WO2021128220A1 - 一种牛磺酸钠的制备方法 - Google Patents
一种牛磺酸钠的制备方法 Download PDFInfo
- Publication number
- WO2021128220A1 WO2021128220A1 PCT/CN2019/128903 CN2019128903W WO2021128220A1 WO 2021128220 A1 WO2021128220 A1 WO 2021128220A1 CN 2019128903 W CN2019128903 W CN 2019128903W WO 2021128220 A1 WO2021128220 A1 WO 2021128220A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sodium
- ionic liquid
- taurate
- preparation
- product
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C303/00—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
- C07C303/02—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
- C07C303/22—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof from sulfonic acids, by reactions not involving the formation of sulfo or halosulfonyl groups; from sulfonic halides by reactions not involving the formation of halosulfonyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C309/00—Sulfonic acids; Halides, esters, or anhydrides thereof
- C07C309/01—Sulfonic acids
- C07C309/02—Sulfonic acids having sulfo groups bound to acyclic carbon atoms
- C07C309/03—Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
- C07C309/13—Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton
- C07C309/14—Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton containing amino groups bound to the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C309/00—Sulfonic acids; Halides, esters, or anhydrides thereof
- C07C309/01—Sulfonic acids
- C07C309/02—Sulfonic acids having sulfo groups bound to acyclic carbon atoms
- C07C309/03—Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
- C07C309/13—Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton
- C07C309/14—Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton containing amino groups bound to the carbon skeleton
- C07C309/15—Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton containing amino groups bound to the carbon skeleton the nitrogen atom of at least one of the amino groups being part of any of the groups, X being a hetero atom, Y being any atom
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Definitions
- the invention relates to the field of preparation of chemical intermediates, in particular to a preparation method of sodium taurate.
- Taurine also known as 2-aminoethanesulfonic acid, is one of the important nutrients for humans and animals. It has important physiological functions and also has anti-inflammatory, antipyretic, analgesic, antiviral and other effects, so it is widely used Used in functional beverages, food, feed, medicine and other fields.
- the preparation method of taurine is divided into natural extraction method and chemical synthesis method, of which chemical synthesis method accounts for more than 95% of the total production capacity.
- the chemical synthesis methods that have been reported include the nitromethane method (as disclosed in CN 103613517A), the ethanolamine method (as disclosed in CN 105152985A), and the ethylene oxide method (as disclosed in CN 101486669A). Because of the high price of raw materials, the first two are currently only used by a small number of manufacturers.
- the mainstream synthesis method is the ethylene oxide method, which accounts for more than 85% of the total production capacity of taurine.
- the ammonolysis reaction mechanism of sodium isethionate is shown in Figure 1.
- the raw materials are sodium isethionate, ammonia, product sodium taurate, by-product water, sodium ditaurate and There are a variety of reversible chemical equilibrium relationships between sodium tritaurate.
- sodium isethionate produces water as a by-product in the ammonolysis.
- Sodium taurate, sodium ditaurate and sodium tritaurate will Hydrolysis reaction with water.
- the current preparation process of sodium taurate has the disadvantages of low sodium isethionate conversion rate, low sodium taurate yield, large amount of ammonia, by-product sodium ditaurate and
- the sodium tritaurate has many shortcomings such as being difficult to separate.
- the method to break the reversible equilibrium reaction is to remove the by-products from the reaction system in time.
- the ammonolysis reaction described in Figure 1 is difficult to achieve.
- the main difficulties are: 1) The boiling point of the by-product water is 100°C, which is far away. Higher than the raw material ammonia, the reaction raw material ammonia will inevitably be removed when the by-product water is removed, resulting in the failure of the normal ammonolysis reaction; 2) By-product sodium ditaurate and sodium tritaurate and product taurine The properties of sodium are very similar and it is difficult to separate online during the reaction.
- the purpose of the present invention is to provide a method for preparing sodium taurate.
- the preparation method of sodium taurate provided by the present invention includes the following steps:
- S1 Dissolve sodium isethionate and raw material sodium taurate in an ionic liquid containing a guanidine group, and react at a temperature of 60-240°C and a pressure of 1-10Kpa to obtain sodium ditaurate and Ionic liquid solution of the mixed product of sodium tritaurate;
- the preparation method of sodium taurate provided by the present invention changes the original ammonolysis process from the "one-pot method" to a step-by-step process, and the process route is shown in FIG. 2.
- step S1 sodium isethionate 1 is used as a starting material
- sodium taurate 2' is used as an ammonia source
- an ionic liquid containing a guanidine group is used as a solvent (not shown in the figure)
- the entire reaction system The boiling points of the raw materials, solvents, and products are all higher than water. Therefore, at a certain reaction temperature and pressure, the by-product water produced by the reaction can be easily removed online, and the original reversible reaction is transformed into an irreversible reaction.
