましくは2~7であり、さらに好ましくは2~5である。このアルケニル基の好ましい具体例として、例えば、ビニル、アリル、ブテニル、ペンテニル及びヘキセニルが挙げられる。このアルケニル基は置換アルケニル基が好ましい。
 R2aとして採り得るホスホネート基は、-P(=O)(-ORP1)ORP2で表される基である。RP1及びRP2は水素原子又は置換基を示し、この置換基はアルキル基、又はホスホネート基が好ましい。RP1及びRP2として採り得るアルキル基は上述したR1aとして採り得るアルキル基と同義であり、アルキル基の好ましい形態も同じである。RP1及びRP2として採り得るホスホネート基は、R2aとして採り得るホスホネート基と同義であり、好ましい形態も同じである。RP1又はRP2がホスホネート基の場合、このホスホネート基を構成するRP1及びRP2はアルキル基が好ましい。
 R2aとして採り得るホスホネート基は、RP1及びRP2がともにアルキル基であるか、又は、RP1が水素原子で、RP2がホスホネート基であることが好ましい。
 なお、ホスホネート基はホスファイト基(亜リン酸基)と互変異性であるため、本発明においてホスホネート基は、ホスファイト基を含む意味である。
 R2aとして採り得る-SOS1において、置換基RS1としてはアルキル基又はアリール基が好ましい。RS1として採り得るアルキル基及びアリール基の好ましい形態として、それぞれ、上述したR1aとして採り得るアルキル基及びアリール基の好ましい形態を挙げることができる。なかでもRS1はアルキル基を置換基として有するフェニルが好ましい。このアルキル基の好ましい形態は、上述したR1aとして採り得るアルキル基の好ましい形態と同じである。
 一般式(1)で表される化合物がR2aを2つ以上有する場合、2つのR2aは互いに連結して環を形成していてもよい。
 m1は0~2の整数である。
 上記の一般式(1)において、OR2aの少なくとも1つがアセトナト構造を有することが好ましい。このアセトナト構造は、アセトン又はアセトンが置換基を有した構造の化合物から水素イオンが1つ除かれてAlに配位している構造を意味する。このAlに配位する配位原子は通常は酸素原子である。このアセトナト構造は、アセチルアセトン構造(「CH-C(=O)-CH-C(=O)-CH」)を基本構造とし、そこから水素イオンが1つ除かれて、酸素原子を配位原子としてAlに配位している構造(すなわちアセチルアセトナト構造)が好ましい。上記の「アセチルアセトン構造を基本構造とする」とは、上記アセチルアセトン構造の他、上記アセチルアセトン構造の水素原子が置換基で置換された構造を含む意味である。OR2aがアセトナト構造を有する形態として、例えば、後述する化合物SL-2及びSL-3が挙げられる。
 上記の一般式(1)において、OR2aの少なくとも1つがアセタト構造を有することが好ましい。本発明において、アセタト構造は、酢酸もしくは酢酸エステル又はこれらが置換基(酢酸のメチル基が置換基としてアルキル基を有する形態を含む)を有した構造の化合物から水素イオンが1つ除かれてAlに配位している構造を意味する。このAlに配位する配位原子は通常は酸素原子である。このアセタト構造は、アルキルアセトアセタート構造(「CH-C(=O)-CH-C(=O)-O-Ralk」(Ralkはアルキル基(好ましくは炭素数1~20のアルキル基であり、炭素数1~10のアルキル基であってもよく、より好ましくは炭素数1~4のアルキル基であってもよい。)を示す。))を基本構造とし、そこから水素イオンが1つ除かれて、酸素原子を配位原子としてAlに配位している構造(すなわちアルキルアセトアセタト構造)が好ましい。上記の「アルキルアセトアセタート構造を基本構造とする」とは、上記アルキルアセトアセタート構造の他、上記アルキルアセトアセタート構造の水素原子が置換基で置換された構造を含む意味である。OR2aがアセタト構造を有する形態として、例えば、後述する化合物SL-3、SL―4、及びSL―5が挙げられる。
 上記R1a又はR2aとして採り得る各基は、対カチオンを有するアニオン性基(塩型の置換基)を置換基として有していてもよい。アニオン性基とは、アニオンを形成し得る基を意味する。上記対カチオンを有するアニオン性基としては、例えば、アンモニウムイオンを対カチオンとするカルボン酸イオンの基が挙げられる。この場合、上記対カチオンは、上記の一般式(1)で表される化合物中において、化合物全体の電荷が0となるように存在していればよい。このことは、後述する、一般式(2)で表される化合物及び一般式(3)で表される化合物についても同様である。
 以下、本発明に用いられるアルミニウムアルコキシド化合物の具体例を挙げるが、本発明はこれらに限定されない。
アルミニウムトリエチレート
アルミニウムトリイソプロピレート
アルミニウムトリsec-ブチレート
アルミニウムトリス(エチルアセトアセテート)
エチルアセトアセテートアルミニウムジイソプロピレート
アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)
アルミニウムトリス(アセチルアセトネート)
ジイソプロポキシアルミニウム-9-オクタデセニルアセトアセテート
アルミニウムジイソプロボキシモノエチルアセトアセテート
アルミニウムトリスエチルアセトアセテート
アルミニウムトリスアセチルアセトネート
モノsec-ブトキシアルミニウムジイソプロピレート
エチルアセトアセテートアルミニウムジイソプロピレート
ジエチルアセトアセテートアルミニウムイソプロピレート
アルミニウムビスエチルアセトアセテートモノアセチルアセトネート
アルミニウムトリスエチルアセトアセテート
アルミニウムオクタデシルアセトアセテートジイソプロピレート
(ジルコニウムアルコキシド化合物)
 ジルコニウムアルコキシド化合物は、アセトナト構造、アセタト構造及びラクタト構造の少なくとも1種を含むジルコニウムアルコキシド化合物を含むことが好ましく、アセトナト構造及びアセタト構造の少なくとも1種を含むジルコニウムアルコキシド化合物を含むことがより好ましい。
 ジルコニウムアルコキシド化合物は、下記一般式(2)で表される化合物の少なくとも1種を含むことが好ましい。
       一般式(2): R1b m2-Zr-(OR2b4-m2
 R1bは水素原子、アルキル基、シクロアルキル基、アシル基、アリール基、又は不飽和脂肪族基を示す。
 アルキル基、シクロアルキル基、アシル基、アリール基及び不飽和脂肪族基として、例えば、上記一般式(1)のR1aとして採り得るアルキル基、シクロアルキル基、アシル基、アリール基及び不飽和脂肪族基を採用することができる。
 R2bは水素原子、アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基、又は-SOS2を示す。RS2は置換基を示す。
 アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基及びホスホネート基として、例えば、上記一般式(1)のR2aとして採り得るアルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基を採用することができる。また、RS2として採り得る置換基として、例えば、上記一般式(1)のRS1として採り得る置換基を採用することができる。
