WO2021128792A1 - 一种提高苯酚羟基化反应产物对位选择性的催化剂及其制备方法与应用 - Google Patents

一种提高苯酚羟基化反应产物对位选择性的催化剂及其制备方法与应用 Download PDF

Info

Publication number
WO2021128792A1
WO2021128792A1 PCT/CN2020/099879 CN2020099879W WO2021128792A1 WO 2021128792 A1 WO2021128792 A1 WO 2021128792A1 CN 2020099879 W CN2020099879 W CN 2020099879W WO 2021128792 A1 WO2021128792 A1 WO 2021128792A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
molecular sieve
oxide
hours
phenol
Prior art date
Application number
PCT/CN2020/099879
Other languages
English (en)
French (fr)
Inventor
黄家辉
龙化云
吕强
贾玉华
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2021128792A1 publication Critical patent/WO2021128792A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/60Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by oxidation reactions introducing directly hydroxy groups on a =CH-group belonging to a six-membered aromatic ring with the aid of other oxidants than molecular oxygen or their mixtures with molecular oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the preparation method and application field of petrochemical catalysts, and particularly relates to a preparation method and application of a catalyst for improving the para-selectivity of phenol hydroxylation reaction products.
  • Hydroquinone (catechol and hydroquinone) is an important chemical product with an extremely wide range of applications. Catechol is an important pesticide and pharmaceutical intermediate, and can be used to prepare spices, dyes and photosensitive materials. Hydroquinone is mainly used in photographic film developer, anthraquinone dye, azo dye, auxiliary solvent for synthetic ammonia desulfurization process, rubber antioxidant, gasoline antioxidant, etc.
  • the traditional hydroquinone synthesis process is basically to produce a single catechol or hydroquinone product. Including phenol chlorination hydrolysis method to produce catechol, aniline oxidation method to produce hydroquinone, p-dicumene oxidation method to produce hydroquinone, phenol and acetone method to produce hydroquinone.
  • the yield of catechol and hydroquinone is low, the production scale is small, and the environmental pollution is serious, and they have been eliminated abroad.
  • the main production process routes are Rhone Poulenc method, Ube method, Brichima method and Enichem method.
  • the French Rhone Poulenc process uses HClO 4 as a catalyst, H 3 PO 4 as a co-catalyst, 70% H 2 O 2 as an oxidant, and phenol as a raw material to produce hydroquinone.
  • H 3 PO 4 as a co-catalyst
  • 70% H 2 O 2 as an oxidant
  • phenol as a raw material to produce hydroquinone.
  • an 18kt/a production facility was built. Three 18m 3- stage series reactors are used. The reaction temperature is 90°C. The conversion rate of phenol is only 5% per pass. The selectivity of hydroquinone is 85%-90% in terms of H 2 O 2. Hydroquinone is 1.5.
  • Japan's Ube Industries Co., Ltd. successfully developed the Ube process, using sulfuric acid as a catalyst, using 60% mass fraction of hydrogen peroxide and ketone to generate ketone peroxide as the oxidant, and phenol as a raw material to produce hydroquinone. kt/a production unit.
  • Ketone peroxide is used as an oxidant to oxidize at 80-100°C.
  • the conversion rate of phenol in a single pass is not more than 5%, the selectivity of hydroquinone can reach 90%, and the product catechol/hydroquinone is 1.5.
  • the Enichem process is a method developed by the Italian Enichem company to use titanium silica molecular sieve as a catalyst, low-concentration hydrogen peroxide as an oxidant, and phenol as a raw material to produce benzenediol. It replaced the Brichima process and built a 5kt/a production device in 1986. It adopts slurry bed technology and intermittent operation.
  • the reaction temperature is 60-90°C
  • water and acetone are used as solvents
  • the molar ratio of phenol to hydrogen peroxide is 3
  • the catalyst mass fraction is 3%
  • the hydrogen peroxide conversion rate reaches 100%
  • the phenol conversion rate reaches 90%.
  • the utilization rate of hydrogen peroxide reaches 80%.
  • the selectivity of hydroquinone is greater than 90%, and the product catechol/hydroquinone is 1.5.
  • Chinese patent CN1958160A prepared a Cu-VSB-5 catalyst. This method uses microporous nickel phosphate VSB-5 as a carrier, and introduces Cu 2+ into the pores through ion exchange.
  • the invention provides a catalyst preparation method and application for improving the para-selectivity of phenol hydroxylation reaction products.
  • the present invention improves the low-temperature phenol hydroxylation activity of titanium silicon molecular sieve by supporting active metal components, and simultaneously performs silanization treatment on the titanium silicon molecular sieve catalyst to eliminate active sites on the outer surface of the catalyst, improve the shape selectivity of the catalyst, and inhibit phenol hydroxylation.
  • the formation of catechol during the process improves the selectivity of hydroquinone.
  • the catalyst prepared according to the method of the invention has the characteristics of high activity, high hydroquinone selectivity and good activity stability.