- step S2 the mixed product containing sodium ditaurate 3 and sodium tritaurate 4 undergoes an ammonolysis reaction with liquid ammonia, and no water is produced in this step , Itself is an irreversible reaction, sodium ditaurate 3 and sodium tritaurate 4 can also be fully converted, not only can obtain the product sodium taurate 2 in high yield, but also avoid the existence of a large amount of sodium ditaurate And tritaurate sodium by-product, the purity of the product is also significantly improved; in step S3, the ionic liquid containing the product is added to the alcohol solvent, and a large amount of solid sodium taurate product is precipitated by the elution method.
- the final product can be obtained by simple solid-liquid separation, and the ionic liquid solvent and alcohol solvent can be applied after simple distillation and separation.
- the raw material sodium taurate can be derived from the product obtained by the preparation method of the present invention, or it can be derived from other sources, such as commercial purchase or synthesis with reference to other documents.
- the raw material sodium taurate can be derived from the product obtained by the preparation method of the present invention, that is, the product sodium taurate obtained by the preparation method of the present invention is partly used in the downstream production of taurine, and partly used as a subsequent batch. Secondary preparation of raw materials, which can ensure continuous production.
- the reaction temperature and reaction pressure in step S1 can be selected or appropriately adjusted by those skilled in the art, as long as the reaction can proceed and the by-product water can be removed in time.
- Pressure refers to absolute pressure.
- the reaction temperature may be 180-220°C, including but not limited to temperature values such as 180°C, 190°C, 200°C, 210°C, 220°C, or any combination of temperature intervals.
- the absolute pressure may be 2-5Kpa, including but not limited to pressure values such as 2Kpa, 3Kpa, 4Kpa, 5Kpa, or any combination of pressure intervals.
- the reaction time of step S1 can be 1-10h; in some more preferred embodiments, the reaction time of step S1 can be 2-5h, including but not limited to 2h, 3h, 4h, Time value such as 5h or any combination of time intervals.
- the guanidine group-containing ionic liquid may be a guanidine group-containing derivative that has high solubility to the reaction material and is easily miscible with alcohol solvents, and has a structure represented by formula (1):
- X - can be represented RCOO -, R 1 ⁇ R 6 and R may each independently represent a C1 ⁇ C10 alkyl group.
- R 1 to R 6 and R may each independently represent a C1 to C6 alkyl group, including but not limited to methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl Group, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, etc.; in some more preferred embodiments, R 1 to R 6 and R can each independently represent C1 to C4 alkyl groups include but are not limited to methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, etc.
- the mass ratio of sodium isethionate to guanidine group-containing ionic liquid may be 1:1 to 5; in some preferred embodiments, The mass ratio of sodium sulfonate to guanidine group-containing ionic liquid can be 1:1.5-3.
- the sodium ditaurate and sodium tritaurate in the mixed product obtained in step S1 can be in any ratio and will not affect the subsequent ammonolysis reaction. Therefore, the raw material taurine The amount of sodium added is sufficient to convert the sodium isethionate into sodium ditaurate and sodium tritaurate as fully as possible.
- the mass ratio of the raw material sodium taurate to the sodium isethionate may be 1:1.1 to 2; in some more preferred embodiments, the raw material sodium taurate and the sodium isethionate The mass ratio of sodium isethionate can be 1:1.5 to 1.8.
- the conversion rate of sodium isethionate is significantly improved due to the breaking of the chemical balance in step S1, which not only helps to increase the yield of the product sodium taurate, but also avoids residues.
- the unreacted sodium isethionate affects step S2.
- the mass of unreacted sodium isethionate may be the total mass of the sodium ditaurate and sodium tritaurate.
- the mass of unreacted sodium isethionate may be less than 0.1% of the total mass of the sodium ditaurate and sodium tritaurate; In a preferred embodiment, the mass of unreacted sodium isethionate can be less than 0.05% of the total mass of the sodium ditaurate and sodium tritaurate, for example, it can be about 0.01% or about 0.02%. %, about 0.03%, about 0.04%, or about 0.05%.
- step S1 the by-product water produced is removed as soon as possible through a certain temperature and pressure, which not only helps increase the conversion rate of sodium isethionate, but also avoids The residual moisture affects step S2.