 m2は0~3の整数である。
 上記の一般式(2)において、OR2bの少なくとも1つがアセトナト構造を有することが好ましい。このアセトナト構造は、一般式(1)で説明したアセトナト構造と同義である。OR2bがアセトナト構造を有する形態として、例えば、後述する化合物SZ-3及びSZ-6が挙げられる。
 また、上記の一般式(2)において、OR2bの少なくとも1つがアセタト構造を有することが好ましい。このアセタト構造は、一般式(1)で説明したアセタト構造と同義である。OR2bがアセタト構造を有する形態として、例えば、後述するSZ-7が挙げられる。なお、化合物SZ-5は、一般式(1)において、R2bがアシル基である形態に相当する。
 また、上記の一般式(2)において、OR2bの少なくとも1つがラクタト構造を有することが好ましい。このラクタト構造は、乳酸イオン(ラクタート)を基本構造とし、そこから水素イオンが1つ除かれてZrに配位している構造を意味する。上記の「乳酸イオンを基本構造とする」とは、上記乳酸イオンの他、上記乳酸イオンの水素原子が置換基で置換された構造を含む意味である。このZrに配位する配位原子は通常は酸素原子である。OR2bがラクタト構造を有する形態として、例えば、後述する化合物SZ-4が挙げられる。
 以下、本発明に用いられるジルコニウムアルコキシド化合物の具体例を挙げるが、本発明はこれらに限定されない。
テトラプロポキシジルコニウム(別名 ジルコニウムテトラn-プロポキシド)
テトラブトキシジルコニウム(別名 ジルコニウムテトラn-ブトキシド)
ジルコニウムテトラアセチルアセトネート
ジルコニウムトリブトキシモノアセチルアセトネート
ジルコニウムジブトキシビス(アセチルアセトネート)
ジルコニウムジブトキシビス(エチルアセトアセテート)
ジルコニウムトリブトキシエチルアセトアセテート
ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)
ジルコニウムトリブトキシモノステアレート(別名 ステアリン酸ジルコニウムトリn-ブトキシド)
ステアリン酸ジルコニウム
ジルコニウムラクテートアンモニウム塩
ジルコニウムモノアセチルアセトネート
(チタンアルコキシド化合物)
 チタンアルコキシド化合物は、N、P及びSの少なくとも1種の原子を含むチタンアルコキシド化合物を含むことが好ましい。また、チタンアルコキシド化合物はアセタト構造を有するチタンアルコキシド化合物を含むことも好ましい。
 チタンアルコキシド化合物は、下記一般式(3)で表される化合物の少なくとも1種を含むことが好ましい。
       一般式(3): R1c m3-Ti-(OR2c4-m3
 R1cは水素原子、アルキル基、シクロアルキル基、アシル基、アリール基、又は不飽和脂肪族基を示す。
 アルキル基、シクロアルキル基、アシル基、アリール基及び不飽和脂肪族基として、例えば、上記一般式(1)のR1aとして採り得るアルキル基、シクロアルキル基、アシル基、アリール基及び不飽和脂肪族基を採用することができる。
 R2cは水素原子、アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基、又は-SOS3を示す。RS3は置換基を示す。
 アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基及びホスホネート基として、例えば、上記一般式(1)のR2aとして採り得るアルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基を採用することができる。また、RS3として採り得る置換基として、例えば、上記一般式(1)のRS1として採り得る置換基を採用することができる。
 m3は0~3の整数である。
 上記の一般式(3)で表される化合物は、N、P及びSの少なくとも1種の原子を含むことが好ましい。一般式(3)で表される化合物がNを有する場合、このNをアミノ基として有することが好ましい。
 一般式(3)で表される化合物がPを有する場合、このPをホスフェート基(リン酸基)ないしホスホネート基(ホスホン酸基)として有することが好ましい。
 一般式(3)で表される化合物がSを有する場合、このSをスルホニル基(-SO-)として有することが好ましい。
 また、上記の一般式(3)で表される化合物は、R2cとしてアシル基を有すること、すなわち、OR2cとして上述のアセタト構造を有することも好ましい。
 以下、本発明に用いられるジルコニウムアルコキシド化合物の具体例を挙げるが、本発明はこれらに限定されない。
イソプロピルトリイソステアロイルチタネート
イソプロピルトリドデシルベンゼンスルホニルチタネート
イソプロピルトリオクタノイルチタネート
イソプロピルトリ(ジオクチルホスファイト)チタネート
イソプロピルトリス(ジオクチルピロホスフェート)チタネート
イソプロピルトリ(ジオクチルスルフェート)チタネート
イソプロピルトリクミルフェニルチタネート
イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート
イソプロピルジメタクリルイソステアロイルチタネート
イソプロピルイソステアロイルジアクリルチタネート
イソブチルトリメチルチタネート
ジイソステアロイルエチレンチタネート
ジイソプロピルビス(ジオクチルピロホスフェート)チタネート
ジオクチルビス(ジトリデシルホスフェート)チタネート
ジクミルフェニルオキシアセテートチタネート
ビス(ジオクチルピロホスフェート)オキシアセテートチタネート
ビス(ジオクチルピロホスフェート)エチレンチタネート
ビス(ジオクチルピロホスフェート)オキシアセテートチタネート
テトライソプロピルチタネート
テトラブチルチタネート
テトラオクチルチタネート
テトラステアリルチタネート
テトライソプロピルビス(ジオクチルホスファイト)チタネート
テトラオクチルビス(ジ-トリデシルホスファイト)チタネート
テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジ-トリデシル)ホスファイトチタネート
ブチルチタネートダイマー
チタンテトラアセチルアセトネート
チタンエチルアセトアセテート
チタンオクチレングリコレート
チタニウムジ-2-エチルヘキソキシビス(2-エチル-3-ヒドロキシヘキソキシド)
 成分(C)中、アルミナ粒子と表面処理剤との質量比は、特に制限されず、例えば、アルミナ粒子100質量部に対して、表面処理剤が5~100質量部であること好ましく、10~80質量部であることより好ましく、10~50質量部であることがより好ましく、音響レンズの音速及び摩耗耐久性の点から20~50質量部であることがより好ましく、20~45質量部であることが更に好ましい。
 成分(C)中のアルミナ粒子と表面処理剤との質量比は、表面処理の際のアルミナ粒子と表面処理剤の使用量の質量比と同義である。成分(C)中のアルミナ粒子と表面処理剤との質量比は、成分(C)を熱質量測定(TGA)等で500℃以上に加熱することで有機成分を除去して無機成分(アルミナ粒子)を得て、このアルミナ粒子の質量と上記成分(C)の質量から算出することができる。
