WO2021129719A1 - 一种多级孔zsm-5分子筛、其制备方法、由其制备的hzsm-5分子筛及分子筛的应用 - Google Patents

一种多级孔zsm-5分子筛、其制备方法、由其制备的hzsm-5分子筛及分子筛的应用 Download PDF

Info

Publication number
WO2021129719A1
WO2021129719A1 PCT/CN2020/138907 CN2020138907W WO2021129719A1 WO 2021129719 A1 WO2021129719 A1 WO 2021129719A1 CN 2020138907 W CN2020138907 W CN 2020138907W WO 2021129719 A1 WO2021129719 A1 WO 2021129719A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
porous
hzsm
zsm
sound
Prior art date
Application number
PCT/CN2020/138907
Other languages
English (en)
French (fr)
Inventor
张磊
郭明波
马院红
龚畅
Original Assignee
镇江贝斯特新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 镇江贝斯特新材料有限公司 filed Critical 镇江贝斯特新材料有限公司
Priority to EP20907999.5A priority Critical patent/EP4082969A1/en
Priority to US17/757,838 priority patent/US20230045179A1/en
Priority to KR1020227020245A priority patent/KR20220121800A/ko
Publication of WO2021129719A1 publication Critical patent/WO2021129719A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • C01B39/40Type ZSM-5 using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/165Particles in a matrix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2869Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself
    • H04R1/2876Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself by means of damping material, e.g. as cladding
    • H04R1/288Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself by means of damping material, e.g. as cladding for loudspeaker transducers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention belongs to the technical field of molecular sieves, and relates to a multi-porous ZSM-5 molecular sieve and a preparation method and application thereof.
  • the sound quality of the current speaker is mainly related to the design and manufacturing of the speaker, especially the back cavity design of the current speaker. Under normal circumstances, the smaller the back cavity, the worse the low frequency band response, and the worse the acoustic performance such as sound quality. Therefore, the premise of improving the sound quality is to increase the volume of the back cavity.
  • the prior art mainly fills the rear cavity with sound-absorbing materials such as activated carbon, silica, molecular sieve, and high phosphorous soil to increase the virtual volume of the rear cavity, improve the gas acoustic compliance of the rear cavity, and thereby improve the low frequency response.
  • Silica molecular sieve has the best sound improvement effect, as described in the EP2495991 patent.
  • the currently used molecular sieve sound-absorbing materials are mainly of microporous structure, but due to the existence of a large number of various volatile organic compounds (VOCs) in the environment during use, these organic compounds will block the microporous pores of the molecular sieve after being adsorbed by the sound-absorbing particles. Decrease or invalidate the acoustic performance of sound-absorbing particles.
  • VOCs volatile organic compounds
  • the first object of the present invention is to provide a multi-porous ZSM-5 molecular sieve;
  • the second object of the present invention is to provide a method for preparing the multi-porous ZSM-5 molecular sieve;
  • the third objective is to provide a multi-porous HZSM-5 molecular sieve;
  • the fourth object of the present invention is to provide the application of the multi-porous ZSM-5 molecular sieve or the multi-porous HZSM-5 molecular sieve in the preparation of sound-absorbing materials;
  • the fifth of the present invention The purpose is to provide a multi-porous molecular sieve sound-absorbing material;
  • the sixth object of the present invention is to provide a loudspeaker containing the multi-porous molecular sieve sound-absorbing material.
  • the multi-porous ZSM-5 molecular sieve of the present invention can effectively prevent VOCs from clogging the pore channels of the molecular sieve, and significantly improve the long-term stability
  • the present invention provides a hierarchical pore ZSM-5 molecular sieve, the hierarchical pore ZSM-5 molecular sieve includes micropores and mesopores;
  • the pore size of the micropores is 0.5 to 1.8 nm; the pore size of the mesopores is 4 to 30 nm; the particle size of the hierarchical pore ZSM-5 molecular sieve is 0.3 to 4 ⁇ m;
  • the total pore volume of the hierarchical pore ZSM-5 molecular sieve is 0.23-0.26 ml/g, and the micropore pore volume is 0.12-0.16 ml/g.
  • the pore size of the micropores is 0.6 to 1.5 nm; the pore size of the mesopores is 10-28 nm; the particle size of the multi-porous ZSM-5 molecular sieve is 0.7 ⁇ 3 ⁇ m.
  • the pore diameter of the micropores is 0.7-1.4 nm; the pore diameter of the mesopores is 15-25 nm; the particle size of the multi-porous ZSM-5 molecular sieve is 1 ⁇ 2 ⁇ m.
  • the present invention also provides a preparation method of the above-mentioned multi-porous ZSM-5 molecular sieve, which includes the following steps:
  • Hemicellulose is added to the gel, mixed evenly, and then heated and aged, then transferred to the reactor for crystallization treatment. After the end, the product is washed, dried, roasted, and the organic template and hemicellulose are removed to obtain The multi-porous ZSM-5 molecular sieve.
  • the silicon source includes one or a combination of one or more of silica gel, silicic acid, ethyl orthosilicate, sodium silicate, and sodium metasilicate.
  • the silicon source includes ethyl orthosilicate and/or silica gel.
  • the aluminum source includes one or a combination of aluminum nitrate, aluminum sulfate, aluminum chloride, and aluminum isopropoxide.
  • the aluminum source includes aluminum isopropoxide and/or aluminum nitrate.
  • the organic template includes tetrapropylammonium hydroxide, tetrapropylammonium bromide, tetrapropylammonium chloride, tetramethylammonium hydroxide and tetraethylammonium hydroxide.
  • tetrapropylammonium hydroxide tetrapropylammonium bromide
  • tetrapropylammonium chloride tetramethylammonium hydroxide
  • tetraethylammonium hydroxide tetraethylammonium hydroxide.
  • the organic template includes tetrapropylammonium hydroxide and/or tetrapropylammonium bromide.
  • the inorganic base includes one or a combination of sodium hydroxide, potassium hydroxide and ammonia.
  • the inorganic base is sodium hydroxide.
  • the molar ratio of the silicon source, the aluminum source, the organic template, the inorganic base and the water is 100: (0.15-1): (7-20): (5 ⁇ 10): (500 ⁇ 1000).
  • the silicon source is based on the molar amount of silica
  • the aluminum source, the organic template, the inorganic base and the water are based on the molar amount of the raw material itself.
  • the mass ratio of the gel to the hemicellulose is (50-100): 1.5.
  • the temperature for heating aging is 60-98° C., and the aging time is 2 to 4 hours.
  • the temperature for performing the crystallization treatment is 120 to 200° C., and the time for the crystallization treatment is 36 to 72 hours.
  • the temperature for performing the calcination treatment is 500 to 600° C.
  • the calcination time is 4 to 12 hours.
  • the present invention also provides a multi-porous HZSM-5 molecular sieve.
  • the multi-porous HZSM-5 molecular sieve uses the above-mentioned multi-porous ZSM-5 molecular sieve for ion exchange in an NH 4 Cl solution, and the product is dried , Obtained after roasting.
  • the concentration of the NH 4 Cl solution is 1-2 mol/L.
  • the number of repetitions of ion exchange is 1 to 3 times, preferably 3 times; each time is 3 to 6 hours, preferably 6 hours.
  • multi-stage hole HZSM-5 zeolite preferably, per 100ml NH 4 Cl solution corresponding to 5 ⁇ 10g multi-stage hole ZSM-5 zeolite, preferably per 100ml NH 4 Cl solution corresponding to the multi-stage 10g of Porous ZSM-5 molecular sieve.
  • the temperature for ion exchange is 60-100°C, preferably 90°C.
  • the sample is calcined at a temperature of 500-600°C after ion exchange, and the calcining time is 3-6 hours.
  • the present invention also provides the application of the above-mentioned multi-porous ZSM-5 molecular sieve or the above-mentioned multi-porous HZSM-5 molecular sieve in the preparation of sound-absorbing materials.
  • the present invention also provides a multi-porous molecular sieve sound-absorbing material, which is prepared by uniformly mixing the above-mentioned multi-porous ZSM-5 molecular sieve or multi-porous HZSM-5 molecular sieve with solvents, adhesives, and auxiliaries The suspension is then granulated and dried into spherical particles to obtain the multi-porous molecular sieve sound-absorbing material.
