WO2021129644A1 - 车辆及其控制方法与装置 - Google Patents

车辆及其控制方法与装置 Download PDF

Info

Publication number
WO2021129644A1
WO2021129644A1 PCT/CN2020/138538 CN2020138538W WO2021129644A1 WO 2021129644 A1 WO2021129644 A1 WO 2021129644A1 CN 2020138538 W CN2020138538 W CN 2020138538W WO 2021129644 A1 WO2021129644 A1 WO 2021129644A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
engine
driving
gear
current
Prior art date
Application number
PCT/CN2020/138538
Other languages
English (en)
French (fr)
Inventor
胡志敏
高天
侯文涛
陈玉封
刁红宾
郭贵贤
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2021129644A1 publication Critical patent/WO2021129644A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • B60W2030/206Reducing vibrations in the driveline related or induced by the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged

Definitions

  • the present disclosure relates to the field of vehicle technology, and in particular to a vehicle and its control method and device.
  • the driving mode of a hybrid vehicle often includes a motor driving mode and an engine driving mode.
  • the motor drive mode when the motor drive mode is used, the drive motor in the hybrid vehicle provides the power required for the hybrid vehicle to travel; when the engine drive mode is used, the engine in the hybrid vehicle provides the driving required for the hybrid vehicle. Power.
  • hybrid vehicles In related technologies, hybrid vehicles often adopt the motor drive mode when the driving speed is low, and use the engine driving mode when the driving speed is high. This makes the driving mode switching of the hybrid vehicle during the driving process. process.
  • the driving mode of a hybrid vehicle is switched from the motor driving mode to the engine driving mode, the engine often produces large noise, which affects the noise, vibration, and harshness of the vehicle (Noise, Vibration, Harshness, NVH for short) Performance reduces the user experience.
  • the present disclosure aims to solve one of the technical problems in the related art at least to a certain extent.
  • the first objective of the present disclosure is to provide a vehicle control method that can reduce the noise generated by the engine when the vehicle drive mode is switched from the motor drive mode to the engine drive mode, thereby improving the NVH performance of the vehicle, and Improve the user experience.
  • the second objective of the present disclosure is to provide a vehicle control device.
  • the third purpose of the present disclosure is to propose a vehicle.
  • the fourth objective of the present disclosure is to propose an electronic device.
  • the fifth objective of the present disclosure is to provide a computer-readable storage medium.
  • an embodiment of the first aspect of the present disclosure provides a vehicle control method, the method including:
  • the identifying that the driving mode of the vehicle meets the mode switching condition for switching from the motor driving mode to the engine driving mode includes:
  • the controlling to increase the driving gear of the vehicle includes:
  • the obtaining the target gear of the vehicle in the engine driving mode includes:
  • the target gear is determined according to the current driving speed and the optimal rotation speed.
  • the determining the target gear position according to the current driving speed and the optimal rotation speed includes:
  • the gear ratio of the transmission query a preset mapping table between the gear ratio of the transmission and the gear position of the vehicle to obtain the target gear position.
  • the obtaining the optimal rotation speed of the engine in the vehicle includes:
  • the identification query a preset mapping relationship table between the vehicle's identification and the rotation speed of the engine to obtain the optimal rotation speed.
  • the controlling the vehicle to switch the driving mode includes:
  • the engine in the vehicle is controlled to start, and the drive motor in the vehicle is controlled to turn off.
  • the method further includes:
  • the clutch in the vehicle is controlled to engage at a preset rate.
  • the driving gear of the vehicle is increased in advance to reduce the target speed of the engine when the vehicle is switched to the driving mode, thereby reducing the speed and the engine speed when the engine is started.
  • the speed difference between the target speeds eliminates the sudden increase of the engine speed when the vehicle is switching the drive mode, so that the noise generated during the engine speed change is lower, thereby improving the vehicle's NVH performance and enhancing the user experience.
  • An embodiment of the second aspect of the present disclosure provides a vehicle control device, the device including:
  • the recognition module is used to recognize that the driving mode of the vehicle meets the mode switching condition of switching from the motor driving mode to the engine driving mode;
  • the control module is used for controlling the raising of the driving gear of the vehicle, and controlling the vehicle to switch the driving mode after the raising of the driving gear is completed.
  • the identification module is further used for:
  • control module is further configured to:
  • control module is further configured to:
  • the target gear is determined according to the current driving speed and the optimal rotation speed.
  • control module is further configured to:
  • the gear ratio of the transmission query a preset mapping table between the gear ratio of the transmission and the gear position of the vehicle to obtain the target gear position.
  • control module is further configured to:
  • the identification query a preset mapping relationship table between the vehicle's identification and the rotation speed of the engine to obtain the optimal rotation speed.
  • control module is further configured to:
  • the engine in the vehicle is controlled to start, and the drive motor in the vehicle is controlled to turn off.
  • control module is further configured to:
  • the clutch in the vehicle is controlled to engage at a preset rate.
  • the vehicle control device advances the driving gear of the vehicle in advance when the driving mode of the vehicle is switched, so as to reduce the target speed of the engine when the vehicle is switched to the driving mode, thereby reducing the speed and the engine speed when the engine is started.
  • the speed difference between the target speeds eliminates the sudden increase of the engine speed when the vehicle is switching the drive mode, so that the noise generated during the engine speed change is lower, thereby improving the vehicle's NVH performance and enhancing the user experience.
  • An embodiment of the third aspect of the present disclosure provides a vehicle, including the vehicle control device as described in the third aspect.
  • An embodiment of the fourth aspect of the present disclosure provides an electronic device, including a memory and a processor
  • the processor runs a program corresponding to the executable program code by reading the executable program code stored in the memory, so as to implement the vehicle control method in the first aspect.
  • An embodiment of the fifth aspect of the present disclosure provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the vehicle control method in the first aspect is implemented.