- the moisture content in the ionic liquid solution of the mixed product obtained in step S1 is ⁇ 0.1wt%; in some more preferred embodiments, the moisture content in the ionic liquid solution of the mixed product is ⁇ 0.05wt%, for example , Can be about 0.01 wt%, about 0.02 wt%, about 0.03 wt%, about 0.04 wt%, or about 0.05 wt%. In some most preferred embodiments, the moisture content in the ionic liquid solution of the mixed product is ⁇ 0.02wt%.
- step S2 since the mixed product of sodium ditaurate and sodium tritaurate is subjected to ammonolysis, the amount of liquid ammonia can be greatly reduced, and the utilization of liquid ammonia The rate has also increased significantly.
- the mass ratio of the total mass of sodium ditaurate and sodium tritaurate to the mass of liquid ammonia can be 2-10:1; in some more preferred embodiments, sodium ditaurate The total mass of sodium tritaurate and the mass ratio of liquid ammonia can be 4-8:1.
- step S2 since the mixed product of sodium ditaurate and sodium tritaurate is subjected to an ammonolysis reaction, the temperature and pressure of the ammonolysis reaction can also be significantly improved. Decrease (the temperature of the traditional ammonolysis reaction is usually 160-260°C, and the pressure is usually 10-20 MPa, even as high as 26 MPa), the reaction process is more gentle and easier to control.
- the reaction temperature of step S2 may be 60-240°C; in some more preferred embodiments, the reaction temperature of step S2 may be 180-220°C, including but not limited to 180°C, 190°C , 200°C, 210°C, 220°C and other temperature values or any combination of temperature ranges.
- the reaction pressure in step S2 does not need to be specially controlled, and the reaction pressure under normal operation is sufficient, for example, the pressure under the closed operation of the reaction device of the ammonolysis reaction.
- the reaction time of step S2 can be 1 to 8 hours; in some preferred embodiments, the reaction time of step S2 can be 1 to 5 hours, including but not limited to 1 hour, 2 hours, 3h, 4h, 5h and other time values or any combination of time intervals.
- the alcohol solvent used in step S3 may be a common solvent that is miscible with the guanidine group-containing ionic liquid.
- the alcohol solvent used in step S3 may be a low-molecular alcohol solvent with a boiling point of less than 160° C., so as to facilitate recovery and application, including but not limited to methanol, ethanol, propanol, isopropanol, N-butanol, isobutanol, sec-butanol, tert-butanol, etc.; in some more preferred embodiments, the alcohol solvent used in step S3 may be methanol or ethanol.
- the mass ratio of the alcohol solvent to the guanidine group-containing ionic liquid can be 2-10:1; in some more preferred embodiments, the alcohol solvent and the guanidine group-containing ionic liquid have a ratio of The mass ratio can be 3 to 5:1.
- acid such as concentrated sulfuric acid
- the crude taurine can also be further purified through a crystallization process.
- the purity of the crude taurine is already high, the purity of taurine can be increased to more than 99% in a single crystallization process, without the need for repeated crystallization and purification.
- the crude taurine is dissolved in water at 80-100°C to prepare a 30-40wt% aqueous solution, and the temperature is lowered to 5-15°C within 2-5 hours to precipitate crystals, and pure taurine is obtained by filtration.
- the preparation method of the present invention realizes the online removal of by-product water through a step-by-step process and by virtue of the excellent characteristics of ionic liquids, and changes the traditional ammonolysis process from a reversible reaction to an irreversible reaction, thereby making the hydroxyethyl sulfonate
- the conversion rate of sodium is significantly improved, and the yield of sodium taurate product is also significantly improved.
- the preparation method of the present invention also greatly reduces the amount of liquid ammonia, the temperature and system pressure of the reaction process are also significantly reduced, the reaction process is gentler and easier to control, and the post-treatment process is also significantly simplified.
- the solid sodium taurate product can be easily precipitated in the dissolution process.
- the sodium taurine product obtained by the preparation method of the present invention has a higher purity.
- a high-purity taurine product can be obtained through a simple neutralization and crystallization process, avoiding a tedious purification process and further improving Productivity.
- the preparation method of sodium taurate of the present invention has high target product yield, good purity, high raw material utilization rate, simple process and mild reaction, which can greatly improve the production efficiency of sodium taurate and reduce production costs. Therefore, it has very promising industrial application prospects.
- Figure 1 is the process route diagram of the traditional ammonolysis reaction
- Figure 2 is a process route diagram of the preparation method of sodium taurate of the present invention.