  • the adhesive includes an inorganic adhesive and/or an organic polymer adhesive.
  • the particle size of the multi-porous molecular sieve sound-absorbing material is 50-600 ⁇ m, preferably 200-500 ⁇ m, more preferably 250-480 ⁇ m.
  • the present invention also provides a speaker, which includes a rear cavity loaded with the above-mentioned multi-porous molecular sieve sound-absorbing material.
  • hemicellulose is used as a hard template to prepare hierarchical pore ZSM-5 molecular sieve.
  • the synthesized molecular sieve has both ordered micropores and mesopores, forming more pore structures of different sizes.
  • the molecular sieve After the molecular sieve is prepared into sound-absorbing particles, it can more effectively improve the absorption and desorption performance of air molecules, improve the low-frequency response of the speaker, and improve its acoustic performance.
  • the pore structure of different sizes can be more efficient and selective in the adsorption environment
  • the volatile organic compounds (VOCs) can improve the acoustic stability of sound-absorbing particles in the speaker.
  • Figure 1 is the XRD pattern of the hierarchical pore HZSM-5 molecular sieve synthesized in Example 1 of the present invention.
  • Figure 2 is an SEM image of the hierarchical pore HZSM-5 molecular sieve synthesized in Example 1 of the present invention.
  • Fig. 3 is an SEM image of the sound-absorbing particles prepared in Example 1 of the present invention.
  • This embodiment provides a multi-porous ZSM-5 molecular sieve and a multi-porous HZSM-5 molecular sieve and a preparation method thereof.
  • the preparation method of the multi-porous ZSM-5 molecular sieve and the multi-porous HZSM-5 molecular sieve includes the following steps:
  • This embodiment provides a multi-porous ZSM-5 molecular sieve and a multi-porous HZSM-5 molecular sieve and a preparation method thereof.
  • the preparation method of the multi-porous ZSM-5 molecular sieve and the multi-porous HZSM-5 molecular sieve includes the following steps:
  • This embodiment provides a multi-porous ZSM-5 molecular sieve and a multi-porous HZSM-5 molecular sieve and a preparation method thereof.
  • the preparation method of the multi-porous ZSM-5 molecular sieve and the multi-porous HZSM-5 molecular sieve includes the following steps:
  • This embodiment provides a multi-porous ZSM-5 molecular sieve and a multi-porous HZSM-5 molecular sieve and a preparation method thereof.
  • the preparation method of the multi-porous ZSM-5 molecular sieve and the multi-porous HZSM-5 molecular sieve includes the following steps:
  • This embodiment provides a multi-porous ZSM-5 molecular sieve and a multi-porous HZSM-5 molecular sieve and a preparation method thereof.
  • the preparation method of the multi-porous ZSM-5 molecular sieve and the multi-porous HZSM-5 molecular sieve includes the following steps:
  • This comparative example provides a ZSM-5 molecular sieve and HZSM-5 molecular sieve and a preparation method thereof.
  • the preparation method of the ZSM-5 molecular sieve and HZSM-5 molecular sieve includes the following steps:
  • This comparative example provides a ZSM-5 molecular sieve and HZSM-5 molecular sieve and a preparation method thereof.
  • the preparation method of the ZSM-5 molecular sieve and HZSM-5 molecular sieve includes the following steps:
  • the initial ⁇ F0 of the sound-absorbing particles will increase with the decrease of the particle size.
  • the smaller the particle size the increase in static electricity on the particle surface, so The performance of particles in the range of 250 ⁇ 480 ⁇ m will be more suitable; as the particle size of the HZSM-5 molecular sieve decreases, the initial ⁇ F0 will increase to a certain extent, but the performance of VOCs will become worse.
  • the average particle size of the HZSM-5 molecular sieve When the diameter is less than 0.4 ⁇ m, because the particle size of HZSM-5 molecular sieve is small and the bulk density decreases, the bulk density of the resulting sound-absorbing particles will decrease.
  • the initial ⁇ F0 of sound-absorbing particles will decrease, and the performance of VOCs will deteriorate.
  • the particle size is greater than 2 ⁇ m, the initial ⁇ F0 It will deteriorate accordingly.
  • the particle size of the HZSM-5 molecular sieve is larger than 4 ⁇ m, the performance of VOCs will also decrease ( ⁇ F0 is the difference of F0 measured by the impedance meter, and the VOCs test is that the sample is subjected to a VOC adsorption test at 120°C for 4h in a 250mL enclosed space. ).
  • This embodiment provides a multi-porous ZSM-5 molecular sieve and a multi-porous HZSM-5 molecular sieve and a preparation method thereof.
  • the preparation method of the multi-porous ZSM-5 molecular sieve and the multi-porous HZSM-5 molecular sieve includes the following steps:
  • This embodiment provides a multi-porous ZSM-5 molecular sieve and a multi-porous HZSM-5 molecular sieve and a preparation method thereof.
  • the preparation method of the multi-porous ZSM-5 molecular sieve and the multi-porous HZSM-5 molecular sieve includes the following steps:
  • This embodiment provides a multi-porous ZSM-5 molecular sieve and a multi-porous HZSM-5 molecular sieve and a preparation method thereof.
  • the preparation method of the multi-porous ZSM-5 molecular sieve and the multi-porous HZSM-5 molecular sieve includes the following steps:
  • This embodiment provides a multi-porous ZSM-5 molecular sieve and a multi-porous HZSM-5 molecular sieve and a preparation method thereof.
  • the preparation method of the multi-porous ZSM-5 molecular sieve and the multi-porous HZSM-5 molecular sieve includes the following steps:
  • silica gel (30% content), 10.15g of tetrapropylammonium hydroxide, 0.5g of aluminum nitrate nonahydrate were added to 55g of ionized water in order, stirring continuously at room temperature, adding 1.2g of NaOH to adjust the pH to 9. -11, make a uniform gel;
  • This embodiment provides a multi-porous ZSM-5 molecular sieve and a multi-porous HZSM-5 molecular sieve and a preparation method thereof.
  • the preparation method of the multi-porous ZSM-5 molecular sieve and the multi-porous HZSM-5 molecular sieve includes the following steps:
  • This embodiment provides a multi-porous ZSM-5 molecular sieve and a multi-porous HZSM-5 molecular sieve and a preparation method thereof.
  • the preparation method of the multi-porous ZSM-5 molecular sieve and the multi-porous HZSM-5 molecular sieve includes the following steps:
  • silica gel (30% content), 10.15g of tetrapropylammonium hydroxide, 0.5g of aluminum nitrate nonahydrate were added to 55g of ionized water in order, stirring continuously at room temperature, adding 1.2g of NaOH to adjust the pH to 9. -11, make a uniform gel;
  • This comparative example provides a multi-porous ZSM-5 molecular sieve and a multi-porous HZSM-5 molecular sieve and a preparation method thereof, and no hemicellulose is added during the preparation process.
  • the multi-porous ZSM-5 molecular sieve and the multi-porous HZSM-5 molecular sieve and the multi-porous HZSM-5 includes the following steps:
  • silica gel (30% content), 10.15g of tetrapropylammonium hydroxide, 0.5g of aluminum nitrate nonahydrate were added to 55g of ionized water in order, stirring continuously at room temperature, adding 1.2g of NaOH to adjust the pH to 9. -11, make a uniform gel;
  • the temperature is raised to 95°C and aged for 3 hours. After the aging is completed, it is transferred to a polytetrafluoroethylene lining for high-temperature crystallization.
  • the crystallization temperature is 180°C and the crystallization time is 72 hours;
  • the micropores of the molecular sieve are mainly determined by the template, the micropores of all the different embodiments
  • the average pore size is similar, mainly due to the amount of template agent, aging temperature, and hemicellulose content that will change the ratio of micropores and mesopores, thereby affecting the size of the average pore diameter.
  • the synthetic HZSM-5 molecular sieve is reduced in micropores and increased in mesopores, which will improve the VOCs resistance of sound-absorbing particles to a certain extent; by preparing multi-level The porous HZSM-5 molecular sieve significantly improves the VOCs resistance stability of the sound-absorbing particles, and the sound-absorbing particles can maintain a good level of acoustic low-frequency response.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Otolaryngology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

