WO2021129348A1 - 车轮定位方法、系统及电子控制单元、胎压传感器 - Google Patents

车轮定位方法、系统及电子控制单元、胎压传感器 Download PDF

Info

Publication number
WO2021129348A1
WO2021129348A1 PCT/CN2020/133778 CN2020133778W WO2021129348A1 WO 2021129348 A1 WO2021129348 A1 WO 2021129348A1 CN 2020133778 W CN2020133778 W CN 2020133778W WO 2021129348 A1 WO2021129348 A1 WO 2021129348A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire pressure
pressure sensor
wheel
rotation period
abs
Prior art date
Application number
PCT/CN2020/133778
Other languages
English (en)
French (fr)
Inventor
曾锋
罗永良
Original Assignee
深圳市道通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通科技股份有限公司 filed Critical 深圳市道通科技股份有限公司
Publication of WO2021129348A1 publication Critical patent/WO2021129348A1/zh
Priority to US17/806,551 priority Critical patent/US20220314714A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0415Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels
    • B60C23/0416Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels allocating a corresponding wheel position on vehicle, e.g. front/left or rear/right
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • B60C23/0488Movement sensor, e.g. for sensing angular speed, acceleration or centripetal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0447Wheel or tyre mounted circuits
    • B60C23/0455Transmission control of wireless signals
    • B60C23/0462Structure of transmission protocol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • B60C23/0489Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors for detecting the actual angular position of the monitoring device while the wheel is turning