  • Fig. 1 is a schematic flowchart of a vehicle control method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of the steps of determining that the vehicle meets the mode switching condition for switching from the motor drive mode to the engine drive mode in the vehicle control method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of the steps of determining that the vehicle meets the mode switching condition for switching from the motor drive mode to the engine drive mode in the vehicle control method according to another embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of the steps of determining that the vehicle meets the mode switching condition for switching from the motor drive mode to the engine drive mode in the vehicle control method according to another embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of steps for controlling to raise the driving gear of the vehicle in the vehicle control method according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of the steps of determining the target gear according to the current driving speed of the vehicle in the vehicle control method according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of the steps of determining the target gear position according to the transmission ratio of the transmission in the vehicle control method according to an embodiment of the present disclosure
  • Fig. 8 is a schematic structural diagram of a vehicle control device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a vehicle according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic flowchart of a vehicle control method according to an embodiment of the disclosure. As shown in Figure 1, the method specifically includes the following steps:
  • the driving mode of the vehicle includes a motor driving mode and an engine driving mode.
  • the driving mode of the vehicle is the motor driving mode
  • the driving motor in the vehicle is mainly used to drive the vehicle
  • the driving mode of the vehicle is the engine driving mode
  • the engine in the vehicle is mainly used to drive the vehicle.
  • the driving mode of the vehicle can be switched between the motor driving mode and the engine driving mode to meet the power demand of the vehicle.
  • the driving force provided by the driving motor is often low, it can be determined according to the driving force desired by the user whether the vehicle meets the mode switching condition for switching from the motor driving mode to the engine driving mode. As shown in Figure 2, it includes the following steps:
  • the vehicle is provided with a position sensor for detecting the position of the accelerator pedal, and the position sensor can be used to detect the current opening degree of the accelerator pedal.
  • S202 Identify that the current opening degree is greater than a preset opening degree threshold, and determine that the vehicle meets the mode switching condition.
  • the current opening degree of the accelerator pedal is compared with the preset opening degree threshold. If the current opening degree is greater than the preset opening degree threshold, it indicates that the driving force of the vehicle desired by the user is high. At this time, the mode of the vehicle needs to be switched, that is, it is determined that the vehicle meets the mode switching condition. If the current opening degree is less than or equal to the preset opening degree threshold, it indicates that the driving force of the vehicle that the user expects does not exceed the driving force that the drive motor can provide. At this time, there is no need to switch the mode of the vehicle, that is, It is determined that the vehicle does not meet the mode switching conditions.
  • the power battery pack in the vehicle is the energy source for the drive motor.
  • the power of the power battery pack is too low, it will be difficult for the drive motor to continue to provide driving force for the vehicle.
  • the engine needs to be used.
  • it can be determined according to the power value of the power battery pack whether the vehicle meets the mode switching condition for switching from the motor drive mode to the engine drive mode. As shown in Figure 3, it includes the following steps:
  • a power sensor for detecting the power of the power battery pack is provided in the vehicle, and the power sensor can be used to detect the current power value of the power battery pack.
  • S302 Identify that the current power value is less than a preset power threshold, and determine that the vehicle meets the mode switching condition.
  • the current power value of the power battery pack is compared with the preset power threshold. If the current power value is less than the preset power threshold, it indicates that the current power value of the power battery pack is too low, and it is difficult for the drive motor to continue to provide driving force for the vehicle.
  • the engine needs to be used to provide driving force for the vehicle.
  • the mode of the vehicle is required. To switch, it is determined that the vehicle meets the mode switching conditions. And if the current power value is greater than or equal to the preset power threshold, it indicates that the power battery pack can provide enough energy for the drive motor, so that the drive motor can continue to provide driving force for the vehicle, and there is no need to use the engine to provide driving force for the vehicle. At this time, there is no need to switch the mode of the vehicle, that is, it is determined that the vehicle does not meet the mode switching conditions.
  • the operating parameters of the drive motor can be detected, and the detected operating parameters can be compared with pre-calibrated operating parameters. When the two do not match, it is determined that the drive motor has a fault.
  • the current detection circuit can be used to detect the operating current of the drive motor in real time. When the operating current of the drive motor does not match the pre-calibrated operating current, it indicates that the operating current of the drive motor is abnormal. At this time, it can be determined that the drive motor has failed. .
  • S402 Determine that the vehicle meets the mode switching condition.
  • the engine speed will be lower when the engine is started, and in order to match the actual driving speed of the vehicle, the engine will increase sharply Its own speed, which causes the engine speed to rise sharply, which in turn causes the noise generated by the engine to increase, affects the vehicle's NVH performance, and reduces the user experience; in addition, when the engine speed rises sharply, it will also increase the vehicle's performance. Fuel consumption reduces the economy of the vehicle.
  • the driving gear of the vehicle is controlled to increase to reduce the transmission ratio of the vehicle, because the transmission ratio is proportional to the engine speed.
  • the process of raising makes the noise generated during the change of engine speed lower, thereby improving the NVH performance of the vehicle and enhancing the user experience.
  • the fuel consumption of the vehicle will not increase significantly, which improves the economy of the vehicle.
  • the driving gear of the vehicle is increased in advance to reduce the target speed of the engine when the vehicle is switched to the driving mode, thereby reducing the time when the engine is started.