 なお、本発明の効果を損なわない範囲で、上述した表面処理剤以外の表面処理剤を用いてもよい。
 上記表面処理の方法それ自体は常法により行うことができる。
 成分(C)は、アルミナ粒子の表面全てが表面処理剤で処理されている必要はなく、例えば、アルミナ粒子の表面積100%のうちの50%以上が表面処理されていることが好ましく、70%以上がより好ましく、90%以上が更に好ましい。
 成分(C)は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 成分(A)~(C)の各含有量の合計100質量部中、成分(C)の含有量の下限は、音響レンズの音速、摩耗耐久性及び薬品耐久性の点から、1質量部以上が好ましく、15質量部以上がより好ましく、20質量部以上がより好ましく、30質量部以上がより好ましく、40質量部以上がさらに好ましい。上限は、80質量部以下が好ましく、70質量部以下がより好ましく、60質量部以下がさらに好ましい。
 また、成分(A)~(C)の各含有量の合計100質量部中の成分(A)及び(B)の含有量は、以下の範囲にあることが好ましい。
 成分(A)の含有量の下限は20質量部以上が好ましく、30質量部以上がより好ましく、35質量部以上がさらに好ましい。上限は、80質量部以下が好ましく、65質量部以下がより好ましく、55質量部以下がさらに好ましい。
 成分(B)の含有量の下限は0.1質量部以上が好ましく、0.2質量部以上がより好ましく、0.3質量部以上がさらに好ましい。上限は、20質量部以下が好ましく、10質量部以下がより好ましく、5質量部以下がより好ましく、3質量部以下がより好ましい。
<その他の成分>
 本発明の音響レンズ用組成物は、成分(A)~(C)以外に、付加重合反応のための触媒、硬化遅延剤、溶媒、分散剤、顔料、染料、帯電防止剤、酸化防止剤、難燃剤及び熱伝導性向上剤等の少なくとも1種を適宜配合することができる。
- 触媒 -
 触媒としては、例えば、白金又は白金含有化合物(以下、単に白金化合物ともいう。)が挙げられる。白金又は白金化合物としては、通常のものを使用することができる。
 具体的には、白金黒若しくは白金を無機化合物又はカーボンブラック等に担持させたもの、塩化白金酸又は塩化白金酸のアルコール溶液、塩化白金酸とオレフィンとの錯塩、塩化白金酸とビニルシロキサンとの錯塩等が挙げられる。触媒は1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 触媒は、成分(B)のSi-H基が、成分(A)のビニル基に対して付加するヒドロシリル化反応(付加硬化反応)において好ましく用いられる。
 ここで、触媒は本発明の音響レンズ用組成物中に含有させてもよく、また、音響レンズ用組成物に含有させずに、音響レンズ用組成物と接触させてもよい。
 市販の白金触媒としては、例えば、白金化合物(商品名:PLATINUM CYCLOVINYLMETHYLSILOXANE COMPLEX IN CYCLIC METHYLVINYLSILOXANES(SIP6832.2)、Pt濃度2質量%及び商品名:PLATINUM DIVINYLTETRAMETHYLDISILOXANE COMPLEX IN VINYL-TERMINATED POLYDIMETHYLSILOXANE(SIP6830.3)、Pt濃度3質量%、いずれもGelest社製)が挙げられる。
 触媒を本発明の音響レンズ用組成物に含有させる場合には、触媒の含有量は特に制限されず、反応性の観点から、成分(A)~(C)の合計100質量部に対し、0.00001~0.05質量部が好ましく、0.00001~0.01質量部がより好ましく、0.00002~0.01質量部がさらに好ましく、0.00005~0.005質量部が特に好ましい。
 また、適切な白金触媒を選択することにより硬化温度を調節することができる。例えば、白金-ビニルジシロキサンは50℃以下での室温硬化(RTV)に、白金-環状ビニルシロキサンは130℃以上での高温硬化(HTV)に使用される。
- 硬化遅延剤 -
 本発明において、硬化反応に対する硬化遅延剤を適宜に用いることができる。硬化遅延剤は、上記付加硬化反応を遅らせる用途で使用され、例えば、低分子量のビニルメチルシロキサンホモポリマー(商品名:VMS-005、Gelest社製)が挙げられる。
 硬化遅延剤の含有量により、硬化速度、すなわち作業時間を調整することができる。
[硬化前の音響レンズ用組成物の粘度]
 成分(A)~(C)を均一に分散させる点から、硬化反応を行う前の音響レンズ用組成物の粘度は、低いことが好ましい。硬化前の粘度を測定する点から、硬化反応を開始する触媒を添加する前の音響レンズ用組成物の粘度を測定する。具体的には、国際公開第2017/130890号に記載の方法で測定することができる。
 上記粘度(23℃)は、5,000Pa・s以下が好ましく、1,000Pa・s以下がより好ましく、200Pa・s以下が特に好ましい。なお、実際的な下限値は10Pa・s以上である。
<音響波レンズ用組成物、音響レンズ及び音響波プローブの製造方法>
 本発明の音響レンズ用組成物は、常法で調製することが可能である。
 例えば、音響レンズ用組成物を構成する成分を、ニーダー、加圧ニーダー、バンバリーミキサー(連続ニーダー)、2本ロールの混練装置で混練りすることにより得ることができる。各成分の混合順序は特に限定されない。
 なお、均一な組成物を得る観点からは、まず、成分(A)及び(B)に、成分(C)を分散させたポリシロキサン混合物とすることが好ましい。その後、成分(C)を分散させたポリシロキサン混合物に触媒を添加し、減圧脱泡することで、音響レンズ用組成物を作製することができる。
 成分(C)を分散させたポリオルガノシロキサン混合物の混練りの条件は、成分(C)が分散される限り、特に制限されないが、例えば、10~50℃で1~72時間混練することが好ましい。
 このようにして得られた本発明の音響レンズ用組成物を硬化させることにより、シリコーン樹脂を得ることができる。具体的には、例えば、20~200℃で5分~500分加熱硬化させることにより、シリコーン樹脂を得ることができる。上記シリコーン樹脂の形状は、特に制限されず、例えば、上記硬化時の金型により音響レンズとして好ましい形状にしてもよく、シート状のシリコーン樹脂を得て、この樹脂を切削等することにより、所望の音響レンズとしてもよい。
 本発明の音響レンズ用組成物は、医療用部材に有用であり、例えば、音響波プローブ及び音響波測定装置に好ましく用いることができる。なお、本発明の音響波測定装置とは、超音波診断装置又は光音響波測定装置に限らず、対象物で反射又は発生した音響波を受信し、画像又は信号強度として表示する装置を称する。
 特に、本発明の音響レンズ用組成物は、超音波診断装置用探触子の音響レンズ、光音響波測定装置又は超音波内視鏡における音響レンズの材料ならびに超音波トランスデューサアレイとして容量性マイクロマシン超音波振動子(cMUT:Capacitive Micromachined Ultrasonic Transducers)を備える超音波プローブにおける音響レンズの材料等に好適に用いることができる。