Definitions

  • This application relates to the technical field of automobile wheel alignment, in particular to a wheel alignment method, system, electronic control unit, and tire pressure sensor.
  • Tire Pressure Monitoring System is a wireless transmission technology that uses high-sensitivity miniature wireless sensor devices fixed in the car tires to apply pressure, temperature, etc., to the car's tires while driving or stationary. The parameters are monitored in real time to ensure that the pressure and temperature of the tires are maintained within the standard range, which can reduce the probability of tire blowouts and tire destruction, and reduce fuel consumption and damage to vehicle components.
  • tire positioning in the prior art is usually based on the signal strength received from the sensor in the tire. This method requires high antenna consistency between the sensor and the receiver. When the antenna performance changes, positioning errors are likely to occur.
  • the technical problem to be solved by the present invention is to provide a wheel positioning method, system, electronic control unit, and tire pressure sensor to solve the technical problem of low accuracy in wheel positioning.
  • an embodiment of the present invention provides a wheel alignment method applied to an electronic control unit, the electronic control unit is installed in an automobile, and each wheel of the automobile is provided with a tire pressure sensor and an ABS sensor, the method include:
  • the electronic control unit includes a tire pressure ECU and an ABS control unit, and the ABS control unit is respectively connected to the tire pressure ECU and the ABS sensor, and the ABS sensor according to each wheel
  • the gear pulse information of any ABS sensor determines the rotation period of the wheels of the car, including:
  • the rotation period of the wheels of the automobile is acquired by the ABS control unit, wherein the rotation period of the wheels is calculated by the ABS control unit based on the gear pulse information of any one of the ABS sensors of each wheel Obtained; or,
  • the tire pressure ECU obtains the gear pulse information of any one of the ABS sensors of each wheel through the ABS control unit, and calculates the rotation period of the wheels of the automobile according to the gear pulse information.
  • the gear pulse information includes a gear scale
  • the calculation of the rotation period of the wheels of the automobile according to the gear pulse information includes:
  • the judging whether the difference between the rotation period of the tire pressure sensor and the rotation period of the automobile wheel is within a preset range includes:
  • the method further includes:
  • the obtained gear pulse information is synchronized and matched according to the lost data frame, so that the time when the gear pulse information is obtained is the same as the time when the RF data is received. Match at all times.
  • an embodiment of the present invention provides a wheel positioning method applied to a tire pressure sensor, and the method includes:
  • the rotation angle is the preset target angle
  • the determining the rotation period of the tire pressure sensor includes:
  • the detection time corresponding to the 360 degrees is determined according to the detection time corresponding to the 0 degrees
  • the rotation period of the tire pressure sensor is calculated at the detection time corresponding to the 360 degrees.
  • the method before the step of obtaining the rotation angle of the tire pressure sensor, the method further includes:
  • the tire pressure sensor is periodically awakened, and the rotation angle of the tire pressure sensor is acquired when the tire pressure sensor is in an awake state.
  • the acquiring the rotation angle of the tire pressure sensor includes:
  • the rotation angle of the tire pressure sensor is obtained according to the gravitational acceleration component of the tire pressure sensor on the X axis or the Z axis.
  • the obtaining the rotation angle of the tire pressure sensor according to the gravitational acceleration component of the tire pressure sensor on the X axis or the Z axis includes:
  • the sampled X-axis gravitational acceleration component or the Z-axis gravitational acceleration component is converted into the rotation angle of the tire pressure sensor.
  • the performing filtering processing on the obtained waveform includes:
  • a small-amplitude acceleration noise filtering process is performed on the first waveform.
  • the calculating the sampling rate of the X-axis gravitational acceleration component or the Z-axis gravitational acceleration component after the filtering process includes:
  • fsample 360 0 /(a ⁇ Tcircle), where fsample is the sampling rate, and a is the maximum angular deviation value allowed by the measurement, Tcircle is the wheel rotation cycle.
  • the method further includes:
  • the method further includes:
  • an embodiment of the present invention provides an electronic control unit, including: at least one processor; and, a memory communicatively connected to the at least one processor; wherein the memory stores the memory that can be processed by the at least one processor The instructions are executed by the at least one processor, so that the at least one processor can execute the wheel alignment method applied to the electronic control unit as described above.
  • an embodiment of the present invention provides a tire pressure sensor, including: at least one processor; and, a memory communicatively connected to the at least one processor; The instructions are executed by the tire pressure sensor, and the instructions are processed by the at least one processor to enable the at least one processor to execute the wheel alignment method applied to the tire pressure sensor as described above.
  • an embodiment of the present invention provides a wheel alignment system, including: an electronic control unit, a tire pressure sensor, and an ABS sensor, the electronic control unit is respectively connected to the tire pressure sensor and the ABS sensor;
  • the electronic control unit is used for:
  • Receive RF data sent by the tire pressure sensor where the RF data includes the rotation period of the tire pressure sensor; acquire gear pulse information sent by the ABS sensor; determine the rotation period of the automobile wheels according to the gear pulse information; determine Whether the difference between the rotation period of the tire pressure sensor and the rotation period of the automobile wheel is within a preset range; if so, determine the target ABS sensor installed on the same wheel as the tire pressure sensor to determine the target ABS sensor according to the target ABS The position of the sensor determines the position of the same wheel;
  • the tire pressure sensor is used for:
  • the ABS sensor is used for:
  • the wheel alignment method, system, electronic control unit, and tire pressure sensor provided by the embodiments of the present invention send RF data when the tire pressure sensor rotates to a preset target angle, and the RF data includes tire pressure.
  • the rotation period of the sensor at the same time, the gear pulse information of the automobile wheel is obtained through the ABS sensor, and the rotation period of the automobile wheel is obtained according to the gear pulse information.
  • the target ABS sensor installed on the same wheel as the tire pressure sensor is determined according to the tire pressure sensor, so that The position of the same wheel is determined according to the target ABS sensor.
  • the other wheels of the automobile can also be positioned in the manner described above.
  • the wheel positioning method, system, electronic control unit, and tire pressure sensor provided by the embodiments of the present invention improve the accuracy of wheel positioning.
  • Figure 1 is a schematic structural diagram of a wheel alignment system provided by an embodiment of the present invention.
  • FIG. 2 is a structural block diagram of the electronic control unit 10
  • FIG. 3 is a structural block diagram of the tire pressure sensor 20
  • Figure 4 is a flowchart of a wheel alignment method provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the relationship between gear pulse count and RF reception times according to an embodiment of the present invention.
  • Figure 6a is a schematic diagram of an RF data frame provided by an embodiment of the present invention.
  • Figure 6b is a schematic diagram of another RF data frame provided by an embodiment of the present invention.
  • FIG. 7 is a flowchart of a wheel alignment method according to another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the change process of the gravitational acceleration component of the tire pressure sensor on the x-axis and the z-axis according to an embodiment of the present invention
  • FIG. 9 is a flowchart of a method for obtaining a rotation angle of a tire pressure sensor in a wheel alignment method according to another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the relationship between the rotation angle of the sensor and the gravitational acceleration component provided by an embodiment of the present invention
  • FIG. 11 is a schematic diagram of a waveform of a gravity acceleration component before the first filtering according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a waveform of a gravity acceleration component after the first filtering provided by an embodiment of the present invention
  • FIG. 13 is a schematic diagram of a waveform of a gravity acceleration component after the second filtering provided by an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a gravity acceleration component at a high sampling rate according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a gravity acceleration component at a low sampling rate according to an embodiment of the present invention.
  • Fig. 16 is a schematic structural diagram of an automobile provided by an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a wheel alignment system provided by an embodiment of the present invention.
  • the system 100 includes: an electronic control unit 10, a tire pressure sensor 20, and an ABS sensor 30.
  • the electronic control unit 10 is connected to the tire pressure sensor 20 and the ABS sensor 30 respectively.
  • the positioning principle of the wheel positioning system 100 mainly includes: the tire pressure sensor 20 sends an RF signal at one or more specific angles, and after the electronic control unit 10 receives the RF signal, the electronic The control unit 10 obtains the rotation period, rotation angle, tire pressure, tire temperature, sensor ID and other information of the tire pressure sensor 20 from the RF signal. At the same time, the electronic control unit 10 obtains wheel gear pulse information from the ABS sensor 30, and calculates the rotation period of the vehicle wheel based on the gear pulse information. Since the tire pressure sensor 20 and the wheel at its corresponding position rotate together, in general, the rotation period of the tire pressure sensor 20 is the same as or similar to the rotation period of the automobile wheel detected in real time.
  • the target ABS sensor mounted on the same wheel as the tire pressure sensor is determined to be based on The position of the target ABS sensor determines the position of the same wheel.
  • each module in the system 100 will be described in detail below.
  • the electronic control unit 10 may include: a processor 101, a memory 102, a receiving antenna 103, and a display screen 104.
  • the processor 101, the memory 102, the receiving antenna 103, and the display screen 104 establish a communication connection between any two through a bus or other connection methods.
  • the processor 101 is any type of single-threaded or multi-threaded processor with one or more processing cores. It serves as the control core of the electronic control unit 10 and is used to obtain data, perform logical operation functions, and issue Operation processing result. There may be one or more processors 101. One processor 101 is taken as an example in FIG. 2.
  • the processor 101 includes: a tire pressure ECU 1011 and an ABS control unit 1012.
  • the tire pressure ECU 1011 can be used as the control core of the processor 101, which is used to obtain data, perform logical operation functions, and issue arithmetic processing results.
  • the tire pressure ECU 1011 can obtain ABS sensor detection through the ABS control unit 1012.
  • the gear pulse information the rotation period and rotation angle of the automobile wheels are calculated according to the gear pulse information.
  • the ABS control unit 1012 is one of the components of the automobile anti-lock braking system (ABS).
  • the basic working principle of the ABS system is: the wheel speed signals of the four wheels are collected by the rotational speed sensors installed on the wheels and sent to the ABS control unit 1012 to calculate the wheel speed of each wheel, and then calculate the deceleration and deceleration of the vehicle.
  • the slip rate of the wheel may be used to obtain the gear pulse information of the vehicle wheels from the ABS sensor 30 and send the gear pulse information to the tire pressure ECU 1011.
  • the ABS control unit 1012 may also calculate the rotation period of the automobile wheels based on the gear pulse information obtained from the ABS sensor 30, and send the rotation period of the automobile wheels to the tire pressure ECU 1011.
  • the ABS control unit 1012 can calculate the rotation angle and rotation period of the wheel according to the gear scale.
  • the memory 102 is used as a non-volatile computer-readable storage medium, such as at least one magnetic disk storage device, a flash memory device, a distributed storage device remotely provided with respect to the processor 101, or other non-volatile solid-state storage devices.
  • the memory 102 may have a program storage area for storing non-volatile software programs, non-volatile computer executable programs, and modules, which are called by the processor 101 to make the processor 101 execute one or more method steps, for example, execute Figure 4 shows the method steps.
  • the memory 102 may also have a data storage area for storing the operation processing result issued and output by the processor 101.
  • the receiving antenna 103 is used to receive the RF data sent by the tire pressure sensor 20, and send the RF data to the processor 101, so that the processor 101 executes a corresponding control command according to the RF data.
  • the receiving antenna 103 may be an RF antenna.
  • the display screen 104 is an output device for displaying corresponding data to the user in a specific form. It can be any type of display, such as an LED display, a CRT display or an LCD display.
  • the display screen 104 receives the display information output by the processor 101, and correspondingly converts it into image information and provides it to the user.
  • the display screen 104 may display wheel positioning result information, pressure information, temperature information, etc., so that the user can intuitively understand the relevant information of each tire through the display screen 104.
  • FIG. 2 is only used as an example of the electronic control unit 10 and is not used to limit the structure of the tire pressure sensor 20.
  • the tire pressure ECU 1011 obtains the RF data sent by the tire pressure sensor 20 through the receiving antenna 103, and obtains the rotation period of the tire pressure sensor 20 according to the RF data.
  • the tire pressure ECU 1011 is also used to obtain the current rotation period of the vehicle wheels from the ABS control unit 1012.
  • the current rotation period of the automobile wheel may be the rotation period calculated by the ABS control unit 1012 according to the gear pulse information collected by the ABS sensor 30, and the ABS control unit 1012 sends the rotation period to the Tire pressure ECU1011.
  • the current rotation period of the automobile wheel may also be that the tire pressure ECU 1011 obtains the gear pulse information collected by the ABS sensor 30 through the ABS control unit 1012, and then calculates the current rotation period of the automobile wheel according to the gear pulse information. Rotation period. After obtaining the rotation period of the tire pressure sensor 20 and the current rotation period of the automobile wheels, the tire pressure ECU 1011 is used to determine the difference between the rotation period of the tire pressure sensor 20 and the current rotation period of the automobile wheels. Whether the difference is within a preset range; if so, determine the target ABS sensor installed on the same wheel as the tire pressure sensor 20 to determine the position of the same wheel according to the position of the target ABS sensor.
  • each wheel After determining the ABS sensor corresponding to the wheel, the positioning of the vehicle wheel can be completed according to the ABS sensor. In the same way, it can be known that other wheels of the automobile can be positioned according to the above method, wherein each wheel is provided with a tire pressure sensor 20 and an ABS sensor 30.
  • the tire pressure sensor 20 may include a processor 201, a memory 202, a timer 203, an RF transmission circuit 204, a pressure sensor 205, and an acceleration sensor 206. And a temperature sensor 207.
  • the processor 201 may be connected to the memory 202, the timer 203, the RF transmission circuit 204, the pressure sensor 205, the acceleration sensor 206, and the temperature sensor 207 through a bus or other connections, respectively. Way to establish a communication connection.
  • the processor 201 is any type of single-threaded or multi-threaded processor with one or more processing cores. It serves as the control core of the tire pressure sensor 20 and is used to obtain data, perform logical operation functions, and issue Operation processing result. There may be one or more processors 201, and one processor 201 is taken as an example in FIG. 3.
  • the memory 202 is used as a non-volatile computer-readable storage medium, such as at least one magnetic disk storage device, a flash memory device, a distributed storage device remotely arranged with respect to the processor 201, or other non-volatile solid-state storage devices.
  • the memory 202 may have a program storage area for storing non-volatile software programs, non-volatile computer executable programs, and modules for the processor 201 to call to make the processor 201 perform one or more method steps, for example, execute The method steps shown in Figure 5 and Figure 6.
  • the memory 202 may also have a data storage area for storing the operation processing result issued and output by the processor 201.
  • the timer 203 is used to periodically wake up the tire pressure sensor 20.
  • the tire pressure sensor 20 When the tire pressure sensor 20 is in the wake-up state, it is in the working state, and when the tire pressure sensor 20 is not in operation, it is in the dormant state.
  • the tire pressure sensor 20 may be powered by a button battery, and the wake-up period of the timer 203 may be set according to relevant parameters of the button battery.
  • the RF sending circuit 204 is used to send the RF data signal collected by the tire pressure sensor 20.
  • the pressure sensor 205, the acceleration sensor 206, and the temperature sensor 207 are used to collect pressure, acceleration, and temperature data of automobile tires, respectively.
  • FIG. 3 is only used as an example of the tire pressure sensor 20 and is not used to limit the structure of the tire pressure sensor 20.
  • the tire pressure sensor 20 is used to send out RF data signals when the rotation angle of the tire pressure sensor is a preset target angle.
  • the processor 201 is configured to obtain the rotation angle of the tire pressure sensor 20; determine whether the rotation angle is a preset target angle; if so, send RF data to the electronic control unit 10.
  • the memory 202 may store the currently collected rotation angle information of the tire pressure sensor 20, and store the preset target angle, and so on.
  • the tire pressure sensor 20 may include a plurality of tire pressure sensors, which are respectively arranged at positions corresponding to each tire of an automobile tire.
  • a corresponding tire pressure sensor can also be provided for the spare tire.
  • the ABS sensor 30 is one of the components of the automobile anti-lock braking system.
  • the ABS sensor 30 may be installed at the corresponding position of the automobile wheel.
  • the ABS sensor 30 may include multiple ones, such as the one corresponding to the left front wheel of the automobile.
  • the ABS sensor 30 may be used to collect wheel speed signals, gear pulse information, etc. of the wheels, and transmit the wheel speed signals, gear pulse information, etc. to the ABS control unit 1012.
  • the wheel alignment system provided by the embodiment of the present invention can use the ready-made ABS sensor of the automobile to position the automobile tire, which reduces the cost of the vehicle. In the process of wheel alignment, no additional matching tools are needed, which reduces the threshold of wheel alignment.
  • the step of judging the rotation period of the tire pressure sensor and the real-time rotation period of the car wheel is added during positioning. Only when the two rotation periods meet the preset conditions, will the tire pressure sensor determine its corresponding
  • the ABS sensor detects the position of the vehicle wheel based on the determined ABS sensor.
  • the system can ensure the accuracy of the measurement results and prevent pulse counting even when the measurement algorithm of the sensor fails or the measurement conditions are not met, resulting in positioning errors. The system improves the accuracy of wheel positioning.
  • the wheel alignment system 100 can execute the wheel alignment method provided in the embodiment of the present invention, and has functional modules and beneficial effects corresponding to the execution method.
  • the wheel alignment method provided in the following embodiments.
  • FIG. 4 is a flowchart of a wheel positioning method according to an embodiment of the present invention.
  • This method can be applied to the above-mentioned electronic control unit 10, which can be installed on a car, the car includes a left front wheel, a right front wheel, a left rear wheel, and a right rear wheel, each wheel is provided with a tire pressure sensor And ABS sensor.
  • the method includes:
  • S101 Receive RF data from a tire pressure sensor, where the RF data is sent when the rotation angle of the tire pressure sensor is at a target angle, and the RF data includes the rotation period of the tire pressure sensor.