  • the speed difference between the speed of the engine and the target speed of the engine eliminates the sudden increase in the speed of the engine when the vehicle is switching the drive mode, so that the noise generated during the change of the engine speed is lower, thereby improving the vehicle's NVH performance and improving Improve the user experience.
  • the target gear of the vehicle when controlling to raise the driving gear of the vehicle, the target gear of the vehicle may be determined first, and then the current gear of the vehicle is switched to the target gear. As shown in Figure 5, it includes the following steps:
  • S501 Acquire a target gear of the vehicle in the engine driving mode.
  • the target gear position may be determined according to the current driving speed of the vehicle in this embodiment. As shown in Figure 6, it includes the following steps:
  • the speed sensor in the vehicle can be used to obtain the current driving speed of the vehicle.
  • the optimal speed of the engine pre-calibrated in the vehicle is often different. Therefore, the optimal speed of the engine can be determined according to the identity of the vehicle.
  • the vehicle’s identity can be obtained according to the vehicle’s pre-stored information in the vehicle, and then the vehicle’s identity can be used to query a preset mapping table between the vehicle’s identity and the engine speed to obtain Optimal speed.
  • the mapping relationship table between the identity of the vehicle and the rotation speed of the engine can be stored in the vehicle or in the server, which can be specifically determined according to the situation and is not limited here.
  • S603 Determine the target gear according to the current driving speed and the optimal rotation speed.
  • the target gear can be determined according to the mapping relationship between the current driving speed, the optimal rotation speed and the target gear.
  • the gear ratio of the transmission in the vehicle may be determined first according to the current driving speed and the optimal rotation speed, and then the target gear may be determined according to the gear ratio of the transmission. As shown in Figure 7, it includes the following steps:
  • S701. Determine the transmission ratio of the transmission in the vehicle according to the current driving speed and the optimal rotation speed.
  • the mathematical relationship between the driving speed, the optimal speed and the transmission ratio can be used to determine the transmission ratio.
  • the mathematical relationship between the driving speed, the optimal speed and the transmission ratio is:
  • V (W/n)*60*2 ⁇ *r/1000
  • V is the driving speed
  • W is the optimal speed
  • n is the transmission ratio
  • r is the radius of the driving wheels in the vehicle.
  • S702 According to the gear ratio of the transmission, query a preset mapping table between the gear ratio of the transmission and the gear position of the vehicle to obtain the target gear position.
  • the gear ratio of the transmission can be used to query the preset mapping table between the gear ratio of the transmission and the gear position of the vehicle to obtain the target gear position.
  • the current gear of the vehicle can be switched to the target gear. It should be understood that in this embodiment, the current gear is lower than the target gear.
  • the drive motor in the vehicle when controlling the vehicle to switch the driving mode, since it is difficult for the drive motor in the vehicle to continue to provide driving force to the vehicle at this time, the drive motor in the vehicle can be controlled to be turned off at this time to save energy; and control the vehicle The engine is started in order to use the engine to provide power to the vehicle, so as to ensure the normal driving of the vehicle.
  • the clutch in the vehicle can also be controlled to engage at a preset speed, so that the transmission can be engaged smoothly and the stability of the vehicle can be improved.
  • the present disclosure also provides a vehicle control device.
  • FIG. 8 is a schematic structural diagram of a vehicle control device according to an embodiment of the present disclosure. As shown in FIG. 8, the vehicle control device 100 includes:
  • the identification module 11 is used to identify that the driving mode of the vehicle meets the mode switching condition for switching from the motor driving mode to the engine driving mode;
  • the control module 12 is used for controlling the raising of the driving gear of the vehicle, and controlling the vehicle to switch the driving mode after the raising of the driving gear is completed.
  • identification module 11 is also used for:
  • control module 12 is also used for:
  • control module 12 is also used for:
  • control module 12 is also used for:
  • the gear ratio of the transmission query the mapping relationship table between the gear ratio of the transmission and the gear of the vehicle set in advance to obtain the target gear.
  • control module 12 is also used for:
  • the identification query a preset mapping table between the vehicle's identification and the rotation speed of the engine to obtain the optimal rotation speed.
  • control module 12 is also used for:
  • control module 12 is also used for:
  • the vehicle control device advances the vehicle's driving gear in advance when the vehicle's drive mode is switched, so as to reduce the target engine speed when the vehicle is switched to the drive mode, thereby reducing the engine start-up time.
  • the speed difference between the speed of the engine and the target speed of the engine eliminates the sudden increase in the speed of the engine when the vehicle is switching the drive mode, so that the noise generated during the change of the engine speed is lower, thereby improving the NVH performance of the vehicle. Improve the user experience.
  • an embodiment of the present disclosure provides a vehicle. As shown in FIG. 9, the vehicle includes the vehicle control device 100 in the foregoing embodiment.
  • the embodiment of the present disclosure provides an electronic device.
  • the electronic device 200 includes a memory 21 and a processor 22; wherein, the processor 22 reads data stored in the memory 21
  • the executable program code runs a program corresponding to the executable program code, so as to implement each step of the method in the above embodiment.
  • the embodiments of the present disclosure provide a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, each step of the method in the above embodiment is implemented.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present disclosure, “plurality” means two or more than two, unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction relationship between two elements.
  • installed may be a fixed connection or a detachable connection , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction relationship between two elements.
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. contact.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种车辆及其控制方法与装置,所述方法包括:识别车辆的驱动模式符合由电机驱动模式切换为发动机驱动模式的模式切换条件;控制提升所述车辆的行驶档位,以及在所述行驶档位提升完毕后,控制所述车辆切换驱动模式。该方法在车辆的驱动模式切换时,预先提升车辆的行驶档位,以降低车辆切换驱动模式时发动机的目标转速,从而降低了发动机启动时的转速与发动机的目标转速之间的转速差,消除了车辆进行驱动模式切换时发动机的转速急剧拉升的过程,使得发动机转速变化过程中产生的噪声较低,进而改善了车辆的NVH性能,提升了用户体验。

