WO2021131071A1 - ハイブリッド界磁式ダブルギャップ同期機および駆動システム - Google Patents

ハイブリッド界磁式ダブルギャップ同期機および駆動システム Download PDF

Info

Publication number
WO2021131071A1
WO2021131071A1 PCT/JP2019/051612 JP2019051612W WO2021131071A1 WO 2021131071 A1 WO2021131071 A1 WO 2021131071A1 JP 2019051612 W JP2019051612 W JP 2019051612W WO 2021131071 A1 WO2021131071 A1 WO 2021131071A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
stator
synchronous machine
teeth
hybrid
Prior art date
Application number
PCT/JP2019/051612
Other languages
English (en)
French (fr)
Inventor
宇宙 満田
一将 伊藤
山田 正樹
深見 正
小山 正人
Original Assignee
三菱電機株式会社
学校法人金沢工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 学校法人金沢工業大学 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/051612 priority Critical patent/WO2021131071A1/ja
Priority to JP2020534993A priority patent/JP6789451B1/ja
Publication of WO2021131071A1 publication Critical patent/WO2021131071A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/12Synchronous motors for multi-phase current characterised by the arrangement of exciting windings, e.g. for self-excitation, compounding or pole-changing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/22Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators
    • H02K19/24Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators with variable-reluctance soft-iron rotors without winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/38Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary

Definitions

  • the present disclosure relates to a hybrid field double gap synchronous machine and a drive system in which a rotor is provided between a first stator and a second stator.
  • a permanent magnet type rotary electric machine has been widely used as a drive motor.
  • Drive motors used in EVs are required to have a wide operating range. In the low speed range, the magnet field is strengthened to output high torque, and in the high speed range, voltage saturation is relaxed. It is required to weaken the field of the magnet.
  • Patent Document 1 describes a hybrid field in which a rotor is provided between a first stator having a field winding and a permanent magnet and a second stator having a plurality of electromagnets.
  • a magnetic double gap synchronizer is known.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a hybrid field type double gap synchronous machine capable of increasing the adjustment range of the field amount.
  • the hybrid field type double gap synchronous machine includes a first stator, a second stator, and a rotor.
  • the second stator faces the first stator.
  • the rotor is arranged between the first stator and the second stator through a gap and rotates about a rotation axis.
  • the first stator comprises a plurality of permanent magnets, a first field winding, and a plurality of polar teeth.
  • the first field winding is formed in an annular shape.
  • the plurality of polar teeth are arranged in the circumferential direction of the rotation axis.
  • the second stator comprises a plurality of electromagnets and a second field winding.
  • the plurality of electromagnets include a tooth and an armature winding mounted on the tooth, respectively, and are arranged in the circumferential direction of the rotation axis.
  • the second field winding is formed in an annular shape.
  • the first field winding is arranged between the plurality of permanent magnets and the plurality of pole teeth and the axis of rotation.
  • the second field winding is arranged between the plurality of electromagnets and the rotating shaft.
  • a plurality of field poles are formed in a plurality of pole teeth by energizing the first field winding and the second field winding and a plurality of permanent magnets.
  • the hybrid field type double gap synchronous machine according to the present disclosure has the effect that the adjustment range of the field amount can be increased.
  • FIG. 1 Perspective view showing an example of the hybrid field type double gap synchronous machine according to the first embodiment.
  • FIG. 1 is a perspective view showing an example of a hybrid field type double gap synchronous machine according to the first embodiment.
  • FIG. 2 is an exploded perspective view of the hybrid field type double gap synchronous machine according to the first embodiment.
  • the hybrid field type double gap synchronous machine 1 includes a first stator 10, a second stator 20, a rotor 30, and a rotation shaft 40.
  • the first stator 10 and the second stator 20 face each other in the extending direction of the rotating shaft 40.
  • the extending direction of the rotating shaft 40 may be described as the rotating shaft direction.
  • the rotor 30 is arranged at an intermediate position between the first stator 10 and the second stator 20 in the rotation axis direction.
  • the rotor 30 is fixed to the rotating shaft 40 and rotates about the rotating shaft 40.
  • the rotor 30 is rotatably supported by a housing (not shown).
  • a gap is provided between the first stator 10 and the rotor 30, and a gap is also provided between the rotor 30 and the second stator 20. In this way, the rotor 30 faces each of the first stator 10 and the second stator 20 via a gap in the rotation axis direction.
  • Each of the first stator 10, the second stator 20, and the rotor 30 is formed in a cylindrical shape.
  • Each of the first stator 10 and the second stator 20 is attached to the rotating shaft 40 via the corresponding bearing 50 of the two bearings 50.
  • the bearing 50 provided between the first stator 10 and the rotating shaft 40 is in an invisible position.
  • FIG. 3 is a perspective view showing an example of the configuration of the first stator according to the first embodiment.
  • the first stator 10 includes a first stator core 11, a plurality of permanent magnets 12, and a first field winding 13.
  • the first stator core 11 is configured by laminating a plurality of electromagnetic steel sheets.
  • the plurality of electromagnetic steel sheets constituting the first stator core 11 are laminated in the circumferential direction of the rotating shaft 40 so as not to interfere with the magnetic flux in the rotating shaft direction, for example.
  • the first stator core 11 may be composed of a plurality of electromagnetic steel sheets laminated in the rotation axis direction.
  • the circumferential direction of the rotating shaft 40 is the rotational direction of the rotor 30, and may be simply referred to as the circumferential direction below.
  • the first stator core 11 includes a plurality of polar teeth 11a arranged at intervals in the circumferential direction, and a core back portion 11b connecting the plurality of polar teeth 11a.
  • the plurality of polar teeth 11a are arranged side by side in the circumferential direction.
  • Each pole tooth 11a has a shape protruding in the direction of the rotation axis, and is not divided in the radial direction. Further, the plurality of polar teeth 11a may be individual parts, or may be an integral part obtained by processing a single core.
  • Each pole tooth 11a has a longer circumferential length in the outer peripheral region than in the inner peripheral region when viewed from the rotation axis direction.
  • each pole tooth 11a has a shape in which the length in the circumferential direction becomes longer as the distance from the rotation axis 40 is increased when viewed from the rotation axis direction.
  • the core back portion 11b of the first stator core 11 is made of a soft magnetic material, so that the magnetic flux can move in the direction perpendicular to the direction of the rotation axis.
  • the material of the first stator core 11 can also be an isotropic magnetic material such as amorphous. By using an isotropic magnetic material for the first stator core 11, iron loss in the first stator core 11 can be reduced.
  • Permanent magnets 12 are arranged on every other polar tooth 11a in the circumferential direction among a plurality of polar teeth 11a arranged in the circumferential direction. That is, in the first stator core 11, the polar teeth 11a on which the permanent magnets 12 are arranged and the polar teeth 11a on which the permanent magnets 12 are not arranged are alternately arranged in the circumferential direction.
  • the magnetic poles of the plurality of permanent magnets 12 all have the same polarity, and in the example shown in FIG. 3, they are all N poles.
  • the polarity is S due to the energization of each of the first field winding 13 and the second field winding 23 described later and the plurality of permanent magnets 12.
  • a field pole which is a pole, is formed.
  • the permanent magnet 12 has an S pole
  • the plurality of pole teeth 11a on which the permanent magnet 12 is not arranged are energized in each of the first field winding 13 and the second field winding 23.
  • a field magnetic pole having a polarity of N pole is formed by the plurality of permanent magnets 12.
  • Each permanent magnet 12 is a sintered magnet such as a neodymium magnet or a ferrite magnet. Further, the height of the polar teeth 11a in which the permanent magnet 12 is arranged in the rotation axis direction is higher in the rotation axis direction of the permanent magnet 12 than the height in the rotation axis direction of the polar teeth 11a in which the permanent magnet 12 is not arranged. It is desirable that it is lower by the amount. That is, it is desirable that the height of the combination of the permanent magnet 12 and the pole teeth 11a in the rotation axis direction is the same as the height of the pole teeth 11a in which the permanent magnet 12 is not arranged in the rotation axis direction.
  • the distance of the gap between the field pole formed on the first stator 10 and the rotor 30 can be made uniform. Further, the magnetic flux of the permanent magnet 12 interlinks with the polar teeth 11a to form a pseudo pole on the polar teeth 11a.
  • the field pole forming portion 14 is formed by the polar teeth 11a and the permanent magnets 12 facing each other in the direction of the rotation axis. That is, the field pole forming portion 14 is formed by the polar teeth 11a on which the permanent magnet 12 is arranged and the permanent magnet 12. The field pole forming portion 14 forms a field pole by the magnetic poles of the polar teeth 11a and the magnetic poles of the permanent magnet 12. In this way, in the field pole forming portion 14, the polar teeth 11a and the permanent magnet 12 form a common field pole.
  • the first field winding 13 is formed in an annular shape, and is arranged at a position closer to the rotation axis 40 than each of the plurality of permanent magnets 12 and the plurality of polar teeth 11a in the rotation axis direction. .. More specifically, the first field winding 13 is arranged between the plurality of permanent magnets 12, the plurality of polar teeth 11a, and the rotating shaft 40. As a result, the limited volume can be effectively used in the hybrid field type double gap synchronous machine 1. Further, since the first field winding 13 is formed in an annular shape, it is easy to manufacture.
  • the polar teeth 11a and the permanent magnet 12 are arranged without being divided in the radial direction. Therefore, for example, the first stator 10 has the polar teeth 11a with respect to the gap surface with the rotor 30 as compared with the case where the field winding is arranged between the polar teeth divided in the radial direction. And the area of the permanent magnet 12 can be increased.
  • FIG. 4 is a perspective view showing a state in which a rotating shaft is connected to the first stator shown in FIG. 3 via a bearing.
  • the first stator 10 is connected to the rotating shaft 40 via the bearing 50. Since an axial force is applied to the rotating shaft 40, the rotating shaft 40 is made of a soft magnetic material such as iron. Further, in addition to the magnetic flux due to the permanent magnet 12, the magnetic flux due to the first field winding 13 and the magnetic flux of the second field winding 23, which will be described later, pass through the rotating shaft 40 in the direction of the rotating axis, so that the rotating shaft 40 is magnetically saturated. Has a sufficient diameter so that
  • FIG. 5 is a perspective view showing an example of the configuration of the second stator according to the first embodiment.
  • the second stator 20 includes a second stator core 21, a plurality of armature windings 22, and a second field winding 23.
  • the second stator core 21 includes a plurality of teeth 21a divided in the circumferential direction and a yoke portion 21b for connecting the plurality of teeth 21a.
  • the electromagnet 24 is formed by the corresponding teeth 21a of the plurality of teeth 21a and the corresponding armature windings 22 of the plurality of armature windings 22.