提供一种多级孔ZSM-5分子筛及其制备方法,该分子筛包括微孔和介孔,其中微孔的孔径为0.5~1.8nm,介孔的孔径为4~30nm,粒径为0.3~4μm。该分子筛是采用半纤维素作为硬模板剂制备获得的。还提供一种多级孔HZSM-5分子筛,其是用氯化铵溶液对该ZSM-5分子筛进行离子交换后获得的。并提供ZSM-5和HZSM-5分子筛在制备吸音材料中的应用,由分子筛制得的吸音材料和装载有该吸音材料的扬声器。将分子筛制备成吸音颗粒后,可以更有效提高空气分子的吸脱附性能,改善扬声器的低频响应,提高其声学性能,提高吸音颗粒在扬声器中的声学改善稳定性。

Description

[根据细则37.2由ISA制定的发明名称] 一种多级孔ZSM-5分子筛、其制备方法、由其制备的HZSM-5分子筛及分子筛的应用 技术领域
本发明属于分子筛技术领域,涉及一种多级孔ZSM-5分子筛及其制备方法和应用。
背景技术
随着科技的发展和人们生活水平的提高,人们对电子消费品的要求越来越高,特别是手机领域,随着手机的厚度越来越薄,屏幕、相机等其他组件的要求越来越高,能给予扬声器的空间越来越小,却又要求在体积尽可能小的同时提供同样优秀的声学性能。目前扬声器的音质主要与扬声器的设计和制造等过程有关,尤其是目前扬声器的后腔设计有关。通常情况下,后腔越小,低频频段响应越差,音质等声学表现越差,所以提高音质的前提就是提高后腔体积。现有技术主要是通过向后腔中填充活性炭、二氧化硅、分子筛、高磷土等吸声材料来提高后腔的虚拟体积,提高后腔的气体声顺性,从而改善低频响应,目前高硅分子筛对声音的改善效果最好,如同EP2495991专利里面介绍的。
目前使用的分子筛吸音材料主要是微孔结构,但是由于在使用过程中,环境中存在大量各类易挥发性有机化合物(VOCs),这些有机物被吸音颗粒吸附后会堵塞分子筛的微孔孔道,会使吸音颗粒声学性能降低或失效。
基于这类问题,有必要开发一类新的分子筛及吸音材料,有效避免或降低VOCs对材料的影响,提高声学稳定性。
发明内容
基于现有技术存在的问题,本发明的第一目的在于提供一种多级孔ZSM-5分子筛;本发明的第二目的在于提供该多级孔ZSM-5分子筛的制备方法;本发明的第三目的在于提供一种多级孔HZSM-5分子筛;本发明的第四目的在于提供多级孔ZSM-5分子筛或多级孔HZSM-5分子筛在制备吸音材料中的应用;本发明的第五目的在于提供一种多级孔分子筛吸音材料;本发明的第六目的在于提供一种包含有多级孔分子筛吸音材料的扬声器。本发明的多级孔ZSM-5分子筛能够有效的防止VOCs气体堵塞分子筛孔道,显著提高吸音材料在扬声器使用中的长期稳定性。
本发明的目的通过以下技术手段得以实现:
一方面,本发明提供一种多级孔ZSM-5分子筛,该多级孔ZSM-5分子筛包括微孔 和介孔;
所述微孔的孔径为0.5~1.8nm;所述介孔的孔径为4~30nm;该多级孔ZSM-5分子筛的粒径为0.3~4μm;
其中,所述多级孔ZSM-5分子筛的总孔容为0.23~0.26ml/g,其中微孔孔容为0.12~0.16ml/g。
上述的多级孔ZSM-5分子筛中,优选地,所述微孔的孔径为0.6~1.5nm;所述介孔的孔径为10-28nm;该多级孔ZSM-5分子筛的粒径为0.7~3μm。
上述的多级孔ZSM-5分子筛中,优选地,所述微孔的孔径为0.7~1.4nm;所述介孔的孔径为15~25nm;该多级孔ZSM-5分子筛的粒径为1~2μm。
另一方面,本发明还提供上述多级孔ZSM-5分子筛的制备方法,其包括以下步骤:
将硅源、铝源和有机模板剂溶于水中,通过无机碱调节pH值为8-12,搅拌均匀形成凝胶;
在凝胶中加入半纤维素,混合均匀后进行升温陈化,然后转入反应釜中进行晶化处理,结束后,对产物进行洗涤、干燥、焙烧,去除有机模板剂及半纤维素,得到所述多级孔ZSM-5分子筛。
上述的方法中,优选地,所述硅源包括硅胶、硅酸、正硅酸乙酯、硅酸钠和偏硅酸钠中的一种或多种的组合。
上述的方法中,优选地,所述硅源包括正硅酸乙酯和/或硅胶。
上述的方法中,优选地,所述铝源包括硝酸铝、硫酸铝、氯化铝和异丙醇铝中的一种或多种的组合。
上述的方法中,优选地,所述铝源包括异丙醇铝和/或硝酸铝。
上述的方法中,优选地,所述有机模板剂包括四丙基氢氧化铵、四丙基溴化铵、四丙基氯化铵、四甲基氢氧化铵和四乙基氢氧化铵中的一种或多种的组合。
上述的方法中,优选地,所述有机模板剂包括四丙基氢氧化铵和/或四丙基溴化铵。
上述的方法中,优选地,所述无机碱包括氢氧化钠、氢氧化钾和氨水中的一种或多种的组合。
上述的方法中,优选地,所述无机碱为氢氧化钠。
上述的方法中,优选地,所述硅源、所述铝源、所述有机模板剂、所述无机碱和所述水的摩尔比为100:(0.15~1):(7~20):(5~10):(500~1000)。
所述硅源以二氧化硅摩尔量计,所述铝源、所述有机模板剂、所述无机碱和所述水 以原料本身摩尔量计。
上述的方法中,优选地,所述凝胶与所述半纤维素的质量比为(50~100):1.5。
上述的方法中,优选地,进行升温陈化的温度为60~98℃,陈化的时间为2~4h。
上述的方法中,优选地,进行晶化处理的温度为120~200℃,晶化处理的时间为36~72h。
上述的方法中,优选地,进行焙烧处理的温度为500~600℃,焙烧时间为4~12h。
再一方面,本发明还提供一种多级孔HZSM-5分子筛,该多级孔HZSM-5分子筛是将上述的多级孔ZSM-5分子筛利用NH 4Cl溶液中进行离子交换,产物经干燥、焙烧后获得的。
上述的多级孔HZSM-5分子筛中,优选地,所述NH 4Cl溶液浓度为1-2mol/L。
上述的多级孔HZSM-5分子筛中,优选地,进行离子交换的重复次数为1~3次,优选为3次;每次3~6h,优选为6h。
上述的多级孔HZSM-5分子筛中,优选地,每100ml的NH 4Cl溶液对应于5~10g的多级孔ZSM-5分子筛,优选为每100ml的NH 4Cl溶液对应于10g的多级孔ZSM-5分子筛。