  • the RF data is data detected by the tire pressure sensor.
  • the RF data may further include a rotation angle of the tire pressure sensor and a sensor ID, and the sensor ID is used to identify the tire pressure sensor.
  • the RF data may also include information such as tire pressure and temperature of the tire detected by the tire pressure sensor.
  • the RF data can be expressed as:
  • the rotation angle of the tire pressure sensor refers to the angle information corresponding to the position of the tire pressure sensor collected at a certain sampling time. For example, as shown in Fig. 8, when the tire pressure sensor (point1) is located at Bottom (directly below), the corresponding rotation angle is 270 degrees.
  • the rotation period of the tire pressure sensor refers to the time difference between any two points that differ by 360 degrees.
  • the rotation period of the tire pressure sensor can be obtained in the following manner.
  • Method 1 According to the formula Calculate the rotation period of the tire pressure sensor, where T is the rotation period of the tire pressure sensor, R is the wheel radius, and Acc is the centripetal acceleration detected by the tire pressure sensor.
  • Manner 2 Determine the detection time when the rotation angle of the tire pressure sensor is 0 degrees, and when the tire pressure sensor rotates from 0 degrees to 360 degrees, the detection time corresponding to the 360 degrees is determined according to the 0 degrees corresponding Calculate the rotation period of the tire pressure sensor at the detection time of and the detection time corresponding to the 360 degrees. It should be noted that in addition to calculating the rotation period of the tire pressure sensor based on the time it takes for the tire pressure sensor to rotate from 0 degrees to 360 degrees, it can also be based on the time it takes for the tire pressure sensor to rotate from N degrees to the next N degrees. Calculate the rotation period of the tire pressure sensor, where N is any angle between 0 degrees and 360 degrees.
  • the target angle can be set in advance. There is no restriction on the specific size of the target angle. It only needs to be able to notify the electronic control unit of the current received RF signal in a specific way, for example: the tire pressure sensor
  • the RF signal is alternately sent at two fixed angles of 0° and 180°.
  • the odd-numbered packet data received by the electronic control unit represents the tire pressure sensor at the 0° position, and the even-numbered packet data represents the tire pressure sensor at the 180° position.
  • the electronic control unit includes a tire pressure ECU and an ABS control unit.
  • the rotation period of the wheels of the car may be calculated by the tire pressure ECU itself based on the gear pulse information collected by the ABS sensor, or it may be It is calculated by the ABS control unit based on the gear pulse information collected by the ABS sensor, and then sent to the tire pressure ECU by the ABS control unit.
  • the gear pulse information may specifically be a gear scale, and the rotation period of the wheels of the automobile can be calculated according to the gear scale.
  • the calculation of the rotation period of the wheels of the automobile according to the gear pulse information includes: obtaining all gear scale information corresponding to a preset sampling depth, wherein the all gear scale information includes each collected gear Scale and the sampling time corresponding to each gear scale; obtain the currently collected gear scale and the first sampling time; according to the currently collected gear scale, query the currently collected gear scale in the all gear scale information Second sampling time corresponding to the same gear scale; calculating the rotation period of the wheel according to the first sampling time and the second sampling time.
  • the sampling depth may be 1 second, that is, all the number of graduations recorded in 1 second before the current time can be saved.
  • the rotation period can be calculated based on the time point obtained by the query and the current time by searching back the time point when the last time scale was 60 according to the total number of scales saved.
  • the rotation angle of the vehicle wheel can also be calculated according to the gear pulse information.
  • the gear pulse information is a gear scale.
  • the rotation period of the wheel of the car determined by the gear pulse information of any one of the ABS sensors of each wheel can be compared with the rotation period of the tire pressure sensor, so as to find out whether the two rotation periods are in ABS sensor within the preset range.
  • the rotation period detected by the tire pressure sensor is generally basically the same as the rotation period of the automobile wheel calculated according to the gear pulse information.
  • the acceleration noise generated may cause the rotation period measured by the tire pressure sensor to be incompletely consistent with the rotation period calculated based on the gear pulse information.
  • the preset range corresponding to the difference may be zero, that is, the rotation period of the tire pressure sensor is the same as the rotation period of the automobile wheel.
  • the preset range corresponding to the difference may also be greater than zero and less than 1, or greater than minus one and less than zero, that is, there is an error between the rotation period of the tire pressure sensor and the rotation period of the automobile wheel. Is a decimal. It should be noted that the preset range may also be other parameter ranges, which is not limited.
  • step S105 is executed. If the difference between the above two rotation periods is not within the preset range, the data detected this time can be discarded, and the above steps S101 to S103 are executed again to obtain a new rotation period parameter, and determine the value of the new rotation period parameter. Whether the difference is within the preset range.
  • step S104 is added, and only when the rotation period measured by the tire pressure sensor is approximately the same as the rotation period measured by the vehicle itself can it be considered as credible data. As a result, the accuracy of the measurement result is ensured, and it is prevented that pulse counting is still performed when the tire pressure sensor measurement algorithm fails or the measurement condition is not met, resulting in positioning errors.
  • S105 Determine a target ABS sensor installed on the same wheel as the tire pressure sensor, so as to determine the position of the same wheel according to the position of the target ABS sensor.
  • the target ABS sensor is one of the above-mentioned multiple ABS sensors.
  • the gear pulse information is detected by the target ABS sensor, and the vehicle wheel rotation period is calculated based on the gear pulse information.
  • the calculated wheel rotation period and the tire pressure The rotation period of the sensor is the same or similar.
  • the wheel After the target ABS sensor corresponding to the wheel is determined, the wheel is positioned according to the target ABS sensor.
  • the position of the wheel on which the tire pressure sensor is installed is known in advance. Therefore, after the target ABS sensor is determined according to the tire pressure sensor, it can be known that the target ABS sensor corresponds to the wheel.
  • the ABS sensor corresponding to each wheel of the car can be determined separately, and then the corresponding wheel can be positioned according to the ABS sensor. If the car is also equipped with a spare tire, when the rotation period of the tire pressure sensor corresponding to the spare tire and the rotation period detected by any ABS sensor cannot meet the preset conditions, the spare tire can be positioned according to this feature.
  • the result when it is detected that the difference between the rotation period of the tire pressure sensor and the rotation period of the automobile wheel satisfies the preset range, the result may be recorded, and then it is determined to receive the RF data If the number of times is greater than the preset threshold, if not, perform the above steps S101 to S104 again, and record the judgment results of the two rotation cycles, for example, if the difference meets the preset range, it is recorded as 1, otherwise it is recorded as 0. Wherein, each time the steps S101 to S104 are executed, the judgment result will be recorded, and the execution of the above steps will be stopped until the number of times the RF data is received is greater than the preset threshold. At this time, the analysis is performed on the two Based on the result of the comparison of the rotation period, the target ABS sensor mounted on the same wheel as the tire pressure sensor is determined according to the result, and the position of the same wheel is determined according to the position of the target ABS sensor.
  • the judgment result of two rotation periods uses 1 to indicate that they both meet the preset range, and 0 indicates that they do not meet the preset range, then the number of "1"s and the number of "0"s can be counted.
  • the preset threshold value can be set by the system in advance based on experience.
  • Each time the electronic control unit receives RF data it records the number of times. When the number of times the RF data is received is more, the more gear pulse information of the automobile tires obtained by the ABS sensor is, and the positioning accuracy of the tires is The higher it is, on the contrary, when the number of times of receiving RF data is less, the gear pulse information of the automobile tire obtained by the ABS sensor is less, and the positioning accuracy of the tire is lower.
  • the more RF data is received the longer it takes to locate the wheel and the correspondingly greater power consumption. Therefore, comprehensive consideration can be given to setting the preset threshold.
  • step S104 the gear pulse information that meets the preset range of the rotation period difference can also be recorded.
  • a set of gear pulse information that satisfies the preset range can be obtained, and it is judged whether this set of gear pulse information is close to a certain value. If so, the target ABS installed on the same wheel as the tire pressure sensor can be determined. Sensor, thereby determining the position of the same wheel according to the position of the target ABS sensor.
  • N is a positive integer.
  • the method further includes: When there is a data frame loss in the received RF data, the obtained gear pulse information is synchronized and matched according to the lost data frame, so that the time when the gear pulse information is obtained is the same as the time when the RF data is received. The moment of the data matches.
  • the method steps can be executed every time RF data is received, and it is detected whether there is a data frame loss in the received RF data.
  • each packet of RF data contains N frames of data, and a known fixed frame interval time T is used between each frame.
  • the electronic control unit may receive The frame sequence number and the frame interval time T in the remaining frames are reversed and restored, and synchronization and matching are performed by reading the ABS data before the frame interval time T.
  • the embodiment of the present invention determines the target ABS sensor for wheel positioning according to the rotation period of the tire pressure sensor and the rotation period of the automobile wheel collected in real time.
  • other methods can also be used to determine the target ABS sensor for wheel alignment. For example, a status flag such as indicating the success or failure of the measurement can be simply selected instead of the rotation period, and the electronic control unit can be based on the status. The parameter of the flag bit directly judges whether the measurement result is valid.
  • the embodiment of the present invention provides a wheel alignment method.
  • the method transmits RF data when the tire pressure sensor rotates to a preset target angle.
  • the RF data includes the rotation period of the tire pressure sensor.
  • the target ABS sensor located on the same wheel as the tire pressure sensor is determined, and the wheel positioning is performed according to the target ABS sensor.
  • the received RF data is also processed with a fixed frame interval and frame sequence number to prevent frame loss to ensure that the obtained RF data is accurate. This embodiment reduces the threshold for calibration of the tire position, does not require additional matching tools, reduces the cost of the vehicle, and improves the accuracy of vehicle wheel positioning.
  • FIG. 7 is a flowchart of a wheel positioning method provided by an embodiment of the present invention. This method can be applied to the above-mentioned tire pressure sensor 20, which can be installed on an automobile, such as the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel of the automobile, respectively. As shown in Figure 7, the method includes:
  • S201 Wake up the tire pressure sensor regularly, acquire the rotation angle of the tire pressure sensor when the tire pressure sensor is in the awake state, and determine the rotation period of the tire pressure sensor.
  • the tire pressure sensor is provided with a timer, and the tire pressure sensor can be periodically awakened by the timer.
  • the tire pressure sensor is also provided with an acceleration sensor. After the tire pressure sensor is awakened, the acceleration change process of the gravity component can be collected by the acceleration sensor, and processed according to a preset algorithm to calculate the current tire pressure sensor. Rotation angle.
  • the obtaining the rotation angle of the tire pressure sensor includes:
  • the rotation angle of the tire pressure sensor is obtained according to the gravitational acceleration component of the tire pressure sensor on the X axis or the Z axis.
  • the tangential acceleration and the normal acceleration received by the tire pressure sensor can be approximated as a constant value.
  • these two constant values are filtered out, that is, it can be seen that only the gravitational acceleration component changes on the X-axis and Z-axis, and the change process is a sine wave, which is marked as X_Acc and Z_Acc, respectively.
  • Figure 8 shows the change process of the tire pressure sensor's gravitational acceleration component on the X-axis (X_Acc) and Z-axis (Z_Acc).
  • the acceleration sampling point of ponit1 represents The tire pressure sensor is at the position of the tire Bottom (right below) at this time, point2 means Back (right rear), point3 means Top (right up), point4 means Front (right front), and point5 means Bottom (right down).
  • the obtaining the rotation angle of the tire pressure sensor according to the gravitational acceleration component of the tire pressure sensor on the X axis or the Z axis includes:
  • the rotation angle and the rotation period of the tire pressure sensor are calculated based on the X-axis gravitational acceleration component.
  • the vehicle will be affected by acceleration noise generated by ground friction, vehicle vibration, etc. during driving. Therefore, it is necessary to filter the gravitational acceleration component superimposed with acceleration noise.
  • the filtering process on the obtained waveform includes:
  • Step 1 Filter out the gravitational acceleration components that exceed the upper limit and/or the lower limit to obtain the filtered first waveform.
  • Step 2 Perform small-amplitude acceleration noise filtering processing on the first waveform.
  • Fig. 11 shows a waveform diagram of the acceleration component before the first filtering. Therefore, the abnormal values that exceed the upper limit and/or the lower limit can be processed by "limiting filtering" in the following way, and the processing algorithm is as follows:
  • t sampling time or sampling times
  • Y t-1 the acceleration value obtained at the t-1 time
  • Y max the upper limit of acceleration set by the algorithm
  • Y min the lower limit of acceleration set by the algorithm
  • the waveform of the gravity acceleration component is limited and filtered to filter out the abnormal values that exceed the upper limit or the lower limit, and the waveform diagram as shown in FIG. 12 can be obtained.
  • the "secondary moving average filtering method" can be used to filter small amplitude acceleration noise.
  • the filtering algorithm is as follows:
  • n Calculate the span period of the moving average
  • t sampling time or sampling times
  • Y t-1 the acceleration value obtained at the t-1 time
  • M t (1) a moving average of the tth time
  • M t (2) the second moving average of the tth time
  • the smooth waveform is sampled and calculated to calculate an appropriate sampling rate to sample the acceleration component.
  • the sampling rate of the X-axis gravitational acceleration component or the Z-axis gravitational acceleration component after the filtering process can be calculated according to the following formula, which is:
  • sample is the sampling rate
  • a is the angle measurement accuracy, that is, the maximum angle deviation value allowed by the measurement
  • Tcircle is the wheel rotation period.
  • x is the number of sampling points per circle
  • T is the time required to sample one point.
  • the sampling rate can be matched with the real-time speed of the car to determine an appropriate sampling rate.
  • the method further includes: firstly, acquiring real-time parameters of the automobile tire, the real-time parameters including acceleration, rotation period, tire rotation speed, and the like. Then adjust the sampling rate according to the real-time parameters. For example, the current acceleration information of the car can be collected in real time, and an appropriate sampling rate can be selected based on the acceleration.
  • the acceleration can be centripetal acceleration, where the centripetal acceleration formula is: Can launch
  • the sampling rate Among them, Acc is the centripetal acceleration, R is the radius of the tire, Tcircle is the rotation period of the tire, and the sampling rate fsample can be dynamically adjusted according to the centripetal acceleration. Finally, the rotation angle of the tire pressure sensor is obtained according to the adjusted sampling rate.
  • the single sampling time may be short (generally completed within 2S)
  • a certain threshold for example: 40Km/h
  • the speed will not change drastically in a short period of time, so it can also be based on actual application conditions.
  • the current acceleration information is collected first, and then according to the current acceleration, the initial setting is performed according to the above sampling rate formula. During the detection process, Then use a constant sampling rate to detect.
  • determining the rotation period of the tire pressure sensor includes:
  • the detection time corresponding to the 360 degrees is determined according to the detection time corresponding to the 0 degrees
  • the rotation period of the tire pressure sensor is calculated at the detection time corresponding to the 360 degrees.
  • the rotation angle of the tire pressure sensor is obtained by the above method, it is further determined whether the rotation angle is a preset target angle.
  • the RF data is generated by the tire pressure sensor only when the preset target angle is reached.
  • the preset target angle can be any angle, which is not limited.
  • step S203 If yes, execute the following step S203; if not, execute the following step S204.
  • S203 Send RF data including the rotation period of the tire pressure sensor to the electronic control unit, where the RF data includes the rotation period of the tire pressure sensor, and the rotation period is used by the electronic control unit to determine and Whether the difference in the rotation period of the wheels is within a preset range, and if so, determine the position of the wheel where the tire pressure sensor is located.
  • the detailed process of the electronic control unit determining whether the difference between the rotation period and the rotation period of the wheel is within a preset range, and the detailed process of determining the position of the wheel where the tire pressure sensor is located can refer to the above implementation example.
  • S204 Determine whether the detection time of the tire pressure sensor is greater than a preset time.
  • step S205 If not, skip to step S201 described above; if yes, perform step S205 below.
  • S205 Control the tire pressure sensor to be in a sleep state.
  • the tire pressure sensor if the rotation angle of the tire pressure sensor has not reached the preset target angle within a preset time, the tire pressure sensor enters a sleep state. After the tire pressure sensor is awakened next time, continue to perform the above method steps to detect the rotation angle.
  • the embodiment of the present invention provides a wheel positioning method, which can be applied to a tire pressure sensor.
  • the method obtains the rotation angle of the tire pressure sensor.
  • the rotation angle is a preset target angle
  • the tire pressure sensor The electronic control unit sends RF data so that the electronic control unit can position the car tires according to the RF data.
  • This embodiment reduces the threshold for tire position calibration, no additional matching tools are needed, the cost of the vehicle is reduced, and the accuracy of wheel positioning is improved.
  • FIG. 16 is a schematic structural diagram of an automobile according to an embodiment of the present invention.
  • the automobile 300 includes: the wheel alignment system 100 described in the above embodiment, the left front wheel 310, the right front wheel 320, the left rear wheel 330, the right rear wheel 340, and the spare tire 350.
  • the automobile 300 can position the tire positions of the left front wheel 310, the right front wheel 320, the left rear wheel 330, the right rear wheel 340, and the spare tire 350 through the wheel positioning system 100 .
  • the car 300 may be various types of cars, for example, passenger cars, commercial vehicles, and so on.
  • the automobile provided by the embodiment of the present invention does not require additional tools when performing wheel positioning, has the advantages of low operating threshold and low cost, and has reliable wheel positioning results and high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种车轮定位方法、系统(100)及电子控制单元(10)、胎压传感器(20),涉及汽车车轮定位技术领域。该系统(100)包括:电子控制单元(10)、胎压传感器(20)以及ABS传感器(30)。该车轮定位方法、系统(100)及电子控制单元(10)、胎压传感器(20)提高了车轮定位的准确性。