 本発明の音響レンズは、具体的には、例えば、特開2003-169802号公報などに記載の超音波診断装置、及び、特開2013-202050号公報、特開2013-188465号公報などに記載の光音響波測定装置などの音響波測定装置に好ましく適用される。
 本発明の音響波プローブは、本発明の音響レンズ用組成物を用いて音響レンズを形成すること以外は常法により製造することができる。
<<音響波探触子(プローブ)>>
 本発明の音響波プローブの構成を、図1に記載する、超音波診断装置における超音波プローブの構成に基づき、以下により詳細に説明する。なお、超音波プローブとは、音響波プローブにおける音響波として、特に超音波を使用するプローブである。そのため、超音波プローブの基本的な構造は音響波プローブにそのまま適用することができる。
- 超音波プローブ -
 超音波プローブ10は、超音波診断装置の主要構成部品であって、超音波を発生するとともに、超音波ビームを送受信する機能を有するものである。超音波プローブ10の構成は、図1に示すように、先端(被検対象である生体に接する面)部分から音響レンズ1、音響整合層2、圧電素子層3、バッキング材4の順に設けられている。なお、近年、高次高調波を受信することを目的に、送信用超音波振動子(圧電素子)と、受信用超音波振動子(圧電素子)を異なる材料で構成し、積層構造としたものも提案されている。
<圧電素子層>
 圧電素子層3は、超音波を発生する部分であって、圧電素子の両側に電極が貼り付けられており、電圧を加えると圧電素子が伸縮と膨張を繰り返し振動することにより、超音波が発生する。
 圧電素子を構成する材料としては、水晶、LiNbO、LiTaO及びKNbOなどの単結晶、ZnO及びAlNなどの薄膜ならびにPb(Zr,Ti)O系などの焼結体を分極処理した、いわゆるセラミックスの無機圧電体が広く利用されている。一般的には、変換効率のよいPZT:チタン酸ジルコン酸鉛等の圧電セラミックスが使用されている。
 また、高周波側の受信波を検知する圧電素子には、より広い帯域幅の感度が必要である。このため、高周波、広帯域に適した圧電素子として、ポリフッ化ビニリデン(PVDF)などの有機系高分子物質を利用した有機圧電体が使用されている。
 さらに、特開2011-071842号公報等には、優れた短パルス特性及び広帯域特性を示し、量産性に優れ、特性ばらつきの少ないアレイ構造が得られる、MEMS(Micro Electro Mechanical Systems)技術を利用したcMUTが記載されている。
 本発明においては、いずれの圧電素子材料も好ましく用いることができる。
<バッキング材>
 バッキング材4は、圧電素子層3の背面に設けられており、余分な振動を抑制することにより超音波のパルス幅を短くし、超音波診断画像における距離分解能の向上に寄与する。
<音響整合層>
 音響整合層2は、圧電素子層3と被検対象間での音響インピーダンスの差を小さくし、超音波を効率よく送受信するために設けられる。
<音響レンズ>
 音響レンズ1は、屈折を利用して超音波をスライス方向に集束し、分解能を向上させるために設けられる。また、被検対象である生体と密着し、超音波を生体の音響インピーダンス(人体では、1.4~1.7Mrayl)と整合させることが求められている。
 すなわち、音響レンズ1の材料としては、音速が人体の音速よりも十分小さく、また、音響インピーダンスが人体の皮膚の値に近い材料を使用することで、超音波の送受信感度がよくなる。
 本発明の音響レンズ用組成物は、音響レンズ材として好ましく用いることができる。
 このような構成の超音波プローブ10の動作を説明する。圧電素子層3の両側に設けられた電極に電圧を印加して圧電素子層3を共振させ、超音波信号を音響レンズ1から被検対象に送信する。受信時には、被検対象からの反射信号(エコー信号)によって圧電素子層3を振動させ、この振動を電気的に変換して信号とし、画像を得る。
 特に、本発明の音響レンズ用組成物から得られる音響レンズは、一般的な医療用超音波トランスデューサとしては、およそ10MHz以上の超音波の送信周波数で、顕著な感度改善効果を確認できる。特に15MHz以上の超音波の送信周波数で、特に顕著な感度改善効果が期待できる。
 本発明の音響レンズ用組成物から得られる音響レンズは、例えば、音速を800m/s以上870m/s未満まで低減することができ、周波数10MHz以上30MHz以下の超音波の周波数で、体表から0.1~20mmの深さにある生体組織について十分な精度の情報を得ることができる。
 以下、本発明の音響レンズ用組成物から得られる音響レンズが、従来の課題に対し特に機能を発揮する装置について、詳細に記載する。
 なお、下記に記載する以外の装置に対しても、本発明の音響レンズ用組成物は優れた効果を示す。
- cMUT(容量性マイクロマシン超音波振動子)を備える超音波プローブ -
 特開2006-157320号公報、特開2011-71842号公報などに記載のcMUTデバイスを超音波トランスデューサアレイに用いる場合、一般的な圧電セラミックス(PZT)を用いたトランスデューサと比較して、一般的には、その感度が低くなる。
 しかし、本発明の音響レンズ用組成物から得られる音響レンズを用いることで、cMUTの感度不足を補うことが可能である。これにより、cMUTの感度を、従来のトランスデューサの性能に近づけることができる。
 なお、cMUTデバイスはMEMS技術により作製されるため、圧電セラミックスプローブよりも量産性が高く、低コストな超音波プローブを市場に提供することができる。
- 光音響波イメージングを用いる光音響波測定装置 -
 特開2013-158435号公報などに記載の光音響波イメージング(PAI:Photo Acoustic Imaging)は、人体内部へ光(電磁波)を照射し、照射した光によって人体組織が断熱膨張する際に発生する超音波を画像化したもの、又は超音波の信号強度を表示する。
- 超音波内視鏡 -
 特開2008-311700号公報などに記載の超音波内視鏡における超音波は、その構造上、信号線ケーブルが体表用トランスデューサと比較して長いため、ケーブル損失に伴い、トランスデューサの感度向上が課題である。また、この課題に対しては、下記の理由により、効果的な感度向上手段がないと言われている。
 第一に、体表用の超音波診断装置であれば、トランスデューサ先端にアンプ回路、AD変換IC等の設置が可能である。これに対して、超音波内視鏡は体内に挿入して使用するため、トランスデューサの設置スペースが狭く、トランスデューサ先端へのアンプ回路、AD変換IC等の設置は困難である。
 第二に、体表用の超音波診断装置におけるトランスデューサで採用されている圧電単結晶は、その物理特性及びプロセス適性上、超音波の送信周波数10~15MHz以上のトランスデューサへの適用は困難である。しかしながら、内視鏡用超音波は概して超音波の送信周波数10~15MHz以上のプローブであるため、圧電単結晶材を用いた感度向上も困難である。
 しかし、本発明の音響レンズ用組成物から得られる音響レンズを用いることで、内視鏡用超音波トランスデューサの感度を向上させることが可能である。