  • a plurality of electromagnetic steel sheets constituting the plurality of teeth 21a are laminated in the circumferential direction. Further, the yoke portions 21b are laminated in the rotation axis direction. In the examples shown in FIGS. 1 and 5, the plurality of teeth 21a and the yoke portion 21b are formed separately from each other, but the plurality of teeth 21a and the yoke portion 21b are formed by using a dust core or the like. It may be formed as an integral part.
  • Each of the plurality of armature windings 22 is mounted on the corresponding teeth 21a of the plurality of teeth 21a in a state where the axial direction of the winding is aligned with the rotation axis direction.
  • the plurality of armature windings 22 are three-phase armature windings, and include each of a plurality of U-phase armature windings 22, V-phase armature windings 22, and W-phase armature windings 22. ..
  • the U-phase armature winding 22, the V-phase armature winding 22, and the W-phase armature winding 22 are repeatedly mounted on the plurality of teeth 21a in the circumferential direction.
  • each of the plurality of air-core armature windings 22 formed by a winding jig or the like is attached to the corresponding teeth 21a among the plurality of teeth 21a. Later, a plurality of armature windings 22 can be connected.
  • the second field winding 23 is arranged at a position closer to the rotation shaft 40 than the plurality of electromagnets 24. More specifically, the second field winding 23 is arranged between the plurality of electromagnets 24 and the rotating shaft 40. As a result, the limited volume can be effectively used in the hybrid field type double gap synchronous machine 1. Further, the second field winding 23 is formed as an air-core winding by a winding jig or the like like the armature winding 22, and is mounted on the second stator 20. Good.
  • the rotor 30 is a non-magnetic holding disk that holds a plurality of iron pieces 31 arranged in the circumferential direction and forming corresponding salient poles among the plurality of salient poles, and a plurality of iron pieces 31. 32 and.
  • the iron piece 31 is made of a magnetic material, and is composed of, for example, a plurality of electromagnetic steel sheets. These plurality of electromagnetic steel sheets are laminated in the circumferential direction, for example. Further, the iron piece 31 may be composed of a dust core for the purpose of reducing the iron loss generated in the iron piece 31.
  • the number of iron pieces 31 is the same as the number of salient poles, but is not limited to the example shown in FIG.
  • the holding disk 32 is made of a non-magnetic material, for example, a high-strength resin or the like.
  • the holding disc 32 may be made of a non-magnetic metal such as a stainless steel material.
  • the thickness of the holding disc 32 in the rotation axis direction is the same as the thickness of the plurality of iron pieces 31 in the rotation axis direction.
  • a plurality of slits 33 are formed in the holding disk 32.
  • Each of the plurality of slits 33 is formed from the outer peripheral edge of the holding disk 32 to the corresponding iron piece 31 of the plurality of iron pieces 31.
  • the plurality of slits 33 can suppress the generation of eddy currents in the holding disk 32.
  • the configuration of the rotor 30 is not limited to the example shown in FIG.
  • FIG. 6 is a perspective view showing an example of a rotor having a configuration different from that of the rotor shown in FIG.
  • FIG. 7 is a perspective view showing another example of a rotor having a configuration different from that of the rotor shown in FIG.
  • FIG. 8 is a perspective view showing still another example of a rotor having a configuration different from that of the rotor shown in FIG.
  • the thickness of the holding disc 32 in the rotation axis direction is thinner than the thickness of the plurality of iron pieces 31 in the rotation axis direction.
  • the holding disk 32 of the rotor 30 shown in FIG. 6 is not provided with the plurality of slits 33 shown in FIG.
  • each side of the portion of each of the plurality of iron pieces 31 protruding from the holding disk 32 is chamfered. As a result, it is possible to suppress the occurrence of iron loss that occurs at the corners of the iron piece 31.
  • the holding disk 32 of the rotor 30 shown in FIG. 6 is not provided with the plurality of slits 33 shown in FIG. Further, in the rotor 30 shown in FIG. 7, the thickness of the holding disc 32 in the rotation axis direction is thinner than the thickness of the plurality of iron pieces 31 in the rotation axis direction.
  • the holding disk 32 is formed of a non-magnetic metal, and as shown in FIG. 8, each of the holding disk 32 extends from the outer peripheral edge of the holding disk 32 to the corresponding iron piece 31 among the plurality of iron pieces 31.
  • a plurality of formed slits 33 are provided.
  • the thickness of the holding disk 32 in the rotation axis direction is thinner than the thickness of the plurality of iron pieces 31 in the rotation axis direction, and each of the plurality of iron pieces 31 protrudes from the holding disk 32.
  • Each side of is chamfered.
  • FIG. 9 is a diagram showing an example of a drive system including the hybrid field type double gap synchronous machine according to the first embodiment.
  • the drive system 100 includes a hybrid field type double gap synchronous machine 1 and a drive circuit 110 for driving the hybrid field type double gap synchronous machine 1.
  • the drive circuit 110 includes a DC power supply 111, an inverter circuit 112, and a three-phase AC power supply 113.
  • the first field winding 13 and the second field winding 23 of the hybrid field type double gap synchronous machine 1 are connected in series, and the field current If is supplied from the DC power supply 111.
  • the first field winding 13 and the second field winding 23 are wound in the same direction as viewed from the rotation axis direction.
  • the U-phase armature winding 22, the V-phase armature winding 22, and the W-phase armature winding 22 are connected by a Y connection.
  • An armature current is supplied to the armature winding 22 from the inverter circuit 112.
  • the inverter circuit 112 is connected to the three-phase AC power supply 113 and supplies armature current to the plurality of armature windings 22 based on the electric power supplied from the three-phase AC power supply 113.
  • the electric power to the inverter circuit 112 may be supplied from a battery which is a DC power source.
  • the first stator 10 has a first field winding 13 and the second stator 20 has a second field winding 23, whereas the first stator 10 is a permanent source. Includes magnet 12. Therefore, in the hybrid field type double gap synchronous machine 1, a field magnetic flux is generated by the permanent magnet 12 regardless of whether or not the first field winding 13 and the second field winding 23 are energized.
  • the field magnetic flux generated by the permanent magnet 12 passes through the iron piece 31 of the rotor 30 through the gap between the first stator 10 and the rotor 30.
  • the field magnetic flux generated by the first field winding 13 and the second field winding 23 passes through a magnetic path avoiding the positions of the permanent magnets 12. Therefore, the magnetomotive force of the first field winding 13 and the second field winding 23 and the magnetomotive force of the permanent magnet 12 are parallel in the magnetic circuit.
  • polar teeth 11a on which the permanent magnets 12 are arranged and polar teeth 11a on which the permanent magnets 12 are not arranged are alternately arranged in the circumferential direction, and the number of the permanent magnets 12 is shown in FIG. In the example shown in FIG. 4, the number is six. Since the field magnetic flux of the permanent magnet 12 passes through a path returning to the permanent magnet 12 via the polar teeth 11a on which the permanent magnet 12 is not arranged, the field magnetic flux of the permanent magnet 12 causes 12 in the first stator 10. The field poles of the poles are formed.
  • FIG. 10 is a diagram for explaining the relative angle between the polar teeth of the first stator and the teeth of the second stator according to the first embodiment.
  • the virtual line L1 is a straight line including a line connecting the rotation center of the rotation shaft 40 and the center in the circumferential direction of the pole teeth 11a, and the pole teeth 11a extends in the radial direction of the first stator 10. Indicates the direction to do.
  • the virtual line L2 is a straight line including a line connecting the rotation center of the rotation shaft 40 and the center in the circumferential direction of the teeth 21a, and indicates a direction in which the teeth 21a extends in the radial direction of the second stator 20.
  • the relative angle ⁇ between the polar teeth 11a of the first stator 10 and the teeth 21a of the second stator 20 indicates the angle formed by the virtual line L1 and the virtual line L2 when viewed from the direction of the rotation axis.
  • the relative angle ⁇ is 0 [deg].
  • the polar teeth 11a of the first stator 10 and the teeth 21a of the second stator 20 are at positions facing each other in the rotation axis direction.
  • the relative angle ⁇ is not limited to 0 [deg]. That is, the polar teeth 11a of the first stator 10 and the teeth 21a of the second stator 20 may be located at positions deviated from each other when viewed from the direction of the rotation axis. Since the gap permeance changes by changing the relative angle ⁇ , it is possible to improve the distortion of the counter electromotive voltage or reduce the cogging torque by adjusting the relative angle ⁇ , and it is possible to improve the average torque.
  • FIG. 11 is a diagram for explaining the magnetic path of the hybrid field type double gap synchronous machine in the case where the first field winding and the second field winding according to the first embodiment are energized. is there.
  • the first field winding 13 and the second field winding 23 are wound in the same direction when viewed from the direction of the rotation axis. Therefore, when the field current If, which is a direct current, is supplied to the first field winding 13 and the second field winding 23, the first field winding 13 and the second field winding 23 The wire 23 generates a field magnetic flux in the direction of the rotation axis.
  • the field magnetic flux generated by the first field winding 13 and the second field winding 23 passes through the rotating shaft 40, and the core back portion 11b of the first stator 10 Interlinks to the polar teeth 11a via.
  • the region on the rotation axis 40 side of the inner circumference of the first field winding 13 can be effectively used as the magnetic path, the area of the magnetic path can be widened with respect to the field magnetic flux.
  • the magnetic resistance can be reduced.
  • the polar teeth 11a also serves as a magnetic path for the field magnetic flux of the permanent magnet 12.