Description

车轮定位方法、系统及电子控制单元、胎压传感器
本申请要求于2019年12月27日提交中国专利局、申请号为201911379478.9、申请名称为“车轮定位方法、系统及电子控制单元、胎压传感器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车车轮定位技术领域,尤其涉及一种车轮定位方法、系统及电子控制单元、胎压传感器。
背景技术
轮胎压力监测系统(Tire Pressure Monitoring System,TPMS),是一种采用无线传输技术,利用固定于汽车轮胎内的高灵敏度微型无线传感装置在行车或静止的状态下对汽车轮胎的压力、温度等参数进行实时监测,以确保轮胎的压力和温度维持在标准范围内,起到减少爆胎、毁胎的概率,降低油耗和车辆部件的损坏。
但是对于日常更换轮胎后,重新准确地确定轮胎的位置尤为重要,以便能监控各个轮胎的胎压状况,从而确保车辆的行驶安全。
目前,现有技术对轮胎进行定位通常是基于接收到轮胎内传感器的信号强度进行定位,此方法对传感器及接收器的天线一致性要求较高,当天线性能发生变化时,容易引起定位错误。
发明内容
本发明要解决的技术问题是提供一种车轮定位方法、系统及电子控制单元、胎压传感器,解决车轮定位时存在准确性低的技术问题。
第一方面,本发明实施例提供一种车轮定位方法,应用于电子控制单元,所述电子控制单元安装于汽车,所述汽车的每个车轮均设置有胎压传感器和ABS传感器,所述方法包括:
接收来自一个胎压传感器的RF数据,其中,所述RF数据是所述胎压传感器的旋转角度在目标角度时发送的,所述RF数据包括所述胎压传感器的旋转周期;
获取所述汽车的每个车轮的ABS传感器发送的齿轮脉冲信息,所述齿轮脉冲信息与所述RF数据用于表示近似同一时刻的车轮的信息;
根据所述每个车轮的ABS传感器中的任一个ABS传感器的齿轮脉冲信息确定汽车的车轮的旋转周期;
判断所述胎压传感器的旋转周期与所述汽车车轮的旋转周期的差值是否在预设范围内;
若是,确定与所述胎压传感器安装于同一车轮的目标ABS传感器,以根据 所述目标ABS传感器的位置确定所述同一车轮的位置。
可选地,所述电子控制单元包括胎压ECU和ABS控制单元,所述ABS控制单元分别与所述胎压ECU和所述ABS传感器连接,所述根据所述每个车轮的ABS传感器中的任一个ABS传感器的齿轮脉冲信息确定汽车的车轮的旋转周期,包括:
通过所述ABS控制单元获取所述汽车的车轮的旋转周期,其中,所述车轮的旋转周期是所述ABS控制单元根据所述每个车轮的ABS传感器中的任一个ABS传感器的齿轮脉冲信息计算得到的;或者,
所述胎压ECU通过所述ABS控制单元获取所述每个车轮的ABS传感器中的任一个ABS传感器的齿轮脉冲信息,并根据所述齿轮脉冲信息计算所述汽车的车轮的旋转周期。
可选地,所述齿轮脉冲信息包括齿轮刻度,所述根据所述齿轮脉冲信息计算所述汽车的车轮的旋转周期,包括:
获取预设的采样深度对应的全部齿轮刻度信息,其中,所述全部齿轮刻度信息包括采集的每一齿轮刻度以及每一齿轮刻度对应的采样时间;
获取当前采集到的齿轮刻度和第一采样时间;
根据当前采集到的齿轮刻度,在所述全部齿轮刻度信息中查询与所述当前采集到的齿轮刻度相同的齿轮刻度所对应的第二采样时间;
根据所述第一采样时间和所述第二采样时间计算所述车轮的旋转周期。
可选地,所述判断所述胎压传感器的旋转周期与所述汽车车轮的旋转周期的差值是否在预设范围内,包括:
当所述胎压传感器的旋转周期与所述汽车车轮的旋转周期的差值为零时,则确定在所述预设范围内,否则,不在所述预设范围内。
可选地,所述方法还包括:
当接收到的所述RF数据存在数据帧丢失时,根据丢失的数据帧将所获得的所述齿轮脉冲信息进行同步匹配,以使获得所述齿轮脉冲信息的时刻与接收到所述RF数据的时刻匹配。
第二方面,本发明实施例提供一种车轮定位方法,应用于胎压传感器,所述方法包括:
获取所述胎压传感器的旋转角度;
确定所述胎压传感器的旋转周期;
在所述旋转角度为预设的目标角度时,发送包括所述胎压传感器的旋转周期的RF数据至电子控制单元,其中,所述RF数据包括所述胎压传感器的旋转周期,所述旋转周期用于由所述电子控制单元判断与车轮的旋转周期的差值是否在预设范围内,若是时,确定所述胎压传感器所在车轮的位置。
可选地,所述确定所述胎压传感器的旋转周期,包括:
根据公式
Figure PCTCN2020133778-appb-000001
计算所述胎压传感器的旋转周期,其中,T为所述胎压传 感器的旋转周期,R为车轮半径,Acc为所述胎压传感器检测的向心加速度;或
确定所述胎压传感器的旋转角度为0度时的检测时刻,以及所述胎压传感器从0度旋转到360度时,所述360度对应的检测时刻,根据所述0度对应的检测时刻和所述360度对应的检测时刻计算所述胎压传感器的旋转周期。
可选地,在所述获取所述胎压传感器的旋转角度的步骤之前,所述方法还包括:
定时唤醒所述胎压传感器,在所述胎压传感器为唤醒状态时获取所述胎压传感器的旋转角度。
可选地,所述获取所述胎压传感器的旋转角度,包括:
根据所述胎压传感器在X轴或Z轴的重力加速度分量获得所述胎压传感器的旋转角度。
可选地,所述根据所述胎压传感器在X轴或Z轴的重力加速度分量获得所述胎压传感器的旋转角度,包括:
获取所述胎压传感器的X轴重力加速度分量的波形,或Z轴重力加速度分量的波形;
对获得的所述波形进行滤波处理;
计算进行滤波处理后的所述X轴重力加速度分量或所述Z轴重力加速度分量的采样率,其中,所述采样率用于对所述X轴重力加速度分量或所述Z轴重力加速度分量进行采样;
将采样得到的所述X轴重力加速度分量或所述Z轴重力加速度分量转换为所述胎压传感器的旋转角度。
可选地,所述对获得的所述波形进行滤波处理包括:
过滤掉超过上限和\或下限的重力加速度分量,以获得过滤后的第一波形;
对所述第一波形进行小幅值加速度噪音滤波处理。
可选地,所述计算进行滤波处理后的所述X轴重力加速度分量或所述Z轴重力加速度分量的采样率,包括:
根据公式:fsample=360 0/(a·Tcircle)计算所述X轴重力加速度分量或所述Z轴重力加速度分量的采样率,其中,fsample为采样率,a为测量允许的最大角度偏差值,Tcircle为车轮旋转周期。
可选地,所述方法还包括:
获取所述汽车轮胎的实时参数;
根据所述实时参数调整所述采样率;
根据调整后的所述采样率获取所述胎压传感器的旋转角度。
可选地,所述方法还包括:
当所述旋转角度不是所述预设的目标角度时,判断所述胎压传感器的检测时间是否大于预设时间;
若否,则再次执行所述获取所述胎压传感器的旋转角度的步骤;
若是,则控制所述胎压传感器为休眠状态。
第三方面,本发明实施例提供一种电子控制单元,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述的应用于电子控制单元的车轮定位方法。
第四方面,本发明实施例提供一种胎压传感器,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理行,以使所述至少一个处理器能够执行如上所述的应用于胎压传感器的车轮定位方法。
第五方面,本发明实施例提供一种车轮定位系统,包括:电子控制单元、胎压传感器、ABS传感器,所述电子控制单元分别与所述胎压传感器和所述ABS传感器连接;
所述电子控制单元用于:
接收所述胎压传感器发送的RF数据,所述RF数据包括所述胎压传感器的旋转周期;获取所述ABS传感器发送的齿轮脉冲信息;根据所述齿轮脉冲信息确定汽车车轮的旋转周期;判断所述胎压传感器的旋转周期与所述汽车车轮的旋转周期的差值是否在预设范围内;若是,确定与所述胎压传感器安装于同一车轮的目标ABS传感器,以根据所述目标ABS传感器的位置确定所述同一车轮的位置;
所述胎压传感器用于:
获取所述胎压传感器的旋转角度;判断所述旋转角度是否为预设的目标角度;若是,发送RF数据至所述电子控制单元,其中,所述RF数据包括所述胎压传感器的旋转周期;
所述ABS传感器用于:
采集的汽车车轮的齿轮脉冲信息,并发送所述齿轮脉冲信息至所述电子控制单元。
区别于现有技术,本发明实施例提供的车轮定位方法、系统、电子控制单元、胎压传感器,通过在胎压传感器旋转到预设的目标角度时发送RF数据,所述RF数据包括胎压传感器的旋转周期,与此同时通过ABS传感器获取汽车车轮的齿轮脉冲信息,根据齿轮脉冲信息得到汽车车轮的旋转周期。只有在所述胎压传感器的旋转周期与汽车车轮的旋转周期的差值在预设范围内时,则根据所述胎压传感器确定与所述胎压传感器安装于同一车轮的目标ABS传感器,从而根据该目标ABS传感器确定该同一车轮的位置。所述汽车的其他车轮亦可以通过上述方式完成车轮定位。本发明实施例提供的车轮定位方法、系统、电子控制单元、胎压传感器提高了车轮定位的准确性。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本发明实施例提供的一种车轮定位系统的结构示意图;
图2为所述电子控制单元10的结构框图;
图3为所述胎压传感器20的结构框图;
图4是本发明实施例提供的一种车轮定位方法的流程图;
图5是本发明实施例提供齿轮脉冲计数与RF接收次数的关系示意图;
图6a是本发明实施例提供的一种RF数据帧的示意图;
图6b是本发明实施例提供的另一种RF数据帧的示意图;
图7是本发明另一实施例提供的一种车轮定位方法的流程图;
图8是本发明实施例提供的胎压传感器重力加速度分量在x轴和z轴的变化过程的示意图;
图9是本发明另一实施例提供的一种车轮定位方法中获得胎压传感器的旋转角度的方法的流程图;
图10是本发明实施例提供的传感器的旋转角度与重力加速度分量的关系示意图;
图11是本发明实施例提供的第一次滤波前重力加速度分量的波形示意图;
图12是本发明实施例提供的第一次滤波后重力加速度分量的波形示意图;
图13是本发明实施例提供的第二次滤波后重力加速度分量的波形示意图;
图14是本发明实施例提供的高采样率时的一种重力加速度分量的示意图;
图15是本发明实施例提供的低采样率时的一种重力加速度分量的示意图;
图16是本发明实施例提供的一种汽车的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,如果不冲突,本发明实施例中的各个特征可以相互组合,均在本发明的保护范围之内。另外,虽然在装置示意图中进行了功能模块的划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置示意图中的模块划分,或流程图中的顺序执行所示出或描述的步骤。
请参阅图1,图1是本发明实施例提供的一种车轮定位系统的结构示意图。 该系统100包括:电子控制单元10、胎压传感器20以及ABS传感器30。其中,所述电子控制单元10分别与所述胎压传感器20、所述ABS传感器30连接。
在本实施例中,所述车轮定位系统100的定位原理主要包括:胎压传感器20在一个或者多个特定角度发送RF信号,所述电子控制单元10接收到所述RF信号后,所述电子控制单元10从所述RF信号中获取所述胎压传感器20的旋转周期、旋转角度、轮胎压力、轮胎温度、传感器ID等信息。与此同时,所述电子控制单元10从所述ABS传感器30获取车轮齿轮脉冲信息,根据该齿轮脉冲信息计算得到汽车车轮的旋转周期。由于所述胎压传感器20与其对应位置的车轮是一体旋转,一般情况下所述胎压传感器20的旋转周期与实时检测的所述汽车车轮的旋转周期相同或相似。因此,当所述胎压传感器20的旋转周期与根据所述ABS传感器30获得的汽车的车轮的旋转周期相同或相似时,确定与所述胎压传感器安装于同一车轮的目标ABS传感器,以根据所述目标ABS传感器的位置确定所述同一车轮的位置。
基于上述车轮定位系统100的定位原理下面详细说明所述系统100中的各个模块。
请参阅图2,图2为所述电子控制单元10的结构框图。所述电子控制单元10可以包括:处理器101、存储器102、接收天线103以及显示屏104。
所述处理器101、存储器102、接收天线103以及显示屏104之间通过总线或其他连接的方式建立任意两者之间的通信连接。
所述处理器101为任何类型的单线程或者多线程的,具有一个或多个处理核心的处理器,作为所述电子控制单元10的控制核心,用于获取数据、执行逻辑运算功能以及下发运算处理结果。所述处理器101可以是一个或者多个,图2中以一个处理器101为例。
在本实施例中,所述处理器101包括:胎压ECU1011和ABS控制单元1012。所述胎压ECU1011可以作为所述处理器101的控制核心,其用于获取数据、执行逻辑运算功能以及下发运算处理结果,比如,所述胎压ECU1011可以通过ABS控制单元1012获得ABS传感器检测的齿轮脉冲信息,根据所述齿轮脉冲信息计算汽车车轮的旋转周期、旋转角度等等。所述ABS控制单元1012是汽车防抱死制动(Anti-lock Braking System,ABS)系统的组成部分之一。所述ABS系统的基本工作原理是:由安装在车轮上的转速传感器采集四个车轮的轮速信号,送到ABS控制单元1012计算出每个车轮的轮速,进而推算出车辆的减速度及车轮的滑移率。在本实施例中,所述ABS控制单元1012可以用于从所述ABS传感器30获取汽车车轮的齿轮脉冲信息,并将该齿轮脉冲信息发送给胎压ECU1011。所述ABS控制单元1012还可以根据从ABS传感器30获得的齿轮脉冲信息计算汽车车轮的旋转周期,并发送所述汽车车轮的旋转周期至胎压ECU1011。
其中,所述齿轮脉冲信息用于表示车轮的相对旋转位置,其包括所获得的ABS齿轮当前的齿的边缘数或齿数。可以理解的是,车轮的ABS齿轮通常共48 个,加上齿轮之间的间隙,可以近似认为共有96个等分刻度,那么每个刻度对应的角度为360/96=3.75度。所述ABS控制单元1012可以根据齿轮刻度计算出车轮的旋转角度和旋转周期。