  • a catalyst for improving the para-selectivity of a phenol hydroxylation reaction product includes a titanium silicon molecular sieve and the following materials:
  • the stated percentage is the percentage of the mass of each component to the total mass of the catalyst.
  • the catalyst is composed of the following components:
  • the binder is aluminum oxide or silicon oxide.
  • the molding method of the titanium silicon molecular sieve is an extrusion molding method or a spray molding method.
  • the method when the method is titanium-silica molecular sieve extrusion molding, the method includes the following steps:
  • the formed titanium silicon molecular sieve is impregnated in an equal volume to sequentially load iron oxide, lanthanum oxide, phosphorus oxide, and silicon oxide to obtain the catalyst that improves the para-selectivity of the phenol hydroxylation reaction product;
  • the method is a spray molding method, it includes the following steps:
  • the solid content of the mixture is 10%-30%.
  • the mixture is stirred and aged at room temperature for 24 hours and then spray-dried for molding.
  • the spray-drying molding conditions are as follows: :Inlet temperature: 200 ⁇ 220°C, outlet temperature: 100 ⁇ 120°C, after forming, drying at 35 ⁇ 120°C, firing at 500 ⁇ 600°C for 2 ⁇ 12h, to prepare shaped titanium silicon molecular sieve;
  • the formed titanium silicon molecular sieve is impregnated in equal volume to load iron oxide, lanthanum oxide, phosphorous oxide, and silicon oxide in sequence to obtain the catalyst that improves the para-selectivity of the phenol hydroxylation reaction product.
  • step (2) described in step (2) the specific steps of carrying iron oxide, lanthanum oxide, phosphorous oxide, and silicon oxide in sequence by immersing the shaped titanium silicon molecular sieve in an equal volume are: combining iron-containing compounds and deionized water Mix and stir to obtain a stable impregnation liquid a;
  • the impregnating liquid a is impregnated to form a titanium silicate molecular sieve by an equal volume impregnation method for 6-24 hours, then dried at 35-120°C for 12-24 hours, and calcined at 500-650°C to obtain a catalyst precursor a;
  • the impregnating solution b is immersed in the above-mentioned calcined catalyst precursor a by an equal volume impregnation method for 6-24 hours, then dried at 35-120°C for 12-24 hours, and calcined at 500-650°C to obtain the catalyst precursor b;
  • the impregnating solution c is impregnated with the above-mentioned calcined catalyst precursor c by an equal volume impregnation method for 6-24 hours, and then dried at 35-60°C for 12-24 hours, and calcined at 500-650°C to obtain the para-selective reaction product of the enhanced phenol hydroxylation
  • the catalyst of sex is impregnated with the above-mentioned calcined catalyst precursor c by an equal volume impregnation method for 6-24 hours, and then dried at 35-60°C for 12-24 hours, and calcined at 500-650°C to obtain the para-selective reaction product of the enhanced phenol hydroxylation
  • the catalyst of sex The impregnating solution c is impregnated with the above-mentioned calcined catalyst precursor c by an equal volume impregnation method for 6-24 hours, and then dried at 35-60°C for 12-24 hours, and calcined at 500-650°C to obtain the para
  • the iron-containing compound is one or more of chloride, nitrate, sulfate or acetate.
  • the lanthanum-containing compound is lanthanum nitrate.
  • the phosphorus-containing compound is one or more of phosphoric acid, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and ammonium phosphate.
  • the silylation reagent includes methyl orthosilicate and ethyl orthosilicate.
  • the catalyst prepared by the method of the present invention is suitable for phenol hydroxylation reaction, and has the characteristics of high activity, high hydroquinone selectivity, and good activity stability.
  • the present invention improves the low-temperature phenol hydroxylation activity of titanium silicon molecular sieve by supporting active metal components, and at the same time carries out silanization treatment on the titanium silicon molecular sieve catalyst. On the one hand, it eliminates active sites on the outer surface of the catalyst and reduces by-products such as tar. Improved catalyst stability. On the other hand, the shape selectivity of the catalyst is improved, and the formation of catechol during the hydroxylation of phenol is suppressed, thereby increasing the selectivity of hydroquinone.
  • the titanium silicate molecular sieve was prepared according to the method described in Example 2 in the published patent CN1401569A: 50g of tetraethylorthosilicate was added to a three-necked reactor with a jacket, and 45g and 40g of a 20wt% TPAOH aqueous solution were added under magnetic stirring at 25°C.
  • the mother liquor of the above molecular sieve is centrifuged, dried and calcined at 540° C. for 4 hours to obtain a titanium silicate molecular sieve.
  • the above catalyst was then immersed in 15 mL of a cyclohexane solution containing 0.3 g of ethyl orthosilicate. Immerse at room temperature for 6 hours, dry at 100°C for 12 hours, and calcinate at 540 for 4 hours. A catalyst A was obtained.