Description

车辆及其控制方法与装置
相关申请的交叉引用
本申请人要求申请日为2019年12月24日、申请号为201911348944.7、名称为“车辆及其控制方法与装置”的中国发明专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及车辆技术领域,特别是涉及一种车辆及其控制方法与装置。
背景技术
混动车辆的驱动模式往往包括电机驱动模式和发动机驱动模式。其中,当使用电机驱动模式时,由混动车辆中的驱动电机为混动车辆提供行驶所需的动力;当使用发动机驱动模式时,由混动车辆中的发动机为混动车辆提供行驶所需的动力。
相关技术中,混动车辆往往是在行驶速度较低时,采用电机驱动模式,而在行驶速度较高时,则采用发动机驱动模式,这就使得混动车辆在行驶过程中存在驱动模式切换的过程。但目前在混动车辆的驱动模式由电机驱动模式切换为发动机驱动模式时,发动机常常会产生较大的噪声,影响车辆的噪声、振动与声振粗糙度(Noise、Vibration、Harshness,简称NVH)性能,降低了用户体验。
发明内容
本公开旨在至少一定程度上解决相关技术中的技术问题之一。
为此,本公开的第一个目的在于提供一种车辆的控制方法,能够在车辆的驱动模式由电机驱动模式切换为发动机驱动模式时,降低发动机产生的噪声,改善了车辆的NVH性能,提升了用户体验。
本公开的第二个目的在于提出一种车辆的控制装置。
本公开的第三个目的在于提出一种车辆。
本公开的第四个目的在于提出一种电子设备。
本公开的第五个目的在于提出一种计算机可读存储介质。
为达到上述目的,本公开第一方面实施例提供了一种车辆的控制方法,所述方法 包括:
识别车辆的驱动模式符合由电机驱动模式切换为发动机驱动模式的模式切换条件;
控制提升所述车辆的行驶档位,以及在所述行驶档位提升完毕后,控制所述车辆切换驱动模式。
根据本公开的一个实施例,所述识别车辆的驱动模式符合由电机驱动模式切换为发动机驱动模式的模式切换条件,包括:
获取所述车辆中油门踏板的当前开度,识别所述当前开度大于预设开度阈值,确定所述车辆符合所述模式切换条件;和/或
获取所述车辆中动力电池包的当前电量值,识别所述当前电量值小于预设电量阈值,确定所述车辆符合所述模式切换条件;和/或
识别所述车辆中的驱动电机发生故障,确定所述车辆符合所述模式切换条件。
根据本公开的一个实施例,所述控制提升所述车辆的行驶档位,包括:
获取在所述发动机驱动模式下所述车辆的目标档位,以及将所述车辆的当前档位切换至所述目标档位,其中,所述当前档位低于所述目标档位。
根据本公开的一个实施例,所述获取在所述发动机驱动模式下所述车辆的目标档位,包括:
获取所述车辆的当前行驶速度;
获取所述车辆中发动机的最优转速;
根据所述当前行驶速度和所述最优转速,确定所述目标档位。
根据本公开的一个实施例,所述根据所述当前行驶速度和所述最优转速,确定所述目标档位,包括:
根据所述当前行驶速度和所述最优转速,确定所述车辆中变速器的传动比;
根据所述变速器的传动比,查询预先设定的变速器的传动比与车辆的档位之间的映射关系表,得到所述目标档位。
根据本公开的一个实施例,所述获取所述车辆中发动机的最优转速,包括:
获取所述车辆的身份标识;
根据所述身份标识,查询预先设定的车辆的身份标识与发动机的转速之间的映射关系表,得到所述最优转速。
根据本公开的一个实施例,所述控制所述车辆切换驱动模式,包括:
控制所述车辆中的发动机启动,以及控制所述车辆中的驱动电机关闭。
根据本公开的一个实施例,所述控制所述车辆中的发动机启动之后,还包括:
控制所述车辆中的离合器按照预设速率接合。
本公开实施例提供的车辆的控制方法,在车辆的驱动模式切换时,预先提升车辆的行驶档位,以降低车辆切换驱动模式时发动机的目标转速,从而降低了发动机启动时的转速与发动机的目标转速之间的转速差,消除车辆进行驱动模式切换时发动机的转速急剧拉升的过程,使得发动机转速变化过程中产生的噪声较低,进而改善了车辆的NVH性能,提升了用户体验。
本公开第二方面实施例提供了一种车辆的控制装置,所述装置包括:
识别模块,用于识别车辆的驱动模式符合由电机驱动模式切换为发动机驱动模式的模式切换条件;
控制模块,用于控制提升所述车辆的行驶档位,以及在所述行驶档位提升完毕后,控制所述车辆切换驱动模式。
根据本公开的一个实施例,所述识别模块,还用于:
获取所述车辆中油门踏板的当前开度,识别所述当前开度大于预设开度阈值,确定所述车辆符合所述模式切换条件;和/或
获取所述车辆中动力电池包的当前电量值,识别所述当前电量值小于预设电量阈值,确定所述车辆符合所述模式切换条件;和/或
识别所述车辆中的驱动电机发生故障,确定所述车辆符合所述模式切换条件。
根据本公开的一个实施例,所述控制模块,还用于:
获取在所述发动机驱动模式下所述车辆的目标档位,以及将所述车辆的当前档位切换至所述目标档位,其中,所述当前档位低于所述目标档位。
根据本公开的一个实施例,所述控制模块,还用于:
获取所述车辆的当前行驶速度;
获取所述车辆中发动机的最优转速;
根据所述当前行驶速度和所述最优转速,确定所述目标档位。
根据本公开的一个实施例,所述控制模块,还用于:
根据所述当前行驶速度和所述最优转速,确定所述车辆中变速器的传动比;
根据所述变速器的传动比,查询预先设定的变速器的传动比与车辆的档位之间的映射关系表,得到所述目标档位。
根据本公开的一个实施例,所述控制模块,还用于:
获取所述车辆的身份标识;
根据所述身份标识,查询预先设定的车辆的身份标识与发动机的转速之间的映射关系表,得到所述最优转速。
根据本公开的一个实施例,所述控制模块,还用于:
控制所述车辆中的发动机启动,以及控制所述车辆中的驱动电机关闭。
根据本公开的一个实施例,所述控制模块,还用于:
控制所述车辆中的离合器按照预设速率接合。
本公开实施例提供的车辆的控制装置,在车辆的驱动模式切换时,预先提升车辆的行驶档位,以降低车辆切换驱动模式时发动机的目标转速,从而降低了发动机启动时的转速与发动机的目标转速之间的转速差,消除车辆进行驱动模式切换时发动机的转速急剧拉升的过程,使得发动机转速变化过程中产生的噪声较低,进而改善了车辆的NVH性能,提升了用户体验。
本公开第三方面实施例提供了一种车辆,包括:如第三方面中所述的车辆的控制装置。