上述的多级孔HZSM-5分子筛中,优选地,进行离子交换的温度为60-100℃,优选为90℃。
上述的多级孔HZSM-5分子筛中,优选地,离子交换后样品焙烧的温度为500-600℃,焙烧时间为3-6h。
再一方面,本发明还提供上述多级孔ZSM-5分子筛或上述多级孔HZSM-5分子筛在制备吸音材料中的应用。
再一方面,本发明还提供一种多级孔分子筛吸音材料,其是将上述多级孔ZSM-5分子筛或多级孔HZSM-5分子筛与溶剂、胶黏剂、助剂混合均匀,制成悬浮液,然后造粒、干燥成球形颗粒,从而获得该多级孔分子筛吸音材料。
上述的多级孔分子筛吸音材料中,优选地,所述胶黏剂包括无机胶黏剂和/或有机高分子胶黏剂。
上述的多级孔分子筛吸音材料中,优选地,所述多级孔分子筛吸音材料的粒径为50~600μm,优选为200~500μm,更优选为250~480μm。
再一方面,本发明还提供一种扬声器,其包括装载有上述多级孔分子筛吸音材料的后腔。
本发明采用半纤维素作为硬模板剂制备多级孔ZSM-5分子筛,在没有引入复杂工艺的情况下,合成出的分子筛同时存在有序微孔和介孔,形成更多不同尺寸的孔道结构,在分子筛被制备成吸音颗粒后,可以更有效提高空气分子的吸脱附性能,改善扬声器的低频响应,提高其声学性能,同时不同尺寸的孔道结构,可以更加高效高选择性的吸附环境中的挥发性有机化合物(VOCs),提高吸音颗粒在扬声器中的声学改善稳定性。
附图说明:
图1为本发明实施例1合成的多级孔HZSM-5分子筛的XRD图。
图2为本发明实施例1合成的多级孔HZSM-5分子筛的SEM图。
图3为本发明实施例1制备的吸音颗粒的SEM图。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例1
本实施例提供一种多级孔ZSM-5分子筛及多级孔HZSM-5分子筛及其制备方法,该多级孔ZSM-5分子筛及多级孔HZSM-5分子筛的制备方法包括如下步骤:
在搅拌条件下,将90g硅胶(30%含量)、8.35g四丙基氢氧化铵、0.5g九水硝酸铝按照顺序加入到55g去离子水中,在常温下连续搅拌,加入1.2g的NaOH调整pH到9~11,配成均匀凝胶;
然后在凝胶中加入2.5g半纤维素,搅拌均匀后升温到80℃陈化3h,陈化结束后转入聚四氟乙烯内衬中进行高温晶化,晶化温度为180℃,晶化时间为72h;
晶化结束后,过滤、洗涤、干燥、550℃焙烧6h;得到钠型多级孔ZSM-5分子筛;然后使用2mol/L的NH 4Cl溶液,按照100ml溶液10g分子筛的配比,90℃下离子交换6h,反复三次后进行过滤、洗涤、干燥、550℃焙烧4h得到多级孔HZSM-5分子筛;其XRD晶型图如图1所示,SEM图如图2所示。
实施例2
本实施例提供一种多级孔ZSM-5分子筛及多级孔HZSM-5分子筛及其制备方法,该多级孔ZSM-5分子筛及多级孔HZSM-5分子筛的制备方法包括如下步骤:
在搅拌条件下,将72g硅胶(30%含量)、8.35g四丙基氢氧化铵、0.5g九水硝酸铝按照顺序加入到55g去离子水中,在常温下连续搅拌,加入1.2g的NaOH调整pH到9~11,配成均匀凝胶;
然后在凝胶中加入2.5g半纤维素,搅拌均匀后升温到80℃陈化3h,陈化结束后转入聚四氟乙烯内衬中进行高温晶化,晶化温度为180℃,晶化时间为72h;
晶化结束后,过滤、洗涤、干燥、550℃焙烧6h;得到钠型多级孔ZSM-5分子筛;然后使用2mol/L的NH 4Cl溶液,按照100ml溶液10g分子筛的配比,90℃下离子交换6h,反复三次后进行过滤、洗涤、干燥、550℃焙烧4h得到多级孔HZSM-5分子筛。
实施例3
本实施例提供一种多级孔ZSM-5分子筛及多级孔HZSM-5分子筛及其制备方法,该多级孔ZSM-5分子筛及多级孔HZSM-5分子筛的制备方法包括如下步骤:
在搅拌条件下,将72g硅胶(30%含量)、8.35g四丙基氢氧化铵、0.5g九水硝酸铝按照顺序加入到55g去离子水中,在常温下连续搅拌,加入1.2g的NaOH调整pH到9~11,配成均匀凝胶;
然后在凝胶中加入2.5g半纤维素,搅拌均匀后升温到80℃陈化3h,陈化结束后转入聚四氟乙烯内衬中进行高温晶化,晶化温度为150℃,晶化时间为72h;
晶化结束后,过滤、洗涤、干燥、550℃焙烧6h;得到钠型多级孔ZSM-5分子筛;然后使用2mol/L的NH 4Cl溶液,按照100ml溶液10g分子筛的配比,90℃下离子交换6h,反复三次后进行过滤、洗涤、干燥、550℃焙烧4h得到多级孔HZSM-5分子筛。
实施例4
本实施例提供一种多级孔ZSM-5分子筛及多级孔HZSM-5分子筛及其制备方法,该多级孔ZSM-5分子筛及多级孔HZSM-5分子筛的制备方法包括如下步骤:
在搅拌条件下,将105g硅胶(30%含量)、8.35g四丙基氢氧化铵、0.5g九水硝酸铝按照顺序加入到55g去离子水中,在常温下连续搅拌,加入1.2g的NaOH调整pH到9~11,配成均匀凝胶;
然后在凝胶中加入2.5g半纤维素,搅拌均匀后升温到80℃陈化3h,陈化结束后转入聚四氟乙烯内衬中进行高温晶化,晶化温度为150℃,晶化时间为72h;
晶化结束后,过滤、洗涤、干燥、焙烧550℃焙烧6h;然后得到钠型多级孔ZSM-5分子筛;然后使用2mol/L的NH 4Cl溶液,按照100ml溶液10g分子筛的配比,90℃下 离子交换6h,反复三次后进行过滤、洗涤、干燥、550℃焙烧4h得到多级孔HZSM-5分子筛。
实施例5
本实施例提供一种多级孔ZSM-5分子筛及多级孔HZSM-5分子筛及其制备方法,该多级孔ZSM-5分子筛及多级孔HZSM-5分子筛的制备方法包括如下步骤:
在搅拌条件下,将105g硅胶(30%含量)、8.35g四丙基氢氧化铵、0.5g九水硝酸铝按照顺序加入到55g去离子水中,在常温下连续搅拌,加入1.2g的NaOH调整pH到9~11,配成均匀凝胶;
然后在凝胶中加入2.5g半纤维素,搅拌均匀后升温到80℃陈化3h,陈化结束后转入聚四氟乙烯内衬中进行高温晶化,晶化温度为180℃,晶化时间为72h;