  • the above catalyst was then immersed in 15 mL of a cyclohexane solution containing 0.7 g of ethyl orthosilicate. Immerse at room temperature for 6 hours, dry at 100°C for 12 hours, and calcinate at 540 for 4 hours. Catalyst B was obtained.
  • the above catalyst was then immersed in 15 mL of a cyclohexane solution containing 1.0 g of ethyl orthosilicate. Immerse at room temperature for 6 hours, dry at 100°C for 12 hours, and calcinate at 540 for 4 hours. Catalyst C was obtained.
  • the flow weight method was used to characterize the physical adsorption properties of n-hexane and cyclohexane.
  • the kinetic diameter of n-hexane is Smaller than the size of TS-1 pores, the adsorption performance of TS-1 is usually studied by the adsorption of n-hexane on MFI zeolite.
  • the kinetic diameter of cyclohexane is The kinetic diameter of cyclohexane is similar to the pore size of TS-1, and the decrease in the adsorption capacity of cyclohexane can indicate the decrease of TS-1 pore size.
  • the activity of the above catalyst was evaluated on a batch tank reactor.
  • the catalyst loading is 1g
  • the reaction temperature is 80°C
  • phenol/hydrogen peroxide 3
  • the reaction time is 4 hours.
  • the experimental data is shown in Table 3:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种提高苯酚羟基化反应产物对位选择性的催化剂及其制备方法和应用。该催化剂以钛硅分子筛为催化剂,以氧化硅或氧化铝为粘结剂挤条或喷雾成型。辅以铁为第一改性组分,以镧和磷为第二改性组分。再对催化剂进行硅烷化处理得到所述苯酚羟基化催化剂。以催化剂的重量为基准,氧化铁含量为0.5%~10%,助剂氧化镧的含量为0.5%~5%,助剂氧化磷的含量为0.5%~5%,氧化硅的含量为0.5%~2%。催化剂制备采用等体积浸渍法负载引入活性组分铁,经过干燥、焙烧后,再采用等体积浸渍法负载第二改性组分镧和磷,再次经过干燥、焙烧后,进行硅烷化处理得到目标催化剂。该催化剂具有低温苯酚羟基化活性高,对位产物选择性高和催化剂稳定性好。

Description

一种提高苯酚羟基化反应产物对位选择性的催化剂及其制备方法与应用 技术领域
本发明属于石油化工催化剂制备方法及应用领域,具体涉及一种提高苯酚羟基化反应产物对位选择性的催化剂制备方法和应用。
背景技术
苯二酚(邻苯二酚和对苯二酚)是重要的化工产品,具有极其广泛的应用领域。邻苯二酚是重要的农药和医药中间体,可用于制取香料、染料和感光材料等。对苯二酚主要用于摄影胶片的显影剂、蒽醌染料、偶氮染料、合成氨脱硫工艺辅助溶剂和橡胶防老剂、汽油抗氧剂等。
传统苯二酚合成工艺基本上是生产单一邻苯二酚或对苯二酚产品。包括苯酚氯化水解法生产邻苯二酚、苯胺氧化法生产对苯二酚、对二异丙苯氧化法生产对苯二酚、苯酚和丙酮法生产对苯二酚。传统工艺中邻苯二酚、对苯二酚收率低,生产规模小,环境污染严重,在国外已经被淘汰。20世纪70年代以后、日本、意大利和法国等先后开发了以双氧水为氧化剂的苯酚羟基化生产苯二酚工艺。主要生产工艺路线有Rhone Poulenc法、Ube法、Brichima法和Enichem法。
法国Rhone Poulenc工艺以HClO 4为催化剂,H 3PO 4为助催化剂,质量分数70%的H 2O 2为氧化剂,苯酚为原料生产苯二酚。1973年建成18kt/a生产装置。采用三个18m 3阶式串联反应釜,反应温度90℃,苯酚单程转化率仅5%,苯二酚选择性以H 2O 2计为85%-90%,产物中邻苯二酚/对苯二酚为1.5。