存储器102作为一种非易失性计算机可读存储介质,例如至少一个磁盘存储器件、闪存器件、相对于处理器101远程设置的分布式存储设备或者其他非易失性固态存储器件。存储器102可以具有程序存储区,用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,供处理器101调用以使处理器101执行一个或者多个方法步骤,例如,执行图4所示的方法步骤。存储器102还可以具有数据存储区,用以存储处理器101下发输出的运算处理结果。
接收天线103用于接收所述胎压传感器20发送的RF数据,并将所述RF数据发送给处理器101,以使处理器101根据所述RF数据执行对应的控制指令。所述接收天线103可以是RF天线。
显示屏104是用于以特定的形式,向用户展示相应的数据的输出设备。其可以是任何类型的显示器、例如LED显示器、显像管显示器或者LCD显示器。显示屏104接收到由处理器101输出的显示信息,并相应的转换为图像信息提供给用户。例如,所述显示屏104可以显示车轮的定位结果信息、压力信息、温度信息等,以便用户通过显示屏104能够直观的了解各轮胎的相关信息。
需要说明的是,图2仅作为所述电子控制单元10的一种示例,其并不用于限制所述胎压传感器20的结构。
在进行车轮定位的过程中,所述胎压ECU1011通过所述接收天线103获取胎压传感器20发送的RF数据,根据所述RF数据获取所述胎压传感器20的旋转周期。所述胎压ECU1011还用于从所述ABS控制单元1012获取汽车车轮当前的旋转周期。其中,所述汽车车轮当前的旋转周期可以是所述ABS控制单元1012根据ABS传感器30采集的齿轮脉冲信息计算得到所述旋转周期,由所述ABS控制单元1012将所述旋转周期发送给所述胎压ECU1011。所述汽车车轮当前的旋转周期还可以是所述胎压ECU1011通过所述ABS控制单元1012获取所述ABS传感器30采集的齿轮脉冲信息,再根据所述齿轮脉冲信息计算得到所述汽车车轮当前的旋转周期。当获得所述胎压传感器20的旋转周期和所述汽车车轮当前的旋转周期后,所述胎压ECU1011用于,判断所述胎压传感器20的旋转周期与所述汽车车轮当前的旋转周期的差值是否在预设范围内;若是,确定与所述胎压传感器20安装于同一车轮的目标ABS传感器,以根据所述目标ABS传感器的位置确定所述同一车轮的位置。在确定所述车轮对应的ABS传感器后,可以根据该ABS传感器完成汽车车轮的定位。同理可知,所述汽车的其他车轮都可以根据上述方法进行定位,其中,每一车轮均设置有胎压传感器20和ABS传感器30。
请参阅图3,图3为所述胎压传感器20的结构框图,所述胎压传感器20可以包括:处理器201、存储器202、定时器203、RF发送电路204、压力传感器205、加速度传感器206以及温度传感器207。
所述处理器201可以分别与所述存储器202、所述定时器203、所述RF发送电路204、所述压力传感器205、所述加速度传感器206以及所述温度传感器207之间通过总线或其他连接的方式建立通信连接。
所述处理器201为任何类型的单线程或者多线程的,具有一个或多个处理核心的处理器,作为所述胎压传感器20的控制核心,用于获取数据、执行逻辑运算功能以及下发运算处理结果。所述处理器201可以是一个或者多个,图3中以一个处理器201为例。
存储器202作为一种非易失性计算机可读存储介质,例如至少一个磁盘存储器件、闪存器件、相对于处理器201远程设置的分布式存储设备或者其他非易失性固态存储器件。存储器202可以具有程序存储区,用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,供处理器201调用以使处理器201执行一个或者多个方法步骤,例如,执行图5和图6所示的方法步骤。存储器202还可以具有数据存储区,用以存储处理器201下发输出的运算处理结果。
所述定时器203用于定时唤醒所述胎压传感器20,胎压传感器20为唤醒状态时即为工作状态,所述胎压传感器20不工作时,为休眠状态。所述胎压传感器20可以由纽扣电池供电,可以根据纽扣电池的相关参数设置所述定时器203的唤醒周期。
所述RF发送电路204用于发送所述胎压传感器20采集的RF数据信号。
所述压力传感器205、所述加速度传感器206以及所述温度传感器207分别用于采集汽车轮胎的压力、加速度、温度数据。
需要说明的是,图3仅作为所述胎压传感器20的一种示例,其并不用于限制所述胎压传感器20的结构。
在本实施例中,所述胎压传感器20用于在所述胎压传感器的旋转角度为预设的目标角度时,向外发送RF数据信号。具体的,所述处理器201用于,获取所述胎压传感器20的旋转角度;判断所述旋转角度是否为预设的目标角度;若是,发送RF数据至电子控制单元10。其中,所述存储器202中可以存储当前所采集的所述胎压传感器20的旋转角度信息,以及存储所述预设的目标角度,等。
其中,所述胎压传感器20可以包括多个,其分别设置于汽车轮胎的每一轮胎对应的位置。当汽车设有备胎时,还可以为所述备胎设置一对应的胎压传感器。
所述ABS传感器30是汽车防抱死制动系统的组成部分之一,所述ABS传感器30可以安装在汽车车轮的对应位置,所述ABS传感器30可以包括多个,比如包括汽车左前车轮对应的ABS传感器、汽车右前车轮对应的ABS传感器、汽车左后车轮对应的ABS传感器以及汽车右后车轮对应的ABS传感器。所述ABS传感器30可以用于采集车轮的轮速信号、齿轮脉冲信息等,并将所述轮速信号和齿轮脉冲信息等传送给ABS控制单元1012。
本发明实施例提供的车轮定位系统可以利用汽车现成的ABS传感器对汽车轮胎进行定位,降低了车辆成本。在车轮定位的过程中,无需额外的匹配工具,降低了车轮定位的门槛。此外,在定位时加入了对胎压传感器的旋转周期和汽车车轮实时的旋转周期的判断步骤,只有在这两个旋转周期满足预设条件时,才会根据所述胎压传感器确定其对应的ABS传感器,从而根据该确定的ABS传感器检测汽车车轮的位置。该系统可以确保测量结果的准确性,防止在传感器的测量算法失效或者不满足测量条件的情况下仍然进行脉冲计数,导致定位错误,该系统提高了车轮定位的准确性。
需要说明的是,在本发明实施例中,所述车轮定位系统100可以执行本发明实施例提供的车轮定位方法,具备执行方法对应的功能模块和有益效果。未在本车轮定位系统100的实施例中详尽描述的技术细节,可以参考下述实施例提供的车轮定位方法。
请参阅图4,图4是本发明实施例提供的一种车轮定位方法的流程图。该方法可以应用于上述电子控制单元10,所述电子控制单元10可以安装于汽车上,所述汽车包括左前车轮、右前车轮、左后车轮及右后车轮,每个车轮均设置有胎压传感器和ABS传感器。如图4所示,所述方法包括:
S101、接收来自一个胎压传感器的RF数据,其中,所述RF数据是所述胎压传感器的旋转角度在目标角度时发送的,所述RF数据包括所述胎压传感器的旋转周期。
其中,所述RF数据是所述胎压传感器检测的数据。所述RF数据还可以包括所述胎压传感器的旋转角度和传感器ID,所述传感器ID用于识别所述胎压传感器。所述RF数据还可以包括所述胎压传感器检测的轮胎的胎压、温度等信息。例如,所述RF数据可以表示为:
同步头 传感器ID 压力 温度 旋转角度信息 帧序号 旋转周期
其中,所述胎压传感器的旋转角度指的是某一采样时刻采集的胎压传感器的位置对应的角度信息。比如,如图8所示,当胎压传感器(point1)点位于Bottom(正下)的位置,其对应的旋转角度为270度。
所述胎压传感器的旋转周期指的是经过任意两个相差360度的点之间的时间差。所述胎压传感器的旋转周期可以根据以下方式获得。
方式一、根据公式
Figure PCTCN2020133778-appb-000002
计算所述胎压传感器的旋转周期,其中,T为所述胎压传感器的旋转周期,R为车轮半径,Acc为所述胎压传感器检测的向心加速度。
方式二、确定所述胎压传感器的旋转角度为0度时的检测时刻,以及所述胎压传感器从0度旋转到360度时,所述360度对应的检测时刻,根据所述0度对应的检测时刻和所述360度对应的检测时刻计算所述胎压传感器的旋转 周期。需要说明的是,除了根据胎压传感器从0度旋转到360度所花费的时长来计算胎压传感器的旋转周期之外,还可以根据胎压传感器从N度旋转到下一个N度的时长来计算胎压传感器的旋转周期,其中,N为0度到360度之间的任意角度。
当然,在实际应用中,除了上述两种方式之外还可以采用其他方式计算所述胎压传感器的旋转周期。
所述目标角度可以预先设置,对此目标角度的具体大小没有限制,只需要能够以特定的方式通知所述电子控制单元当前接收到的RF信号是什么角度即可,例如:所述胎压传感器以0°和180°两个固定角度交替发送RF信号,电子控制单元收到的奇数包数据代表所述胎压传感器在0°位置,偶数包数据代表所述胎压传感器在180°位置。
S102、获取所述汽车的每个车轮的ABS传感器发送的齿轮脉冲信息,所述齿轮脉冲信息与所述RF数据用于表示近似同一时刻的车轮的信息。
S103、根据所述每个车轮的ABS传感器中的任一个ABS传感器的齿轮脉冲信息确定汽车的车轮的旋转周期。
在本实施例中,所述电子控制单元包括胎压ECU和ABS控制单元,所述汽车的车轮的旋转周期可以是所述胎压ECU自己根据ABS传感器采集的齿轮脉冲信息计算得到的,也可以是所述ABS控制单元根据ABS传感器采集的齿轮脉冲信息计算得到的,然后由ABS控制单元发送给胎压ECU。
其中,所述齿轮脉冲信息具体可以是齿轮刻度,可以根据齿轮刻度计算所述汽车的车轮的旋转周期。
具体地,所述根据所述齿轮脉冲信息计算所述汽车的车轮的旋转周期,包括:获取预设的采样深度对应的全部齿轮刻度信息,其中,所述全部齿轮刻度信息包括采集的每一齿轮刻度以及每一齿轮刻度对应的采样时间;获取当前采集到的齿轮刻度和第一采样时间;根据当前采集到的齿轮刻度,在所述全部齿轮刻度信息中查询与所述当前采集到的齿轮刻度相同的齿轮刻度所对应的第二采样时间;根据所述第一采样时间和所述第二采样时间计算所述车轮的旋转周期。
例如,所述采样深度可以是1秒,即可保存当前时刻之前1秒内记录的全部刻度数。假设当前时刻检测的刻度为60,那么可以根据保存的全部刻度数,通过回溯查询上一次刻度为60时的时间点,从而根据查询得到的时间点和当前时间计算得到所述旋转周期。
还可以根据所述齿轮脉冲信息计算汽车车轮的旋转角度。具体地,所述齿轮脉冲信息为齿轮刻度,车轮的ABS齿轮通常共48个,加上齿轮之间的间隙,可以近似认为共有96个等分刻度,那么每个刻度对应的角度为360/96=3.75度,因此,在获取到当前的齿轮刻度后,可以根据每个刻度对应的角度和当前的齿轮刻度计算得到所述汽车车轮的旋转角度。
S104、判断所述胎压传感器的旋转周期与所述汽车车轮的旋转周期的差值是否在预设范围内。
其中,可以将每个车轮的ABS传感器中的任一个ABS传感器的齿轮脉冲信息所确定汽车的车轮的旋转周期,与所述胎压传感器的旋转周期分别进行比较,从而找到两个旋转周期是在预设范围内的ABS传感器。
可以理解的是,由于胎压传感器与轮胎一体旋转,所述胎压传感器检测的旋转周期与根据所述齿轮脉冲信息计算得到的汽车车轮旋转周期通常情况下基本一致。然而,当车辆在砂石路面等路况较差的条件下行驶时,产生的加速度噪音可能会导致胎压传感器测得的旋转周期与根据齿轮脉冲信息计算得到的旋转周期不完全一致,此时,可以允许检测精度有一定的误差。因此,所述差值对应的预设范围可以是零,即所述胎压传感器的旋转周期与所述汽车车轮的旋转周期相同。所述差值对应的预设范围还可以是大于零且小于1,或者大于负一且小于零,即所述胎压传感器的旋转周期与所述汽车车轮的旋转周期之间存在误差,该误差为小数。需要说明的是,所述预设范围还可以是其他参数范围,对此不作限制。
若上述两个旋转周期的差值在预设范围内,则执行下述步骤S105。若上述两个旋转周期的差值不在所述预设范围内,则可以放弃此次检测的数据,重新执行上述步骤S101至步骤S103,得到新的旋转周期参数,并判断新的旋转周期参数的差值是否在所述预设范围内。
需要说明的是,安装在车轮上的ABS传感器与ABS齿轮是一体地旋转的,所以理论上ABS传感器测量到齿轮旋转一圈的周期或该位置轮速传感器测到的轮速,是与胎压传感器通过算法测量到的旋转周期是一致或偏差不大的。但胎压传感器单方面测量到的旋转周期有时会是错误的,例如路面不平整、急加急减速等,导致重力加速度分量无法形成正弦波,此时测量算法测出来的位置及旋转周期是有偏差的,因此,在本实施例中加入了步骤S104,必须是胎压传感器测到的旋转周期与车辆自身测到的旋转周期近似一致时才认为是可信的数据。由此,确保了测量结果的准确性,防止在胎压传感器测量算法失效,或者不满足测量条件的情况下仍然进行脉冲计数,导致定位错误。
S105、确定与所述胎压传感器安装于同一车轮的目标ABS传感器,以根据所述目标ABS传感器的位置确定所述同一车轮的位置。
所述目标ABS传感器是上述多个ABS传感器中的某一个,通过该目标ABS传感器检测齿轮脉冲信息,根据该齿轮脉冲信息计算汽车车轮旋转周期,计算得到的所述车轮旋转周期与所述胎压传感器的旋转周期相同或近似。
在确定所述车轮对应的目标ABS传感器后,根据该目标ABS传感器对所述车轮进行定位。
其中,预先知道胎压传感器所安装的车轮的位置,因此,根据胎压传感器确定目标ABS传感器后,可以知道该目标ABS传感器对应车轮。
根据上述方法可以分别确定汽车每一车轮对应的ABS传感器,然后根据 ABS传感器对其对应的车轮进行定位。如果汽车还安装有备胎,当备胎对应的胎压传感器的旋转周期与任一个ABS传感器检测到的旋转周期都不能满足预设条件时,可以根据这一特征对备胎进行定位。
在一些实施例中,当检测到所述胎压传感器的旋转周期与所述汽车车轮的旋转周期的差值满足所述预设范围时,可以对该结果进行记录,然后判断接收所述RF数据的次数是否大于预设阈值,如果不是,则再次执行上述步骤S101至步骤S104,并对两个旋转周期的判断结果进行记录,比如,如果所述差值满足所述预设范围,则记为1,否则记为0。其中,当每次执行完所述步骤S101至步骤S104后,都会记录所述判断结果,直到接收所述RF数据的次数大于所述预设阈值时停止执行上述步骤,此时,分析对两个旋转周期进行比较的结果,根据该结果确定与所述胎压传感器安装于同一车轮的目标ABS传感器,再根据所述目标ABS传感器的位置确定所述同一车轮的位置。