晶化结束后,过滤、洗涤、干燥、550℃焙烧6h;得到钠型多级孔ZSM-5分子筛;然后使用2mol/L的NH 4Cl溶液,按照100ml溶液10g分子筛的配比,90℃下离子交换6h,反复三次后进行过滤、洗涤、干燥、550℃焙烧4h得到多级孔HZSM-5分子筛。
对比例1
本对比例提供一种ZSM-5分子筛及HZSM-5分子筛及其制备方法,该ZSM-5分子筛及HZSM-5分子筛的制备方法包括如下步骤:
按照顺序将0.5g九水硝酸铝、70g去离子水,72g硅溶胶、9.56g四丙基氢氧化铵在搅拌条件下加入烧杯中,常温条件连续搅拌24h;
然后将溶液转入聚四氟乙烯反应釜中进行高温晶化,净化温度为160℃,晶化时间为72h;
晶化结束后,过滤、洗涤、干燥、550℃焙烧6h;得到钠型ZSM-5分子筛;然后使用2mol/L的NH 4Cl溶液,按照100ml溶液10g分子筛的配比,90℃下离子交换6h,反复三次后进行过滤、洗涤、干燥、550℃焙烧4h得到HZSM-5分子筛。
对比例2
本对比例提供一种ZSM-5分子筛及HZSM-5分子筛及其制备方法,该ZSM-5分子筛及HZSM-5分子筛的制备方法包括如下步骤:
按照顺序将0.5g九水硝酸铝、68g去离子水,90g硅溶胶、10.56g四丙基氢氧化铵在搅拌条件下加入烧杯中,升温到45℃陈化24h,陈化结束后转入聚四氟乙烯内衬中进 行高温晶化,晶化温度为120℃,晶化时间为72h;
晶化结束后,过滤、洗涤、干燥、550℃焙烧6h;得到钠型ZSM-5分子筛;然后使用2mol/L的NH 4Cl溶液,按照100ml溶液10g分子筛的配比,90℃下离子交换6h,反复三次后进行过滤、洗涤、干燥、550℃焙烧4h得到HZSM-5分子筛。
验证例
把上述实施例1~5和对比例1~2的HZSM-5分子筛样品进行成型验证,具体步骤如下:
取100g的HZSM-5分子筛样品和100g纯水进行搅拌,然后加入1g乙二醇作为分散助剂;搅拌30min后加入15g聚苯乙烯丙烯酸酯乳液(45%),搅拌形成均匀悬浮液,然后喷雾干燥形成颗粒,筛分出不同粒径的产品。产品性能测试结果如下表1和表2:
表1:
Figure PCTCN2020138907-appb-000001
表2:
Figure PCTCN2020138907-appb-000002
由表1和表2的结果可知,吸音颗粒的初始ΔF0会随着颗粒粒径的减小而增大,不过由于粉体自身的理化性能,粒径越小,颗粒表面静电会增大,所以颗粒粒径范围在250~480μm的性能会比较适宜;随着HZSM-5分子筛粒径的减小,初始ΔF0会一定程度上提高,但是VOCs性能会随之变差,在HZSM-5分子筛平均粒径小于0.4μm时,由于HZSM-5分子筛粒径小、堆积密度随之降低,所得吸音颗粒堆积密度降低,吸音颗粒初始ΔF0会出现下降,同时VOCs性能变差,粒径大于2μm时,初始ΔF0会随之变差, HZSM-5分子筛粒径大于4μm时,VOCs性能也会出现降低(ΔF0为阻抗仪测试的F0差值,VOCs测试为样品在250mL封闭空间中进行120℃4h的VOC吸附测试)。
实施例6
本实施例提供一种多级孔ZSM-5分子筛及多级孔HZSM-5分子筛及其制备方法,该多级孔ZSM-5分子筛及多级孔HZSM-5分子筛的制备方法包括如下步骤:
在搅拌条件下,将90g硅胶(30%含量)、10.15g四丙基氢氧化铵、0.5g九水硝酸铝按照顺序加入到55g离子水中,在常温下连续搅拌,加入1.2gNaOH调整pH到9~11,配成均匀凝胶;
然后在凝胶中加入2.5g半纤维素,搅拌均匀后升温到80℃陈化3h,陈化结束后转入聚四氟乙烯内衬中进行高温晶化,晶化温度为180℃,晶化时间为72h;
晶化结束后,过滤、洗涤、干燥、550℃焙烧6h;得到钠型多级孔ZSM-5分子筛;然后使用2mol/L的NH 4Cl溶液,按照100ml溶液10g分子筛的配比,90℃下离子交换6h,反复三次后进行过滤、洗涤、干燥、550℃焙烧4h得到多级孔HZSM-5分子筛。
实施例7
本实施例提供一种多级孔ZSM-5分子筛及多级孔HZSM-5分子筛及其制备方法,该多级孔ZSM-5分子筛及多级孔HZSM-5分子筛的制备方法包括如下步骤:
在搅拌条件下,将90g硅胶(30%含量)、12.6g四丙基氢氧化铵、0.5g九水硝酸铝按照顺序加入到55g离子水中,在常温下连续搅拌,加入1.2gNaOH调整PH到9-11,配成均匀凝胶;
然后在凝胶中加入2.5g半纤维素,搅拌均匀后升温到80℃陈化3h,陈化结束后转入聚四氟乙烯内衬中进行高温晶化,晶化温度为180℃,晶化时间为72h;
晶化结束后,过滤、洗涤、干燥、550℃焙烧6h;得到钠型多级孔ZSM-5分子筛;然后使用2mol/L的NH 4Cl溶液,按照100ml溶液10g分子筛的配比,90℃下离子交换6h,反复三次后进行过滤、洗涤、干燥、550℃焙烧4h得到多级孔HZSM-5分子筛。
实施例8
本实施例提供一种多级孔ZSM-5分子筛及多级孔HZSM-5分子筛及其制备方法,该多级孔ZSM-5分子筛及多级孔HZSM-5分子筛的制备方法包括如下步骤:
在搅拌条件下,将90g硅胶(30%含量)、10.15g四丙基氢氧化铵、0.5g九水硝酸铝 按照顺序加入到55g离子水中,在常温下连续搅拌,加入1.2gNaOH调整pH到9-11,配成均匀凝胶;
然后在凝胶中加入2.5g半纤维素,搅拌均匀后升温到85℃陈化3h,陈化结束后转入聚四氟乙烯内衬中进行高温晶化,晶化温度为180℃,晶化时间为72h;
晶化结束后,过滤、洗涤、干燥、550℃焙烧6h;得到钠型多级孔ZSM-5分子筛;然后使用2mol/L的NH 4Cl溶液,按照100ml溶液10g分子筛的配比,90℃下离子交换6h,反复三次后进行过滤、洗涤、干燥、550℃焙烧4h得到多级孔HZSM-5分子筛。
实施例9