日本宇部兴产株式会社成功地开发了Ube工艺,以硫酸等为催化剂、采用质量分数60%的过氧化氢与酮生成酮过氧化物作为氧化剂、苯酚为原料生产苯二酚的工艺,建成2.5kt/a生产装置。酮过氧化物作为氧化剂在80-100℃氧化反应,苯酚单程转化率不大于5%,苯二酚选择性可达90%,产物邻苯二酚/对苯二酚为1.5。
Enichem工艺是意大利Enichem公司开发成功以钛硅分子筛为催化剂,低浓度过氧化氢为氧化剂、苯酚为原料生产苯二酚的方法,取代了Brichima法,在1986年建成5kt/a生产装置。它采用淤浆床工艺,间歇操作。反应温度60-90℃、水和丙酮作溶剂,在苯酚和过氧化氢摩尔比为3,催化剂质量分数为3%的条件下,过氧化氢转化率达100%,苯酚转化率达90%,过氧化氢利用率达80%。苯二酚选择性大于90%,产物邻苯二酚/对苯二酚为1.5。
为了进一步提高苯酚转化率,中国专利CN1958160A制备了一种Cu-VSB-5催化剂。 该方法是以微孔磷酸镍VSB-5为载体,在孔道中通过离子交换的方法引入Cu 2+。该催化剂在水中可以将苯酚转化为邻苯二酚和对苯二酚,转化率可以达到44.5%-47.7%,邻/对=1.5-1.6。
发明内容
本发明提供一种提高苯酚羟基化反应产物对位选择性的催化剂制备方法和应用。具体是,本发明通过担载活性金属组分提高钛硅分子筛低温苯酚羟基化活性,同时对钛硅分子筛催化剂进行硅烷化处理,消除催化剂外表面活性位,提高催化剂择形性,抑制苯酚羟基化过程中邻苯二酚的生成,从而提高对苯二酚选择性。按照本发明方法制备的催化剂具有活性高,对苯二酚选择性高和活性稳定性好等特点。
本发明一方面一种提高苯酚羟基化反应产物对位选择性的催化剂,包括钛硅分子筛和如下物质:
Figure PCTCN2020099879-appb-000001
所述的百分含量为各个组分质量占催化剂总质量的百分比。
基于以上技术方案,优选的,所述催化剂由下述组分组成:
Figure PCTCN2020099879-appb-000002
所述粘结剂为氧化铝或氧化硅。
基于以上技术方案,优选的,所述钛硅分子筛的成型方法为挤条成型法或喷雾成型法。
基于以上技术方案,优选的,当所述方法为钛硅分子筛挤条成型时,包括如下步骤:
(1)将钛硅分子筛与粘结剂前驱体混合,加入田菁粉混合均匀,再加入适量水经混捏、挤条成型,成型后经35~120℃干燥、500~600℃焙烧2~12h,制得成型钛硅分子筛;所述田菁粉的加入量是钛硅分子筛和粘结剂总质量的0.1%~5.0%;所述粘结剂前驱体为拟薄水铝石或硅溶胶;
(2)将成型钛硅分子筛通过等体积浸渍依次负载氧化铁、氧化镧和氧化磷、氧化硅,得到所述提高苯酚羟基化反应产物对位选择性的催化剂;
当所述方法为喷雾成型法时,包括如下步骤:
(1)将钛硅分子筛母液与粘结剂前驱体混合,得到混合料,混合料固含量为10%~30%,将混合料室温搅拌老化24小时后采用喷雾干燥成型,喷雾干燥成型条件为:入口温度:200~220℃,出口温度:100~120℃,成型后经35~120℃干燥、500~600℃焙烧2~12h,制得成型钛硅分子筛;
(2)将成型钛硅分子筛通过等体积浸渍依次负载氧化铁、氧化镧和氧化磷、氧化硅,得到所述提高苯酚羟基化反应产物对位选择性的催化剂。
基于以上技术方案,优选的,步骤(2)所述的将成型钛硅分子筛通过等体积浸渍依次负载氧化铁、氧化镧和氧化磷、氧化硅的具体步骤为:将含铁化合物和去离子水混合,搅拌均匀后制得稳定的浸渍液a;
将所述浸渍液a以等体积浸渍法浸渍成型钛硅分子筛6~24h,然后经35~120℃干燥12~24h,500~650℃焙烧,得到催化剂前体a;
将含镧化合物、含磷化合物和去离子水混合,搅拌均匀后制得稳定的浸渍液b;
将浸渍液b以等体积浸渍法浸渍上述已焙烧的催化剂前体a中6~24h,然后经35~120℃干燥12~24h,500~650℃焙烧,得到催化剂前体b;
将硅烷化试剂和环己烷混合,搅拌均匀后制得稳定的浸渍液c;
将浸渍液c以等体积浸渍法浸渍上述已焙烧的催化剂前体c6~24h,然后经35~60℃干燥12~24h,500~650℃焙烧,得到所述提高苯酚羟基化反应产物对位选择性的催化剂。
基于以上技术方案,优选的,所述含铁化合物为氯化盐、硝酸盐、硫酸盐或乙酸盐中的一种或几种。
基于以上技术方案,优选的,其特征在于:所述含镧化合物为硝酸镧。
基于以上技术方案,优选的,所述含磷化合物为磷酸、磷酸二氢铵、磷酸氢二铵、磷酸铵中的一种或几种。
基于以上技术方案,优选的,硅烷化试剂包括正硅酸甲酯、正硅酸乙酯。
本发明还提供一种上述催化剂的应用,所述催化剂应用于苯酚双氧水羟基化制苯二酚反应中:所述反应压力为0.1~3.0MPa,反应温度为30~90℃,液时体积空速为0.5~6.0h -1,苯酚浓度为0.1-4mol/L,苯酚/双氧水摩尔比=1:1~3:1。
有益效果
(1)本发明方法制备的催化剂适用于苯酚羟基化反应,具有活性高,对苯二酚选择性高和活性稳定性好等特点。
(2)本发明通过对担载活性金属组分提高钛硅分子筛低温苯酚羟基化活性,同时对钛硅分子筛催化剂进行硅烷化处理,一方面消除催化剂外表面活性位,减少了焦油等副产物,提高了催化剂稳定性。另一方面提高催化剂择形性,抑制苯酚羟基化过程中邻苯二酚的生成,从而提高对苯二酚选择性。
具体实施方式
以下通过对比例和实施例对本发明催化剂及其制备方法和应用进行进一步的详细说明。