比如,两个旋转周期的判断结果用1表示二者满足所述预设范围,用0表示二者不满足所述预设范围,那么可以统计“1”的个数和“0”的个数,获取最多个数“1”所对应的胎压传感器和ABS传感器,并将该胎压传感器和该ABS传感器绑定,从而可以确定该胎压传感器和该ABS传感器是位于同一车轮上的传感器,由此,可以通过该ABS传感器进行车轮定位。
其中,所述预设阈值可以根据经验预先系统设置好。所述电子控制单元每次接收RF数据时,对该次数进行记录,当接收RF数据的次数越多时,通过所述ABS传感器所获得的汽车轮胎的齿轮脉冲信息就越多,对轮胎的定位精度就越高,反之,当接收RF数据的次数越少时,通过所述ABS传感器所获得的汽车轮胎的齿轮脉冲信息就越少,对轮胎的定位精度就越低。然而,接收RF数据的次数越多,对车轮定位所花费的时间就越长,相应地功耗也越大。因此,可以综合考虑设置所述预设阈值。
在其他一些实施例中,在执行步骤S104后,还可以将满足所述旋转周期差值预设范围的所述齿轮脉冲信息进行记录,在接收了N次数据和执行N次旋转周期比较后,能够得到一组满足所述预设范围的齿轮脉冲信息,判断这一组齿轮脉冲信息是否都近似趋于某一数值,如果是,则可以确定与所述胎压传感器安装于同一车轮的目标ABS传感器,从而根据所述目标ABS传感器的位置确定所述同一车轮的位置。其中,N为正整数。通过多次试验能够使胎压传感器与ABS传感器的绑定结果更准确,从而最终得到的定位结果也更准确。
例如,如图5所示,随着RF接收次数的增多,图中的数据点也逐渐增多,每一数据点对应的纵坐标为ABS传感器采集的齿轮脉冲计数,所得到的齿轮脉冲计数都逐步趋于某一稳定值。因此,可知所获得的所述汽车轮胎的齿轮脉冲信息是趋于稳定的。
可以理解的是,在实际应用场景中,RF信号在传输过程中可能会存在干扰,导致电子控制单元无法接收到胎压传感器发送的数据,因此,在一些实施例中,所述方法还包括:当所接收到的所述RF数据中存在数据帧丢失时,根 据所丢失的数据帧将所获得的所述齿轮脉冲信息进行同步匹配,以使获得所述齿轮脉冲信息的时刻与接收到所述RF数据的时刻匹配。该方法步骤可以在每次接收到到RF数据后去执行,检测所接收到的RF数据中是否存在数据帧丢失。
其中,胎压传感器在数据传输过程中,每一包RF数据包含N帧数据,每帧之间采用已知的固定帧间隔时间T,当出现丢帧时,所述电子控制单元可以根据接收到的剩余帧中的帧序号以及帧间隔时间T进行逆推还原,并通过读取帧间隔时间T之前的ABS数据进行同步匹配。
例如,如图6a和图6b所示,假设一包RF包含3帧数据,当电子控制单元接收的RF数据包中第一帧因干扰等原因导致无法解码时,则判断为丢帧,当电子控制单元接收到第二帧时(通过帧序号可以判断出接收到的是第几帧),会自动减去T1的帧间隔时间,将N1帧时刻的ABS齿轮数据读取出来进行同步匹配;同理,当N1、N2发送丢帧时,电子控制单元收到N3后会自动减去T1+T2的帧间隔时间,还原回N1帧时刻的ABS齿轮数据。
需要说明的是,本发明实施例根据胎压传感器的旋转周期和实时采集的汽车车轮的旋转周期来确定用于车轮定位的目标ABS传感器。在其他实施例中,还可以采用其他方法来确定用于车轮定位的目标ABS传感器,例如,可以简化地选择一个诸如表示测量成功与否的状态标志位替代旋转周期,电子控制单元可以根据该状态标志位的参数直接判断测量结果是否有效。
本发明实施例提供了一种车轮定位方法,该方法通过在胎压传感器旋转到预设的目标角度时发送RF数据,所述RF数据包括胎压传感器的旋转周期,当接收到的所述胎压传感器的旋转周期与汽车车轮当前的旋转周期相同时,确定与所述胎压传感器位于同一车轮上的目标ABS传感器,再根据该目标ABS传感器进行车轮定位。此外,对所接收的RF数据还采用固定帧间隔和帧序号的方式进行防丢帧处理,以确保所获得的RF数据是准确的。该实施方式降低了轮胎位置标定门槛,无需额外的匹配工具,降低了车辆成本,并且提高了汽车车轮定位的准确性。
请参阅图7,图7是本发明实施例提供的一种车轮定位方法的流程图。该方法可以应用于上述胎压传感器20,所述胎压传感器可以设置于汽车上,比如分别设置于汽车的左前车轮、右前车轮、左后车轮及右后车轮。如图7所示,所述方法包括:
S201、定时唤醒所述胎压传感器,在所述胎压传感器为唤醒状态时获取所述胎压传感器的旋转角度,并确定所述胎压传感器的旋转周期。
所述胎压传感器设有定时器,可以通过定时器定时唤醒所述胎压传感器。所述胎压传感器还设有加速度传感器,在唤醒所述胎压传感器后,可以通过所述加速度传感器采集重力分量的加速度变化过程,按照预设的算法处理后计算出所述胎压传感器当前的旋转角度。
其中,所述获取所述胎压传感器的旋转角度包括:
根据所述胎压传感器在X轴或Z轴的重力加速度分量获得所述胎压传感器的旋转角度。
在本实施例中,可以将胎压传感器受到的切向加速度和法向加速度近似为一个恒定值。在车辆匀速行驶过程中,滤除掉这两个恒定值,即可以看成只有重力加速度分量在X轴和Z轴发生变化,其变化过程为正弦波,分别标记为X_Acc及Z_Acc。例如,如图8所示,图8给出了胎压传感器重力加速度分量在X轴(X_Acc)和Z轴(Z_Acc)的变化过程,以Z轴加速速Z_Acc为例,ponit1的加速度采样点表示胎压传感器此时处于轮胎Bottom(正下)的位置,point2表示Back(正后),point3表示Top(正上),point4表示Front(正前),point5表示Bottom(正下)。
具体地,如图9所示,所述根据所述胎压传感器在X轴或Z轴的重力加速度分量获得所述胎压传感器的旋转角度,包括:
S2011、获取所述胎压传感器的X轴重力加速度分量的波形,或Z轴重力加速度分量的波形。
例如,如图10所示,以X轴重力加速度分量的波形为例,根据X轴重力加速度分量来计算胎压传感器的旋转角度、旋转周期。
S2012、对获得的所述波形进行滤波处理。
在实际应用场景中,车辆在行驶过程中会受到地面摩擦、车辆震动等产生的加速度噪音影响,因此,需要对叠加有加速度噪音的重力加速度分量进行滤波处理。
具体的,所述对获得的所述波形进行滤波处理包括:
步骤一、过滤掉超过上限和\或下限的重力加速度分量,以获得过滤后的第一波形。
步骤二、对所述第一波形进行小幅值加速度噪音滤波处理。
车辆在经过减速带、坑洼路面等不平稳的地方时会产生较大的瞬时抖动,这种大幅度的加速度噪音在整个行驶过程中持续时间短,分量值较大。例如,如图11所示,图11示出了加速度分量在进行第一次滤波前的波形图。因此,可以通过下述方式对超过上限和\或下限的异常值进行“限幅滤波”处理,将其过滤,处理算法如下:
if((Y t>Y max)||(Y t<Y min))Y t=Y t-1
t:采样时刻或采样次数;
Y t:第t次获取到的加速度值;
Y t-1:第t-1次获取到的加速度值;
Y max:算法所设定的加速度上限值;
Y min:算法所设定的加速度下限值;
通过上述处理算法对所述重力加速度分量的波形进行限幅滤波处理,过滤掉超过上限或\和下限的异常值,则可以得到如图12所示的波形图。
此外,为了方便将重力加速度分量变化趋势映射成胎压传感器的旋转角度,还需要对小幅值加速度噪音进行滤波处理。具体地,可以使用“二次移动 平均滤波法”对小幅值加速度噪音进行滤波处理,滤波算法如下:
Figure PCTCN2020133778-appb-000003
Figure PCTCN2020133778-appb-000004
n:计算移动平均值的跨越期;
t:采样时刻或采样次数;
Y t:第t次获取到的加速度值;
Y t-1:第t-1次获取到的加速度值;
M t (1):第t次的一次移动平均值;
M t (2):第t次的二次移动平均值;
如图13所示,将上述限幅滤波后的重力加速度分量按照上述小幅值加速度噪音滤波处理算法进行处理后,可以得到相对平滑的波形。
接下来对该平滑的波形进行采样计算,计算出一个合适的采样率,从而对加速度分量进行采样。
S2013、计算进行滤波处理后的所述X轴重力加速度分量或所述Z轴重力加速度分量的采样率,其中,所述采样率用于对所述X轴重力加速度分量或所述Z轴重力加速度分量进行采样。
可以根据下述公式计算进行滤波处理后的所述X轴重力加速度分量或所述Z轴重力加速度分量的采样率,该公式为:
fsample(采样率)=3600/(a·Tcircle)
其中,fsample为采样率,a为角度测量精度,即测量允许的最大角度偏差值,Tcircle为车轮旋转周期。
所述a的数值可以预先设定,例如a=300,轮胎旋转一圈需要采样的点数为:x=3600/300=12,采样一个点所需要的时间为:T=Tcircle/x,即采样率为:fsample=1/T=x/Tcircle=3600/(a·Tcircle)=12/Tcircle。其中,x为每圈采样点数,T为采样一个点所需要的时间。
可以理解的是,当采样率设定较高时(例如如图14所示),采集的点数增加,能够更加真实地还原原始波形,但也因此增加单片机存储和数据处理的开销;当采样率设定较低时(例如如图15所示),采集的点数减少,但也因此造成了波形失真,检测精度下降。因此,选取合适的采样率具有重要意义。
在本实施例中,可以将采样率与汽车的实时速度进行匹配,从而确定合适的采样率。具体的,所述方法还包括:首先,获取所述汽车轮胎的实时参数,该实时参数包括加速度、旋转周期、轮胎转速等。然后根据所述实时参数调整所述采样率,比如,可以实时采集汽车当前的加速度信息,基于加速度选择合适的采样率,该加速度可以是向心加速度,其中,向心加速度公式为:
Figure PCTCN2020133778-appb-000005
Figure PCTCN2020133778-appb-000006
可以推出
Figure PCTCN2020133778-appb-000007
则采样率:
Figure PCTCN2020133778-appb-000008
其中,Acc为向心加速度,R为轮胎的半径,Tcircle为轮胎的旋转周期,采样率fsample可以根据向心加速度进行动态地调整。最后根据调整后的所述采样率获取所述胎压传感器的旋转角度。
除了通过上述方法获得采样率之外,还可以采用其他方法获得所述采样率。在一些实施例中,考虑功耗与测试效率问题,以及单次采样时间可能较短(一般在2S内完成),当车速高于某一阈值(例如:40Km/h)时,可以近似地认为速度不会在短时间内发生剧变,因此也可以根据实际应用情况,比如在检测旋转角度前,先采集当前加速度信息,再根据当前加速度,按照上述采样率公式进行初始设定,检测过程中,则采用恒定的采样率检测。
S2014、将采样得到的所述X轴重力加速度分量或所述Z轴重力加速度分量转换为所述胎压传感器的旋转角度。
其中,可以参考图8获得所述X轴重力加速度分量或所述Z轴重力加速度分量分别对应的旋转角度。
其中,确定所述胎压传感器的旋转周期包括:
根据公式
Figure PCTCN2020133778-appb-000009
计算所述胎压传感器的旋转周期,其中,T为所述胎压传感器的旋转周期,R为车轮半径,Acc为所述胎压传感器检测的向心加速度;或
确定所述胎压传感器的旋转角度为0度时的检测时刻,以及所述胎压传感器从0度旋转到360度时,所述360度对应的检测时刻,根据所述0度对应的检测时刻和所述360度对应的检测时刻计算所述胎压传感器的旋转周期。
计算所述胎压传感器的旋转周期的详细过程可以参考上述实施例,在此不再赘述。
通过上述方法获得胎压传感器的旋转角度后,进一步判断该旋转角度是否是预设的目标角度。只有达到预设的目标角度时,所述胎压传感器才发生所述RF数据。
S202、判断所述旋转角度是否为预设的目标角度。所述预设目标角度可以是任意角度,对此不作限制。
若是,则执行下述步骤S203;若否,则执行下述步骤S204。
S203、发送包括所述胎压传感器的旋转周期的RF数据至电子控制单元,其中,所述RF数据包括所述胎压传感器的旋转周期,所述旋转周期用于由所述电子控制单元判断与车轮的旋转周期的差值是否在预设范围内,若是时,确定所述胎压传感器所在车轮的位置。
其中,所述电子控制单元判断所述旋转周期与所述车轮的旋转周期的差值 是否在预设范围内的详细过程,以及确定所述胎压传感器所在车轮的位置的详细过程可以参考上述实施例。
S204、判断所述胎压传感器的检测时间是否大于预设时间。
若否,则跳转执行上述步骤S201;若是,则执行下述步骤S205。
S205、控制所述胎压传感器为休眠状态。
其中,如果在预设时间内,所述胎压传感器的旋转角度还未达到所述预设的目标角度,则所述胎压传感器进行休眠状态。在所述胎压传感器下一次被唤醒后,继续执行上述方法步骤检测旋转角度。
本发明实施例提供了一种车轮定位方法,该方法可以应用于胎压传感器,该方法通过获取胎压传感器的旋转角度,当该旋转角度为预设的目标角度时,所述胎压传感器向所述电子控制单元发送RF数据,以使所述电子控制单元根据所述RF数据对汽车轮胎进行定位。该实施方式降低了轮胎位置标定门槛,无需额外的匹配工具,降低了车辆成本,并且提高了车轮定位的准确性。
请参阅图16,图16是本发明实施例提供的一种汽车的结构示意图。如图16所示,该汽车300包括:上述实施例所述的车轮定位系统100、左前车轮310、右前车轮320、左后车轮330、右后车轮340以及备胎350。
其中,所述汽车300可以通过所述车轮定位系统100对所述左前车轮310、所述右前车轮320、所述左后车轮330、所述右后车轮340以及所述备胎350进行轮胎位置定位。
所述汽车300可以是各种类型的汽车,例如,乘用车、商用车等等。
本发明实施例提供的汽车在进行车轮定位时,不需要额外增加工具,具有操作门槛低和成本低的优点,并且车轮定位结果可靠、准确度高。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (17)