本实施例提供一种多级孔ZSM-5分子筛及多级孔HZSM-5分子筛及其制备方法,该多级孔ZSM-5分子筛及多级孔HZSM-5分子筛的制备方法包括如下步骤:
在搅拌条件下,将90g硅胶(30%含量)、10.15g四丙基氢氧化铵、0.5g九水硝酸铝按照顺序加入到55g离子水中,在常温下连续搅拌,加入1.2gNaOH调整PH到9-11,配成均匀凝胶;
然后在凝胶中加入2.5g半纤维素,搅拌均匀后升温到95℃陈化3h,陈化结束后转入聚四氟乙烯内衬中进行高温晶化,晶化温度为180℃,晶化时间为72h;
晶化结束后,过滤、洗涤、干燥、550℃焙烧6h;然后得到钠型多级孔ZSM-5分子筛;然后使用2mol/L的NH 4Cl溶液,按照100ml溶液10g分子筛的配比,90℃下离子交换6h,反复三次后进行过滤、洗涤、干燥、550℃焙烧4h得到多级孔HZSM-5分子筛。
实施例10
本实施例提供一种多级孔ZSM-5分子筛及多级孔HZSM-5分子筛及其制备方法,该多级孔ZSM-5分子筛及多级孔HZSM-5分子筛的制备方法包括如下步骤:
在搅拌条件下,将90g硅胶(30%含量)、10.15g四丙基氢氧化铵、0.5g九水硝酸铝按照顺序加入到55g离子水中,在常温下连续搅拌,加入1.2gNaOH调整pH到9~11,配成均匀凝胶;
然后在凝胶中加入2g半纤维素,搅拌均匀后升温到95℃陈化3h,陈化结束后转入聚四氟乙烯内衬中进行高温晶化,晶化温度为180℃,晶化时间为72h;
晶化结束后,过滤、洗涤、干燥、550℃焙烧6h;然后得到钠型多级孔ZSM-5分子筛;然后使用2mol/L的NH 4Cl溶液,按照100ml溶液10g分子筛的配比,90℃下离子 交换6h,反复三次后进行过滤、洗涤、干燥、550℃焙烧4h得到多级孔HZSM-5分子筛。
实施例11
本实施例提供一种多级孔ZSM-5分子筛及多级孔HZSM-5分子筛及其制备方法,该多级孔ZSM-5分子筛及多级孔HZSM-5分子筛的制备方法包括如下步骤:
在搅拌条件下,将90g硅胶(30%含量)、10.15g四丙基氢氧化铵、0.5g九水硝酸铝按照顺序加入到55g离子水中,在常温下连续搅拌,加入1.2gNaOH调整PH到9-11,配成均匀凝胶;
然后在凝胶中加入3g半纤维素,搅拌均匀后升温到95℃陈化3h,陈化结束后转入聚四氟乙烯内衬中进行高温晶化,晶化温度为180℃,晶化时间为72h;
晶化结束后,过滤、洗涤、干燥、550℃焙烧6h;然后得到钠型多级孔ZSM-5分子筛;然后使用2mol/L的NH 4Cl溶液,按照100ml溶液10g分子筛的配比,90℃下离子交换6h,反复三次后进行过滤、洗涤、干燥、550℃焙烧4h得到多级孔HZSM-5分子筛。
对比例3
本对比例提供一种多级孔ZSM-5分子筛及多级孔HZSM-5分子筛及其制备方法,制备过程中不添加半纤维素,该多级孔ZSM-5分子筛及多级孔HZSM-5分子筛的制备方法包括如下步骤:
在搅拌条件下,将90g硅胶(30%含量)、10.15g四丙基氢氧化铵、0.5g九水硝酸铝按照顺序加入到55g离子水中,在常温下连续搅拌,加入1.2gNaOH调整PH到9-11,配成均匀凝胶;
然后升温到95℃陈化3h,陈化结束后转入聚四氟乙烯内衬中进行高温晶化,晶化温度为180℃,晶化时间为72h;
晶化结束后,过滤、洗涤、干燥、550℃焙烧6h;得到钠型多级孔ZSM-5分子筛;然后使用2mol/L的NH 4Cl溶液,按照100ml溶液10g分子筛的配比,90℃下离子交换6h,反复三次后进行过滤、洗涤、干燥、550℃焙烧4h得到多级孔HZSM-5分子筛。
验证例
把上述实施例1、实施例6~11和对比例3的HZSM-5分子筛样品进行成型验证,具体步骤如下:
取100g的HZSM-5分子筛样品和100g纯水进行搅拌,然后加入1g乙二醇作为分散助剂;搅拌30min后加入15g聚苯乙烯丙烯酸酯乳液(45%),搅拌形成均匀悬浮液,然后喷雾干燥形成颗粒,筛分出适宜粒径的球形颗粒(因为不同HZSM-5分子筛成型后的颗粒外观基本相同,故只展示实施例1的SEM图,如图3),然后分别装入工装中进行声学性能测试,结果如表3和4所示。
表3:
Figure PCTCN2020138907-appb-000003
表4:
Figure PCTCN2020138907-appb-000004
由表3实验结果可以看出,增加模板剂四丙基溴化铵的用量(实施例1、6、7模板剂用量逐渐增多),HZSM-5分子筛的粒径会随之降低,因为模板剂越多有利于成核,降低了晶粒大小;随着陈化温度(实施例6、8、9陈化温度逐渐升高)的提高,HZSM-5分子筛平均粒径逐渐增大;随着半纤维素用量(实施例10、9、11半纤维素用量递增)的增加,HZSM-5分子筛平均粒径逐渐降低,同时,由于分子筛的微孔主要由模板剂决定,所有不同实施例的微孔平均孔径差不多,主要由于模板剂用量、陈化温度、半纤维素用量会改变微孔和介孔的比例,从而影响平均孔径的大小。
由表3和表4实验结果可以看出:合成的多级孔HZSM-5分子筛在经过VOCs测试后,相比正常样,仍然保持了较好的声学改善性能,尤其是通过增加四丙基溴化铵的用 量(实施例1、6、7用量逐渐增加),使合成HZSM-5分子筛的微孔增多,介孔减少,会使吸音颗粒耐VOCs性能一定程度变差;通过增加半纤维素用量(对比例3未添加半纤维素、实施例10、9、11逐渐增加半纤维素量),使合成HZSM-5分子筛微孔减少,介孔增多,会使吸音颗粒耐VOCs性能一定程度变好;通过提高陈化温度(实施例6、8、9逐渐提高老化温度),使合成HZSM-5分子筛微孔减少,介孔增加,会使吸音颗粒耐VOCs性能一定程度变好;通过制备多级孔HZSM-5分子筛,使吸音颗粒的耐VOCs稳定性提升明显,吸音颗粒对声学低频响应能保持较好水平。
以上所述,仅为本发明的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,根据本发明创造的技术方案及其构思加以简单改变或替换,都应涵盖在本发明创造的保护范围之内。