按照公开专利CN1401569A中实施例2所述的方法制备钛硅分子筛:将50g正硅酸乙酯加入到带夹套的三口反应器中,在25℃磁力搅拌下加入20wt%的TPAOH水溶液45g及40g去离子水,使硅酯水解90min,继续加热升温到85℃;将15g无水异丙醇加到2g钛酸四丁酯中,在室温下水解30min,得到钛酯水解物;将钛酯水解物与硅酯水解物混合,并在85℃下继续反应除醇6h,将所得澄清的钛硅溶胶放入带有聚四氟乙烯内衬的不锈钢密封反应釜中,与170℃自生压力下晶化24h,得到分子筛母液。
挤条钛硅分子筛催化剂的制备
将上述分子筛母液经离心、干燥和540℃焙烧4h后得到钛硅分子筛。称取500g钛硅分子筛、446g硅溶胶(28wt%)和20g田菁粉,将其混合均匀,加入适量去离子水,充分混捏后于挤条机中成型。室温放置12h。再经100℃干燥12h、540℃焙烧3h。
微球状钛硅分子筛催化剂的制备
称取1000g钛硅分子筛母液,分子筛固含量为12%,加入250g硅溶胶(28wt%),搅拌24h后,采用喷雾干燥成型。喷雾干燥成型条件为:入口温度:200℃,出口温度:110℃。成型后经35~120℃干燥、500~600℃焙烧,制得微球状钛硅分子筛。微球催化剂平均粒径为65μm。
实施例1
将5.1g硝酸铁与去离子水15ml混合,得到含铁浸渍液。将20g挤条成型钛硅分子筛催化剂用上述浸渍液室温下浸渍12h。经100℃干燥12h,540℃焙烧4h。再将1.1g硝酸镧,0.4g磷酸氢二铵和15ml去离子水混合。将上述催化剂置于浸渍液中12h。经100℃干燥12h,540℃焙烧4h。再将上述催化剂浸渍于15mL含正硅酸乙酯0.3g的环己烷溶液 中。室温浸渍6h、100℃干燥12h、540焙烧4h。得到催化剂A。
实施例2
将6.0g氯化铁与去离子水15ml混合,得到含铁浸渍液。将20g挤条成型钛硅分子筛催化剂用上述浸渍液室温下浸渍12h。经100℃干燥14h,550℃焙烧4h。再将1.5g硝酸镧,1.5g磷酸氢二铵和15ml去离子水混合。将上述催化剂置于浸渍液中12h。经100℃干燥16h,550℃焙烧6h。再将上述催化剂浸渍于15mL含正硅酸乙酯0.7g的环己烷溶液中。室温浸渍6h、100℃干燥12h、540焙烧4h。得到催化剂B。
实施例3
将3.5g硝酸铁与去离子水15ml混合,得到含铁浸渍液。将20g喷雾成型钛硅分子筛催化剂用上述浸渍液室温下浸渍24h。经100℃干燥16h,600℃焙烧5h。再将1.5g硝酸镧,2.0g磷酸二氢铵和15ml去离子水混合。将上述催化剂置于浸渍液中24h。经100℃干燥16h,600℃焙烧5h。再将上述催化剂浸渍于15mL含正硅酸乙酯1.0g的环己烷溶液中。室温浸渍6h、100℃干燥12h、540焙烧4h。得到催化剂C。
对比例1
将7.6g硝酸铁与去离子水15ml混合,得到含铁浸渍液。将20g挤条成型钛硅分子筛催化剂用上述浸渍液室温下浸渍12h。经100℃干燥14h,550℃焙烧4h。再将0.3g硝酸镧,0.2g磷酸二氢铵和15ml去离子水混合。将上述催化剂置于浸渍液中24h。经100℃干燥16h,600℃焙烧5h。得到对比例催化剂D。
对比例2
将4.6g硝酸铁与去离子水15ml混合,得到含铁浸渍液。将20g喷雾成型钛硅分子筛催化剂用上述浸渍液室温下浸渍24h。经100℃干燥16h,540℃焙烧4h。再将上述催化剂浸渍于15mL含正硅酸乙酯1.0g的环己烷溶液中。室温浸渍6h、100℃干燥12h、540焙烧4h。得到对比例催化剂E。
表1
Figure PCTCN2020099879-appb-000003
采用流动重量法对上述催化剂进行正己烷和环己烷的物理吸附性能的表征。正己烷的动力学直径为
Figure PCTCN2020099879-appb-000004
小于TS-1孔道的尺寸,通常以正己烷在MFI沸石上的吸附来研究TS-1的吸附性能。环己烷的动力学直径为
Figure PCTCN2020099879-appb-000005
环己烷的动力学直径与TS-1的孔道尺寸相近,环己烷吸附量的减少可以表征TS-1孔口尺寸减小。从表2中数据可以看出,经过硅烷化处理后的催化剂A、B和C环己烷吸附量明显低于未经硅烷化处理的催化剂D,说明硅烷化后,催化剂孔口尺寸缩小,其对位选择性增加。
表2
Figure PCTCN2020099879-appb-000006
在间歇釜反应器上对上述催化剂进行活性评价。催化剂装填量为1g,反应温度80℃,苯酚/双氧水=3,反应时间4小时。实验数据如表3:
表3
Figure PCTCN2020099879-appb-000007
实施例4
本实施例在固定床反应器上考察催化剂A苯酚羟基化反应活性稳定性。催化剂装填量5.0g。反应压力0.5MPa,反应温度60℃,原料液时空速1.0h -1。结果如表4
表4
Figure PCTCN2020099879-appb-000008
Figure PCTCN2020099879-appb-000009
从上述反应结果可以看出,反应500h内,苯酚转化率为21.9%,产物中对苯二酚选择性为67.2%,邻苯二酚选择性为32.8%,邻/对为0.49。说明本发明制备的催化剂具有良好的苯酚羟基化稳定性和高的对苯二酚选择性。

Claims (10)