本公开第四方面实施例提供了一种电子设备,包括存储器、处理器;
其中,处理器通过读取存储器中存储的可执行程序代码来运行与可执行程序代码对应的程序,以用于实现第一方面中的车辆的控制方法。
本公开第五方面实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现第一方面中的车辆的控制方法。
附图说明
图1是本公开公开的一个实施例的车辆的控制方法的流程示意图;
图2是本公开公开的一个实施例的车辆的控制方法中确定车辆符合由电机驱动模式切换为发动机驱动模式的模式切换条件的步骤示意图;
图3是本公开公开的另一个实施例的车辆的控制方法中确定车辆符合由电机驱动模式切换为发动机驱动模式的模式切换条件的步骤示意图;
图4是本公开公开的又一个实施例的车辆的控制方法中确定车辆符合由电机驱动模式切换为发动机驱动模式的模式切换条件的步骤示意图;
图5是本公开公开的一个实施例的车辆的控制方法中控制提升车辆的行驶档位的步骤示意图;
图6是本公开公开的一个实施例的车辆的控制方法中根据车辆的当前行驶速度来确定目标档位的步骤示意图;
图7是本公开公开的一个实施例的车辆的控制方法中根据变速器的传动比确定目标档位的步骤示意图;
图8是本公开公开的一个实施例的车辆的控制装置的结构示意图;
图9是本公开公开的一个实施例的车辆的结构示意图;
图10是本公开公开的一个实施例的电子设备的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图描述本公开实施例的车辆及其控制方法与装置。
图1为本公开公开的一个实施例的车辆的控制方法的流程示意图。如图1所示,该方法具体包括以下步骤:
S101、识别车辆的驱动模式符合由电机驱动模式切换为发动机驱动模式的模式切换条件。
具体地,本实施例中,车辆的驱动模式包括电机驱动模式和发动机驱动模式。当车辆的驱动模式为电机驱动模式时,主要是利用车辆中的驱动电机驱动车辆行驶;当车辆的驱动模式为发动机驱动模式时,主要是利用车辆中的发动机驱动车辆行驶。其中,车辆的驱动模式可以在电机驱动模式与发动机驱动模式间进行切换,以满足车辆的动力需求。
作为一种可能的实现方式,由于驱动电机所能提供的驱动力往往较低,因此可以根据用户所期望的驱动力确定车辆是否符合由电机驱动模式切换为发动机驱动模式的模式切换条件。如图2所示,包括以下步骤:
S201、获取车辆中油门踏板的当前开度。
具体地,车辆中设置有用于检测油门踏板位置的位置传感器,可以利用该位置传感器检测油门踏板的当前开度。
S202、识别当前开度大于预设开度阈值,确定车辆符合模式切换条件。
具体地,将油门踏板的当前开度与预设开度阈值进行比对。如果当前开度大于预 设开度阈值,则表明用户所期望的车辆的驱动力较高,此时,则需要对车辆的模式进行切换,即确定车辆符合模式切换条件。而如果当前开度小于或等于预设开度阈值,则表明用户所期望的车辆的驱动力并未超出驱动电机所能提供的驱动力,此时,则不需要对车辆的模式进行切换,即确定车辆不符合模式切换条件。
作为另一种可能的实现方式,车辆中的动力电池包是驱动电机的能量来源,当动力电池包的电量过低时,则驱动电机将难以继续为车辆提供驱动力,此时则需要使用发动机为车辆提供驱动力,因此,可以根据动力电池包的电量值确定车辆是否符合由电机驱动模式切换为发动机驱动模式的模式切换条件。如图3所示,包括以下步骤:
S301、获取车辆中动力电池包的当前电量值。
具体地,车辆中设置有用于检测动力电池包电量的电量传感器,可以利用该电量传感器检测动力电池包的当前电量值。
S302、识别当前电量值小于预设电量阈值,确定车辆符合模式切换条件。
具体地,将动力电池包的当前电量值与预设电量阈值进行比对。如果当前电量值小于预设电量阈值,则表明动力电池包的当前电量值过低,驱动电机难以继续为车辆提供驱动力,需要使用发动机为车辆提供驱动力,此时,则需要对车辆的模式进行切换,即确定车辆符合模式切换条件。而如果当前电量值大于或等于预设电量阈值,则表明动力电池包能够为驱动电机提供足够的能量,使得驱动电机能够继续为车辆提供驱动力,并不需要使用发动机为车辆提供驱动力,此时,则不需要对车辆的模式进行切换,即确定车辆不符合模式切换条件。
作为又一种可能的实现方式,车辆中的驱动电机发生故障时,驱动电机将难以继续为车辆提供驱动力,此时则需要使用发动机为车辆提供驱动力,因此,可以根据驱动电机的运行状态确定车辆是否符合由电机驱动模式切换为发动机驱动模式的模式切换条件。如图4所示,包括以下步骤:
S401、识别车辆中的驱动电机发生故障。
具体地,可以对驱动电机的运行参数进行检测,并将检测到的运行参数与预先标定的运行参数进行比对,当两者不匹配时,则确定驱动电机发生了故障。例如,可以利用电流检测电路实时检测驱动电机的工作电流,当驱动电机的工作电流与预先标定的工作电流不匹配时,表明驱动电机的工作电流出现异常,此时则可以确定驱动电机发生了故障。
S402、确定车辆符合模式切换条件。
具体地,在驱动电机发生故障时,驱动电机将难以继续为车辆提供驱动力,此时则需要使用发动机为车辆提供驱动力,即需要对车辆的模式进行切换,也就是说此时可以确定车辆符合模式切换条件。
S102、控制提升车辆的行驶档位,以及在行驶档位提升完毕后,控制车辆切换驱动模式。
具体地,在识别出车辆符合模式切换条件后,如果立即控制车辆切换驱动模式,那么在发动机启动时,由于发动机启动时的转速较低,而为了匹配车辆的实际行驶速度,发动机将会急剧提高其自身的转速,这就使得发动机的转速将急剧拉升,进而导致发动机产生的噪音增大,影响车辆的NVH性能,降低了用户体验;此外,发动机的转速急剧拉升时也将增加车辆的油耗,降低了车辆的经济性。
因此,为了改善车辆的NVH性能,本实施例中,在控制车辆切换驱动模式前,控制提升车辆的行驶档位,以降低车辆中变速器的传动比,由于变速器的传动比与发动机的转速成正比,这就使得车辆切换驱动模式时发动机的目标转速得到了降低,从而在控制车辆切换驱动模式时降低了发动机启动时的转速与发动机的目标转速之间的转速差,消除了发动机的转速急剧拉升的过程,使得发动机转速变化过程中产生的噪声较低,进而改善了车辆的NVH性能,提升了用户体验。此外,由于此时发动机的转速拉升平稳,这就使得车辆的油耗也不会大幅增加,提升了车辆的经济性。