 また、同一の超音波の送信周波数(例えば15MHz)を使用する場合でも、内視鏡用超音波トランスデューサにおいて本発明の音響レンズ用組成物から得られる音響レンズ用いる場合には、特に有効性が発揮される。
 以下に本発明を、音響波として超音波を用いた実施例に基づいてさらに詳細に説明する。なお、本発明は超音波に限定されるものではなく、被検対象及び測定条件等に応じて適切な周波数を選択してさえいれば、可聴周波数の音響波を用いてもよい。
[調製例]表面処理アルミナ粒子(C-1)の調製例
 3-アミノプロピルトリメトキシシラン30質量部、メタノール100質量部、蒸留水3.3質量部を混合した後、23℃で1時間静置してメトキシ基の加水分解を進行させた。この溶液にアルミナ粒子(IoLiTek社製、γ型、商品名「NO-0036-HP」、平均粒径20nm)100質量部を入れた。この混合物をホモジナイザー(日本精機社製「ED-7型オートエクセルホモジナイザー」(商品名))を用いて、液温度が50℃を超えない様に冷却しながら、回転数10,000rpmで60分間撹拌し、粉砕しながら表面処理を行った。
 上記で撹拌し粉砕した後の混合物を濾別し、得られた固形物を100℃で30分加熱乾燥し、粉末状の表面処理アルミナ粒子(C-1)(成分(C))を得た。
 表面処理アルミナ粒子(C-1)の調製において、原料を下記表1の組成で用いたこと以外は、表面処理アルミナ粒子(C-1)と同様にして表面処理アルミナ粒子(C-2)~(C-30)、(C-32)~(C-34)及び表面処理シリカ粒子(C-31)を調製した。
Figure JPOXMLDOC01-appb-T000009
<表の注>
[アルミナ(Q)]
Q-1:無処理アルミナ(IoLiTek社製、γ型、商品名「NO-0036-HP」、平均粒径20nm)
(「無処理アルミナ」とは、表面処理剤で処理されていないアルミナを意味する。)
Q-2:無処理アルミナ(IoLiTek社製、γ型、商品名「NO-0057-UP」、平均粒径5nm)
Q-3:無処理アルミナ(IoLiTek社製、α型、商品名「NO-0003-UP」、平均粒径80nm)
Q-4:無処理アルミナ(IoLiTek社製、α型、商品名「NO-0008-UP」、平均粒径150nm)
Q-5:無処理アルミナ(IoLiTek社製、α型、商品名「NO-0050-UP」、平均粒径200nm)
Q-6:無処理アルミナ(EMジャパン社製、α型、商品名「NP-ALO-5-1K」、平均粒径500nm)
[表面処理剤(S)]
<アミノシラン化合物>
(SA-1):
 3-アミノプロピルトリメトキシシラン(Gelest社製、商品名「SIA0611.0」)
<メルカプトシラン化合物>
(SM-1):
 3-メルカプトプロピルトリメトキシシラン(Gelest社製、商品名「SIM6476.0」)
(SM-2):
 11-メルカプトウンデシルトリメトキシシラン(Gelest社製、商品名「SIM6480.0」)
<イソシアナトシラン化合物>
(SI-1):
 3-イソシアナトプロピルトリメトキシシラン(Gelest社製、商品名「SII6456.0」)
(SI-2):
 イソシアナトメチルトリメトキシシラン(Gelest社製、商品名「SII6453.8」)
<チタンアルコキシド化合物>
(ST-1):
 イソプロピルトリイソステアロイルチタネート(味の素ファインテクノ社製、商品名「プレンアクトTTS」)
Figure JPOXMLDOC01-appb-C000010
(ST-2):
 ジオクチルビス(ジトリデシルホスフェート)チタネート(味の素ファインテクノ社製「プレンアクト46B」)
Figure JPOXMLDOC01-appb-C000011
(ST-3):
 イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート(味の素ファインテクノ社製、商品名「プレンアクト44」)
Figure JPOXMLDOC01-appb-C000012
<アルミニウムアルコキシド化合物>
(SL-1):
 アルミニウムトリsec-ブチレート(川研ファインケミカル社製、商品名「ASBD」)
Figure JPOXMLDOC01-appb-C000013
(SL-2):
 アルミニウムトリスアセチルアセトネート(マツモトファインケミカル社製、商品名「オルガチックスAL-3100」)
Figure JPOXMLDOC01-appb-C000014
(SL-3):
 アルミニウムビスエチルアセトアセテートモノアセチルアセトネート(マツモトファインケミカル社製、商品名「オルガチックスAL-3200」)
Figure JPOXMLDOC01-appb-C000015
(SL-4):
 アルミニウムトリスエチルアセトアセテート(マツモトファインケミカル社製、商品名「オルガチックスAL-3215」)
Figure JPOXMLDOC01-appb-C000016
(SL-5):アルミニウムオクタデシルアセトアセテートジイソプロピレート(味の素ファインテクノ社製、商品名「プレンアクトAL-M」)
Figure JPOXMLDOC01-appb-C000017
<ジルコニウムアルコキシド化合物>
(SZ-1):
 ジルコニウムテトラn-プロポキシド(マツモトファインケミカル社製、商品名「オルガチックスZA-45」)
Figure JPOXMLDOC01-appb-C000018
(SZ-2):
 ジルコニウムテトラn-ブトキシド(マツモトファインケミカル社製、商品名「オルガチックスZA-65」)
Figure JPOXMLDOC01-appb-C000019
(SZ-3):
 ジルコニウムテトラアセチルアセトネート(マツモトファインケミカル社製、商品名「オルガチックスZC-150」)
Figure JPOXMLDOC01-appb-C000020
(SZ-4):
 ジルコニウムラクテートアンモニウム塩(マツモトファインケミカル社製、商品名「オルガチックスZC-300」)
Figure JPOXMLDOC01-appb-C000021
(SZ-5):
 ステアリン酸ジルコニウムトリn-ブトキシド(マツモトファインケミカル社製、商品名「オルガチックスZC-320」)
Figure JPOXMLDOC01-appb-C000022
(SZ-6):
 ジルコニウムトリブトキシモノアセチルアセトネート(マツモトファインケミカル社製、商品名「オルガチックスZC-540」)
Figure JPOXMLDOC01-appb-C000023
(SZ-7):
 ジルコニウムジブトキシビス(エチルアセトアセテート)(マツモトファインケミカル社製、商品名「オルガチックスZC-580」)
Figure JPOXMLDOC01-appb-C000024
<比較例で使用する表面処理無機粒子>
q-7:無処理シリカ粒子(エボニック社製、商品名「アエロジル90G」、平均粒径20nm)、表1では、便宜上アルミナ(Q)の行に記載している。
<比較例で使用する表面処理剤>
sa-2:N-トリメトキシシリルプロピル-N,N,N-トリメチルアンモニウムクロライド(Gelest社製、商品名「SIT8415.0」、50%メタノール水溶液)