  1. 一种提高苯酚羟基化反应产物对位选择性的催化剂,其特征在于,包括钛硅分子筛和如下物质:
    Figure PCTCN2020099879-appb-100001
    所述的百分含量为各个组分质量占催化剂总质量的百分比。
  2. 根据权利要求1所述的催化剂,其特征在于:所述催化剂由下述组分组成:
    Figure PCTCN2020099879-appb-100002
    所述粘结剂为氧化铝或氧化硅。
  3. 一种权利要求1或2所述的催化剂的制备方法,其特征在于:所述钛硅分子筛的成型方法为挤条成型法或喷雾成型法。
  4. 根据权利要求3所述的制备方法,其特征在于,当所述方法为钛硅分子筛挤条成型时,包括如下步骤:
    (1)将钛硅分子筛与粘结剂前驱体混合,加入田菁粉混合均匀,再加入适量水经混捏、挤条成型,成型后经35~120℃干燥、500~600℃焙烧2~12h,制得成型钛硅分子筛;所述田菁粉的加入量是钛硅分子筛和粘结剂总质量的0.1%~5.0%;所述粘结剂前驱体为拟薄水铝石或硅溶胶;
    (2)将成型钛硅分子筛通过等体积浸渍依次负载氧化铁、氧化镧和氧化磷、氧化硅,得到所述提高苯酚羟基化反应产物对位选择性的催化剂;
    当所述方法为喷雾成型法时,包括如下步骤:
    (1)将钛硅分子筛母液与粘结剂前驱体混合,得到混合料,混合料固含量为10%~30%,将混合料室温搅拌老化24小时后采用喷雾干燥成型,喷雾干燥成型条件为:入口温度:200~220℃,出口温度:100~120℃,成型后经35~120℃干燥、500~600℃焙烧2~12h,制得成型钛硅分子筛;
    (2)将成型钛硅分子筛通过等体积浸渍依次负载氧化铁、氧化镧和氧化磷、氧化硅,得到所述提高苯酚羟基化反应产物对位选择性的催化剂。
  5. 如权利要求4所述的制备方法,其特征在于:步骤(2)所述的将成型钛硅分子筛通过等体积浸渍依次负载氧化铁、氧化镧和氧化磷、氧化硅的具体步骤为:将含铁化合物和去离子水混合,搅拌均匀后制得稳定的浸渍液a;
    将所述浸渍液a以等体积浸渍法浸渍成型钛硅分子筛6~24h,然后经35~120℃干燥12~24h,500~650℃焙烧,得到催化剂前体a;
    将含镧化合物、含磷化合物和去离子水混合,搅拌均匀后制得稳定的浸渍液b;
    将浸渍液b以等体积浸渍法浸渍上述已焙烧的催化剂前体a中6~24h,然后经35~120℃干燥12~24h,500~650℃焙烧,得到催化剂前体b;
    将硅烷化试剂和环己烷混合,搅拌均匀后制得稳定的浸渍液c;
    将浸渍液c以等体积浸渍法浸渍上述已焙烧的催化剂前体c6~24h,然后经35~60℃干燥12~24h,500~650℃焙烧,得到所述提高苯酚羟基化反应产物对位选择性的催化剂。
  6. 根据权利要求5所述的制备方法,其特征在于:所述含铁化合物为氯化盐、硝酸盐、硫酸盐或乙酸盐中的一种或几种。
  7. 根据权利要求5所述的制备方法,其特征在于:所述含镧化合物为硝酸镧。
  8. 根据权利要求5所述的制备方法,其特征在于:所述含磷化合物为磷酸、磷酸二氢铵、磷酸氢二铵、磷酸铵中的一种或几种。
  9. 根据权利要求5所述的制备方法,其特征在于,硅烷化试剂为正硅酸甲酯、正硅酸乙酯。
  10. 一种权利要求1或2所述催化剂的应用,其特征在于,所述催化剂应用于苯酚双氧水羟基化制苯二酚反应中:所述反应压力为0.1~3.0MPa,反应温度为30~90℃,液时体积空速为0.5~6.0h -1,苯酚浓度为0.1-4mol/L,苯酚/双氧水摩尔比=1:1~3:1。
PCT/CN2020/099879 2019-12-27 2020-07-02 一种提高苯酚羟基化反应产物对位选择性的催化剂及其制备方法与应用 WO2021128792A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911383664.X 2019-12-27
CN201911383664.XA CN111085265B (zh) 2019-12-27 2019-12-27 一种提高苯酚羟基化反应产物对位选择性的催化剂及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2021128792A1 true WO2021128792A1 (zh) 2021-07-01

Family

ID=70398342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099879 WO2021128792A1 (zh) 2019-12-27 2020-07-02 一种提高苯酚羟基化反应产物对位选择性的催化剂及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN111085265B (zh)
WO (1) WO2021128792A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111085265B (zh) * 2019-12-27 2021-04-23 中国科学院大连化学物理研究所 一种提高苯酚羟基化反应产物对位选择性的催化剂及其制备方法与应用
