WO2021128724A1 - 一种高浓度霜脲氰废水的处理系统及方法 - Google Patents

一种高浓度霜脲氰废水的处理系统及方法 Download PDF

Info

Publication number
WO2021128724A1
WO2021128724A1 PCT/CN2020/092661 CN2020092661W WO2021128724A1 WO 2021128724 A1 WO2021128724 A1 WO 2021128724A1 CN 2020092661 W CN2020092661 W CN 2020092661W WO 2021128724 A1 WO2021128724 A1 WO 2021128724A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
cymoxanil
micro
gas
liquid
Prior art date
Application number
PCT/CN2020/092661
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
张锋
李磊
孟为民
王宝荣
杨高东
罗华勋
杨国强
田洪舟
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2021128724A1 publication Critical patent/WO2021128724A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/727Treatment of water, waste water, or sewage by oxidation using pure oxygen or oxygen rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Definitions

  • the present invention generally relates to the field of pesticide wastewater treatment, and more specifically to a treatment system and method for high-concentration cymoxanil wastewater.
  • Cymoxanil is a high-efficiency bactericide, which has a systemic effect. Mixing with protective bactericides can increase the residual activity. It is effective against downy mildew fungi (Phytophthora, Downy mildew, and Monoaxial mold).
  • the cymoxanil production wastewater contains complex components such as chloroacetic acid, hydrogen acetic acid, acetic acid, sodium chloride, ethyl urea, cyanoacetyl ethyl urea, sodium methoxysulfonate, cymoxanil, and the mass concentration of COD CR is as high as 100000 ⁇ 300,000mg/L, and the salt content is large, the color is large, and it is difficult to be directly biodegraded.
  • complex components such as chloroacetic acid, hydrogen acetic acid, acetic acid, sodium chloride, ethyl urea, cyanoacetyl ethyl urea, sodium methoxysulfonate, cymoxanil, and the mass concentration of COD CR is as high as 100000 ⁇ 300,000mg/L, and the salt content is large, the color is large, and it is difficult to be directly biodegraded.
  • Catalytic wet oxidation method for treating cymoxanil wastewater is currently relatively economical and can achieve the desired treatment effect. (Experimental research on treatment of cymoxanil wastewater by iron-carbon micro-electrolysis, 2012 Environmental Science and Technology).
  • Catalytic wet oxidation technology is a particularly effective method for the treatment of high-concentration, high-toxicity, and dark-color organic wastewater. It is a process in which air or oxygen is used as an oxidant under high temperature and high pressure conditions to oxidize and decompose organic matter and ammonia nitrogen in wastewater into small molecular organic matter, carbon dioxide, water, nitrogen and other harmless substances.
  • CWAO has a wide range of industrial applications and can be used to treat pulping wastewater, printing and dyeing wastewater, oil refining wastewater, brewery wastewater, alumina refining wastewater, food industry wastewater, leather industry wastewater, pharmaceutical wastewater, municipal waste, etc.
  • Catalytic wet oxidation technology is a high-efficiency, green, energy-saving, and no secondary pollution water treatment method.
  • the present invention provides a high-concentration cymoxanil wastewater treatment system, which includes:
  • a cymoxanil wastewater oxidizer which is used to provide an oxidation decomposition reaction site for cymoxanil wastewater
  • a micro-interface generator which converts the pressure energy of the gas and/or the kinetic energy of the liquid into the surface energy of the bubble and transmits it to the gas reactant, and breaks the gas reactant into micrometers with a diameter of ⁇ 1 ⁇ m and ⁇ 1mm
  • the bubble is used to increase the mass transfer area between the gas reactant and the liquid reactant, reduce the thickness of the liquid film, reduce the mass transfer resistance, and mix the liquid reactant with the micron bubbles of the gas reactant to form a gas-liquid mixture after being broken.
  • An evaporation unit which is used to evaporate and concentrate the cymoxanil wastewater that has been oxidized and decomposed;
  • a condenser the condenser is used to condense the steam of the evaporation unit
  • a heat exchanger which is used to exchange heat between the cymoxanil wastewater to be oxidized and the cymoxanil wastewater that has been oxidized;
  • the heater is used for heating the cymoxanil wastewater to be oxidized and an oxygen gas source.
  • the number of cymoxanil wastewater oxidizers is 2.
  • the two cymoxanil wastewater oxidizers are respectively provided with micro-interface generators, the micro-interface generators are pneumatic micro-interface generators, and the micro-interface generators are used to break the oxygen into micro-scale micro-scale After the crushing is completed, the micron-level bubbles are output to the cymoxanil wastewater oxidizer and mixed with the cymoxanil wastewater to form a gas-liquid mixture.
  • the evaporation unit is in communication with the heat exchanger and the condenser, and the evaporation unit includes a plurality of evaporation cans.
  • the evaporator is provided with a liquid inlet and a steam inlet in communication, the liquid inlet and the steam inlet are used to enter the cymoxanil wastewater and the hot steam, respectively, and the upper and lower ends of the evaporator are respectively A steam outlet and a liquid outlet are connected in communication. The liquid outlet and the steam outlet are used to discharge cymoxanil wastewater and hot steam, respectively.
  • the steam outlet of the evaporator is connected to the adjacent evaporator.
  • the vapor inlet of the evaporator is connected, and the liquid outlet of the evaporation can is communicated with the liquid inlet of the adjacent evaporator.