Claims (33)

  1. 一种多级孔ZSM-5分子筛,该多级孔ZSM-5分子筛包括微孔和介孔;
    所述微孔的孔径为0.5~1.8nm;所述介孔的孔径为4~30nm;该多级孔ZSM-5分子筛的粒径为0.3~4μm;
    其中,所述多级孔ZSM-5分子筛的总孔容为0.23~0.26ml/g,其中微孔孔容为0.12~0.16ml/g。
  2. 根据权利要求1所述的多级孔ZSM-5分子筛,其中,所述微孔的孔径为0.6~1.5nm;所述介孔的孔径为10-28nm;该多级孔ZSM-5分子筛的粒径为0.7~3μm。
  3. 根据权利要求2所述的多级孔ZSM-5分子筛,其中,所述微孔的孔径为0.7~1.4nm;所述介孔的孔径为15~25nm;该多级孔ZSM-5分子筛的粒径为1~2μm。
  4. 权利要求1~3任一项所述多级孔ZSM-5分子筛的制备方法,其包括以下步骤:
    将硅源、铝源和有机模板剂溶于水中,通过无机碱调节pH值为8~12,搅拌均匀形成凝胶;
    在凝胶中加入半纤维素,混合均匀后进行升温陈化,然后转入反应釜中进行晶化处理,结束后,对产物进行洗涤、干燥、焙烧,去除有机模板剂及半纤维素,得到所述多级孔ZSM-5分子筛。
  5. 根据权利要求4所述的方法,其中,所述硅源包括硅胶、硅酸、正硅酸乙酯、硅酸钠和偏硅酸钠中的一种或多种的组合。
  6. 根据权利要求5所述的方法,其中,所述硅源包括正硅酸乙酯和/或硅胶。
  7. 根据权利要求4所述的方法,其中,所述铝源包括硝酸铝、硫酸铝、氯化铝和异丙醇铝中的一种或多种的组合。
  8. 根据权利要求7所述的方法,其中,所述铝源包括异丙醇铝和/或硝酸铝。
  9. 根据权利要求4所述的方法,其中,所述有机模板剂包括四丙基氢氧化铵、四丙基溴化铵、四丙基氯化铵、四甲基氢氧化铵和四乙基氢氧化铵中的一种或多种的组合。
  10. 根据权利要求9所述的方法,其中,所述有机模板剂包括四丙基氢氧化铵和/或四丙基溴化铵。
  11. 根据权利要求4所述的方法,其中,所述无机碱包括氢氧化钠、氢氧化钾和氨水中的一种或多种的组合。
  12. 根据权利要求11所述的方法,其中,所述无机碱为氢氧化钠。
  13. 根据权利要求4所述的方法,其中,所述硅源、所述铝源、所述有机模板剂、 所述无机碱和所述水的摩尔比为100:(0.15~1):(7~20):(0.5~2):(5~10)。
  14. 根据权利要求4所述的方法,其中,所述凝胶与所述半纤维素的质量比为(50~100):1.5。
  15. 根据权利要求4所述的方法,其中,进行升温陈化的温度为60~98℃,陈化的时间为2~4h。
  16. 根据权利要求4所述的方法,其中,进行晶化处理的温度为120~200℃,晶化处理的时间为36~72h。
  17. 根据权利要求4所述的方法,其中,进行焙烧处理的温度为500~600℃,焙烧时间为4~12h。
  18. 一种多级孔HZSM-5分子筛,该多级孔HZSM-5分子筛是将权利要求1~3任一项所述的多级孔ZSM-5分子筛利用NH 4Cl溶液中进行离子交换,产物经干燥、焙烧后获得的。
  19. 根据权利要求18所述的多级孔HZSM-5分子筛,其中,所述NH 4Cl溶液浓度为1-2mol/L。
  20. 根据权利要求18所述的多级孔HZSM-5分子筛,其中,进行离子交换的重复次数为1~3次;每次3~6h。
  21. 根据权利要求20所述的多级孔HZSM-5分子筛,其中,进行离子交换的重复次数为3次,每次6h。
  22. 根据权利要求18所述的多级孔HZSM-5分子筛,其中,每100ml的NH 4Cl溶液对应于5~10g的多级孔ZSM-5分子筛。
  23. 根据权利要求22所述的多级孔HZSM-5分子筛,其中,每100ml的NH 4Cl溶液对应于10g的多级孔ZSM-5分子筛。
  24. 根据权利要求18所述的多级孔HZSM-5分子筛,其中,进行离子交换的温度为60-100℃。
  25. 根据权利要求24所述的多级孔HZSM-5分子筛,其中,进行离子交换的温度为90℃。
  26. 根据权利要求18所述的多级孔HZSM-5分子筛,其中,离子交换后样品焙烧的温度为500-600℃,焙烧时间为3-6h。
  27. 权利要求1~3任一项所述多级孔ZSM-5分子筛或权利要求18~26任一项所述多级孔HZSM-5分子筛在制备吸音材料中的应用。
  28. 一种多级孔分子筛吸音材料,其是将权利要求1~3任一项所述多级孔ZSM-5 分子筛或权利要求18~26任一项所述多级孔HZSM-5分子筛与溶剂、胶黏剂、助剂混合均匀,制成悬浮液,然后造粒、干燥成球形颗粒,从而获得该多级孔分子筛吸音材料。
  29. 根据权利要求28所述的多级孔分子筛吸音材料,其中,所述胶黏剂包括无机胶黏剂和/或有机高分子胶黏剂。
  30. 根据权利要求29所述的多级孔分子筛吸音材料,其中,所述多级孔分子筛吸音材料的粒径为50~600μm。
  31. 根据权利要求30所述的多级孔分子筛吸音材料,其中,所述多级孔分子筛吸音材料的粒径为200~500μm。
  32. 根据权利要求31所述的多级孔分子筛吸音材料,其中,所述多级孔分子筛吸音材料的粒径为250~480μm。
  33. 一种扬声器,其包括装载有权利要求28~32任一项所述多级孔分子筛吸音材料的后腔。
PCT/CN2020/138907 2019-12-26 2020-12-24 一种多级孔zsm-5分子筛、其制备方法、由其制备的hzsm-5分子筛及分子筛的应用 WO2021129719A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20907999.5A EP4082969A1 (en) 2019-12-26 2020-12-24 Hierarchical porous zsm-5 molecular sieve, preparation method therefor, hzsm-5 molecular sieve prepared therefrom, and use of molecular sieve
US17/757,838 US20230045179A1 (en) 2019-12-26 2020-12-24 Hierarchical porous zsm-5 molecular sieve, preparation method therefor, hzsm-5 molecular sieve prepared therefrom, and use of molecular sieve
KR1020227020245A KR20220121800A (ko) 2019-12-26 2020-12-24 계층형 다공성 zsm-5 분자체, 이의 제조방법, 이로부터 제조된 hzsm-5 분자체 및 분자체의 용도

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911370231.0A CN113044852A (zh) 2019-12-26 2019-12-26 一种多级孔zsm-5分子筛及其制备方法和应用
CN201911370231.0 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021129719A1 true WO2021129719A1 (zh) 2021-07-01

Family

ID=76505685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138907 WO2021129719A1 (zh) 2019-12-26 2020-12-24 一种多级孔zsm-5分子筛、其制备方法、由其制备的hzsm-5分子筛及分子筛的应用

Country Status (5)