sc-1:メチルトリクロロシラン(東京化成社製試薬)
sc-2:ビニルトリクロロシラン(東京化成社製試薬)
st-4:四塩化チタン(富士フイルム和光純薬社製試薬)
sl-6:塩化アルミニウム(富士フイルム和光純薬社製試薬)
sz-7:オキシ塩化ジルコニウム8水和物(米山薬品工業社製試薬)
[実施例1]
 ビニル末端ジメチルシロキサンコポリマー(下記表1の成分(A)、Gelest社製「DMS-V41」(商品名)、重量平均分子量62,7000)49.4質量部、メチルヒドロシロキサンポリマー(下記表1の成分(B)、Gelest社製「HMS-991」(商品名)、重量平均分子量1,600、Si-H当量67g/mol)0.6質量部、上記調製例で準備した表面処理アルミナ粒子(C-1)(下記表1の成分(C))50.0質量部を、温度23℃で2時間、ニーダーで混練りし、均一なペーストとした。このペーストに白金触媒溶液(Gelest社製SIP6832.2、白金濃度2%)を500ppm(白金として10ppm)添加し混合した後、減圧脱泡し、150mm×150mmの金属型に入れ、60℃で3時間熱処理をして、厚み2.0mmのシリコーン樹脂シートを得た。
 実施例1のシリコーン樹脂シートの作製において、下記表2記載の組成を採用したこと以外は、実施例1のシリコーン樹脂シートと同様にして実施例2~31及び比較例1~9のシリコーン樹脂シートを作製した。なお、シリコーン樹脂シートは各実施例及び比較例について、音速測定試験用に1枚、薬品耐久性試験用に2枚を作製した。
 同様にして、各実施例及び比較例について、摩耗耐久性試験用に円盤状シリコーン樹脂シート(直径16mm×厚さ6mm)を1枚作製した。
[音速測定試験]
 シリコーン樹脂シートについて、JIS Z2353(2003)に従い、シングアラウンド式音速測定装置(超音波工業株式会社製、商品名「UVM-2型」)を用いて25℃の音速を測定し、下記基準に当てはめ評価した。「A」及び「B」が本試験の合格である。
<評価基準>
 A:840m/s未満
 B:840m/s以上870m/s未満
 C:870m/s以上900m/s未満
 D:900m/s以上  
[薬品耐久性(次亜塩素酸ナトリウム耐久性)試験]
 2枚のうち1枚のシリコーン樹脂シート(I)を23℃の1%次亜塩素酸ナトリウム水溶液に1週間(168時間)浸漬した後、水洗して1%次亜塩素酸ナトリウム水溶液を洗い流した。その後、23℃で24時間乾燥させた。乾燥後のシリコーン樹脂シート(I)及びこれとは別のシリコーン樹脂シート(II)(次亜塩素酸ナトリウムに浸漬していない)から打ち抜きで3号ダンベル試片(I)及び(II)を取り、JIS K 7161-1(2014)に従い引張試験を行った。
 引張試験は、23℃で、エー・アンド・デイ社製「テンシロンRTF-2410」を用いて行った。
 試片(II)の引張強さ(MPa)に対する試片(I)の引張強さ(MPa)の割合(%)(100×試片(I)の引張強さ(MPa)/試片(II)の引張強さ(MPa))を引張強さ(MPa)の維持率として、下記評価基準に当てはめ薬品耐久性を評価した。「A」~「C」が本試験の合格である。
<評価基準>
 A:引張強さの維持率が95%以上
 B:引張強さの維持率が85%以上95%未満
 C:引張強さの維持率が70%以上85%未満
 D:引張強さの維持率が70%未満
[摩耗耐久性試験]
 シリコーン樹脂シートに対して、アクロン摩耗試験機(上島製作所社製「AB-1511」(商品名))を用い、JIS K6264-2(2005)のA法に準拠し試験片(円盤状シリコーン樹脂シート)1000回転あたりの摩耗体積(mL)を求めた。試験条件は、23℃の環境下、負荷力を27.0N、傾角を15°、試験片の回転速度を75rpmとした。摩耗体積(mL)を、下記評価基準に当てはめ摩耗耐久性を評価した。「A」~「C」が本試験の合格である。
<評価基準>
 A:摩耗体積が0.05mL未満
 B:摩耗体積が0.05mL以上0.10mL未満
 C:摩耗体積が0.10mL以上0.15mL未満
 D:摩耗体積が0.15mL以上
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
<表の注>
「EX」:実施例
「CEX」:比較例
「平均一次粒子径[nm]」:表面処理前のアルミナ粒子の平均一次粒子径[nm]
「php」:100×表面処理剤の質量部/アルミナ粒子100質量部
比較例2~5及び7~9は、本発明の規定を満たさないアルミナ粒子を比較のために成分(C)の行に記載している。同様に、比較例6では、表面処理シリカ粒子を比較のために成分(C)の行に記載している。
[ビニル基を有するポリシロキサン(A)]
A-1:両末端ビニル基含有ポリジメチルシロキサン(Gelest社製、商品名「DMS-V41」、重量平均分子量62,700)
A-2:両末端ビニル基含有ポリジメチルシロキサン(Gelest社製、商品名「DMS-V46」、重量平均分子量117,000)
A-3:両末端ビニル基及びフェニル基含有ポリシロキサン(Gelest社製、商品名「PDV-0541」、重量平均分子量60,000、ジフェニルシロキシ単位5mol%)
[Si-H基を有するポリシロキサン(B)]
B-1:ポリメチルヒドロシロキサン(Gelest社製、商品名「HMS-991」、重量平均分子量1,600、メチルヒドロキシシロキシ単位100mol%、Si-H当量67g/mol)
B-2:メチルヒドロシロキサン‐フェニルメチルシロキサンコポリマー(Gelest社製、商品名「HPM-502」、重量平均分子量4,500、メチルヒドロキシシロキシ単位45-50mol%、Si-H当量165g/mol)
 表2から明らかなように、成分(C)を用いなかった比較例1及び表面無処理のアルミナ粒子を用いた比較例2では、すべての試験が不合格であった。
 また、表面処理剤としてN-トリメトキシシリルプロピル-N,N,N-トリメチルアンモニウムクロライドを用いた比較例3は音速が合格レベルではあった。しかし、薬品耐久性及び摩耗耐久性が劣った。これは、表面処理剤が親水的で薬品との親和性が高いこと、さらに疎水的なシリコーン樹脂シート中に表面処理アルミナ粒子が均一に分散できなかったことが原因であると考えられる。
 本発明の範囲外の表面処理剤で処理したアルミナ粒子を用いた比較例4、5及び7~9は、すべての試験が不合格であった。
 本発明で規定する表面処理剤で処理したシリカ粒子を用いた比較例6は、すべての試験が不合格であった。これは、シリカ粒子は表面処理を施しても依然として親水性が高く、薬品との親和性が高いこと、疎水的なシリコーン樹脂シート中に均一分散し難いこと、また、シリカ粒子自体が低比重であることが原因であると考えられる。
 これに対して、本発明の実施例1~31はすべての試験で合格レベルであった。また、実施例1~31のシリコーン樹脂シートの音響インピーダンスは、1.3~1.7Mraylの範囲にあり、実用可能なものである。
 1    音響レンズ
 2    音響整合層
 3    圧電素子層
 4    バッキング材
 7    筐体
 9    コード
 10   超音波探触子(プローブ)