  • a condensate outlet is connected to the side wall of the evaporation tank, and the condensate outlet is used to discharge the condensate in the evaporation tank.
  • the heater includes:
  • a first heater the first heater is used to heat the oxygen to be entered into the cymoxanil wastewater oxidizer;
  • the second heater is used to heat the cymoxanil wastewater to be entered into the cymoxanil wastewater oxidizer.
  • the condenser is provided with a gas outlet and a liquid outlet in communication, and the gas outlet and the liquid outlet are used to discharge the non-condensable gas and the solid-liquid mixture in the condenser.
  • the temperature in the cymoxanil wastewater oxidizer is 170-270°C, and the pressure is 7-10Mpa.
  • the present invention also provides a high-concentration cymoxanil wastewater treatment method using a high-concentration cymoxanil wastewater treatment system, and the method includes the following steps:
  • Step 1 Through the work of the pump body, the external cymoxanil wastewater is introduced into one of the cymoxanil wastewater oxidizers, and the compressor works to transmit the oxygen heated by the first heater to one of the micro-interface generators.
  • the micro-interface generator works to break the oxygen to form micron-scale micron-scale bubbles and output the micron-scale bubbles to the cymoxanil wastewater oxidizer to form a gas-liquid mixture with the cymoxanil wastewater.
  • Oxygen and cymoxanil The wastewater undergoes an oxidative decomposition reaction to oxidatively decompose the macromolecular organic matter in the cymoxanil wastewater into small molecular substances to complete the initial oxidation decomposition;
  • Step 2 In step 1, the cymoxanil wastewater that has been decomposed by the primary oxidation is led to another cymoxanil wastewater oxidizer through the pump body, and the compressor works to transmit the oxygen heated by the first heater to the other microbe
  • the interface generator through the work of the micro-interface generator, the oxygen is broken to form micron-sized micro-sized bubbles, and after the crushing is completed, the micro-sized bubbles are output to the cymoxanil wastewater oxidizer and mixed with the cymoxanil wastewater to form a gas-liquid mixture , Oxygen and cymoxanil wastewater undergo oxidative decomposition reaction to oxidatively decompose macromolecular organic matter in cymoxanil wastewater into small molecular substances, completing the secondary oxidation decomposition;
  • Step 3 The cymoxanil wastewater after the secondary oxidation and decomposition is transferred to the heat exchanger by the pump body, and the heat exchanger transfers the high-temperature wastewater after oxidation and decomposition in the cymoxanil wastewater oxidizer to the cymoxanil wastewater oxidizer to be entered into the cymoxanil wastewater oxidizer
  • the cymoxanil wastewater is heat exchanged, the pre-heating of the cymoxanil wastewater to be entered is completed, and the cooling wastewater after the heat exchange enters the evaporation unit;
  • Step 4 Cymoxanil wastewater in the evaporation unit is concentrated and discharged along the liquid outlet through the evaporation of the hot steam in the multiple evaporation tanks;
  • Step 5 The hot steam enters the condenser. After the condensation of the condenser, the non-condensable gas and the condensate are respectively discharged along the gas outlet and the liquid outlet.
  • the present invention uses a micro-interface generator to break oxygen to form micro-sized micro-sized bubbles.
  • the micro-sized bubbles have physical and chemical properties that conventional bubbles do not have, as can be seen from the calculation formula of the sphere volume and surface area. Under the condition that the total volume is constant, the total surface area of the bubbles is inversely proportional to the diameter of the single bubble.
  • the total surface area of the micron-sized bubbles is huge, so that the micron-sized bubbles are mixed with the cymoxanil wastewater to form a gas-liquid mixture to increase the gas
  • the contact area of the two-phase liquid can fully oxidize and decompose cymoxanil wastewater under lower preset conditions, optimize the treatment effect of high-concentration cymoxanil wastewater, and reduce high-concentration frost because no catalyst is used.
  • the cost of urea cyanide wastewater treatment is very large, so that the micron-sized bubbles are mixed with the cymoxanil wastewater to form a gas-liquid mixture to increase the gas
  • the contact area of the two-phase liquid can fully oxidize and decompose cymoxanil wastewater under lower preset conditions, optimize the treatment effect of high-concentration cymoxanil wastewater, and reduce high-concentration frost because no catalyst is used.
  • Figure 1 is a schematic diagram of an embodiment of a treatment system for high-concentration cymoxanil wastewater of the present invention.
  • the present invention provides a high-concentration cymoxanil wastewater treatment system, including:
  • Cymoxanil wastewater oxidizer 1 the cymoxanil wastewater oxidizer is used to provide an oxidation decomposition reaction site for cymoxanil wastewater;
  • the micro-interface generator 2 converts the pressure energy of the gas and/or the kinetic energy of the liquid into the surface energy of the bubble and transmits it to the gas reactant, and breaks the gas reactant into micrometers with a diameter of ⁇ 1 ⁇ m and ⁇ 1mm Grade bubble to increase the mass transfer area between the gas reactant and the liquid reactant, reduce the thickness of the liquid film, reduce the mass transfer resistance, and mix the liquid reactant with the micron-sized bubbles of the gas reactant to form a gas-liquid mixture after being broken , To enhance the mass transfer efficiency and reaction efficiency between the liquid reactant and the gas reactant within the preset operating conditions;