Country Link
US (1) US20230045179A1 (zh)
EP (1) EP4082969A1 (zh)
KR (1) KR20220121800A (zh)
CN (1) CN113044852A (zh)
WO (1) WO2021129719A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114229865A (zh) * 2021-12-10 2022-03-25 成都理工大学 一种zsm-5微介孔分子筛的无晶种快速老化晶化的合成方法
CN114873605A (zh) * 2022-06-14 2022-08-09 延边大学 一种利用两段变温晶化技术制备伊利石黏土基整体式多级孔纳米h-zsm-5沸石的方法
CN114920263A (zh) * 2022-05-26 2022-08-19 盐城工学院 一种纳米hzsm-5分子筛的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113184876B (zh) * 2021-07-05 2021-09-17 山东国瓷功能材料股份有限公司 用于吸音材料的zsm-5分子筛、其制备方法及所得产品
CN113816395A (zh) * 2021-09-25 2021-12-21 深圳职业技术学院 多级孔沸石分子筛及其制备方法和用途
CN114684832A (zh) * 2022-04-18 2022-07-01 瑞声光电科技(常州)有限公司 一种核壳分子筛及其制备方法、吸声材料和扬声器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2495991A1 (en) 2011-03-04 2012-09-05 Knowles Electronics Asia PTE. Ltd. Packaging of acoustic volume increasing materials for loudspeaker devices
CN107840348A (zh) * 2016-09-21 2018-03-27 中国石油化工股份有限公司 一种介孔分子筛的制备方法以及介孔分子筛和催化剂
CN108275696A (zh) * 2018-01-04 2018-07-13 瑞声科技(新加坡)有限公司 一种分子筛、包括该分子筛的扬声器箱及该分子筛的制备方法
CN108658093A (zh) * 2018-07-17 2018-10-16 沈阳师范大学 一种多级孔zsm-5分子筛的制备方法及其应用
US10343926B1 (en) * 2016-08-22 2019-07-09 Louisiana Tech Research Corporation Synthesis of hierarchical zeolites by solid state crystallization of aluminosilicate nanogels
CN110040741A (zh) * 2019-05-30 2019-07-23 天津金玺科技发展有限公司 一种多级孔zsm-5分子筛及其合成方法
CN110317083A (zh) * 2019-07-16 2019-10-11 碗海鹰 吸音材料及其制备方法和吸音件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107459047A (zh) * 2016-06-06 2017-12-12 中国科学院青岛生物能源与过程研究所 一种基于半纤维素的分子筛制备方法
CN106792387B (zh) * 2016-12-13 2020-01-21 瑞声科技(南京)有限公司 一种吸音材料及其制备方法和应用该吸音材料的扬声器
CN107265477A (zh) * 2017-05-27 2017-10-20 江苏有容催化技术研究所有限公司 一种复合孔zsm‑5分子筛的制备方法
CN109368657B (zh) * 2018-08-22 2021-09-10 中国矿业大学 骨架金属高分散型多级孔h-zsm-5分子筛制备方法
CN109801616A (zh) * 2018-12-31 2019-05-24 瑞声科技(南京)有限公司 吸音材料及具有该吸音材料的扬声器箱
CN110330029B (zh) * 2019-07-05 2021-06-01 中国石油大学(北京) 一种多级孔zsm-5沸石及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2495991A1 (en) 2011-03-04 2012-09-05 Knowles Electronics Asia PTE. Ltd. Packaging of acoustic volume increasing materials for loudspeaker devices
US10343926B1 (en) * 2016-08-22 2019-07-09 Louisiana Tech Research Corporation Synthesis of hierarchical zeolites by solid state crystallization of aluminosilicate nanogels
CN107840348A (zh) * 2016-09-21 2018-03-27 中国石油化工股份有限公司 一种介孔分子筛的制备方法以及介孔分子筛和催化剂
CN108275696A (zh) * 2018-01-04 2018-07-13 瑞声科技(新加坡)有限公司 一种分子筛、包括该分子筛的扬声器箱及该分子筛的制备方法
CN108658093A (zh) * 2018-07-17 2018-10-16 沈阳师范大学 一种多级孔zsm-5分子筛的制备方法及其应用
CN110040741A (zh) * 2019-05-30 2019-07-23 天津金玺科技发展有限公司 一种多级孔zsm-5分子筛及其合成方法
CN110317083A (zh) * 2019-07-16 2019-10-11 碗海鹰 吸音材料及其制备方法和吸音件

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114229865A (zh) * 2021-12-10 2022-03-25 成都理工大学 一种zsm-5微介孔分子筛的无晶种快速老化晶化的合成方法
CN114920263A (zh) * 2022-05-26 2022-08-19 盐城工学院 一种纳米hzsm-5分子筛的制备方法
CN114920263B (zh) * 2022-05-26 2023-09-22 盐城工学院 一种纳米hzsm-5分子筛的制备方法
CN114873605A (zh) * 2022-06-14 2022-08-09 延边大学 一种利用两段变温晶化技术制备伊利石黏土基整体式多级孔纳米h-zsm-5沸石的方法
CN114873605B (zh) * 2022-06-14 2022-12-27 延边大学 一种利用两段变温晶化技术制备伊利石黏土基整体式多级孔纳米h-zsm-5沸石的方法

Also Published As

Publication number Publication date
CN113044852A (zh) 2021-06-29
KR20220121800A (ko) 2022-09-01
EP4082969A1 (en) 2022-11-02
US20230045179A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
WO2021129719A1 (zh) 一种多级孔zsm-5分子筛、其制备方法、由其制备的hzsm-5分子筛及分子筛的应用
US10271130B2 (en) Sound absorbing material and manufacturing method thereof and speaker using sound absorbing material
CN106622142B (zh) 一种金属有机骨架材料Cu3(BTC)2及其制备方法和应用
TWI788013B (zh) 用於吸音材料的zsm-5分子篩、其製備方法及所得產品
WO2018103145A1 (zh) 一种用于甲醛选择性吸附的微孔中空氧化镍气敏传感材料和器件及制备和应用
CN110787767B (zh) 一种疏水性吸附剂及其制备方法
CN108339567B (zh) 一种制备封装二氧化钛的疏水沸石催化材料的方法
CN107469779B (zh) 一种有害气体吸附颗粒及其制备方法
WO2020056838A1 (zh) 一种多级孔fau结构分子筛及其制备方法
CN104492405B (zh) 一种核壳型分子筛微球及其制备方法和用途
CN108329484A (zh) 一种优先吸附乙烷的铁基双配体金属有机骨架材料及其制备方法与应用
CN107827108A (zh) 一种极微孔碳材料及其制备方法
CN108455626B (zh) 块体zsm-5/纳米片层复合结构的zsm-5多级孔分子筛及其制备方法
WO2019214022A1 (zh) 一种微孔-介孔层级沸石材料及其制备方法和用途
CN109232226A (zh) 一种微孔金属有机骨架材料及其制备方法与应用
JP7432697B2 (ja) コアシェル分子篩及びその製造方法、吸音材料及びスピーカ
JP5261875B2 (ja) 酸素6員環からなるアルミノホスフェート系ゼオライト吸着剤及びその製造方法並びにその用途
CN111137904A (zh) 一种cha型分子筛及其合成方法与应用
CN112439445A (zh) Zsm-48分子筛和催化剂载体及其制备方法以及催化剂及其应用
CN106698451B (zh) 一种dd3r分子筛膜的合成方法
CN110437720B (zh) 一种室内有害气体吸附型水性聚氨酯涂料及其制备方法
WO2021088390A1 (zh) 有机改性分子筛及其制备方法和应用
CN114863901A (zh) 一种改性沸石吸音材料
CN114713041B (zh) 一种原位制备Si-CHA分子筛膜的方法
WO2023065375A1 (zh) 金属有机框架衍生碳材料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020907999

Country of ref document: EP

Effective date: 20220726