- Sodium isethionate and raw material sodium taurate were purchased from Sigma-Aldrich;
- Liquid ammonia content ⁇ 99.99%, purchased from Jinan Deyang Company;
- Ionic liquids were purchased from Lanzhou Institute of Chemical Physics;
- sodium isethionate was analyzed by ion chromatography: the ion chromatograph was Metrohm Ion Chromatography 881, equipped with MetrosepA Supp 7-250/4.0 chromatographic column, column temperature 45°C, 84mg/L NaHCO 3 The mixed solution with 106mg/L Na 2 CO 3 is the mobile phase, and the flow rate is 0.7 mL/min. Sodium ditaurate and sodium tritaurate were analyzed by LC-MS.
- the target product sodium taurate
- the target product was analyzed by mass spectrometry and proton nuclear magnetic resonance spectroscopy.
- Water content analysis uses Metrohm 915 Moisture Titrator and Karl. Fischer reagent.
- Chromatographic analysis shows that the mass ratio of sodium isethionate to (sodium ditaurate + sodium tritaurate) is 0.09:99.8, that is, the mass of unreacted sodium isethionate is the product ditaurine 0.09% of the total mass of sodium and sodium tritaurate.
- the water content analysis tested that the water content in the ionic liquid solution was 0.03%.
- the calculated value of sodium ditaurate HRMS(ESI) m/z[M] 2- :[C 2 H 9 NO 6 S 2 ] 2- is 230.9882, and the measured value is 231.0485.
- the ionic liquid solution of the above sodium taurate was added to 400g methanol, and a large amount of white solid was produced. After filtration and drying, the product of sodium taurate was obtained with a purity of 99.5% and a yield of 98.1% (based on isethion acid). The amount of sodium).
- Chromatographic analysis shows that the mass ratio of sodium isethionate to (sodium ditaurate + sodium tritaurate) is 0.08:99.91, that is, the mass of unreacted sodium isethionate is the product ditaurine 0.08% of the total mass of sodium and sodium tritaurate.
- the water content analysis tested that the water content in the ionic liquid solution was 0.02%.
- the ionic liquid solution of the above sodium taurate was added to 600g ethanol, and a large amount of white solid was produced. After filtration and drying, the product of sodium taurate was obtained with a purity of 99.7% and a yield of 98.6% (based on isethionic acid). The amount of sodium).
- Chromatographic analysis shows that the mass ratio of sodium isethionate to (sodium ditaurate + sodium tritaurate) is 0.05:99.92, that is, the mass of unreacted sodium isethionate is the product ditaurine 0.05% of the total mass of sodium and sodium tritaurate.
- the water content analysis tested that the water content in the ionic liquid solution was 0.02%.
- the ionic liquid solution of the above sodium taurate was added to 1250g of propanol, and a large amount of white solid was produced. After filtration and drying, the product of sodium taurate was obtained with a purity of 99.6% and a yield of 98.4% (based on hydroxyethyl sulfonate). The amount of sodium).
- Chromatographic analysis shows that the mass ratio of sodium isethionate to (sodium ditaurate + sodium tritaurate) is 0.01:99.95, that is, the mass of unreacted sodium isethionate is the product ditaurine 0.01% of the total mass of sodium and sodium tritaurate.
- the water content analysis tested that the water content in the ionic liquid solution was 0.01%.
- the ionic liquid solution of the above sodium taurate was added to 1000g methanol, and a large amount of white solid was produced. After filtration and drying, the product of sodium taurate was obtained with a purity of 99.9% and a yield of 98.0% (based on isethion acid). The amount of sodium).
- the water content analysis tested that the water content in the ionic liquid solution was 0.01%.
- sodium ditaurate/sodium tritaurate ionic liquid solution (wherein, the total mass of sodium ditaurate + sodium tritaurate is 124g) was introduced 32g of liquid ammonia to keep the reaction kettle system airtight, The temperature was raised to 220°C and kept for 3 hours, and then the excess ammonia was removed, and the ionic liquid solution of sodium taurate was obtained by naturally cooling to room temperature.
- the ionic liquid solution of the above sodium taurate was added to 2000g methanol, and a large amount of white solid was produced. After filtration and drying, the product of sodium taurate was obtained with a purity of 99.8% and a yield of 98.3% (based on isethion acid). The amount of sodium).