  • the evaporation unit 3 is used to evaporate and concentrate the cymoxanil wastewater that has been oxidized and decomposed;
  • Condenser 4 the condenser is used to condense the steam of the evaporation unit
  • the heat exchanger 5 is used to exchange heat between the cymoxanil wastewater to be oxidized and the cymoxanil wastewater that has been oxidized;
  • the heater is used for heating the cymoxanil wastewater to be oxidized and an oxygen gas source.
  • the sides of the cymoxanil wastewater oxidizer are respectively provided with a plurality of pump bodies and compressors, the pump bodies are used for transferring liquid, and the compressors are used for transferring gas.
  • the number of cymoxanil wastewater oxidizers is two.
  • the two cymoxanil wastewater oxidizers are respectively provided with micro-interface generators, the micro-interface generators are pneumatic micro-interface generators, and the micro-interface generators are used to break the oxygen into micro-scale micrometers.
  • the micron-level bubbles are output to the cymoxanil wastewater oxidizer and mixed with the cymoxanil wastewater to form a gas-liquid mixture.
  • the evaporation unit is in communication with the heat exchanger and the condenser, and the evaporation unit includes a plurality of evaporation cans 31.
  • the evaporator is provided with a liquid inlet 32 and a steam inlet 33 in communication, and the liquid inlet and the steam inlet are respectively used to enter cymoxanil wastewater and hot steam.
  • the upper and lower ends are respectively connected with a steam outlet 34 and a liquid outlet 35.
  • the liquid outlet and the steam outlet are respectively used to discharge cymoxanil wastewater and hot steam.
  • the steam outlet of the evaporation tank is adjacent to The vapor inlet of the evaporation can is communicated, and the liquid outlet of the evaporation can is communicated with the liquid inlet of the adjacent evaporation can.
  • a condensate outlet 36 is connected to the side wall of the evaporation tank, and the condensate outlet is used to discharge the condensate in the evaporation tank.
  • the heater includes:
  • a first heater 61 which is used to heat the oxygen to be entered into the cymoxanil wastewater oxidizer
  • the second heater 62 is used for heating the cymoxanil wastewater to be entered into the cymoxanil wastewater oxidizer.
  • the condenser is provided with a gas outlet 7 and a liquid outlet 8 in communication, and the gas outlet and the liquid outlet are used to discharge the non-condensable gas and the solid-liquid mixture in the condenser.
  • the temperature in the cymoxanil wastewater oxidizer is 170-270°C, and the pressure is 7-10Mpa.
  • the present invention also provides a high-concentration cymoxanil wastewater treatment method using a high-concentration cymoxanil wastewater treatment system, and the method includes the following steps:
  • Step 1 Through the work of the pump body, the external cymoxanil wastewater is introduced into one of the cymoxanil wastewater oxidizers, and the compressor works to transmit the oxygen heated by the first heater to one of the micro-interface generators.
  • the micro-interface generator works to break the oxygen to form micron-scale micron-scale bubbles and output the micron-scale bubbles to the cymoxanil wastewater oxidizer to form a gas-liquid mixture with the cymoxanil wastewater.
  • Oxygen and cymoxanil The wastewater undergoes an oxidative decomposition reaction to oxidatively decompose the macromolecular organic matter in the cymoxanil wastewater into small molecular substances to complete the initial oxidation decomposition;
  • Step 2 In step 1, the cymoxanil wastewater that has been decomposed by the primary oxidation is led to another cymoxanil wastewater oxidizer through the pump body, and the compressor works to transmit the oxygen heated by the first heater to the other microbe
  • the interface generator through the work of the micro-interface generator, the oxygen is broken to form micron-sized micro-sized bubbles, and after the crushing is completed, the micro-sized bubbles are output to the cymoxanil wastewater oxidizer and mixed with the cymoxanil wastewater to form a gas-liquid mixture , Oxygen and cymoxanil wastewater undergo oxidative decomposition reaction to oxidatively decompose macromolecular organic matter in cymoxanil wastewater into small molecular substances, completing the secondary oxidation decomposition;
  • Step 3 The cymoxanil wastewater after the secondary oxidation and decomposition is transferred to the heat exchanger by the pump body, and the heat exchanger transfers the high-temperature wastewater after oxidation and decomposition in the cymoxanil wastewater oxidizer to the cymoxanil wastewater oxidizer to be entered into the cymoxanil wastewater oxidizer
  • the cymoxanil wastewater is heat exchanged, the pre-heating of the cymoxanil wastewater to be entered is completed, and the cooling wastewater after the heat exchange enters the evaporation unit;
  • Step 4 Cymoxanil wastewater in the evaporation unit is concentrated and discharged along the liquid outlet through the evaporation of the hot steam in the multiple evaporation tanks;
  • Step 5 The hot steam enters the condenser. After the condensation of the condenser, the non-condensable gas and the condensate are respectively discharged along the gas outlet and the liquid outlet.
  • the comparative example, treatment conditions and results are as follows:
  • the weight of the catalyst used in the comparative example is 8.5t;
  • the liquid detected in the embodiment is the liquid discharged from the evaporation unit, and the liquid contains part of the crystalline salt, which can be recycled.