综上所述,本公开实施例提供的车辆的控制方法,在车辆的驱动模式切换时,预先提升车辆的行驶档位,以降低车辆切换驱动模式时发动机的目标转速,从而降低了发动机启动时的转速与发动机的目标转速之间的转速差,消除车辆进行驱动模式切换时发动机的转速急剧拉升的过程,使得发动机转速变化过程中产生的噪声较低,进而改善了车辆的NVH性能,提升了用户体验。
在一些实施例中,控制提升车辆的行驶档位时,可以先确定车辆的目标档位,再将车辆的当前档位切换至目标档位。如图5所示,包括以下步骤:
S501、获取在发动机驱动模式下车辆的目标档位。
具体地,为了使车辆的目标档位与车辆的行驶速度相匹配,以提升车辆的行驶稳定性,本实施例中可以根据车辆的当前行驶速度来确定目标档位。如图6所示,包括以下步骤:
S601、获取车辆的当前行驶速度。
一般地,可以利用车辆中的速度传感器来获取车辆的当前行驶速度。
S602、获取车辆中发动机的最优转速。
一般地,当车辆不同时,车辆中预先标定的发动机的最优转速往往也不同,因此,可以根据车辆的身份标识来确定发动机的最优转速。
可选地,可以根据车辆中预先存储的车辆的信息,获取车辆的身份标识,然后再利用车辆的身份标识,查询预先设定的车辆的身份标识与发动机的转速之间的映射关系表,得到最优转速。应当理解的是,车辆的身份标识与发动机的转速之间的映射关系表可以存储于车辆中,也可以存储于服务器中,具体可根据情况而定,在此不做限定。
S603、根据当前行驶速度和最优转速,确定目标档位。
具体地,确定出当前行驶速度和最优转速后,就可以根据当前行驶速度、最优转速和目标档位之间的映射关系,确定出目标档位。
可选地,为了提升确定目标档位的准确度,可以先根据当前行驶速度和最优转速确定车辆中变速器的传动比,再根据变速器的传动比,确定目标档位。如图7所示,包括以下步骤:
S701、根据当前行驶速度和最优转速,确定车辆中变速器的传动比。
一般地,可以利用行驶速度、最优转速和变速器的传动比之间的数学关系,确定变速器的传动比。其中,行驶速度、最优转速和变速器的传动比之间的数学关系为:
V=(W/n)*60*2π*r/1000
其中,V为行驶速度,W为最优转速,n为变速器的传动比,r为车辆中驱动轮的半径。
S702、根据变速器的传动比,查询预先设定的变速器的传动比与车辆的档位之间的映射关系表,得到目标档位。
一般地,确定出变速器的传动比,就可以利用变速器的传动比查询预先设定的变速器的传动比与车辆的档位之间的映射关系表,得到目标档位。
S502、将车辆的当前档位切换至目标档位。
具体地,确定出在发动机驱动模式下车辆的目标档位后,将可以将车辆的当前档位切换至目标档位。应当理解的是,本实施例中,当前档位低于目标档位。
在一些实施例中,在控制车辆切换驱动模式时,由于此时车辆中的驱动电机难以继续为车辆提供驱动力,因此,此时可以控制车辆中的驱动电机关闭,以节省能源;以及控制车辆中的发动机启动,以利用发动机为车辆提供动力,从而保证车辆正常行驶。
进一步地,在在车辆中的发动机启动后,还可以控制车辆中的离合器按照预设速 率接合,以使变速器能够平稳接合,提升车辆的稳定性。
为了实现上述实施例中的方法,本公开还提供了一种车辆的控制装置。
图8是本公开公开的一个实施例的车辆的控制装置的结构示意图,如图8所示,该车辆的控制装置100包括:
识别模块11,用于识别车辆的驱动模式符合由电机驱动模式切换为发动机驱动模式的模式切换条件;
控制模块12,用于控制提升车辆的行驶档位,以及在行驶档位提升完毕后,控制车辆切换驱动模式。
进一步地,识别模块11,还用于:
获取车辆中油门踏板的当前开度,识别当前开度大于预设开度阈值,确定车辆符合模式切换条件;和/或
获取车辆中动力电池包的当前电量值,识别当前电量值小于预设电量阈值,确定车辆符合模式切换条件;和/或
识别车辆中的驱动电机发生故障,确定车辆符合模式切换条件。
进一步地,控制模块12,还用于:
获取在发动机驱动模式下车辆的目标档位,以及将车辆的当前档位切换至目标档位,其中,当前档位低于目标档位。
进一步地,控制模块12,还用于:
获取车辆的当前行驶速度;
获取车辆中发动机的最优转速;
根据当前行驶速度和最优转速,确定目标档位。
进一步地,控制模块12,还用于:
根据当前行驶速度和最优转速,确定车辆中变速器的传动比;
根据变速器的传动比,查询预先设定的变速器的传动比与车辆的档位之间的映射关系表,得到目标档位。
进一步地,控制模块12,还用于:
获取车辆的身份标识;
根据身份标识,查询预先设定的车辆的身份标识与发动机的转速之间的映射关系表,得到最优转速。
进一步地,控制模块12,还用于:
控制车辆中的发动机启动,以及控制车辆中的驱动电机关闭。
进一步地,控制模块12,还用于:
控制车辆中的离合器按照预设速率接合。
应当理解的是,上述装置用于执行上述实施例一中的方法,装置中相应的程序模块,其实现原理和技术效果与上述方法中的描述类似,该装置的工作过程可参考上述方法中的对应过程,此处不再赘述。
综上所述,本公开实施例提供的车辆的控制装置,在车辆的驱动模式切换时,预先提升车辆的行驶档位,以降低车辆切换驱动模式时发动机的目标转速,从而降低了发动机启动时的转速与发动机的目标转速之间的转速差,消除车辆进行驱动模式切换时发动机的转速急剧拉升的过程,使得发动机转速变化过程中产生的噪声较低,进而改善了车辆的NVH性能,提升了用户体验。
为了实现上述实施例,本公开实施例提供了一种车辆,如图9所示,该车辆包括上述实施例中的车辆的控制装置100。
为了实现上述实施例,本公开实施例提供了一种电子设备,如图10所示,该电子设备200包括存储器21、处理器22;其中,所述处理器22通过读取存储器21中存储的可执行程序代码来运行与可执行程序代码对应的程序,以用于实现上文实施例中的方法的各个步骤。
为了实现上述实施例,本公开实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上文实施例中的方法的各个步骤。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固 定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (15)