- the preparation method of the present invention has the following characteristics: 1) the purity of the target product is higher, and the yield is also higher; 2) the reaction temperature is lower in the ammonolysis process, and there is no need to pressurize. The amount of ammonia used has been drastically reduced. It can be seen that the preparation method of the present invention has very industrial applicability.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明提供了一种牛磺酸钠的制备方法,将羟乙基磺酸钠和原料牛磺酸钠溶解于含胍基的离子液体中进行反应得到含有二牛磺酸钠和三牛磺酸钠的混合产物的离子液体溶液,向混合产物的离子液体溶液中通入液氨进行反应,得到产物牛磺酸钠的离子液体溶液,将产物牛磺酸钠的离子液体溶液加入至醇类溶剂进行溶析,分离出析出的固体即得到产物牛磺酸钠。本发明的牛磺酸钠制备方法产物收率高、纯度好,原料利用率高,工艺简便,反应条件温和,可极大提高牛磺酸钠的生产效率,降低生产成本,因而非常具有工业化应用前景。
Description
本发明涉及化学中间体制备领域,具体涉及一种牛磺酸钠的制备方法。
牛磺酸,又名2-氨基乙磺酸,是人及动物的重要营养物质之一,具有重要的生理作用,而且还具有消炎、解热、镇痛、抗病毒等功效,因此被广泛应用于功能饮料、食品、饲料、医药等领域。
牛磺酸的制备方法分为天然提取法和化学合成法,其中化学合成法占全部产能的95%以上。已经报道的化学合成法有硝基甲烷法(如CN 103613517A所公开)、乙醇胺法(如CN 105152985A所公开)和环氧乙烷法(如CN 101486669A所公开)。前两者因为原料价格较高,目前仅有少量厂家采用,主流的合成方法为环氧乙烷法,占牛磺酸全部产能的85%以上。
典型的环氧乙烷法中,首先环氧乙烷与亚硫酸氢钠反应生成羟乙基磺酸钠,羟乙基磺酸钠在高温高压(260℃、20MPa)下与氨进行氨解反应生成牛磺酸钠,然后经过中和、结晶等操作获得牛磺酸,其中氨解反应的主产物牛磺酸钠的选择性仅为71%,同时产生副产物二牛磺酸钠和三牛磺酸钠(如德国专利DD 219023A3所公开),而且原料羟乙基磺酸钠的转化率<97%,导致反应的单程收率<69%。由此可见,环氧乙烷法中,牛磺酸钠是制备牛磺酸的重要中间体,羟乙基磺酸钠的氨解反应工艺决定着牛磺酸钠的产率和纯度。
羟乙基磺酸钠的氨解反应机理如图1所示,采用“一锅法”,原料羟乙基磺酸钠、氨、产物牛磺酸钠、副产物水、二牛磺酸钠和三牛磺酸钠之间存在着多种可逆的化学平衡关系,例如,羟乙基磺酸钠氨解产生副产物水,牛磺酸钠、二牛磺酸钠和三牛磺酸钠又会与水发生水解反应。基于氨解反应过程的复杂性,目前的牛磺酸钠制备工艺存在着羟乙基磺酸钠转化率低、牛磺酸钠产率低、氨使用量大、副产物二牛磺酸钠和三牛磺酸钠含量较多且难以分离等缺点。
通常,打破可逆平衡反应的方法是将副产物及时从反应体系中移除,而对于图1中描述的氨解反应却难以实现,难点主要在于:1)副产物水的沸点为100℃,远高于原料氨, 移除副产物水的同时必然会将反应原料氨也移除,导致正常的氨解反应无法进行;2)副产物二牛磺酸钠和三牛磺酸钠与产物牛磺酸钠的性质非常相似,难以在反应过程中在线分离。
因此,基于现有技术的缺陷,急需寻找一种新的牛磺酸钠制备方法,以提高羟乙基磺酸钠的转化率,并提高牛磺酸钠产物的产率和纯度。
发明内容
为克服现有技术中存在的上述不足,本发明的目的是提供一种牛磺酸钠的制备方法。
本发明提供的牛磺酸钠制备方法包括以下步骤:
S1:将羟乙基磺酸钠和原料牛磺酸钠溶解于含胍基的离子液体中,在60~240℃的温度和1~10Kpa的压力下进行反应,得到含有二牛磺酸钠和三牛磺酸钠的混合产物的离子液体溶液;
S2:向所述混合产物的离子液体溶液中通入液氨进行反应,得到产物牛磺酸钠的离子液体溶液;以及
S3:将所述产物牛磺酸钠的离子液体溶液加入至醇类溶剂中进行溶析,分离出析出的固体即得到产物牛磺酸钠。
本发明提供的牛磺酸钠制备方法将原有的氨解工艺由“一锅法”变为分步工艺,工艺路线如图2所示。具体来说,步骤S1中,以羟乙基磺酸钠1为起始原料、原料牛磺酸钠2’作为氨源、含胍基的离子液体作为溶剂(图中未标示),整个反应体系中的原料、溶剂和产物的沸点均高于水,因此,在一定的反应温度和压力下,反应生成的副产物水很容易实现在线脱除,原先的可逆反应由此转变为不可逆反应,羟乙基磺酸钠的转化率大大提高(≥99%);步骤S2中,含有二牛磺酸钠3和三牛磺酸钠4的混合产物与液氨进行氨解反应,此步骤无水产生,本身即为不可逆反应,二牛磺酸钠3和三牛磺酸钠4亦可充分转化,不仅可以高产率地得到产物牛磺酸钠2,而且还避免了存在大量的二牛磺酸钠和三牛磺酸钠副产物,产物纯度也得到的明显提高;步骤S3中,将含有产物的离子液体加入至醇类溶剂之中,通过溶析法析出大量的固体牛磺酸钠产物,经过简单的固液分离即可得到最终产品,离子液体溶剂和醇类溶剂经过简单的蒸馏分离即可套用。
本发明提供的牛磺酸钠制备方法中,原料牛磺酸钠可来自本发明制备方法所得的产 物,也可以来自其他来源,如商业购买或参照其他文献合成。在一些优选的实施方式中,原料牛磺酸钠可来自本发明制备方法所得的产物,即本发明制备方法所得的产物牛磺酸钠部分用于下游牛磺酸的生产,部分用作后续批次的制备原料,由此可保证连续生产。
本发明提供的牛磺酸钠制备方法中,步骤S1中的反应温度和反应压力可由本领域技术人员进行选择或适当调整,只要能够使反应进行并及时移除副产物水即可,其中的反应压力是指绝对压力。在一些优选的实施方式中,反应温度可以为180~220℃,包括但不限于180℃、190℃、200℃、210℃、220℃等温度值或任意的温度区间组合。在另一些优选的实施方式中,绝对压力可以为2~5Kpa,包括但不限于2Kpa、3Kpa、4Kpa、5Kpa等压力值或任意的压力区间组合。在另一些优选的实施方式中,步骤S1的反应时间可以为1~10h;在一些更优选的实施方式中,步骤S1的反应时间可以为2~5h,包括但不限于2h、3h、4h、5h等时间值或任意的时间区间组合。
本发明提供的牛磺酸钠制备方法中,含胍基的离子液体可以为对反应物料溶解度大且易与醇类溶剂互溶的含胍基衍生物,具有式(1)所示结构:
式(1)中,X
-可以表示RCOO
-,R
1~R
6以及R可以各自独立地表示C1~C10烷基。
在一些优选的实施方式中,R
1~R
6以及R可以各自独立地表示C1~C6烷基,包括但不限于甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、新戊基、叔戊基等;在一些更优选的实施方式中,R
1~R
6以及R可以各自独立地表示C1~C4烷基,包括但不限于甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基等。
本发明提供的牛磺酸钠制备方法中,步骤S1中,羟乙基磺酸钠与含胍基的离子液体的质量比可以为1:1~5;在一些优选的实施方式中,羟乙基磺酸钠与含胍基的离子液体的质量比可以为1:1.5~3。
本发明提供的牛磺酸钠制备方法中,步骤S1所得的混合产物中的二牛磺酸钠和三牛磺酸钠可以为任意比例,不会影响后续氨解反应,因此,原料牛磺酸钠的加入量为能够使 羟乙基磺酸钠尽可能充分转化为二牛磺酸钠和三牛磺酸钠即可。在一些优选的实施方式中,步骤S1中,原料牛磺酸钠与羟乙基磺酸钠的质量比可以为1:1.1~2;在一些更优选的实施方式中,原料牛磺酸钠与羟乙基磺酸钠的质量比可以为1:1.5~1.8。