Abstract

本发明提供了一种高浓度霜脲氰废水的处理系统以及使用此系统的高浓度霜脲氰废水处理方法,包括:霜脲氰废水氧化器、微界面发生器、蒸发单元等;通过微界面发生器破碎氧气使其形成微米尺度的微米级气泡,微米级气泡具备常规气泡所不具备的理化性质,由球体体积及表面积的计算公式可知,在总体积不变的情况下,气泡的总表面积与单个气泡直径成反比,由此可知微米级气泡的总表面积巨大,使微米级气泡与霜脲氰废水混合形成气液混合物,以增大气液两相的接触面积,达到在较低的预设条件下,使霜脲氰废水得到充分的氧化分解,优化高浓度霜脲氰废水的处理效果的同时,由于不使用催化剂而降低高浓度霜脲氰废水的处理成本。

Description

一种高浓度霜脲氰废水的处理系统及方法 技术领域
本发明总地涉及农药废水处理领域,且更具体地涉及一种高浓度霜脲氰废水的处理系统及方法。
背景技术
霜脲氰是一种高效杀菌剂,有内吸作用,与保护性杀菌剂混用能提高残留活性。对霜霉目真菌(疫霉属、霜霉属、单轴霉属)有效。霜脲氰生产废水中含有氯乙酸、氢乙酸、醋酸、氯化钠、乙基脲、氰乙酰基乙基脲、甲氧磺酸钠、霜脲氰等复杂成分,其中COD CR质量浓度值高达100000~300000mg/L,且含盐量大、色度大、难以直接生物降解。
催化湿式氧化法处理霜脲氰废水是目前相对经济且能达到理想处理效果的方法。(铁碳微电解法处理霜脲氰废水实验研究,2012年环境科技)。
催化湿式氧化技术(CWAO)是一种对高浓度、高毒害、深颜色有机废水处理特别有效的一种方法。其是在高温高压条件下,空气或氧气作为氧化剂,将废水中的有机物及氨氮分别氧化分解成小分子有机物、二氧化碳、水和氮气等无害物质的过程。CWAO的工业化应用广泛,可以用来处理制浆废水、印染废水、炼油废水、酿酒厂废水、氧化铝精炼废水、食品工业废水、皮革工业废水、制药废水、市政废物等。催化湿式氧化技术是一种高效、绿色、节能、无二次污染的水处理方法。
但湿式氧化法在高浓度霜脲氰废水的处理过程中仍存以下技术问题:
1、在空气或氧气与液相废水接触过程中,气液两项混合,产生较大较多气泡,由于气泡较多较大,致使气液两项无法充分混合,致使废水中大分子有机物氧化分解的效率低,且氧化分解不够充分,导致高浓度霜脲氰废水处理效果不佳。
2、催化剂的施用量较大,导致高浓度霜脲氰废水处理成本高。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
为至少部分地解决上述技术问题,一方面,本发明提供了一种高浓度霜脲氰废水的处理系统,包括:
霜脲氰废水氧化器,所述霜脲氰废水氧化器用以为霜脲氰废水提供氧化分解反应场所;
微界面发生器,所述微界面发生器将气体的压力能和/或液体的动能转变为气泡表面能并传递给气体反应物,将气体反应物破碎形成直径≥1μm、且<1mm的微米级气泡以提高气体反应物与液体反应物之间的传质面积,减小液膜厚度,降低传质阻力,并在破碎后将液体反应物与气体反应物的微米级气泡混合形成气液混合物,以在预设操作条件范围内强化液体反应物与气体反应物之间的传质效率和反应效率;
蒸发单元,所述蒸发单元用以对氧化分解完毕的霜脲氰废水进行蒸发浓缩;
冷凝器,所述冷凝器用以对所述蒸发单元的蒸汽进行冷凝;
换热器,所述换热器用以对待氧化的霜脲氰废水和氧化完毕的霜脲氰废水进行热交换;
加热器,所述加热器用以对待氧化的霜脲氰废水和氧气气源进行加热。
优选的,所述霜脲氰废水氧化器的设置个数为2。
优选的,两个所述霜脲氰废水氧化器分别设置有微界面发生器,所述微界面发生器为气动式微界面发生器,所述微界面发生器用以将氧气破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至所述霜脲氰废水氧化器内与霜脲氰废水混合形成气液混合物。
优选的,所述蒸发单元与所述换热器和所述冷凝器相连通,所述蒸发单元包括多个蒸发罐。
优选的,所述蒸发罐上连通设置有液体进入口和蒸汽进入口,所述液体进入口和所述蒸汽进入口分别用以进入霜脲氰废水和热蒸汽,所述蒸发罐的上下端分别连通设置有蒸汽排出口和液体排出口,所述液体排出口和所述蒸汽排出口分别用以排出霜脲氰废水和热蒸汽,所述蒸发罐的蒸汽排出口与相邻的所述蒸发罐的蒸汽进入口相连通,所述蒸发罐的液体排出口与相邻的所述蒸发罐的液体进入口相连通。
优选的,所述蒸发罐的侧壁上还连通设置有冷凝液出口,所述冷凝液出口用以排出所述蒸发罐内冷凝液。
优选的,所述加热器包括:
第一加热器,所述第一加热器用以对待进入所述霜脲氰废水氧化器内的氧气进行加热;
第二加热器,所述第二加热器用以对待进入所述霜脲氰废水氧化器内的霜脲氰废水进行加热。