  1. 一种车轮定位方法,应用于电子控制单元,所述电子控制单元安装于汽车,所述汽车的每个车轮均设置有胎压传感器和ABS传感器,其特征在于,所述方法包括:
    接收来自一个胎压传感器的RF数据,其中,所述RF数据是所述胎压传感器的旋转角度在目标角度时发送的,所述RF数据包括所述胎压传感器的旋转周期;
    获取所述汽车的每个车轮的ABS传感器发送的齿轮脉冲信息,所述齿轮脉冲信息与所述RF数据用于表示近似同一时刻的车轮的信息;
    根据所述每个车轮的ABS传感器中的任一个ABS传感器的齿轮脉冲信息确定汽车的车轮的旋转周期;
    判断所述胎压传感器的旋转周期与所述汽车车轮的旋转周期的差值是否在预设范围内;
    若是,确定与所述胎压传感器安装于同一车轮的目标ABS传感器,以根据所述目标ABS传感器的位置确定所述同一车轮的位置。
  2. 根据权利要求1所述的方法,其特征在于,所述电子控制单元包括胎压ECU和ABS控制单元,所述ABS控制单元分别与所述胎压ECU和所述ABS传感器连接,所述根据所述每个车轮的ABS传感器中的任一个ABS传感器的齿轮脉冲信息确定汽车的车轮的旋转周期,包括:
    通过所述ABS控制单元获取所述汽车的车轮的旋转周期,其中,所述车轮的旋转周期是所述ABS控制单元根据所述每个车轮的ABS传感器中的任一个ABS传感器的齿轮脉冲信息计算得到的;或者,
    所述胎压ECU通过所述ABS控制单元获取所述每个车轮的ABS传感器中的任一个ABS传感器的齿轮脉冲信息,并根据所述齿轮脉冲信息计算所述汽车的车轮的旋转周期。
  3. 根据权利要求2所述的方法,其特征在于,所述齿轮脉冲信息包括齿轮刻度,所述根据所述齿轮脉冲信息计算所述汽车的车轮的旋转周期,包括:
    获取预设的采样深度对应的全部齿轮刻度信息,其中,所述全部齿轮刻度信息包括采集的每一齿轮刻度以及每一齿轮刻度对应的采样时间;
    获取当前采集到的齿轮刻度和第一采样时间;
    根据当前采集到的齿轮刻度,在所述全部齿轮刻度信息中查询与所述当前采集到的齿轮刻度相同的齿轮刻度所对应的第二采样时间;
    根据所述第一采样时间和所述第二采样时间计算所述车轮的旋转周期。
  4. 根据权利要求1所述的方法,其特征在于,所述判断所述胎压传感器的旋转周期与所述汽车车轮的旋转周期的差值是否在预设范围内,包括:
    当所述胎压传感器的旋转周期与所述汽车车轮的旋转周期的差值为零时,则确定在所述预设范围内,否则,不在所述预设范围内。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    当接收到的所述RF数据存在数据帧丢失时,根据丢失的数据帧将所获得的所述齿轮脉冲信息进行同步匹配,以使获得所述齿轮脉冲信息的时刻与接收到所述RF数据的时刻匹配。
  6. 一种车轮定位方法,应用于胎压传感器,其特征在于,所述方法包括:
    获取所述胎压传感器的旋转角度;
    确定所述胎压传感器的旋转周期;
    在所述旋转角度为预设的目标角度时,发送包括所述胎压传感器的旋转周期的RF数据至电子控制单元,其中,所述RF数据包括所述胎压传感器的旋转周期,所述旋转周期用于由所述电子控制单元判断与车轮的旋转周期的差值是否在预设范围内,若是时,确定所述胎压传感器所在车轮的位置。
  7. 根据权利要求6所述的方法,其特征在于,所述确定所述胎压传感器的旋转周期,包括:
    根据公式
    Figure PCTCN2020133778-appb-100001
    计算所述胎压传感器的旋转周期,其中,T为所述胎压传感器的旋转周期,R为车轮半径,Acc为所述胎压传感器检测的向心加速度;或
    确定所述胎压传感器的旋转角度为0度时的检测时刻,以及所述胎压传感器从0度旋转到360度时,所述360度对应的检测时刻,根据所述0度对应的检测时刻和所述360度对应的检测时刻计算所述胎压传感器的旋转周期。
  8. 根据权利要求6所述的方法,其特征在于,在所述获取所述胎压传感器的旋转角度的步骤之前,所述方法还包括:
    定时唤醒所述胎压传感器,在所述胎压传感器为唤醒状态时获取所述胎压传感器的旋转角度。
  9. 根据权利要求6所述的方法,其特征在于,所述获取所述胎压传感器的旋转角度,包括:
    根据所述胎压传感器在X轴或Z轴的重力加速度分量获得所述胎压传感器的旋转角度。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述胎压传感器在X轴或Z轴的重力加速度分量获得所述胎压传感器的旋转角度,包括:
    获取所述胎压传感器的X轴重力加速度分量的波形,或Z轴重力加速度分量的波形;
    对获得的所述波形进行滤波处理;
    计算进行滤波处理后的所述X轴重力加速度分量或所述Z轴重力加速度分 量的采样率,其中,所述采样率用于对所述X轴重力加速度分量或所述Z轴重力加速度分量进行采样;
    将采样得到的所述X轴重力加速度分量或所述Z轴重力加速度分量转换为所述胎压传感器的旋转角度。
  11. 根据权利要求10所述的方法,其特征在于,所述对获得的所述波形进行滤波处理包括:
    过滤掉超过上限和\或下限的重力加速度分量,以获得过滤后的第一波形;
    对所述第一波形进行小幅值加速度噪音滤波处理。
  12. 根据权利要求10所述的方法,其特征在于,所述计算进行滤波处理后的所述X轴重力加速度分量或所述Z轴重力加速度分量的采样率,包括:
    根据公式:fsample=3600/(a·Tcircle)计算所述X轴重力加速度分量或所述Z轴重力加速度分量的采样率,其中,fsample为采样率,a为测量允许的最大角度偏差值,Tcircle为车轮旋转周期。
  13. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    获取所述汽车轮胎的实时参数;
    根据所述实时参数调整所述采样率;
    根据调整后的所述采样率获取所述胎压传感器的旋转角度。
  14. 根据权利要求6至13任一项所述的方法,其特征在于,所述方法还包括:
    当所述旋转角度不是所述预设的目标角度时,判断所述胎压传感器的检测时间是否大于预设时间;
    若否,则再次执行所述获取所述胎压传感器的旋转角度的步骤;
    若是,则控制所述胎压传感器为休眠状态。
  15. 一种电子控制单元,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1至5任一项所述的方法。
  16. 一种胎压传感器,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求6至14任一项所述的方法。
  17. 一种车轮定位系统,其特征在于,包括:电子控制单元、胎压传感器、ABS传感器,所述电子控制单元分别与所述胎压传感器和所述ABS传感器连接;
    所述电子控制单元用于:
    接收所述胎压传感器发送的RF数据,所述RF数据包括所述胎压传感器的旋转周期;获取所述ABS传感器发送的齿轮脉冲信息;根据所述齿轮脉冲信息确定汽车车轮的旋转周期;判断所述胎压传感器的旋转周期与所述汽车车轮的旋转周期的差值是否在预设范围内;若是,确定与所述胎压传感器安装于同一车轮的目标ABS传感器,以根据所述目标ABS传感器的位置确定所述同一车轮的位置;
    所述胎压传感器用于:
    获取所述胎压传感器的旋转角度;判断所述旋转角度是否为预设的目标角度;若是,发送RF数据至所述电子控制单元,其中,所述RF数据包括所述胎压传感器的旋转周期;
    所述ABS传感器用于:
    采集的汽车车轮的齿轮脉冲信息,并发送所述齿轮脉冲信息至所述电子控制单元。
PCT/CN2020/133778 2019-12-27 2020-12-04 车轮定位方法、系统及电子控制单元、胎压传感器 WO2021129348A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/806,551 US20220314714A1 (en) 2019-12-27 2022-06-13 Wheel positioning method, system, electronic control unit and tire pressure sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911379478.9 2019-12-27
CN201911379478.9A CN111016553A (zh) 2019-12-27 2019-12-27 车轮定位方法、系统及电子控制单元、胎压传感器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/806,551 Continuation US20220314714A1 (en) 2019-12-27 2022-06-13 Wheel positioning method, system, electronic control unit and tire pressure sensor