  • the field magnetic flux generated by the first field winding 13 and the second field winding 23 and the field magnetic flux generated by the permanent magnet 12 A plurality of field magnetic fluxes are formed in the first stator 10 by interlinking them in parallel. In the examples shown in FIGS. 1 and 2, a 12-pole field pole is formed in the first stator 10.
  • the 12-pole field pole formed on the first stator 10 is modulated when it passes through a plurality of iron pieces 31 forming 10 salient poles on the rotor 30. As a result, an eight-pole magnetic pole is formed on the rotor 30. Further, when a current is supplied to each armature winding 22 in the second stator 20, a rotating magnetic field is generated in the gap between the second stator 20 and the rotor 30. When the rotating magnetic field synchronizes with the field magnetic pole, torque is generated in the rotor 30, and the rotor 30 rotates.
  • the pole logarithm Pf of the field pole, the pole logarithm Pa of the rotating magnetic field, and the number Pr of the salient poles of the rotor 30 are not limited to the above-mentioned examples.
  • the polarity of each permanent magnet 12 is set to N pole. Further, the polarity of the magnetic poles formed on the pole teeth 11a of the field pole forming portion 14 by the field magnetic fluxes of the first field winding 13 and the second field winding 23 to which the field current If is supplied is the field.
  • the direction of the field current If which is the same as the polarity of the magnetic pole by the permanent magnet 12 of the magnetic pole forming portion 14, is set to the positive direction.
  • the drive circuit 110 has a positive field in the first field winding 13 and the second field winding 23 when the rotation speed of the hybrid field type double gap synchronous machine 1 requires a large torque in the low speed range.
  • a magnetic current If is applied.
  • a field magnetic flux is generated in the direction in which the S poles are generated on both sides of the teeth 21a in the circumferential direction in which the permanent magnets 12 which are the N poles are arranged.
  • the magnetomotive force of the N pole increases, so that the field magnetic flux increases, and as a result, the torque increases.
  • the counter electromotive voltage can be reduced by passing a current through the armature winding 22 in the direction of weakening the field magnetic flux of the permanent magnet 12.
  • the amount of current flowing through the armature winding 22 in the direction of weakening the field magnetic flux by the permanent magnet 12 is limited due to restrictions such as copper loss and power supply capacity.
  • the drive circuit 110 causes the field current If in the negative direction to flow through the first field winding 13 and the second field winding 23.
  • a field magnetic flux is generated in the direction in which the N poles are generated in the teeth 21a on both sides in the circumferential direction of the teeth 21a provided with the permanent magnets 12 which are the N poles. Since the field magnetic flux generated by the permanent magnet 12 forms an S pole at the pole teeth 11a, the magnetomotive force at each field magnetic pole decreases. As a result, the field magnetic flux is reduced and the voltage saturation is eliminated, and the hybrid field type double gap synchronous machine 1 can generate torque in a high speed range.
  • FIG. 12 is a diagram showing an example of a counter electromotive voltage generated in the armature winding in the second stator according to the first embodiment.
  • the counter electromotive voltage generated in the armature winding 22 is graphed when the field current If is 2.51 [A], 0 [A], and ⁇ 2.51 [A]. Indicated by.
  • the vertical axis represents the counter electromotive voltage [V] generated in the armature winding 22, and the horizontal axis represents the time [ms].
  • the field magnetic flux is increased or decreased by adjusting the field current If flowing through the first field winding 13 and the second field winding 23. be able to.
  • the first stator 10 As described above, in the hybrid field type double gap synchronous machine 1 according to the first embodiment, the first stator 10, the second stator 20 facing the first stator 10, and the first stator 1 A rotor 30 is provided between the stator 10 and the second stator 20 via a gap.
  • the rotor 30 rotates about a rotation shaft 40.
  • the first stator 10 includes a plurality of permanent magnets 12, a first field winding 13 formed in an annular shape, and a plurality of polar teeth 11a arranged in the circumferential direction of the rotation shaft 40.
  • the second stator 20 includes a tooth 21a and an armature winding 22 mounted on the tooth 21a, a plurality of electromagnets 24 arranged in the circumferential direction of the rotation shaft 40, and a second field formed in an annular shape. It includes a magnetic winding 23.
  • the first field winding 13 is arranged between the plurality of permanent magnets 12, the plurality of polar teeth 11a, and the rotating shaft 40, and the second field winding 23 rotates with the plurality of electromagnets 24. It is arranged between the shaft 40 and the shaft 40.
  • a plurality of field magnetic poles are formed in the plurality of pole teeth 11a by energizing each of the first field winding 13 and the second field winding 23 and the plurality of permanent magnets 12.
  • the hybrid field type double gap synchronous machine 1 can effectively use the region on the rotation shaft 40 side of the inner circumferences of the first field winding 13 and the second field winding 23 as a magnetic path. .. Therefore, the area of the magnetic path can be widened with respect to the field magnetic flux, and the volume of the hybrid field type double gap synchronous machine 1 can be effectively used. Further, since the region on the rotation axis 40 side of the inner circumferences of the first field winding 13 and the second field winding 23 can be effectively used as a magnetic path, the field magnetic flux generated by the permanent magnet 12 and the first field magnetic flux can be effectively used.
  • the area through which the field magnetic fluxes of the field winding 13 and the field magnetic flux of the second field winding 23 pass through each iron piece 31 of the rotor 30 is large. Therefore, in the hybrid field type double gap synchronous machine 1, the field magnetic flux generated by the first field winding 13 and the second field winding 23 can be increased, and the field amount can be adjusted according to the operating point. The width can be increased.
  • the plurality of permanent magnets 12 and the plurality of polar teeth 11a are not divided in the radial direction of the rotating shaft 40.
  • the rotating shaft 40 constitutes a part of the magnetic path of the field magnetic flux formed by the plurality of permanent magnets 12, the first field winding 13, and the second field winding 23.
  • the first stator 10 has a plurality of permanent magnets 12 with respect to the gap surface with the rotor 30 as compared with the case where the field winding is arranged between the polar teeth divided in the radial direction.
  • the hybrid field type double gap synchronous machine 1 can increase the field magnetic flux generated by the first field winding 13 and the second field winding 23, and the field amount according to the operating point can be increased.
  • the adjustment range can be increased.
  • the plurality of permanent magnets 12 are arranged in the plurality of pole teeth 11a arranged every other in the circumferential direction of the rotation shaft 40 among the plurality of pole teeth 11a, and face the rotor 30.
  • the hybrid field type double gap synchronous machine 1 can form field magnetic poles on the plurality of polar teeth 11a by the magnetic fluxes of the plurality of permanent magnets 12.
  • the polarities of the plurality of permanent magnets 12 are the same as each other, and among the plurality of polar teeth 11a, the plurality of polar teeth 11a in which the plurality of permanent magnets 12 are not arranged have a plurality of polarities different from the polarities of the plurality of permanent magnets 12. Field poles are formed.
  • the hybrid field type double gap synchronous machine 1 can increase the field magnetic flux and can increase the adjustment range of the field amount according to the operating point.
  • the rotor 30 includes a plurality of iron pieces 31 that are arranged in the circumferential direction of the rotation shaft 40 to form a plurality of salient poles, and a non-magnetic holding disk 32 that holds the plurality of iron pieces 31.
  • the thickness of the holding disc 32 in the rotation axis direction which is the extending direction of the rotation axis 40, is thinner than the thickness of the plurality of iron pieces 31 in the rotation axis direction.
  • each of the plurality of iron pieces 31 is chamfered on each side of the portion protruding from the holding disk 32.
  • the hybrid field type double gap synchronous machine 1 can suppress the occurrence of iron loss generated at the corners of the iron piece 31.
  • the holding disk 32 is formed of a non-magnetic metal, and includes a plurality of slits 33 formed from the outer peripheral edge of the holding disk 32 to the corresponding iron pieces 31 among the plurality of iron pieces 31.
  • the hybrid field type double gap synchronous machine 1 can suppress the generation of eddy current in the holding disk 32.
  • each of the plurality of polar teeth 11a is arranged at a position facing the teeth 21a of the corresponding electromagnet 24 in the rotation axis direction among the plurality of electromagnets 24.
  • the hybrid field type double gap synchronous machine 1 forms a magnetic path along the rotation axis direction between each of the plurality of polar teeth 11a and the teeth 21a of the corresponding electromagnet 24 among the plurality of electromagnets 24. be able to.
  • each of the plurality of polar teeth 11a is arranged at a position deviated from the position opposite to the teeth 21a of the corresponding electromagnet 24 in the rotation axis direction among the plurality of electromagnets 24.
  • the drive system 100 includes a hybrid field type double gap synchronous machine 1 and a drive circuit for driving the hybrid field type double gap synchronous machine 1.
  • the drive circuit 110 changes the polarity of the field current If flowing through the first field winding 13 and the second field winding 23 according to the rotation speed of the rotor 30.
  • the field current If is an example of a direct current.
  • the drive system 100 can increase the adjustment range of the field amount.
  • the configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.
  • 1 Hybrid field type double gap synchronous machine 10 1st stator, 11 1st stator core, 11a polar teeth, 11b core back part, 12 permanent magnet, 13 1st field winding, 14 field magnetic pole Forming part, 20 second stator, 21 second stator core, 21a teeth, 21b yoke part, 22 armature winding, 23 second field winding, 24 electromagnet, 30 rotor, 31 iron piece, 32 holding disk, 33 slit, 40 rotating shaft, 50 bearing, 100 drive system, 110 drive circuit, 111 DC power supply, 112 inverter circuit, 113 3-phase AC power supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Synchronous Machinery (AREA)