  1. 一种车辆的控制方法,其特征在于,所述方法包括:
    识别车辆的驱动模式符合由电机驱动模式切换为发动机驱动模式的模式切换条件;
    控制提升所述车辆的行驶档位,以及在所述行驶档位提升完毕后,控制所述车辆切换驱动模式。
  2. 根据权利要求1所述的方法,其特征在于,所述识别车辆的驱动模式符合由电机驱动模式切换为发动机驱动模式的模式切换条件,包括:
    获取所述车辆中油门踏板的当前开度,识别所述当前开度大于预设开度阈值,确定所述车辆符合所述模式切换条件;和/或
    获取所述车辆中动力电池包的当前电量值,识别所述当前电量值小于预设电量阈值,确定所述车辆符合所述模式切换条件;和/或
    识别所述车辆中的驱动电机发生故障,确定所述车辆符合所述模式切换条件。
  3. 根据权利要求1所述的方法,其特征在于,所述控制提升所述车辆的行驶档位,包括:
    获取在所述发动机驱动模式下所述车辆的目标档位,以及将所述车辆的当前档位切换至所述目标档位,其中,所述当前档位低于所述目标档位。
  4. 根据权利要求3所述的方法,其特征在于,所述获取在所述发动机驱动模式下所述车辆的目标档位,包括:
    获取所述车辆的当前行驶速度;
    获取所述车辆中发动机的最优转速;
    根据所述当前行驶速度和所述最优转速,确定所述目标档位。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述当前行驶速度和所述最优转速,确定所述目标档位,包括:
    根据所述当前行驶速度和所述最优转速,确定所述车辆中变速器的传动比;
    根据所述变速器的传动比,查询预先设定的变速器的传动比与车辆的档位之间的 映射关系表,得到所述目标档位。
  6. 根据权利要求4所述的方法,其特征在于,所述获取所述车辆中发动机的最优转速,包括:
    获取所述车辆的身份标识;
    根据所述身份标识,查询预先设定的车辆的身份标识与发动机的转速之间的映射关系表,得到所述最优转速。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述控制所述车辆切换驱动模式,包括:
    控制所述车辆中的发动机启动,以及控制所述车辆中的驱动电机关闭。
  8. 根据权利要求7所述的方法,其特征在于,所述控制所述车辆中的发动机启动之后,还包括:
    控制所述车辆中的离合器按照预设速率接合。
  9. 一种车辆的控制装置,其特征在于,所述装置包括:
    识别模块,用于识别车辆的驱动模式符合由电机驱动模式切换为发动机驱动模式的模式切换条件;
    控制模块,用于控制提升所述车辆的行驶档位,以及在所述行驶档位提升完毕后,控制所述车辆切换驱动模式。
  10. 根据权利要求9所述的装置,其特征在于,所述识别模块,还用于:
    获取所述车辆中油门踏板的当前开度,识别所述当前开度大于预设开度阈值,确定所述车辆符合所述模式切换条件;和/或
    获取所述车辆中动力电池包的当前电量值,识别所述当前电量值小于预设电量阈值,确定所述车辆符合所述模式切换条件;和/或
    识别所述车辆中的驱动电机发生故障,确定所述车辆符合所述模式切换条件。
  11. 根据权利要求9所述的装置,其特征在于,所述控制模块,还用于:
    获取在所述发动机驱动模式下所述车辆的目标档位,以及将所述车辆的当前档位 切换至所述目标档位,其中,所述当前档位低于所述目标档位。
  12. 根据权利要求11所述的装置,其特征在于,所述控制模块,还用于:
    获取所述车辆的当前行驶速度;
    获取所述车辆中发动机的最优转速;
    根据所述当前行驶速度和所述最优转速,确定所述目标档位。
  13. 根据权利要求12所述的装置,其特征在于,所述控制模块,还用于:
    根据所述当前行驶速度和所述最优转速,确定所述车辆中变速器的传动比;
    根据所述变速器的传动比,查询预先设定的变速器的传动比与车辆的档位之间的映射关系表,得到所述目标档位。
  14. 根据权利要求13所述的装置,其特征在于,所述控制模块,还用于:
    获取所述车辆的身份标识;
    根据所述身份标识,查询预先设定的车辆的身份标识与发动机的转速之间的映射关系表,得到所述最优转速。
  15. 一种车辆,其特征在于,包括如权利要求9-14中任一项权利要求所述的车辆的控制装置。
PCT/CN2020/138538 2019-12-24 2020-12-23 车辆及其控制方法与装置 WO2021129644A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911348944.7 2019-12-24
CN201911348944.7A CN112208514A (zh) 2019-12-24 2019-12-24 车辆及其控制方法与装置