CN112774726B (zh) * 2020-12-29 2022-09-13 上海华谊新材料有限公司 球形钛硅分子筛催化剂及其制备方法
CN114634404B (zh) * 2022-04-01 2023-09-15 北京化工大学 一种苯氧化制备苯酚的方法
CN116063159A (zh) * 2023-03-03 2023-05-05 湖南长炼新材料科技股份公司 一种苯酚羟基化多产对苯二酚的方法
CN116102405B (zh) * 2023-03-06 2024-05-17 沈阳开拓利思科技有限公司 一种制备苯二酚的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1268502A (zh) * 1999-03-30 2000-10-04 中国石油化工集团公司 一种苯酚羟基化的方法
US6288004B1 (en) * 1998-05-19 2001-09-11 Enichem S.P.A. Activation method of titanium silicalite
EP0919531B1 (en) * 1997-11-27 2003-09-10 Polimeri Europa S.p.A. Process for the oxidation of aromatic compounds to hydroxyaromatic compounds
CN1844321A (zh) * 2006-04-06 2006-10-11 大连理工大学 一种采用改性钛硅分子筛为催化剂进行燃油氧化法脱硫的方法
CN101602013A (zh) * 2008-06-12 2009-12-16 中国石油化工股份有限公司 Ts-1钛硅分子筛催化剂的改性方法
CN101733140A (zh) * 2008-11-18 2010-06-16 中国石油天然气股份有限公司 一种择形分子筛组合物的制备方法
CN111085265A (zh) * 2019-12-27 2020-05-01 中国科学院大连化学物理研究所 一种提高苯酚羟基化反应产物对位选择性的催化剂及其制备方法与应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2182668A1 (zh) * 1972-05-03 1973-12-14 Rhone Poulenc Sa
CN103420392B (zh) * 2012-05-23 2016-01-13 中国石油化工股份有限公司 含稀土的钛硅分子筛及其制备方法和应用
CN104815657A (zh) * 2015-03-04 2015-08-05 常州大学 用于苯酚羟基化制邻苯二酚和对苯二酚催化剂的制备方法
CN104841430B (zh) * 2015-04-19 2017-04-05 北京化工大学 一种用于苯酚羟基化反应的低负载量水滑石催化剂及其制备方法
CN105618130A (zh) * 2015-12-23 2016-06-01 东南大学 用于苯酚羟基化反应的催化剂的制备方法及催化剂的应用
CN105854933B (zh) * 2016-06-21 2018-08-14 中触媒新材料股份有限公司 一种改性钛硅分子筛及其改性方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0919531B1 (en) * 1997-11-27 2003-09-10 Polimeri Europa S.p.A. Process for the oxidation of aromatic compounds to hydroxyaromatic compounds
US6288004B1 (en) * 1998-05-19 2001-09-11 Enichem S.P.A. Activation method of titanium silicalite
CN1268502A (zh) * 1999-03-30 2000-10-04 中国石油化工集团公司 一种苯酚羟基化的方法
CN1844321A (zh) * 2006-04-06 2006-10-11 大连理工大学 一种采用改性钛硅分子筛为催化剂进行燃油氧化法脱硫的方法
CN101602013A (zh) * 2008-06-12 2009-12-16 中国石油化工股份有限公司 Ts-1钛硅分子筛催化剂的改性方法
CN101733140A (zh) * 2008-11-18 2010-06-16 中国石油天然气股份有限公司 一种择形分子筛组合物的制备方法
CN111085265A (zh) * 2019-12-27 2020-05-01 中国科学院大连化学物理研究所 一种提高苯酚羟基化反应产物对位选择性的催化剂及其制备方法与应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LIU TONG: "Hydroxylation of Benzene to Phenol over FeCIIIT/ TS - 1 Catalysts", GUANGZHOU CHEMICAL INDUSTRY, vol. 43, no. 22, 1 November 2015 (2015-11-01), pages 103 - 176, XP055824221, ISSN: 1001-9677 *