优选的,所述冷凝器上连通设置有气体出口和液体出口,所述气体出口和所述液体出口用以排出所述冷凝器内不凝气体和固液混合物。
优选的,所述霜脲氰废水氧化器内温度为170-270℃,压力为7-10Mpa。
另一方面,本发明还提供了一种使用高浓度霜脲氰废水的处理系统的高浓度霜脲氰废水处理方法,其方法包括如下步骤:
步骤1:通过泵体工作,将外部霜脲氰废水引入其中一个霜脲氰废水氧化器内,通过压缩机工作,将经过第一加热器加热的氧气传输至其中一个微界面发生器内,通过微界面发生器工作,将氧气破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至霜脲氰废水氧化器内与霜脲氰废水混合形成气液混合物,氧气与霜脲氰废水进行氧化分解反应,将霜脲氰废水中大分子有机物氧化分解成小分子物质,完成初次氧化分解;
步骤2:步骤1中经初次氧化分解的霜脲氰废水通过泵体被引流至另一个霜脲氰废水氧化器内,通过压缩机工作,将经过第一加热器加热的氧气传输至另一个微界面发生器内,通过微界面发生器工作,将氧气破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至霜脲氰废水氧化器内与霜脲氰废水混合形成气液混合物,氧气与霜脲氰废水进行氧化分解反应,将霜脲氰废水中大分子有机物氧化分解成小分子物质,完成二次氧化分解;
步骤3:二次氧化分解完毕的霜脲氰废水被泵体传输至换热器内,换热器将霜脲氰废水氧化器内经氧化分解后的高温废水与待进入霜脲氰废水氧化器内的霜脲氰废水进行换热,完成待进入霜脲氰废水的预加热同时换热后的降温废水进入蒸发单元;
步骤4:霜脲氰废水在蒸发单元经多个蒸发罐内热蒸汽的蒸发作用而被浓缩沿液体排出口排出;
步骤5:热蒸汽进入冷凝器中,经冷凝器的冷凝作用,不凝气体和冷凝液分别沿气体出口和液体出口排出。
在本发明的一些实施例中,本发明通过微界面发生器破碎氧气使其形成微米尺度的微米级气泡,微米级气泡具备常规气泡所不具备的理化性质,由球体体积及表面积的计算公式可知,在总体积不变的情况下,气泡的总表面积与单个气泡直径成反比,由此可知微米级气泡的总表面积巨大,使微米级气泡与霜脲氰废水混合形成气液混合物,以增大气液两相的接触面积,达到在较低的预设条件下,使霜脲氰废水得到充分的氧化分解,优化高浓度霜脲氰废水的处理效果的同时,由于不使用催化剂而降低高浓度霜脲氰废水的处理成本。
附图说明
为了使本发明的优点更容易理解,将通过参考在附图中示出的具体实施方式更详细地描述上文简要描述的本发明。可以理解这些附图只描绘了本发明的典型实施方式,因此不应认为是对其保护范围的限制,通过附图以附加的特性和细节描述和解释本发明。
图1为本发明高浓度霜脲氰废水的处理系统实施例示意图。
附图标记说明:
1:霜脲氰废水氧化器
2:微界面发生器
3:蒸发单元
31:蒸发罐
32:液体进入口
33:蒸汽进入口
34:液体排出口
35:蒸汽排出口
36:冷凝液出口
4:冷凝器
5:换热器
61:第一加热器
62:第二加热器
7:气体出口
8:液体出口
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员来说显而易见的是,本发明实施方式可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明实施方式发生混淆,对于本领域公知的一些技术特征未进行描述。
为了彻底了解本发明实施方式,将在下列的描述中提出详细的结构。显然,本发明实施方式的施行并不限定于本领域的技术人员所熟习的特殊细节。本发明的较佳实施方式详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
如图1所示,本发明提供了一种高浓度霜脲氰废水的处理系统,包括:
霜脲氰废水氧化器1,所述霜脲氰废水氧化器用以为霜脲氰废水提供氧化分解反应场所;
微界面发生器2,所述微界面发生器将气体的压力能和/或液体的动能转变为气泡表面能并传递给气体反应物,将气体反应物破碎形成直径≥1μm、且<1mm的微米级气泡以提高气体反应物与液体反应物之间的传质面积,减小液膜厚度,降低传质阻力,并在破碎后将液体反应物与气体反应物的微米级气泡混合形成气液混合物,以在预设操作条件范围内强化液体反应物与气 体反应物之间的传质效率和反应效率;
蒸发单元3,所述蒸发单元用以对氧化分解完毕的霜脲氰废水进行蒸发浓缩;
冷凝器4,所述冷凝器用以对所述蒸发单元的蒸汽进行冷凝;
换热器5,所述换热器用以对待氧化的霜脲氰废水和氧化完毕的霜脲氰废水进行热交换;
加热器,所述加热器用以对待氧化的霜脲氰废水和氧气气源进行加热。