Claims (20)

  1.  下記成分(A)~(C)を含有する音響レンズ用組成物。
     (A)ビニル基を有するポリシロキサン、
     (B)分子鎖中に2個以上のSi-H基を有するポリシロキサン、
     (C)アミノシラン化合物、メルカプトシラン化合物、イソシアナトシラン化合物、チオシアナトシラン化合物、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうちの少なくとも1種の表面処理剤で表面処理されたアルミナ粒子
  2.  前記表面処理剤が、アミノシラン化合物、メルカプトシラン化合物、イソシアナトシラン化合物、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうちの少なくとも1種である、請求項1に記載の音響レンズ用組成物。
  3.  前記表面処理剤が、メルカプトシラン化合物、イソシアナトシラン化合物、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうちの少なくとも1種である、請求項1又は2に記載の音響レンズ用組成物。
  4.  前記表面処理剤が、アルミニウムアルコキシド化合物、ジルコニウムアルコキシド化合物及びチタンアルコキシド化合物のうちの少なくとも1種である、請求項1~3のいずれか1項に記載の音響レンズ用組成物。
  5.  前記アルミニウムアルコキシド化合物が、アセトナト構造及びアセタト構造のうちの少なくとも1種を含むアルミニウムアルコキシド化合物を含む、請求項1~4のいずれか1項に記載の音響レンズ用組成物。
  6.  前記アルミニウムアルコキシド化合物が、下記一般式(1)で表される化合物の少なくとも1種を含む、請求項1~5のいずれか1項に記載の音響レンズ用組成物。
           一般式(1): R1a m1-Al-(OR2a3-m1
     R1aは水素原子、アルキル基、シクロアルキル基、アシル基、アリール基、又は不飽和脂肪族基を示す。
     R2aは水素原子、アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基、又は-SOS1を示す。RS1は置換基を示す。
     m1は0~2の整数である。
  7.  前記ジルコニウムアルコキシド化合物が、アセトナト構造及びアセタト構造のうちの少なくとも1種を含むジルコニウムアルコキシド化合物を含む、請求項1~6のいずれか1項に記載の音響レンズ用組成物。
  8.  前記ジルコニウムアルコキシド化合物が、下記一般式(2)で表される化合物の少なくとも1種を含む、請求項1~7のいずれか1項に記載の音響レンズ用組成物。
           一般式(2): R1b m2-Zr-(OR2b4-m2
     R1bは水素原子、アルキル基、シクロアルキル基、アシル基、アリール基、又は不飽和脂肪族基を示す。
     R2bは水素原子、アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基、又は-SOS2を示す。RS2は置換基を示す。
     m2は0~3の整数である。
  9.  前記チタンアルコキシド化合物が、N、P及びSの少なくとも1種の原子を含むチタンアルコキシド化合物を含む、請求項1~8のいずれか1項に記載の音響レンズ用組成物。
  10.  前記チタンアルコキシド化合物が、下記一般式(3)で表される化合物の少なくとも1種を含む、請求項1~9のいずれか1項に記載の音響レンズ用組成物。
           一般式(3): R1c m3-Ti-(OR2c4-m3
     R1cは水素原子、アルキル基、シクロアルキル基、アシル基、アリール基、又は不飽和脂肪族基を示す。
     R2cは水素原子、アルキル基、シクロアルキル基、アシル基、アルケニル基、アリール基、ホスホネート基、又は-SOS3を示す。RS3は置換基を示す。
     m3は0~3の整数である。
  11.  前記成分(C)中、前記表面処理剤の含有量が、アルミナ粒子100質量部に対し、1~100質量部である、請求項1~10のいずれか1項に記載の音響レンズ用組成物。
  12.  前記成分(C)を構成するアルミナ粒子の平均一次粒子径が10~400nmである、請求項1~11のいずれか1項に記載の音響レンズ用組成物。
  13.  請求項1~12のいずれか1項に記載の音響レンズ用組成物を硬化してなる音響レンズ。
  14.  請求項13に記載の音響レンズを有する音響波プローブ。
  15.  請求項13に記載の音響レンズを有する超音波プローブ。
  16.  請求項14に記載の音響波プローブを備える音響波測定装置。
  17.  請求項14に記載の音響波プローブを備える超音波診断装置。
  18.  請求項13に記載の音響レンズを備える光音響波測定装置。
  19.  請求項13に記載の音響レンズを備える超音波内視鏡。
  20.  請求項1~12のいずれか1項に記載の音響レンズ用組成物を用いて音響レンズを形成することを含む、音響波プローブの製造方法。
PCT/JP2020/043123 2019-12-24 2020-11-19 音響レンズ用組成物、音響レンズ、音響波プローブ、超音波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置及び超音波内視鏡並びに音響波プローブの製造方法 WO2021131430A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021566926A JP7351929B2 (ja) 2019-12-24 2020-11-19 音響レンズ用組成物、音響レンズ、音響波プローブ、超音波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置及び超音波内視鏡並びに音響波プローブの製造方法
EP20905808.0A EP4084497A4 (en) 2019-12-24 2020-11-19 COMPOSITION FOR ACOUSTIC LENS, ACOUSTIC LENS, ACOUSTIC WAVE PROBE, ULTRASONIC PROBE, ACOUSTIC WAVE MEASUREMENT DEVICE, ULTRASONIC DIAGNOSTIC SYSTEM, PHOTOACOUSTIC WAVE METER, ULTRASONIC ENDOSCOPE AND METHOD FOR PRODUCING AN ACOUSTIC WAVE PROBE
CN202080085158.7A CN114930875A (zh) 2019-12-24 2020-11-19 声透镜用组合物、声透镜、声波探头、超声波探头、声波测定装置、超声波诊断装置、光声波测定装置及超声波内窥镜以及声波探头的制造方法
US17/805,353 US20220289937A1 (en) 2019-12-24 2022-06-03 Composition for acoustic lenses, acoustic lens, acoustic wave probe, ultrasound probe, acoustic wave measurement apparatus, ultrasound diagnostic apparatus, photoacoustic wave measurement apparatus and ultrasonic endoscope, and method for manufacturing acoustic wave probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-232659 2019-12-24
JP2019232659 2019-12-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/805,353 Continuation US20220289937A1 (en) 2019-12-24 2022-06-03 Composition for acoustic lenses, acoustic lens, acoustic wave probe, ultrasound probe, acoustic wave measurement apparatus, ultrasound diagnostic apparatus, photoacoustic wave measurement apparatus and ultrasonic endoscope, and method for manufacturing acoustic wave probe