PRASETYOKO DIDIK, ENDAH ROYANI CHOLIFAH, FANSURI HAMZAH, RAMLI ZAINAB, NUR HADI: "CATALYTIC PERFORMANCES OF Fe 2 O 3 /TS-1 CATALYST IN PHENOL HYDROXYLATION REACTION", INDONESIAN JOURNAL OF CHEMISTRY, vol. 10, no. 2, 1 January 2010 (2010-01-01), pages 149 - 155, XP055823870 *
ZENG JINLONG, FU JINKUN, XU PIANPIAN, SHEN ROUFUN: "Study on Fe2O3-La2O3/HZSM-5 Catalyst for Hydroxylation of Benzene to Phenol", HUAXUE YANJIU YU YINGYONG - CHEMICAL RESEARCH AND APPLICATION, GAI-KAN BIAN-WEI-HUI, CHENGDU, CN, vol. 10, no. 5, 1 January 1998 (1998-01-01), CN, XP055824192, ISSN: 1004-1656 *
ZHANG XINFANG, ZHANG GUANGMING, CHEN XIAODONG, ZHANG JINGCHANG, ZHANG TIANQIAO: "Study on Induction Period in Hydroxylation of Phenol Catalyzed by Iron-Base Composite Oxides", no. 6, 1 November 2004 (2004-11-01), pages 26 - 30, XP055824220 *

Also Published As

Publication number Publication date
CN111085265A (zh) 2020-05-01
CN111085265B (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
WO2021128792A1 (zh) 一种提高苯酚羟基化反应产物对位选择性的催化剂及其制备方法与应用
WO2020107539A1 (zh) 一种生产甲基丙烯酸甲酯的催化剂的制备方法及其应用
CN101264453A (zh) 一种钛硅分子筛/硅藻土复合催化剂及制备方法
CN104028314A (zh) 一种分子筛催化剂的制备方法
CN104043477A (zh) 一种zsm-5/mcm-48复合分子筛及其制备方法和应用
CN102416325B (zh) 一种异丁基酮合成催化剂的制备方法
CN103551196A (zh) 一种具有介孔结构磁性金属有机骨架材料、制备及催化反应
CN105363456A (zh) 铜系催化剂、制备方法及其应用
CN101773848B (zh) 一种用于合成甲基叔丁基醚的催化剂及制备方法
CN109364962B (zh) 用于丙酮选择加氢的磷化镍基催化剂及其制法和应用
CN106861704B (zh) 一种镍-助剂-氧化铝-氧化锆催化剂的制备方法和应用
CN111389398B (zh) 分级中空二氧化硅限域氧化亚铜可见光催化剂的制备方法
CN106311201B (zh) 一种以含Sn介孔碳为载体的异丁烷脱氢Pt基催化剂、其制备方法及其应用
WO2015090084A1 (zh) 一种用于合成乙撑亚胺的催化剂、制备方法及应用
CN111468099A (zh) 一种锑锶氧化物光催化剂的制备方法
CN101269817B (zh) 用mcm-22沸石结构前驱体合成介孔材料的方法
CN104399537B (zh) 一种具有高活性催化性能的反应构件
CN102389832A (zh) 一种高活性山梨醇水相加氢制取c5、c6烷烃的催化剂及其制备方法
CN105080601A (zh) 一种2,3-丁二醇脱水制甲乙酮催化剂及其制备方法
Ishiyama et al. New preparation technique for a highly dispersed nickel—alumina catalyst and its application to liquid phase hydrogenation
CN114380699B (zh) 一种合成异佛尔酮二胺的方法、催化剂及其制备方法
CN114768879B (zh) 一种磺基水杨酸基含锆杂化材料及其制备方法和应用
CN110577468A (zh) 一种利用碱性氮掺杂介孔碳材料负载Pt催化剂合成丙醇二酸的方法
CN114433231B (zh) 一种多酸负载金属镍加氢烷基化双功能催化剂的制备方法及其应用
CN107954881B (zh) 一种苯胺合成4,4’-mda的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906461

Country of ref document: EP

Kind code of ref document: A1