所述霜脲氰废水氧化器的侧部分别设置有多个泵体和压缩机,所述泵体用以传输液体,所述压缩机用以传输气体。
具体而言,所述霜脲氰废水氧化器的设置个数为2。
具体而言,两个所述霜脲氰废水氧化器分别设置有微界面发生器,所述微界面发生器为气动式微界面发生器,所述微界面发生器用以将氧气破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至所述霜脲氰废水氧化器内与霜脲氰废水混合形成气液混合物。
具体而言,所述蒸发单元与所述换热器和所述冷凝器相连通,所述蒸发单元包括多个蒸发罐31。
具体而言,所述蒸发罐上连通设置有液体进入口32和蒸汽进入口33,所述液体进入口和所述蒸汽进入口分别用以进入霜脲氰废水和热蒸汽,所述蒸发罐的上下端分别连通设置有蒸汽排出口34和液体排出口35,所述液体排出口和所述蒸汽排出口分别用以排出霜脲氰废水和热蒸汽,所述蒸发罐的蒸汽排出口与相邻的所述蒸发罐的蒸汽进入口相连通,所述蒸发罐的液体排出口与相邻的所述蒸发罐的液体进入口相连通。
具体而言,所述蒸发罐的侧壁上还连通设置有冷凝液出口36,所述冷 凝液出口用以排出所述蒸发罐内冷凝液。
具体而言,所述加热器包括:
第一加热器61,所述第一加热器用以对待进入所述霜脲氰废水氧化器内的氧气进行加热;
第二加热器62,所述第二加热器用以对待进入所述霜脲氰废水氧化器内的霜脲氰废水进行加热。
具体而言,所述冷凝器上连通设置有气体出口7和液体出口8,所述气体出口和所述液体出口用以排出所述冷凝器内不凝气体和固液混合物。
具体而言,所述霜脲氰废水氧化器内温度为170-270℃,压力为7-10Mpa。
本发明还提供了一种使用高浓度霜脲氰废水的处理系统的高浓度霜脲氰废水处理方法,其方法包括如下步骤:
步骤1:通过泵体工作,将外部霜脲氰废水引入其中一个霜脲氰废水氧化器内,通过压缩机工作,将经过第一加热器加热的氧气传输至其中一个微界面发生器内,通过微界面发生器工作,将氧气破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至霜脲氰废水氧化器内与霜脲氰废水混合形成气液混合物,氧气与霜脲氰废水进行氧化分解反应,将霜脲氰废水中大分子有机物氧化分解成小分子物质,完成初次氧化分解;
步骤2:步骤1中经初次氧化分解的霜脲氰废水通过泵体被引流至另一个霜脲氰废水氧化器内,通过压缩机工作,将经过第一加热器加热的氧气传输至另一个微界面发生器内,通过微界面发生器工作,将氧气破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至霜脲氰废水氧化器内与霜脲氰废水混合形成气液混合物,氧气与霜脲氰废水进行氧化分解反应,将霜脲氰废水中大分子有机物氧化分解成小分子物质,完成二次氧化分解;
步骤3:二次氧化分解完毕的霜脲氰废水被泵体传输至换热器内,换热器将霜脲氰废水氧化器内经氧化分解后的高温废水与待进入霜脲氰废水氧化器内的霜脲氰废水进行换热,完成待进入霜脲氰废水的预加热同时换热后的降温废水进入蒸发单元;
步骤4:霜脲氰废水在蒸发单元经多个蒸发罐内热蒸汽的蒸发作用而被浓缩沿液体排出口排出;
步骤5:热蒸汽进入冷凝器中,经冷凝器的冷凝作用,不凝气体和冷凝液分别沿气体出口和液体出口排出。
运用本发明霜脲氰废水处理系统及方法对霜脲氰废水4t(CODcr=12500mg/L,盐度=16%)进行处理,并以现有催化湿式氧化法对相同霜脲氰废水进行处理作为对比例,处理条件及结果如下表:
Figure PCTCN2020092661-appb-000001
其中,对比例中所使用催化剂重量为8.5t;
实施例中所检测的液体为蒸发单元排出的液体,液体中带有部分结晶盐,可回收利用。
除非另有定义,本文中所使用的技术和科学术语与本发明的技术领域的技术人员通常理解的含义相同。本文中使用的术语只是为了描述具体的实施目的,不是旨在限制本发明。本文中出现的诸如“部件”等术语既可以表示单个的零件,也可以表示多个零件的组合。本文中出现的诸如“安装”、“设 置”等术语既可以表示一个部件直接附接至另一个部件,也可以表示一个部件通过中间件附接至另一个部件。本文中在一个实施方式中描述的特征可以单独地或与其它特征结合地应用于另一个实施方式,除非该特征在该另一个实施方式中不适用或是另有说明。
本发明已经通过上述实施方式进行了说明,但应当理解的是,上述实施方式只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施方式范围内。本领域技术人员可以理解的是,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。