本发明提供的牛磺酸钠制备方法中,步骤S1中由于打破了化学平衡,羟乙基磺酸钠的转化率明显提高,不仅有利于提高产物牛磺酸钠的产率,也能避免残留的未反应羟乙基磺酸钠对步骤S2造成影响。在一些优选的实施方式中,步骤S1所得的混合产物的离子液体溶液中,未反应的羟乙基磺酸钠的质量可以为所述二牛磺酸钠和三牛磺酸钠的总质量的0.2%以下;在一些更优选的实施方式中,未反应的羟乙基磺酸钠的质量可以为所述二牛磺酸钠和三牛磺酸钠的总质量的0.1%以下;在一些最优选的实施方式中,未反应的羟乙基磺酸钠的质量可以为所述二牛磺酸钠和三牛磺酸钠的总质量的0.05%以下,例如,可以为约0.01%、约0.02%、约0.03%、约0.04%或约0.05%。
本发明提供的牛磺酸钠制备方法中,步骤S1中通过一定的温度和压力尽可能及时移除了产生的副产物水,不仅有利于羟乙基磺酸钠的转化率提高,也能避免残留水分对步骤S2造成影响。在一些优选的实施方式中,步骤S1所得的混合产物的离子液体溶液中水分含量≤0.1wt%;在一些更优选的实施方式中,混合产物的离子液体溶液中水分含量≤0.05wt%,例如,可以为约0.01wt%、约0.02wt%、约0.03wt%、约0.04wt%或约0.05wt%。在一些最优选的实施方式中,混合产物的离子液体溶液中水分含量≤0.02wt%。
本发明提供的牛磺酸钠制备方法中,步骤S2中由于是对二牛磺酸钠和三牛磺酸钠的混合产物进行氨解反应,因此液氨的用量可大幅减少,液氨的利用率也显著提高。在一些优选的实施方式中,二牛磺酸钠和三牛磺酸钠的总质量与液氨的质量比可以为2~10:1;在一些更优选的实施方式中,二牛磺酸钠和三牛磺酸钠的总质量与液氨的质量比可以为4~8:1。
本发明提供的牛磺酸钠制备方法中,步骤S2中由于是对二牛磺酸钠和三牛磺酸钠的混合产物进行氨解反应,故氨解反应的温度和压力也能有显著地下降(传统氨解反应的温度通常为160~260℃、压力通常为10~20MPa,甚至可高达26MPa),反应过程更加温和、更加容易控制。在一些优选的实施方式中,步骤S2的反应温度可以为60~240℃;在一些更优选的实施方式中,步骤S2的反应温度可以为180~220℃,包括但不限于180℃、190℃、200℃、210℃、220℃等温度值或任意的温度区间组合。在另一些优选的实施方式 中,步骤S2的反应压力无需特别控制,在常规操作下的反应压力即可,例如,氨解反应的反应装置密闭操作下的压力。
本发明提供的牛磺酸钠制备方法中,步骤S2的反应时间可以为1~8h;在一些优选的实施方式中,步骤S2的反应时间可以为1~5h,包括但不限于1h、2h、3h、4h、5h等时间值或任意的时间区间组合。
本发明提供的牛磺酸钠制备方法中,步骤S3中所使用的醇类溶剂可以为与含胍基的离子液体互溶的常见溶剂。在一些优选的实施方式中,步骤S3中所使用的醇类溶剂可以为沸点小于160℃的低分子醇类溶剂,以便于回收套用,包括但不限于甲醇、乙醇、丙醇、异丙醇、正丁醇、异丁醇、仲丁醇、叔丁醇等;在一些更优选的实施方式中,步骤S3中所使用的醇类溶剂可以为甲醇或乙醇。在另一些优选的实施方式中,醇类溶剂与含胍基的离子液体的质量比可以为2~10:1;在一些更优选的实施方式中,醇类溶剂与含胍基的离子液体的质量比可以为3~5:1。
本发明提供的牛磺酸钠制备方法中,步骤S3中分离出的产物牛磺酸钠具有较高的产率(≥98%)和纯度(≥99.5%),因此通过简便的酸化过程即可得到高质量的牛磺酸产品。在一些优选的实施方式中,可通过以下过程由本发明制备的牛磺酸钠产品来制备牛磺酸:将牛磺酸钠在30~40℃下溶于水配成30~40wt%的水溶液,加酸(如浓硫酸)调节至pH=7~9,将析出的固体过滤后得牛磺酸粗品,通常纯度≥95%。牛磺酸粗品也可进一步通过结晶过程进行提纯,由于牛磺酸粗品纯度已较高,故一次结晶过程即可将牛磺酸的纯度提高至99%以上,无需多次、反复结晶提纯。在一些优选的实施方式中,将牛磺酸粗品在80~100℃下溶于水配成30~40wt%的水溶液,2~5h内降温至5~15℃析出晶体,过滤得牛磺酸纯品,纯度≥99.0%,收率≥95.0%(基于牛磺酸钠)。
本发明提供的牛磺酸钠制备方法具有以下优点:
(1)本发明的制备方法通过分步工艺并借助离子液体的优良特性实现了副产物水的在线脱除,将传统的氨解工艺由可逆反应变为不可逆反应,由此使羟乙基磺酸钠的转化率显著提高,牛磺酸钠产品的收率也明显提高。