Abstract

ハイブリッド界磁式ダブルギャップ同期機(1)は、第1の固定子(10)と、第2の固定子(20)と、回転子(30)とを備える。回転子(30)は、第1の固定子(10)と第2の固定子(20)との間にギャップを介して配置され、回転軸(40)を中心に回転する。第1の固定子(10)は、複数の永久磁石(12)と、第1の界磁巻線(13)と、複数の極ティース(11a)とを備える。第2の固定子(20)は、複数の電磁石(24)と、第2の界磁巻線(23)とを備える。第1の界磁巻線(13)は、複数の永久磁石(12)および複数の極ティース(11a)と回転軸(40)との間に配置される。第2の界磁巻線(23)は、複数の電磁石(24)と回転軸(40)との間に配置される。第1の界磁巻線(13)および第2の界磁巻線(23)の各々への通電および複数の永久磁石(12)によって複数の極ティース(11a)に複数の界磁極が形成される。

Description

ハイブリッド界磁式ダブルギャップ同期機および駆動システム
 本開示は、第1の固定子と第2の固定子との間に回転子が設けられるハイブリッド界磁式ダブルギャップ同期機および駆動システムに関する。
 従来、駆動用モータとして永久磁石式回転電機が広く用いられている。EV(Electric Vehicle)などに用いられる駆動用モータは、広範囲の運転領域が要求されており、低速域では高トルクを出力するために磁石の界磁を強め、高速域では電圧飽和を緩和させるために磁石の界磁を弱めることが求められる。
 そこで、磁石と界磁巻線とを組み合わせ、動作点に応じて界磁量を調整することで、広範囲の運転領域を実現することができる可変界磁モータに関する技術が開発されている。かかる可変界磁モータとして、特許文献1には、界磁巻線および永久磁石を有する第1の固定子と、複数の電磁石を有する第2の固定子との間に回転子が設けられるハイブリッド界磁式ダブルギャップ同期機が知られている。
特開2019-149891号公報
 しかしながら、上記特許文献1に記載の技術では、第1の固定子において、1つの環状の界磁巻線の内周側および外周側の各々に界磁極が配置される。したがって、界磁巻線に供給される界磁電流による磁束の経路は、界磁巻線の外周側に配置される界磁極、回転子の鉄片、第2の固定子、回転子の鉄片、および界磁巻線の内周側に配置される界磁極を順に通る経路になるため、回転子の鉄心の面積に対して回転子の鉄心を磁束が通過する面積が小さい。そのため、界磁巻線によって発生する界磁磁束が低く、動作点に応じた界磁量の調整幅が小さいといった課題がある。
 本開示は、上記に鑑みてなされたものであって、界磁量の調整幅を大きくすることができるハイブリッド界磁式ダブルギャップ同期機を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本開示に係るハイブリッド界磁式ダブルギャップ同期機は、第1の固定子と、第2の固定子と、回転子と、を備える。第2の固定子は、第1の固定子と対向する。回転子は、第1の固定子と第2の固定子との間にギャップを介して配置され、回転軸を中心に回転する。第1の固定子は、複数の永久磁石と、第1の界磁巻線と、複数の極ティースと、を備える。第1の界磁巻線は、環状に形成される。複数の極ティースは、回転軸の周方向に並ぶ。第2の固定子は、複数の電磁石と、第2の界磁巻線と、を備える。複数の電磁石は、ティースとティースに装着される電機子巻線とを各々含み、回転軸の周方向に並ぶ。第2の界磁巻線は、環状に形成される。第1の界磁巻線は、複数の永久磁石および複数の極ティースと回転軸との間に配置される。第2の界磁巻線は、複数の電磁石と回転軸との間に配置される。第1の界磁巻線および第2の界磁巻線への通電および複数の永久磁石によって複数の極ティースに複数の界磁極が形成される。
 本開示に係るハイブリッド界磁式ダブルギャップ同期機は、界磁量の調整幅を大きくすることができる、という効果を奏する。
実施の形態1にかかるハイブリッド界磁式ダブルギャップ同期機の一例を示す斜視図 実施の形態1にかかるハイブリッド界磁式ダブルギャップ同期機の分解斜視図 実施の形態1にかかる第1の固定子の構成の一例を示す斜視図 図3に示す第1の固定子に軸受を介して回転軸を接続した状態を示す斜視図 実施の形態1にかかる第2の固定子の構成の一例を示す斜視図 図2に示す回転子とは異なる構成の回転子の一例を示す斜視図 図2に示す回転子とは異なる構成の回転子の他の例を示す斜視図 図2に示す回転子とは異なる構成の回転子のさらに他の例を示す斜視図 実施の形態1にかかるハイブリッド界磁式ダブルギャップ同期機を含む駆動システムの一例を示す図 実施の形態1にかかる第1の固定子の極ティースと第2の固定子のティースとの相対角を説明するための図 実施の形態1にかかる第1の界磁巻線および第2の界磁巻線へ通電された場合についてのハイブリッド界磁式ダブルギャップ同期機の磁路を説明するための図 実施の形態1にかかる第2の固定子における電機子巻線に発生する逆起電圧の一例を示す図
 以下に、実施の形態に係るハイブリッド界磁式ダブルギャップ同期機および駆動システムを図面に基づいて詳細に説明する。なお、この実施の形態により本開示が限定されるものではない。
実施の形態1.
 図1は、実施の形態1にかかるハイブリッド界磁式ダブルギャップ同期機の一例を示す斜視図である。図2は、実施の形態1にかかるハイブリッド界磁式ダブルギャップ同期機の分解斜視図である。
 図1および図2に示すように、ハイブリッド界磁式ダブルギャップ同期機1は、第1の固定子10と、第2の固定子20と、回転子30と、回転軸40とを備える。第1の固定子10と第2の固定子20は、回転軸40の延在方向において、互いに対向する。以下、回転軸40の延在方向を回転軸方向と記載する場合がある。
 回転子30は、回転軸方向において第1の固定子10と第2の固定子20との中間位置に配置される。回転子30は、回転軸40に固定され、回転軸40を中心に回転する。回転子30は、不図示のハウジングに回転可能に支持される。第1の固定子10と回転子30との間にはギャップが設けられ、回転子30と第2の固定子20との間にもギャップが設けられる。このように、回転子30は回転軸方向において第1の固定子10および第2の固定子20の各々とギャップを介して対向する。
 第1の固定子10、第2の固定子20、および回転子30の各々は、円筒状に形成される。第1の固定子10および第2の固定子20の各々は、2つの軸受50のうち対応する軸受50を介して回転軸40に取り付けられる。なお、図2において、第1の固定子10と回転軸40との間に設けられる軸受50は見えない位置にある。
 図3は、実施の形態1にかかる第1の固定子の構成の一例を示す斜視図である。図3に示すように、第1の固定子10は、第1の固定子コア11と、複数の永久磁石12と、第1の界磁巻線13とを備える。
 第1の固定子コア11は、複数の電磁鋼板が積層されて構成される。第1の固定子コア11を構成する複数の電磁鋼板は、例えば、回転軸方向の磁束を妨げにくくなるように回転軸40の周方向に積層される。なお、第1の固定子コア11は、回転軸方向に積層された複数の電磁鋼板で構成されてもよい。なお、回転軸40の周方向は、回転子30の回転方向であり、以下、単に周方向と記載する場合がある。
 第1の固定子コア11は、周方向に間隔を空けて配置される複数の極ティース11aと、複数の極ティース11aを連結するコアバック部11bとを備える。複数の極ティース11aは、周方向に並べて配置される。各極ティース11aは、回転軸方向に向けて突出する形状を有しており、径方向には分割されていない。また、複数の極ティース11aは、各々個別の部品であってもよく、また、一塊のコアを加工した一体部品であってもよい。
 各極ティース11aは、回転軸方向から見て内周側の領域よりも外周側の領域における周方向の長さが長い。換言すれば、各極ティース11aは、回転軸方向から見て回転軸40から遠くなるほど周方向の長さが長くなる形状を有する。
 第1の固定子コア11のコアバック部11bは、軟磁性材料で形成されることで、回転軸方向に対して垂直な面に沿った方向に磁束の移動が可能になる。第1の固定子コア11の材料は、アモルフォスなどの等方性の磁性材料とすることも可能である。第1の固定子コア11に等方性の磁性材料を使用することで、第1の固定子コア11における鉄損を低減することができる。
 周方向に並ぶ複数の極ティース11aのうち周方向に1つ置きの極ティース11aに永久磁石12が配置される。すなわち、第1の固定子コア11では、永久磁石12が配置される極ティース11aと永久磁石12が配置されない極ティース11aとが周方向に交互に配置される。複数の永久磁石12の磁極は、すべて同じ極性であり、図3に示す例では、すべてN極である。永久磁石12が各々配置されない複数の極ティース11aには、第1の界磁巻線13および後述する第2の界磁巻線23の各々への通電と複数の永久磁石12とによって極性がS極である界磁極が形成される。なお、永久磁石12がS極である場合、永久磁石12が各々配置されない複数の極ティース11aには、第1の界磁巻線13および第2の界磁巻線23の各々への通電と複数の永久磁石12とによって極性がN極である界磁極が形成される。
 各永久磁石12は、ネオジム磁石といった焼結磁石またはフェライト磁石である。また、永久磁石12が配置された極ティース11aの回転軸方向における高さは、永久磁石12が配置されない極ティース11aの回転軸方向における高さよりも、永久磁石12の回転軸方向における高さの分だけ低いことが望ましい。すなわち、永久磁石12と極ティース11aとの組み合わせの回転軸方向における高さが、永久磁石12が配置されていない極ティース11aの回転軸方向における高さとが同一になることが望ましい。これにより、第1の固定子10に形成される界磁極と回転子30との間のギャップの距離を均一にすることができる。また、永久磁石12の磁束が極ティース11aに鎖交することにより極ティース11aに疑似的な極が形成される。
 回転軸方向で互いに対向する極ティース11aと永久磁石12とによって界磁極形成部14が構成される。すなわち、永久磁石12が配置される極ティース11aと永久磁石12とによって界磁極形成部14が構成される。界磁極形成部14は、極ティース11aの磁極と永久磁石12の磁極とによって界磁極を形成する。このように、界磁極形成部14では、極ティース11aと永久磁石12とが共通の界磁極を形成する。
 また、第1の界磁巻線13は、円環状に形成されており、回転軸方向において、複数の永久磁石12および複数の極ティース11aの各々よりも回転軸40に近い位置に配置される。より具体的には、第1の界磁巻線13は、複数の永久磁石12および複数の極ティース11aと回転軸40との間に配置される。これにより、ハイブリッド界磁式ダブルギャップ同期機1において、限定された体積を有効に利用することができる。また、第1の界磁巻線13は、円環状に形成されるため製造が容易である。
 また、第1の界磁巻線13は、極ティース11aおよび永久磁石12が径方向に分割することなく配置される。そのため、例えば、第1の固定子10は、径方向に分割された極ティース間に界磁巻線が配置される場合に比べて、回転子30との間のギャップ面に対して極ティース11aおよび永久磁石12の面積を大きくとることができる。