Claims (10)

  1. 一种高浓度霜脲氰废水的处理系统,其特征在于,包括:
    霜脲氰废水氧化器,所述霜脲氰废水氧化器用以为霜脲氰废水提供氧化分解反应场所;
    微界面发生器,所述微界面发生器将气体的压力能和/或液体的动能转变为气泡表面能并传递给气体反应物,将气体反应物破碎形成直径≥1μm、且<1mm的微米级气泡以提高气体反应物与液体反应物之间的传质面积,减小液膜厚度,降低传质阻力,并在破碎后将液体反应物与气体反应物的微米级气泡混合形成气液混合物,以在预设操作条件范围内强化液体反应物与气体反应物之间的传质效率和反应效率;
    蒸发单元,所述蒸发单元用以对氧化分解完毕的霜脲氰废水进行蒸发浓缩;
    冷凝器,所述冷凝器用以对所述蒸发单元的蒸汽进行冷凝;
    换热器,所述换热器用以对待氧化的霜脲氰废水和氧化完毕的霜脲氰废水进行热交换;
    加热器,所述加热器用以对待氧化的霜脲氰废水和氧气气源进行加热。
  2. 根据权利要求1所述的一种高浓度霜脲氰废水的处理系统,其特征在于,所述霜脲氰废水氧化器的设置个数为2。
  3. 根据权利要求2所述的一种高浓度霜脲氰废水的处理系统,其特征在于,两个所述霜脲氰废水氧化器分别设置有微界面发生器,所述微界面发生器为气动式微界面发生器,所述微界面发生器用以将氧气破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至所述霜脲氰废水氧化器内与霜脲氰废水混合形成气液混合物。
  4. 根据权利要求3所述的一种高浓度霜脲氰废水的处理系统,其特征在于,所述蒸发单元与所述换热器和所述冷凝器相连通,所述蒸发单元包括多个蒸发罐。
  5. 根据权利要求4所述的一种高浓度霜脲氰废水的处理系统,其特征在于,所述蒸发罐上连通设置有液体进入口和蒸汽进入口,所述液体进入口和所述蒸汽进入口分别用以进入霜脲氰废水和热蒸汽,所述蒸发罐的上下端分别连通设置有蒸汽排出口和液体排出口,所述液体排出口和所述蒸汽排出口分别用以排出霜脲氰废水和热蒸汽,所述蒸发罐的蒸汽排出口与相邻的所述蒸发罐的蒸汽进入口相连通,所述蒸发罐的液体排出口与相邻的所述蒸发罐的液体进入口相连通。
  6. 根据权利要求5所述的一种高浓度霜脲氰废水的处理系统,其特征在于,所述蒸发罐的侧壁上还连通设置有冷凝液出口,所述冷凝液出口用以排出所述蒸发罐内冷凝液。
  7. 根据权利要求3所述的一种高浓度霜脲氰废水的处理系统,其特征在于,所述加热器包括:
    第一加热器,所述第一加热器用以对待进入所述霜脲氰废水氧化器内的氧气进行加热;
    第二加热器,所述第二加热器用以对待进入所述霜脲氰废水氧化器内的霜脲氰废水进行加热。
  8. 根据权利要求3所述的一种高浓度霜脲氰废水的处理系统,其特征在于,所述冷凝器上连通设置有气体出口和液体出口,所述气体出口和所述液体出口用以排出所述冷凝器内不凝气体和固液混合物。
  9. 根据权利要求1所述的一种高浓度霜脲氰废水的处理系统,其特征在于,所述霜脲氰废水氧化器内温度为170-270℃,压力为7-10Mpa。
  10. 一种使用权利要求1-9任一项所述的一种高浓度霜脲氰废水的处理系统的高浓度霜脲氰废水处理方法,其特征在于,其方法包括如下步骤:
    步骤1:通过泵体工作,将外部霜脲氰废水引入其中一个霜脲氰废水氧化器内,通过压缩机工作,将经过第一加热器加热的氧气传输至其中一个微界面发生器内,通过微界面发生器工作,将氧气破碎形成微米尺度的微米级 气泡并在破碎完成后将微米级气泡输出至霜脲氰废水氧化器内与霜脲氰废水混合形成气液混合物,氧气与霜脲氰废水进行氧化分解反应,将霜脲氰废水中大分子有机物氧化分解成小分子物质,完成初次氧化分解;
    步骤2:步骤1中经初次氧化分解的霜脲氰废水通过泵体被引流至另一个霜脲氰废水氧化器内,通过压缩机工作,将经过第一加热器加热的氧气传输至另一个微界面发生器内,通过微界面发生器工作,将氧气破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至霜脲氰废水氧化器内与霜脲氰废水混合形成气液混合物,氧气与霜脲氰废水进行氧化分解反应,将霜脲氰废水中大分子有机物氧化分解成小分子物质,完成二次氧化分解;
    步骤3:二次氧化分解完毕的霜脲氰废水被泵体传输至换热器内,换热器将霜脲氰废水氧化器内经氧化分解后的高温废水与待进入霜脲氰废水氧化器内的霜脲氰废水进行换热,完成待进入霜脲氰废水的预加热同时换热后的降温废水进入蒸发单元;
    步骤4:霜脲氰废水在蒸发单元经多个蒸发罐内热蒸汽的蒸发作用而被浓缩沿液体排出口排出;
    步骤5:热蒸汽进入冷凝器中,经冷凝器的冷凝作用,不凝气体和冷凝液分别沿气体出口和液体出口排出。
PCT/CN2020/092661 2019-12-23 2020-05-27 一种高浓度霜脲氰废水的处理系统及方法 WO2021128724A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911333995.2 2019-12-23
CN201911333995.2A CN113087250A (zh) 2019-12-23 2019-12-23 一种高浓度霜脲氰废水的处理系统及方法