Publications (1)

Publication Number Publication Date
WO2021131430A1 true WO2021131430A1 (ja) 2021-07-01

Family

ID=76575370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043123 WO2021131430A1 (ja) 2019-12-24 2020-11-19 音響レンズ用組成物、音響レンズ、音響波プローブ、超音波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置及び超音波内視鏡並びに音響波プローブの製造方法

Country Status (5)

Country Link
US (1) US20220289937A1 (ja)
EP (1) EP4084497A4 (ja)
JP (1) JP7351929B2 (ja)
CN (1) CN114930875A (ja)
WO (1) WO2021131430A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117777731A (zh) * 2022-09-21 2024-03-29 武汉联影医疗科技有限公司 改性硅橡胶、原料组合物及其制备方法和应用、含其的声透镜

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211897A (ja) 1985-07-10 1987-01-20 信越化学工業株式会社 音響レンズ用組成物
JP2003169802A (ja) 2001-09-27 2003-06-17 Fuji Photo Film Co Ltd 超音波用探触子及びそれを用いた超音波診断装置
JP2006157320A (ja) 2004-11-29 2006-06-15 Fuji Photo Film Co Ltd 容量性マイクロマシン超音波振動子及びその製造方法、並びに、超音波トランスデューサアレイ
JP2008311700A (ja) 2007-06-12 2008-12-25 Fujifilm Corp 複合圧電材料、超音波探触子、超音波内視鏡、及び、超音波診断装置
JP2011071842A (ja) 2009-09-28 2011-04-07 Fujifilm Corp 超音波プローブ、および超音波トランスデューサアレイの製造方法
JP2013158435A (ja) 2012-02-03 2013-08-19 Fujifilm Corp 光音響装置、光音響装置用プローブおよび音響波検出信号の取得方法
JP2013188465A (ja) 2012-02-13 2013-09-26 Fujifilm Corp 音響波検出用のプローブおよびそれを備えた光音響計測装置
JP2013202050A (ja) 2012-03-27 2013-10-07 Fujifilm Corp 音響波検出用のプローブおよびそれを備えた光音響計測装置
JP2015179866A (ja) * 2015-05-25 2015-10-08 日立化成株式会社 p型拡散層形成組成物、並びに、太陽電池セルおよびその製造方法
JP2016107075A (ja) * 2014-12-01 2016-06-20 富士フイルム株式会社 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、ならびに、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
WO2017130890A1 (ja) 2016-01-28 2017-08-03 富士フイルム株式会社 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、ならびに、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
WO2018100798A1 (ja) * 2016-11-30 2018-06-07 東洋ゴム工業株式会社 密閉型二次電池の変形検出センサ、密閉型二次電池、及び密閉型二次電池の変形検出方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109486200A (zh) 2018-12-28 2019-03-19 无锡祥生医疗科技股份有限公司 含钨氧化物的有机硅树脂组合物及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211897A (ja) 1985-07-10 1987-01-20 信越化学工業株式会社 音響レンズ用組成物
JP2003169802A (ja) 2001-09-27 2003-06-17 Fuji Photo Film Co Ltd 超音波用探触子及びそれを用いた超音波診断装置
JP2006157320A (ja) 2004-11-29 2006-06-15 Fuji Photo Film Co Ltd 容量性マイクロマシン超音波振動子及びその製造方法、並びに、超音波トランスデューサアレイ
JP2008311700A (ja) 2007-06-12 2008-12-25 Fujifilm Corp 複合圧電材料、超音波探触子、超音波内視鏡、及び、超音波診断装置
JP2011071842A (ja) 2009-09-28 2011-04-07 Fujifilm Corp 超音波プローブ、および超音波トランスデューサアレイの製造方法
JP2013158435A (ja) 2012-02-03 2013-08-19 Fujifilm Corp 光音響装置、光音響装置用プローブおよび音響波検出信号の取得方法
JP2013188465A (ja) 2012-02-13 2013-09-26 Fujifilm Corp 音響波検出用のプローブおよびそれを備えた光音響計測装置
JP2013202050A (ja) 2012-03-27 2013-10-07 Fujifilm Corp 音響波検出用のプローブおよびそれを備えた光音響計測装置
JP2016107075A (ja) * 2014-12-01 2016-06-20 富士フイルム株式会社 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、ならびに、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
JP2015179866A (ja) * 2015-05-25 2015-10-08 日立化成株式会社 p型拡散層形成組成物、並びに、太陽電池セルおよびその製造方法
WO2017130890A1 (ja) 2016-01-28 2017-08-03 富士フイルム株式会社 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、ならびに、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
WO2018100798A1 (ja) * 2016-11-30 2018-06-07 東洋ゴム工業株式会社 密閉型二次電池の変形検出センサ、密閉型二次電池、及び密閉型二次電池の変形検出方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HASHIMOTO TAKAJI: "Organic titanium and zirconium compound - Characteristicsand application developments", 20 February 2009 (2009-02-20), Japan, pages 1 - 30, XP009536688 *
SHIN-ETSU SILICONE: "Silane Coupling Agents - Combination of Organic and Inorganic Materials", SHIN-ETSU, 20 June 2017 (2017-06-20), XP055513640, Retrieved from the Internet <URL:https://www.shinetsusilicone-global.com/catalog/pdf/SilaneCouplingAgents_e.pdf> [retrieved on 20181009] *
TAKASHI NAKAO: "The Application Principles and Primary Effects for Use of Coupling Agents in Thermosets and Coatings, and New Surface Modifiers Derived from Amino Acid", JAPAN THERMOSETTING PLASTIC INDUSTRY ASSOCIATION, vol. 9, no. 3, 10 September 1988 (1988-09-10), pages 149 - 161, XP055929247, ISSN: 0388-4384, DOI: 10.11364/networkpolymer1980.9.149 *

Also Published As

Publication number Publication date
JP7351929B2 (ja) 2023-09-27
EP4084497A1 (en) 2022-11-02
CN114930875A (zh) 2022-08-19
EP4084497A4 (en) 2023-09-20
US20220289937A1 (en) 2022-09-15
JPWO2021131430A1 (ja) 2021-07-01

Similar Documents

Publication Publication Date Title
US20170252465A1 (en) Composition for acoustic wave probe, silicone resin for acoustic wave probe using the same, acoustic wave probe, ultrasound probe, acoustic wave measurement apparatus, ultrasound diagnostic apparatus, photoacoustic wave measurement apparatus and ultrasound endoscope
US10660611B2 (en) Composition for acoustic wave probe, silicone resin for acoustic wave probe using the same, acoustic wave probe, ultrasound probe, acoustic wave measurement apparatus, ultrasound diagnostic apparatus, photoacoustic wave measurement apparatus, and ultrasound endoscope
US10245006B2 (en) Composition for acoustic-wave probe, and silicone resin for acoustic-wave probe, acoustic-wave probe and ultrasonic probe using the same, as well as device for measuring acoustic wave, ultrasonic diagnosis device, device for measuring photo acoustic wave and ultrasonic endoscope
US20220172701A1 (en) Composition for acoustic lens, acoustic lens, acoustic wave probe, ultrasound probe, acoustic wave measurement apparatus, ultrasound diagnostic apparatus, photoacoustic wave measurement apparatus and ultrasonic endoscope, and method for manufacturing acoustic wave probe
US11524099B2 (en) Composition for acoustic wave probe, silicone resin for acoustic wave probe using the same, acoustic wave probe, ultrasound probe, acoustic wave measurement apparatus, ultrasound diagnostic apparatus, photoacoustic wave measurement apparatus, and ultrasound endoscope
WO2021131430A1 (ja) 音響レンズ用組成物、音響レンズ、音響波プローブ、超音波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置及び超音波内視鏡並びに音響波プローブの製造方法
US11610576B2 (en) Resin material for acoustic lens, acoustic lens, acoustic wave probe, acoustic wave measurement apparatus, ultrasound diagnostic apparatus, photoacoustic wave measurement apparatus, and ultrasound endoscope
JP6368631B2 (ja) 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブ、ならびに、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
US20200206393A1 (en) Composition for acoustic wave probe, silicone resin for acoustic wave probe, acoustic wave probe, ultrasound probe, acoustic wave measurement apparatus, ultrasound diagnostic apparatus, photoacoustic wave measurement apparatus, and ultrasound endoscope
WO2023090217A1 (ja) 音響レンズ用組成物、音響レンズ、音響波プローブ、超音波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置及び超音波内視鏡並びに音響波プローブの製造方法
JP6442372B2 (ja) 音響波プローブ用組成物、これを用いた音響波プローブ用シリコーン樹脂、音響波プローブおよび超音波プローブならびに音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
WO2023145659A1 (ja) 音響波レンズ用組成物、音響波レンズ、音響波プローブ、超音波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置及び超音波内視鏡、並びに、音響波プローブの製造方法
WO2024005002A1 (ja) 音響波プローブ、音響波測定装置、並びに、超音波診断装置
US11660002B2 (en) Composition for acoustic wave probe, silicone resin for acoustic wave probe formed of the same, acoustic wave probe, ultrasound probe, acoustic wave measurement apparatus, ultrasound diagnostic apparatus, photoacoustic wave measurement apparatus, and ultrasound endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566926

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020905808

Country of ref document: EP

Effective date: 20220725