 図4は、図3に示す第1の固定子に軸受を介して回転軸を接続した状態を示す斜視図である。図4に示すように、第1の固定子10は、軸受50を介して回転軸40に接続される。回転軸40には軸力が加わるため、回転軸40は、例えば、鉄などの軟磁性材料によって構成される。また、回転軸40には、永久磁石12による磁束に加え、第1の界磁巻線13による磁束および後述する第2の界磁巻線23の磁束が回転軸方向に通過するため、磁気飽和の発生しないように十分な径を有する。
 次に、第2の固定子20について説明する。図5は、実施の形態1にかかる第2の固定子の構成の一例を示す斜視図である。図5に示すように、第2の固定子20は、第2の固定子コア21と、複数の電機子巻線22と、第2の界磁巻線23とを備える。
 第2の固定子コア21は、周方向に分割された複数のティース21aと、複数のティース21aを連結するヨーク部21bとを備える。複数のティース21aのうち対応するティース21aと複数の電機子巻線22のうち対応する電機子巻線22とで各々電磁石24が形成される。
 複数のティース21aを構成する複数の電磁鋼板は、周方向に積層される。また、ヨーク部21bは、回転軸方向に積層される。なお、図1および図5に示す例では、複数のティース21aおよびヨーク部21bは互いに別体で形成されるが、複数のティース21aおよびヨーク部21bは、圧粉鉄心などを利用することによって、一体部品として形成されてもよい。
 複数の電機子巻線22の各々は、複数のティース21aのうち対応するティース21aに巻線の軸方向を回転軸方向と一致させた状態で装着される。複数の電機子巻線22は、3相電機子巻線であり、U相の電機子巻線22、V相の電機子巻線22、およびW相の電機子巻線22の各々を複数含む。複数のティース21aには、周方向にU相の電機子巻線22、V相の電機子巻線22、およびW相の電機子巻線22の順に繰り返し装着される。複数の電機子巻線22は各々別体であるため、巻線治具などにより形成された空芯の複数の電機子巻線22の各々を複数のティース21aのうち対応するティース21aに装着した後に、複数の電機子巻線22を結線することもできる。
 第2の界磁巻線23は、複数の電磁石24よりも回転軸40に近い位置に配置される。より具体的には、第2の界磁巻線23は、複数の電磁石24と回転軸40との間に配置される。これにより、ハイブリッド界磁式ダブルギャップ同期機1において、限定された体積を有効に利用することができる。また、第2の界磁巻線23は、電機子巻線22と同様に、巻線治具などにより空芯巻線として形成され、第2の固定子20に装着される構成であってもよい。
 次に、回転子の構成について説明する。図2に示すように、回転子30は、周方向に並び且つ複数の突極のうち対応する突極を各々形成する複数の鉄片31と、複数の鉄片31を保持する非磁性体の保持ディスク32とを備える。
 鉄片31は、磁性材料によって形成されており、例えば、複数の電磁鋼板で構成される。これら複数の電磁鋼板は、例えば、周方向に積層される。また、鉄片31は、鉄片31に発生する鉄損を低減することを目的として、圧粉鉄心によって構成されてもよい。なお、鉄片31の数は、突極の数と同じであるが、図2に示す例に限定されない。
 保持ディスク32は、非磁性材料で形成されており、例えば、高強度の樹脂などで形成される。保持ディスク32に剛性が要求される場合などにおいて、保持ディスク32は、ステンレス材などの非磁性の金属などで形成されてもよい。図2に示す例では、回転軸方向における保持ディスク32の厚みは、回転軸方向における複数の鉄片31の厚みと同じである。
 また、保持ディスク32には、複数のスリット33が形成される。複数のスリット33の各々は、保持ディスク32の外周縁から複数の鉄片31のうち対応する鉄片31にかけて形成される。複数のスリット33によって、保持ディスク32における渦電流の発生を抑制することができる。
 回転子30の構成は、図2に示す例に限定されない。図6は、図2に示す回転子とは異なる構成の回転子の一例を示す斜視図である。図7は、図2に示す回転子とは異なる構成の回転子の他の例を示す斜視図である。図8は、図2に示す回転子とは異なる構成の回転子のさらに他の例を示す斜視図である。
 図6に示す回転子30では、回転軸方向における保持ディスク32の厚みは、回転軸方向における複数の鉄片31の厚みより薄い。これにより、保持ディスク32を金属で構成しても渦電流の発生を抑制することができる。なお、図6に示す回転子30の保持ディスク32には図2に示す複数のスリット33が設けられていない。
 また、図7に示す回転子30では、複数の鉄片31の各々は、保持ディスク32から突出する部分の各辺が面取りされる。これにより、鉄片31の角部にて発生する鉄損の発生を抑制することができる。なお、図6に示す回転子30の保持ディスク32には図2に示す複数のスリット33が設けられていない。また、図7に示す回転子30では、回転軸方向における保持ディスク32の厚みは、回転軸方向における複数の鉄片31の厚みより薄い。
 また、図8に示す回転子30では、保持ディスク32は、非磁性の金属によって形成され、図8に示すように、保持ディスク32の外周縁から複数の鉄片31のうち対応する鉄片31にかけて各々形成された複数のスリット33を備える。これにより、保持ディスク32において渦電流の発生を抑制することができる。なお、図8に示す回転子30では、回転軸方向における保持ディスク32の厚みは、回転軸方向における複数の鉄片31の厚みより薄く、複数の鉄片31の各々は、保持ディスク32から突出する部分の各辺が面取りされる。
 次に、実施の形態1にかかるハイブリッド界磁式ダブルギャップ同期機に電力を供給する駆動回路を含めた駆動システムについて説明する。図9は、実施の形態1にかかるハイブリッド界磁式ダブルギャップ同期機を含む駆動システムの一例を示す図である。
 図9に示すように、実施の形態1にかかる駆動システム100は、ハイブリッド界磁式ダブルギャップ同期機1と、ハイブリッド界磁式ダブルギャップ同期機1を駆動する駆動回路110とを備える。駆動回路110は、直流電源111と、インバータ回路112と、3相交流電源113とを備える。ハイブリッド界磁式ダブルギャップ同期機1の第1の界磁巻線13と第2の界磁巻線23とは直列に結線されており、直流電源111から界磁電流Ifが供給される。第1の界磁巻線13と第2の界磁巻線23とは回転軸方向から見て互いに同じ方向に巻かれている。
 第2の固定子20において、U相の電機子巻線22、V相の電機子巻線22、およびW相の電機子巻線22がY結線で接続される。電機子巻線22には、インバータ回路112から電機子電流が供給される。インバータ回路112は、3相交流電源113に接続され、3相交流電源113から供給される電力に基づいて、電機子電流を複数の電機子巻線22へ供給する。なお、インバータ回路112への電力は、直流電源であるバッテリから供給されてもよい。
 次に、ハイブリッド界磁式ダブルギャップ同期機1の動作について説明する。ここでは、ハイブリッド界磁式ダブルギャップ同期機1が電動機として動作する場合のハイブリッド界磁式ダブルギャップ同期機1の動作を説明する。
 まず、永久磁石12の界磁磁束について説明する。第1の固定子10は第1の界磁巻線13を有し第2の固定子20は第2の界磁巻線23を有するが、第1の固定子10は界磁源である永久磁石12を含む。そのため、ハイブリッド界磁式ダブルギャップ同期機1において、第1の界磁巻線13および第2の界磁巻線23への通電の有無に関係なく、永久磁石12によって界磁磁束が生じる。
 永久磁石12による界磁磁束は、第1の固定子10と回転子30との間のギャップを介して、回転子30の鉄片31を通過する。一方、第1の界磁巻線13および第2の界磁巻線23による界磁磁束は、各永久磁石12の位置を避けた磁路を通る。そのため、第1の界磁巻線13および第2の界磁巻線23による起磁力および永久磁石12の起磁力は磁気回路において並列となる。
 第1の固定子10には、永久磁石12が配置される極ティース11aと永久磁石12が配置されない極ティース11aとが周方向に交互に配置されており、永久磁石12の数は、図2~図4に示す例では、6個である。永久磁石12の界磁磁束は、永久磁石12が配置されていない極ティース11aを介して永久磁石12に戻る経路を通るため、第1の固定子10では、永久磁石12の界磁磁束によって12極の界磁極が形成される。
 ここで、第1の固定子10の極ティース11aと第2の固定子20のティース21aとの相対角αについて説明する。図10は、実施の形態1にかかる第1の固定子の極ティースと第2の固定子のティースとの相対角を説明するための図である。
 図10において、仮想線L1は、回転軸40の回転中心と極ティース11aの周方向における中心とを結ぶ線を含む直線であり、第1の固定子10の径方向に極ティース11aが延在する方向を示す。仮想線L2は、回転軸40の回転中心とティース21aの周方向における中心とを結ぶ線を含む直線であり、第2の固定子20の径方向にティース21aが延在する方向を示す。第1の固定子10の極ティース11aと第2の固定子20のティース21aとの相対角αは、回転軸方向から見た場合に仮想線L1と仮想線L2とが為す角を示す。
 図10に示す例では相対角αが0[deg]である。相対角αが0[deg]である場合、第1の固定子10の極ティース11aと第2の固定子20のティース21aとが回転軸方向において互いに対向する位置にある。
 相対角αは0[deg]に限定されない。すなわち、第1の固定子10の極ティース11aと第2の固定子20のティース21aとが回転軸方向から見た場合に互いにずれた位置にあってもよい。相対角αを変えることによってギャップパーミアンスが変化するため、相対角αを調整することによって、逆起電圧の歪みの改善またはコギングトルクを低減させることができ、平均トルクを向上させることができる。
 次に、第1の界磁巻線13および第2の界磁巻線23へ通電された場合についてのハイブリッド界磁式ダブルギャップ同期機1の動作について説明する。図11は、実施の形態1にかかる第1の界磁巻線および第2の界磁巻線へ通電された場合についてのハイブリッド界磁式ダブルギャップ同期機の磁路を説明するための図である。
 上述したように第1の界磁巻線13と第2の界磁巻線23とは回転軸方向から見て互いに同じ方向に巻かれている。そのため、第1の界磁巻線13と第2の界磁巻線23とに直流電流である界磁電流Ifが供給された場合、第1の界磁巻線13および第2の界磁巻線23によって回転軸方向の界磁磁束が発生する。
 第1の界磁巻線13および第2の界磁巻線23によって発生した界磁磁束は、図11に示すように、回転軸40を通過し、第1の固定子10のコアバック部11bを介して極ティース11aに鎖交する。このように、第1の界磁巻線13の内周よりも回転軸40側の領域を磁路として有効に利用できるため、界磁磁束に対して磁路の面積を広くとることができ、磁気抵抗を減少させることができる。また、極ティース11aは、永久磁石12の界磁磁束の磁路も兼ねる。
 第1の固定子10と回転子30との間のギャップにおいて第1の界磁巻線13および第2の界磁巻線23によって発生した界磁磁束と永久磁石12によって発生した界磁磁束とが並列に鎖交することで、第1の固定子10に複数の界磁極が形成される。図1および図2に示す例では、第1の固定子10に12極の界磁極が形成される。