Publications (1)

Publication Number Publication Date
WO2021128724A1 true WO2021128724A1 (zh) 2021-07-01

Family

ID=76573618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092661 WO2021128724A1 (zh) 2019-12-23 2020-05-27 一种高浓度霜脲氰废水的处理系统及方法

Country Status (2)

Country Link
CN (1) CN113087250A (zh)
WO (1) WO2021128724A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154836A (en) * 1986-11-17 1992-10-13 Ensci, Inc. Process for treating contaminants in aqueous-based materials
CN106215730A (zh) * 2016-08-05 2016-12-14 南京大学 微米气泡发生器
CN109293116A (zh) * 2018-11-07 2019-02-01 苏州工业园区承叶环境科技有限公司 一种高浓度霜脲氰废水的处理工艺
CN109399846A (zh) * 2017-08-18 2019-03-01 中国科学院大连化学物理研究所 一种催化湿式氧化处理高浓度霜脲氰废水的方法
CN110316808A (zh) * 2019-07-16 2019-10-11 北京理工大学 一种用于通过催化湿式氧化法处理有机废水的方法和设备
CN110591763A (zh) * 2019-09-10 2019-12-20 南京延长反应技术研究院有限公司 一种煤间接液化的智能强化控制系统及工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110386706A (zh) * 2018-04-20 2019-10-29 姜林 一种高浓度含盐有机废水处理系统及方法
CN108947069B (zh) * 2018-07-28 2023-12-29 大连微凯化学有限公司 基于微通道反应器连续处理有机废水的系统及方法
CN209507714U (zh) * 2018-11-23 2019-10-18 南京延长反应技术研究院有限公司 一种臭氧氧化反应器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154836A (en) * 1986-11-17 1992-10-13 Ensci, Inc. Process for treating contaminants in aqueous-based materials
CN106215730A (zh) * 2016-08-05 2016-12-14 南京大学 微米气泡发生器
CN109399846A (zh) * 2017-08-18 2019-03-01 中国科学院大连化学物理研究所 一种催化湿式氧化处理高浓度霜脲氰废水的方法
CN109293116A (zh) * 2018-11-07 2019-02-01 苏州工业园区承叶环境科技有限公司 一种高浓度霜脲氰废水的处理工艺
CN110316808A (zh) * 2019-07-16 2019-10-11 北京理工大学 一种用于通过催化湿式氧化法处理有机废水的方法和设备
CN110591763A (zh) * 2019-09-10 2019-12-20 南京延长反应技术研究院有限公司 一种煤间接液化的智能强化控制系统及工艺

Also Published As

Publication number Publication date
CN113087250A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
CN105621740B (zh) 一种铁循环及污泥零排放的芬顿氧化方法及其装置
CN102989371B (zh) 耐腐蚀防堵塞的有机污染物超临界水氧化系统
CN106495386A (zh) 一种高盐分难降解有机废水的处理方法及装置
JP7111320B2 (ja) Pmida高塩廃水の処理システム及び方法
CN204689706U (zh) 一种多级外循环式臭氧接触反应装置
CN105130060B (zh) 一种废水处理方法
CN212151749U (zh) 一种高盐废水的高效臭氧催化氧化处理装置
CN102633350B (zh) 超临界水氧化系统中过量氧回用及二氧化碳回收方法
WO2021128724A1 (zh) 一种高浓度霜脲氰废水的处理系统及方法
CN112479340A (zh) 一种用于工业废水的湿式氧化处理系统以及其方法
CN108129005B (zh) 利用水热处理高浓度有机废水放热进行污泥干化的系统
CN213506395U (zh) 一种高浓度霜脲氰废水的处理系统
WO2019079687A1 (en) SYSTEMS, METHODS AND TECHNIQUES FOR WASTE TREATMENT
CN201678507U (zh) 臭氧循环处理有机废水的装置
WO2021128727A1 (zh) 一种头孢类废水的处理系统及方法
CN109231625A (zh) 一种有机废水的高温氧化处理方法及设备
CN113087111B (zh) 一种电镀废水或电镀污泥的处理系统及方法
CN107188329B (zh) 一种苯胺生产过程中工艺废水与精馏残液的联合净化方法
Lei et al. Composite denitrification reagent for high concentration ammonia removal by air stripping
CN107540119A (zh) 一种高盐高有机物废水的处理方法
CN213680051U (zh) 一种氨氮回收装置
CN213506148U (zh) 一种兰炭废水的处理系统
CN211619982U (zh) 一种氨氮废水处理系统
CN210085221U (zh) 生化污泥处理系统
CN213506432U (zh) 一种草甘膦生产废水的处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907863

Country of ref document: EP

Kind code of ref document: A1