Publications (1)

Publication Number Publication Date
WO2021129644A1 true WO2021129644A1 (zh) 2021-07-01

Family

ID=74048215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138538 WO2021129644A1 (zh) 2019-12-24 2020-12-23 车辆及其控制方法与装置

Country Status (2)

Country Link
CN (1) CN112208514A (zh)
WO (1) WO2021129644A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114763132A (zh) * 2021-07-21 2022-07-19 长城汽车股份有限公司 混合动力车辆的控制方法、装置、介质和设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101618718A (zh) * 2008-06-30 2010-01-06 比亚迪股份有限公司 一种混合动力系统及其控制方法
JP2010006152A (ja) * 2008-06-25 2010-01-14 Toyota Motor Corp ハイブリッド車の駆動装置
CN102182822A (zh) * 2011-04-21 2011-09-14 潍柴动力股份有限公司 换档提示设备和方法
JP2012245833A (ja) * 2011-05-26 2012-12-13 Fuji Heavy Ind Ltd ハイブリッド車両の制御装置
CN106335500A (zh) * 2016-10-08 2017-01-18 北京新能源汽车股份有限公司 一种汽车加速过程的控制方法、装置及混合动力汽车
CN106515709A (zh) * 2015-09-10 2017-03-22 现代自动车株式会社 用于控制混合电动车辆的行驶模式间转换的系统和方法
CN106864448A (zh) * 2015-12-10 2017-06-20 现代自动车株式会社 控制包括双离合变速器的混合型电动车辆的装置及方法
CN108528426A (zh) * 2018-05-15 2018-09-14 舍弗勒技术股份两合公司 混合动力汽车的控制方法及控制装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11270668A (ja) * 1998-03-20 1999-10-05 Nissan Motor Co Ltd ハイブリッド車両の駆動制御装置
US6364807B1 (en) * 2000-06-30 2002-04-02 Ford Global Technologies, Inc. Control strategy for a hybrid powertrain for an automotive vehicle
JP4466514B2 (ja) * 2005-09-08 2010-05-26 日産自動車株式会社 ハイブリッド車両のエンジン始動制御装置
JP5742124B2 (ja) * 2010-07-21 2015-07-01 日産自動車株式会社 ハイブリッド車両の制御装置
US9545912B2 (en) * 2012-11-01 2017-01-17 Nissan Motor Co., Ltd. Hybrid vehicle mode-switching control device
JP6003592B2 (ja) * 2012-12-04 2016-10-05 トヨタ自動車株式会社 車両の制御装置
JP6106215B2 (ja) * 2015-06-18 2017-03-29 富士重工業株式会社 車両用制御装置
KR102331762B1 (ko) * 2017-06-08 2021-11-26 현대자동차주식회사 하이브리드 자동차 및 그를 위한 변속 패턴 제어 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006152A (ja) * 2008-06-25 2010-01-14 Toyota Motor Corp ハイブリッド車の駆動装置
CN101618718A (zh) * 2008-06-30 2010-01-06 比亚迪股份有限公司 一种混合动力系统及其控制方法
CN102182822A (zh) * 2011-04-21 2011-09-14 潍柴动力股份有限公司 换档提示设备和方法
JP2012245833A (ja) * 2011-05-26 2012-12-13 Fuji Heavy Ind Ltd ハイブリッド車両の制御装置
CN106515709A (zh) * 2015-09-10 2017-03-22 现代自动车株式会社 用于控制混合电动车辆的行驶模式间转换的系统和方法
CN106864448A (zh) * 2015-12-10 2017-06-20 现代自动车株式会社 控制包括双离合变速器的混合型电动车辆的装置及方法
CN106335500A (zh) * 2016-10-08 2017-01-18 北京新能源汽车股份有限公司 一种汽车加速过程的控制方法、装置及混合动力汽车
CN108528426A (zh) * 2018-05-15 2018-09-14 舍弗勒技术股份两合公司 混合动力汽车的控制方法及控制装置

Also Published As

Publication number Publication date
CN112208514A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
JP4066616B2 (ja) 内燃機関の自動始動制御装置及び動力伝達状態検出装置
US10017174B2 (en) Control system and control method of hybrid electric vehicle
KR101566736B1 (ko) 하이브리드 차량의 전부하 모드 제어 장치 및 방법
JP5420154B2 (ja) 電子吸気量制御装置が搭載されたハイブリッド電気自動車のエンジントルク制御方法
WO2021129644A1 (zh) 车辆及其控制方法与装置
JP2016169662A (ja) 車両制御装置
WO2022206074A1 (zh) 电机扭矩过零的参数处理方法、系统及车辆
US20170166197A1 (en) Belt controlling device and method of controlling belt for hybrid vehicle
JP2008137518A (ja) 発電量制御方法
WO2016175221A1 (ja) 車両制御装置
JP4998172B2 (ja) 車両制御装置
JP2016153268A (ja) 駆動制御装置
US8814749B2 (en) Vehicle and control method for vehicle
US20170313315A1 (en) Vehicle control apparatus
CN110053603B (zh) 电动车辆的换档控制方法及装置
JP2018071389A (ja) エンジンの自動停止装置
JP2016078517A (ja) 車両の制御装置
JP2000257656A (ja) 車両の発進制御装置
KR101724491B1 (ko) 마일드 하이브리드 차량의 구동 제어 장치 및 방법
JP4888455B2 (ja) 車両の制御装置および制御方法
JP3537809B2 (ja) ハイブリッド車両
JP2009248811A (ja) ハイブリッド車およびその制御方法
JP2010196579A (ja) エンジン始動装置およびエンジン始動方法
JP7225733B2 (ja) 四輪駆動車両の走行モード制御装置
JP2010163085A (ja) ハイブリッド車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907184

Country of ref document: EP

Kind code of ref document: A1