Publications (1)

Publication Number Publication Date
WO2021129348A1 true WO2021129348A1 (zh) 2021-07-01

Family

ID=70196584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133778 WO2021129348A1 (zh) 2019-12-27 2020-12-04 车轮定位方法、系统及电子控制单元、胎压传感器

Country Status (3)

Country Link
US (1) US20220314714A1 (zh)
CN (1) CN111016553A (zh)
WO (1) WO2021129348A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132126A (zh) * 2021-12-28 2022-03-04 联创汽车电子有限公司 胎压检测方法和模块

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111016553A (zh) * 2019-12-27 2020-04-17 深圳市道通科技股份有限公司 车轮定位方法、系统及电子控制单元、胎压传感器
CN114347732B (zh) * 2020-10-12 2024-02-23 武汉杰开科技有限公司 车轮加速度的相关方法、轮胎压力监测系统和存储装置
CN113022235B (zh) * 2021-03-19 2023-06-13 深圳市道通科技股份有限公司 轮胎定位方法、装置、设备、存储介质及胎压监测方法
CN113147279A (zh) * 2021-04-16 2021-07-23 重庆长安汽车股份有限公司 汽车胎压监测自动定位方法、系统、车辆及存储介质
CN113561711B (zh) * 2021-08-16 2023-05-12 保隆霍富(上海)电子有限公司 一种轮胎自定位系统及其定位方法
CN114184398A (zh) * 2021-12-08 2022-03-15 合肥晟泰克汽车电子股份有限公司 车辆定位方法
CN114537054B (zh) * 2022-02-28 2024-04-30 重庆长安汽车股份有限公司 一种汽车胎压监测的轮胎自动定位系统
CN115302991B (zh) * 2022-09-01 2023-10-13 万通智控科技股份有限公司 胎压传感器自定位方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120029767A1 (en) * 2010-07-30 2012-02-02 Ivan Andrew David Bailie Tire Pressure Monitoring System Wheel Rotation Auto Location
CN107471928A (zh) * 2017-08-16 2017-12-15 深圳市航盛电子股份有限公司 一种轮胎的定位识别方法
CN109153297A (zh) * 2017-04-27 2019-01-04 太平洋工业株式会社 接收器
CN109383201A (zh) * 2018-10-15 2019-02-26 矽力杰半导体技术(杭州)有限公司 车轮转动的感测方法、车轮定位方法和系统以及tpms
CN109664691A (zh) * 2017-10-13 2019-04-23 江铃汽车股份有限公司 一种tpms自学习方法
KR20190054276A (ko) * 2017-11-13 2019-05-22 현대자동차주식회사 Tps 위치 특정 중 마지막 위치의 자동 특정 방법 및 장치
CN109986916A (zh) * 2017-12-29 2019-07-09 惠州比亚迪电子有限公司 胎压监测系统的定位方法、装置、设备及存储介质
CN111016553A (zh) * 2019-12-27 2020-04-17 深圳市道通科技股份有限公司 车轮定位方法、系统及电子控制单元、胎压传感器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2774561A1 (en) * 2009-09-22 2011-03-31 Schrader Electronics Ltd. System and method for performing auto-location of a wheel in a vehicle using wheel phase angle information
DE102010000919A1 (de) * 2009-10-14 2011-04-21 Sensordynamics Ag Verfahren zur Reifenluftdruckmessung und -auswertung mit einer Zuordnung von Radpositionen sowie Reifenluftdruckmesssystem
CN102133843B (zh) * 2010-01-21 2013-10-02 联创汽车电子有限公司 匹配器
US9333814B2 (en) * 2013-08-22 2016-05-10 Schrader Electronics Ltd. System and method for performing auto-location of a tire pressure monitoring sensor arranged with a vehicle wheel using confidence interval analysis and rollback events

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120029767A1 (en) * 2010-07-30 2012-02-02 Ivan Andrew David Bailie Tire Pressure Monitoring System Wheel Rotation Auto Location
CN109153297A (zh) * 2017-04-27 2019-01-04 太平洋工业株式会社 接收器
CN107471928A (zh) * 2017-08-16 2017-12-15 深圳市航盛电子股份有限公司 一种轮胎的定位识别方法
CN109664691A (zh) * 2017-10-13 2019-04-23 江铃汽车股份有限公司 一种tpms自学习方法
KR20190054276A (ko) * 2017-11-13 2019-05-22 현대자동차주식회사 Tps 위치 특정 중 마지막 위치의 자동 특정 방법 및 장치
CN109986916A (zh) * 2017-12-29 2019-07-09 惠州比亚迪电子有限公司 胎压监测系统的定位方法、装置、设备及存储介质
CN109383201A (zh) * 2018-10-15 2019-02-26 矽力杰半导体技术(杭州)有限公司 车轮转动的感测方法、车轮定位方法和系统以及tpms
CN111016553A (zh) * 2019-12-27 2020-04-17 深圳市道通科技股份有限公司 车轮定位方法、系统及电子控制单元、胎压传感器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132126A (zh) * 2021-12-28 2022-03-04 联创汽车电子有限公司 胎压检测方法和模块

Also Published As

Publication number Publication date
CN111016553A (zh) 2020-04-17
US20220314714A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
WO2021129348A1 (zh) 车轮定位方法、系统及电子控制单元、胎压传感器
US9592710B2 (en) Wheel position detecting device and tire pressure detecting apparatus having the same
US9139053B2 (en) Tire position determination system and tire pressure monitoring system
CN108501629B (zh) 用于测量和传输轮胎特性的方法和设备
US9539867B2 (en) Wheel position detector and tire inflation pressure detector having the same
US9290068B2 (en) Wheel position detector and tire inflation pressure detector having the same
JP2015013637A (ja) タイヤ位置判定システム
US9757997B2 (en) Wheel position detecting device and tire pressure detecting apparatus having the same
US20180022171A1 (en) Tire wheel position detection device and tire pressure monitoring system having the same
BR112012017197B1 (pt) Método e aparelho para localizar as posições de instalação de rodas de veículo em um veículo a motor e veículo
CN108790632B (zh) 一种胎压传感器自学习系统及方法
WO2013118486A1 (en) Wheel position detector and tire inflation pressure detector having the same
US9227471B2 (en) Tire position determination system
US8981920B2 (en) Tire pressure monitoring apparatus and method
CN108237848B (zh) 轮胎位置定位方法和装置
US20150177274A1 (en) Pretreatment apparatus and method of wheel speed
US10239366B2 (en) Wheel position detecting device and tire air pressure detecting apparatus having the same
US9783013B2 (en) Wheel position detector and tire inflation pressure detector having the same
JP2013082436A (ja) タイヤ取付位置判定システム
CN108407555B (zh) 汽车轮胎定位方法和装置
CN111587200B (zh) 路面信息收集装置
CN203543542U (zh) 电动汽车胎压监测装置
US20220242176A1 (en) Method for monitoring motion status of vehicle and related chip, and system
US20160332492A1 (en) Tire-valve id registration system
JP2016159650A (ja) Id登録装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907708

Country of ref document: EP

Kind code of ref document: A1