 第1の固定子10に形成される12極の界磁極は、図11に示すように、回転子30における10個の突極を形成する複数の鉄片31を通過した際に変調される。これにより、回転子30には、8極の磁極が形成される。また、第2の固定子20において各電機子巻線22への電流が供給されると、第2の固定子20と回転子30との間のギャップに回転磁界が生じる。かかる回転磁界が界磁極と同期することによって、回転子30にトルクが発生し、回転子30が回転する。
 ここで、第1の固定子10に形成される界磁極の極数は12である。したがって、界磁極の極対数Pfは6である。また、電機子巻線22によってギャップに発生する回転磁界の極対数Paは4である。また、回転子30の突極の数Prは10である。具体的には、回転子30の突極の極対数は10であり極数は20である。したがって、実施の形態1のハイブリッド界磁式ダブルギャップ同期機1では、Pr=Pa+Pfの関係が満たされる。ハイブリッド界磁式ダブルギャップ同期機1は、Pr=Pa+Pfの関係を満たす場合、トルクを高めることができる。なお、界磁極の極対数Pf、回転磁界の極対数Pa、および回転子30の突極の数Prは、上述した例に限定されない。
 次に、ハイブリッド界磁式ダブルギャップ同期機1において、界磁電流Ifを変化させることによって電磁気性能に与える影響について説明する。ここで、各永久磁石12の極性をN極とする。また、界磁電流Ifが供給された第1の界磁巻線13および第2の界磁巻線23による界磁磁束によって界磁極形成部14の極ティース11aに形成される磁極の極性が界磁極形成部14の永久磁石12による磁極の極性と同じになる界磁電流Ifの方向をプラス方向とする。
 駆動回路110は、ハイブリッド界磁式ダブルギャップ同期機1の回転速度が低速域で大トルクが必要な場合、第1の界磁巻線13および第2の界磁巻線23にプラス方向の界磁電流Ifを流す。これにより、N極である各永久磁石12が配置されたティース21aの周方向における両側のティース21aにS極が発生する向きに界磁磁束が発生する。これにより、N極の起磁力が増加するため、界磁磁束が増加し、結果としてトルクが増加する。
 回転子30が回転すると、電機子巻線22に永久磁石12の磁束による逆起電圧が生じる。電機子巻線22に発生する逆起電圧は、回転子30の回転速度が増加するほど上昇する。回転子30の回転速度が高速域となると、電機子巻線22の端子間電圧が逆起電圧によって増加する。そのため、電機子巻線22に電圧飽和が生じ、電機子巻線22にそれ以上の大きさの電機子電流を流すことが難しい。
 そのため、永久磁石12による磁束を弱める必要がある。一般的に、永久磁石12による界磁磁束を弱める方向に電機子巻線22に電流を流すことで逆起電圧を減少させることができる。しかし、永久磁石12による界磁磁束を弱める方向に電機子巻線22に流す電流は、銅損および電源容量などの制約などによってその電流量に制限がある。
 そこで、駆動回路110は、回転子30の回転速度が高速域になった場合、第1の界磁巻線13および第2の界磁巻線23にマイナス方向の界磁電流Ifを流す。これにより、N極である各永久磁石12が設けられたティース21aの周方向における両側のティース21aにN極が発生する向きに界磁磁束が発生する。永久磁石12による界磁磁束は極ティース11aにS極を作っているため、各界磁極における起磁力は減少する。その結果、界磁磁束は減少して電圧飽和が解消され、ハイブリッド界磁式ダブルギャップ同期機1において、高速域のトルクを発生させることができる。
 図12は、実施の形態1にかかる第2の固定子における電機子巻線に発生する逆起電圧の一例を示す図である。図12に示す例では、界磁電流Ifが2.51[A]、0[A]、および-2.51[A]の各々の場合において電機子巻線22に発生する逆起電圧がグラフで示される。図12において、縦軸は、電機子巻線22に発生する逆起電圧[V]を示し、横軸は、時間[ms]を示す。
 図12に示すように、第1の界磁巻線13および第2の界磁巻線23にプラス方向の界磁電流Ifを流すことで、永久磁石12による界磁磁束と第1の界磁巻線13および第2の界磁巻線23による界磁磁束とが強め合い、逆起電圧が増加する。また、第1の界磁巻線13および第2の界磁巻線23にマイナス方向の界磁電流Ifを流すことで、永久磁石12による界磁磁束と第1の界磁巻線13および第2の界磁巻線23による界磁磁束とが弱め合い、逆起電圧が減少し、逆起電圧の変化幅は小さい。そのため、ハイブリッド界磁式ダブルギャップ同期機1において、電圧飽和が解消され、高速域のトルクを発生させることができる。
 このように、ハイブリッド界磁式ダブルギャップ同期機1において、第1の界磁巻線13および第2の界磁巻線23に流す界磁電流Ifを調整することによって、界磁磁束を増減することができる。
 以上のように、実施の形態1にかかるハイブリッド界磁式ダブルギャップ同期機1は、第1の固定子10と、第1の固定子10と対向する第2の固定子20と、第1の固定子10と第2の固定子20との間にギャップを介して配置される回転子30とを備える。回転子30は、回転軸40を中心に回転する。第1の固定子10は、複数の永久磁石12と、環状に形成される第1の界磁巻線13と、回転軸40の周方向に並ぶ複数の極ティース11aとを備える。第2の固定子20は、ティース21aとティース21aに装着される電機子巻線22とを各々含み、回転軸40の周方向に並ぶ複数の電磁石24と、環状に形成される第2の界磁巻線23とを備える。そして、第1の界磁巻線13は、複数の永久磁石12および複数の極ティース11aと回転軸40との間に配置され、第2の界磁巻線23は、複数の電磁石24と回転軸40との間に配置される。第1の界磁巻線13および第2の界磁巻線23の各々への通電と複数の永久磁石12とによって複数の極ティース11aに複数の界磁極が形成される。これにより、ハイブリッド界磁式ダブルギャップ同期機1は、第1の界磁巻線13および第2の界磁巻線23の内周よりも回転軸40側の領域を磁路として有効に利用できる。そのため、界磁磁束に対して磁路の面積を広くとることができ、ハイブリッド界磁式ダブルギャップ同期機1の体積を有効に利用することができる。また、第1の界磁巻線13および第2の界磁巻線23の内周よりも回転軸40側の領域を磁路として有効に利用できるため、永久磁石12による界磁磁束と第1の界磁巻線13および第2の界磁巻線23による界磁磁束とが共に回転子30の各鉄片31に通過する面積が大きい。そのため、ハイブリッド界磁式ダブルギャップ同期機1は、第1の界磁巻線13および第2の界磁巻線23によって発生する界磁磁束を大きくでき、動作点に応じた界磁量の調整幅を大きくすることができる。
 また、複数の永久磁石12および複数の極ティース11aは回転軸40の径方向に分割されていない。そして、回転軸40は、複数の永久磁石12、第1の界磁巻線13、および第2の界磁巻線23によって形成される界磁磁束の磁路の一部を構成する。このように、ハイブリッド界磁式ダブルギャップ同期機1は、複数の永久磁石12および複数の極ティース11aは回転軸40の径方向に分割されていない。そのため、第1の固定子10は、径方向に分割された極ティース間に界磁巻線が配置される場合に比べて、回転子30との間のギャップ面に対して複数の永久磁石12および複数の極ティース11aの各々の面積を大きくすることができる。これにより、ハイブリッド界磁式ダブルギャップ同期機1は、第1の界磁巻線13および第2の界磁巻線23によって発生する界磁磁束を大きくでき、動作点に応じた界磁量の調整幅を大きくすることができる。
 また、複数の永久磁石12は、複数の極ティース11aのうち回転軸40の周方向に1つ置きに配置される複数の極ティース11aに配置され、回転子30と対向する。これにより、ハイブリッド界磁式ダブルギャップ同期機1は、複数の永久磁石12の磁束によって複数の極ティース11aに界磁極を形成することができる。
 また、複数の永久磁石12の極性は互いに同一であり、複数の極ティース11aのうち複数の永久磁石12が配置されない複数の極ティース11aには複数の永久磁石12の極性とは異なる極性の複数の界磁極が形成される。これにより、ハイブリッド界磁式ダブルギャップ同期機1は、界磁磁束を大きくすることができ、動作点に応じた界磁量の調整幅を大きくすることができる。
 また、回転子30は、回転軸40の周方向に並び複数の突極を形成する複数の鉄片31と、複数の鉄片31を保持する非磁性体の保持ディスク32とを備える。そして、回転軸40の延在方向である回転軸方向における保持ディスク32の厚みは、回転軸方向における複数の鉄片31の厚みより薄い。これにより、ハイブリッド界磁式ダブルギャップ同期機1は、例えば、保持ディスク32を金属で構成しても渦電流の発生を抑制することができる。
 また、複数の鉄片31の各々は、保持ディスク32から突出する部分の各辺が面取りされる。これにより、ハイブリッド界磁式ダブルギャップ同期機1は、鉄片31の角部にて発生する鉄損の発生を抑制することができる。
 また、保持ディスク32は、非磁性の金属によって形成され、保持ディスク32の外周縁から複数の鉄片31のうち対応する鉄片31にかけて各々形成された複数のスリット33を備える。これにより、ハイブリッド界磁式ダブルギャップ同期機1は、保持ディスク32において渦電流の発生を抑制することができる。
 また、複数の極ティース11aの各々は、複数の電磁石24のうち対応する電磁石24のティース21aと回転軸方向において対向する位置に配置される。これにより、ハイブリッド界磁式ダブルギャップ同期機1は、複数の極ティース11aの各々と複数の電磁石24のうち対応する電磁石24のティース21aとの間に回転軸方向に沿った磁路を形成することができる。
 また、複数の極ティース11aの各々は、複数の電磁石24のうち対応する電磁石24のティース21aと回転軸方向において対向する位置からずれた位置に配置される。これにより、ハイブリッド界磁式ダブルギャップ同期機1では、ギャップパーミアンスが変化するため、逆起電圧の歪みの改善またはコギングトルクを低減させることができ、平均トルクを向上させることができる。
 また、実施の形態1にかかる駆動システム100は、ハイブリッド界磁式ダブルギャップ同期機1と、ハイブリッド界磁式ダブルギャップ同期機1を駆動する駆動回路とを備える。駆動回路110は、回転子30の回転速度に応じて、第1の界磁巻線13および第2の界磁巻線23に流す界磁電流Ifの極性を変更する。界磁電流Ifは、直流電流の一例である。これにより、駆動システム100は、界磁量の調整幅を大きくすることができる。
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 ハイブリッド界磁式ダブルギャップ同期機、10 第1の固定子、11 第1の固定子コア、11a 極ティース、11b コアバック部、12 永久磁石、13 第1の界磁巻線、14 界磁極形成部、20 第2の固定子、21 第2の固定子コア、21a ティース、21b ヨーク部、22 電機子巻線、23 第2の界磁巻線、24 電磁石、30 回転子、31 鉄片、32 保持ディスク、33 スリット、40 回転軸、50 軸受、100 駆動システム、110 駆動回路、111 直流電源、112 インバータ回路、113 3相交流電源。

Claims (10)

  1.  第1の固定子と、
     前記第1の固定子と対向する第2の固定子と、
     前記第1の固定子と前記第2の固定子との間にギャップを介して配置され、回転軸を中心に回転する回転子と、を備え、
     前記第1の固定子は、
     複数の永久磁石と、
     環状に形成される第1の界磁巻線と、
     前記回転軸の周方向に並ぶ複数の極ティースと、を備え、
     前記第2の固定子は、
     ティースと前記ティースに装着される電機子巻線とを各々含み、前記回転軸の周方向に並ぶ複数の電磁石と、
     環状に形成される第2の界磁巻線と、を備え、
     前記第1の界磁巻線は、
     前記複数の永久磁石および前記複数の極ティースと前記回転軸との間に配置され、
     前記第2の界磁巻線は、
     前記複数の電磁石と前記回転軸との間に配置され、
     前記第1の界磁巻線および前記第2の界磁巻線の各々への通電と前記複数の永久磁石とによって前記複数の極ティースに複数の界磁極が形成される
     ことを特徴とするハイブリッド界磁式ダブルギャップ同期機。
  2.  前記複数の永久磁石および前記複数の極ティースは前記回転軸の径方向に分割されておらず、
     前記回転軸は、前記複数の永久磁石、前記第1の界磁巻線、および前記第2の界磁巻線によって形成される界磁磁束の磁路の一部を構成する
     ことを特徴とする請求項1に記載のハイブリッド界磁式ダブルギャップ同期機。
  3.  前記複数の永久磁石は、
     前記複数の極ティースのうち前記回転軸の周方向に1つ置きに配置される複数の極ティースに配置され、前記回転子と対向する
     ことを特徴とする請求項1または2に記載のハイブリッド界磁式ダブルギャップ同期機。
  4.  前記複数の永久磁石の極性は互いに同一であり、前記複数の極ティースのうち前記複数の永久磁石が配置されない複数の極ティースには前記複数の永久磁石の極性とは異なる極性の複数の界磁極が形成される
     ことを特徴とする請求項1から3のいずれか1つに記載のハイブリッド界磁式ダブルギャップ同期機。
  5.  前記回転子は、
     前記回転軸の周方向に並び複数の突極を形成する複数の鉄片と、
     前記複数の鉄片を保持する非磁性体の保持ディスクと、を備え、
     前記回転軸の延在方向における前記保持ディスクの厚みは、前記回転軸の延在方向における前記複数の鉄片の厚みより薄い
     ことを特徴とする請求項1から4のいずれか1つに記載のハイブリッド界磁式ダブルギャップ同期機。
  6.  前記回転子は、
     前記回転軸の周方向に並び複数の突極を形成する複数の鉄片と、
     前記複数の鉄片を保持する非磁性体の保持ディスクと、を備え、
     前記複数の鉄片の各々は、
     前記保持ディスクから突出する部分の各辺が面取りされる
     ことを特徴とする請求項1から4のいずれか1つに記載のハイブリッド界磁式ダブルギャップ同期機。
  7.  前記回転子は、
     前記回転軸の周方向に並び複数の突極を形成する複数の鉄片と、
     前記複数の鉄片を保持する非磁性体の保持ディスクと、を備え、
     前記保持ディスクは、
     非磁性の金属によって形成され、当該保持ディスクの外周縁から前記複数の鉄片のうち対応する鉄片にかけて各々形成された複数のスリットを備える
     ことを特徴とする請求項1から4のいずれか1つに記載のハイブリッド界磁式ダブルギャップ同期機。
  8.  前記複数の極ティースの各々は、
     前記複数の電磁石のうち対応する電磁石のティースと前記回転軸の延在方向において対向する位置に配置される
     ことを特徴とする請求項1から7のいずれか1つに記載のハイブリッド界磁式ダブルギャップ同期機。
  9.  前記複数の極ティースの各々は、
     前記複数の電磁石のうち対応する電磁石のティースと前記回転軸の延在方向において対向する位置からずれた位置に配置される
     ことを特徴とする請求項1から7のいずれか1つに記載のハイブリッド界磁式ダブルギャップ同期機。
  10.  請求項1から9のいずれか1つに記載のハイブリッド界磁式ダブルギャップ同期機と、
     前記ハイブリッド界磁式ダブルギャップ同期機を駆動する駆動回路と、を備え、
     前記駆動回路は、
     前記回転子の回転速度に応じて、前記第1の界磁巻線および前記第2の界磁巻線に流す直流電流の極性を変更する
     ことを特徴とする駆動システム。
PCT/JP2019/051612 2019-12-27 2019-12-27 ハイブリッド界磁式ダブルギャップ同期機および駆動システム WO2021131071A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/051612 WO2021131071A1 (ja) 2019-12-27 2019-12-27 ハイブリッド界磁式ダブルギャップ同期機および駆動システム
JP2020534993A JP6789451B1 (ja) 2019-12-27 2019-12-27 ハイブリッド界磁式ダブルギャップ同期機および駆動システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/051612 WO2021131071A1 (ja) 2019-12-27 2019-12-27 ハイブリッド界磁式ダブルギャップ同期機および駆動システム

Publications (1)

Publication Number Publication Date
WO2021131071A1 true WO2021131071A1 (ja) 2021-07-01

Family

ID=73452925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051612 WO2021131071A1 (ja) 2019-12-27 2019-12-27 ハイブリッド界磁式ダブルギャップ同期機および駆動システム

Country Status (2)

Country Link
JP (1) JP6789451B1 (ja)
WO (1) WO2021131071A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114400851A (zh) * 2021-12-30 2022-04-26 西安理工大学 小型水力发电定子分层轴向磁场永磁可控磁通发电机
CN114614585A (zh) * 2022-03-24 2022-06-10 浙江大学 一种直线-旋转混合励磁低速发电机

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112491231B (zh) * 2020-12-31 2022-08-02 山东理工大学 一种混合励磁凸极分块转子开关磁通电机
IT202100016361A1 (it) 2021-06-22 2022-12-22 Alberto Roncan Apparecchio di generazione di corrente elettrica a rendimento migliorato

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219905A (ja) * 1996-02-15 1997-08-19 Meidensha Corp ハイブリッド方式駆動装置
JP2012182945A (ja) * 2011-03-02 2012-09-20 Toyota Industries Corp 回転電機
JP2018033250A (ja) * 2016-08-25 2018-03-01 株式会社ソシオリカ 同期電動機
JP2019149891A (ja) * 2018-02-27 2019-09-05 三菱電機株式会社 ハイブリッド界磁式ダブルギャップ同期機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219905A (ja) * 1996-02-15 1997-08-19 Meidensha Corp ハイブリッド方式駆動装置
JP2012182945A (ja) * 2011-03-02 2012-09-20 Toyota Industries Corp 回転電機
JP2018033250A (ja) * 2016-08-25 2018-03-01 株式会社ソシオリカ 同期電動機
JP2019149891A (ja) * 2018-02-27 2019-09-05 三菱電機株式会社 ハイブリッド界磁式ダブルギャップ同期機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114400851A (zh) * 2021-12-30 2022-04-26 西安理工大学 小型水力发电定子分层轴向磁场永磁可控磁通发电机
CN114400851B (zh) * 2021-12-30 2023-08-25 西安理工大学 小型水力发电定子分层轴向磁场永磁可控磁通发电机
CN114614585A (zh) * 2022-03-24 2022-06-10 浙江大学 一种直线-旋转混合励磁低速发电机
CN114614585B (zh) * 2022-03-24 2023-11-21 浙江大学 一种直线-旋转混合励磁低速发电机

Also Published As

Publication number Publication date
JP6789451B1 (ja) 2020-11-25
JPWO2021131071A1 (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
JP6789451B1 (ja) ハイブリッド界磁式ダブルギャップ同期機および駆動システム
JP2008206308A (ja) 永久磁石式回転電機
JP7076188B2 (ja) 可変磁力モータ
JP2014064413A (ja) ロータおよび回転電機
JP2006304546A (ja) 永久磁石式リラクタンス型回転電機
CN107078617B (zh) 双定子型旋转器
JP5609844B2 (ja) 電動機
US11894726B2 (en) Rotating electric machine
JP7047337B2 (ja) 永久磁石式回転電機
JP6592525B2 (ja) 磁石式回転子、磁石式回転子を備える回転電機及び回転電機を備える電気自動車
JP6760014B2 (ja) 回転電機
JP6083640B2 (ja) 永久磁石埋込型モータ
JP2012249347A (ja) アキシャルギャップ回転電機のロータ
JP4080273B2 (ja) 永久磁石埋め込み型電動機
JP2010110166A (ja) アキシャルギャップ型回転電機
JP2009027849A (ja) 永久磁石式回転電機
JP6408766B2 (ja) アキシャル立体ギャップ式回転電機
JP6895909B2 (ja) ハイブリッド界磁式ダブルギャップ同期機
JP2009065803A (ja) 磁石同期機
JP5041415B2 (ja) アキシャルギャップ型モータ
WO2018008475A1 (ja) モータ
JP4960749B2 (ja) アキシャルギャップ型モータ
JP7193422B2 (ja) 回転電機及び回転電機の製造方法
JP6201405B2 (ja) 回転電機
JP2002191157A (ja) 永久磁石併用同期回転機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020534993

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957697

Country of ref document: EP

Kind code of ref document: A1