(2)本发明的制备方法还大幅减少了液氨的用量,反应过程的温度和体系压力也有明显下降,反应过程更加温和、更加易于控制,而且,后处理工艺也得到了明显地简化,通过溶析过程即可容易地析出固体牛磺酸钠产品。
(3)本发明的制备方法制得的牛磺酸钠产品纯度也较高,通过简单的中和、结晶工艺即可得到高纯度的牛磺酸产品,避免了繁琐的提纯工艺,进一步提高了生产效率。
综上所述,本发明的牛磺酸钠制备方法目标产物收率高、纯度好,原料利用率高,工艺简便,反应温和,可极大提高牛磺酸钠的生产效率,降低生产成本,因而非常具有工业化应用前景。
图1为传统氨解反应的工艺路线图;
图2为本发明的牛磺酸钠制备方法的工艺路线图;
其中,附图标记如下:
1、羟乙基磺酸钠;2、产物牛磺酸钠;3、二牛磺酸钠;4、三牛磺酸钠;2’、原料牛磺酸钠。
以下结合具体实施例对本发明的技术方案做进一步详细说明。
本发明的实施例和对比例中,原料规格和来源如下:
羟乙基磺酸钠、原料牛磺酸钠均购自Sigma-Aldrich;
液氨,含量≥99.99%,购自济南德洋公司;
离子液体均购自兰州化学物理研究所;
其他原料如无特别说明,均为市售产品。
本发明的实施例和对比例中,分析方法如下:
中间产物中,羟乙基磺酸钠采用离子色谱法进行分析:离子色谱仪为瑞士万通离子色谱881,配备有MetrosepA Supp 7-250/4.0色谱柱,柱温45℃,84mg/L NaHCO
3和106mg/L Na
2CO
3混合溶液为流动相,流速为0.7mL/min。二牛磺酸钠和三牛磺酸钠采用LC-MS进行分析。
目标产物牛磺酸钠采用质谱和核磁共振氢谱进行分析。
水含量分析使用万通915水分滴定仪以及卡尔﹒费休试剂。
如无特别说明,本发明的实施例和对比例中所使用的百分数均为质量百分数。
实施例1牛磺酸钠的制备
本实施例所使用的离子液体结构式为:
在0.5L反应釜中,加入100g上述离子液体,随后加入50g牛磺酸钠和55g羟乙基磺酸钠,升温至60℃,控制反应体系压力为2Kpa,保温搅拌2h,自然降至室温,得二牛磺酸钠/三牛磺酸钠的离子液体溶液。
色谱分析显示,羟乙基磺酸钠、(二牛磺酸钠+三牛磺酸钠)的质量比为0.09:99.8,即未反应的羟乙基磺酸钠的质量为产物二牛磺酸钠和三牛磺酸钠总质量的0.09%。
水含量分析测试离子液体溶液中的水含量为0.03%。
质谱分析结果:
二牛磺酸钠HRMS(ESI)m/z[M]
2-:[C
2H
9NO
6S
2]
2-的计算值为230.9882,实测值为231.0485。
三牛磺酸钠HRMS(ESI)m/z[M]
3-:[C
6H
12NO
9S
3]
3-的计算值为337.9691,实测值为337.9705。
向上述二牛磺酸钠/三牛磺酸钠的离子液体溶液(其中,二牛磺酸钠+三牛磺酸钠的总质量为99g)中通入20g液氨,保持反应釜体系密闭,升温至60℃,保温2h,随后真空脱除过量的氨,自然降至室温得牛磺酸钠的离子液体溶液。
将上述牛磺酸钠的离子液体溶液加入至400g甲醇中,有大量白色固体产生,过滤、干燥后得到牛磺酸钠产品,纯度为99.5%,收率为98.1%(基于羟乙基磺酸钠的用量)。
牛磺酸钠的
1H NMR核磁分析数据:(D
2O为溶剂,TMS为内标):2.976(t,2H,-CH
2-),2.942(t,2H,-CH
2-)。高分辨质谱分析结果:HRMS(ESI)m/z[M]
-:[C
2H
6NO
3S]
-的计算值为124.0074,实测值为124.0078。
实施例2牛磺酸钠的制备
本实施例所使用的离子液体结构式为:
在1L反应釜中,加入200g上述离子液体,随后加入50g牛磺酸钠和75g羟乙基磺酸钠,升温至180℃,控制反应体系压力为5Kpa,保温搅拌2h,自然降至室温,得二牛磺酸钠/三牛磺酸钠的离子液体溶液。
色谱分析显示,羟乙基磺酸钠、(二牛磺酸钠+三牛磺酸钠)的质量比为0.08:99.91,即未反应的羟乙基磺酸钠的质量为产物二牛磺酸钠和三牛磺酸钠总质量的0.08%。
水含量分析测试离子液体溶液中的水含量为0.02%。
向上述二牛磺酸钠/三牛磺酸钠的离子液体溶液(其中,二牛磺酸钠+三牛磺酸钠的总质量为119g)中通入23g液氨,保持反应釜体系密闭,升温至200℃,保温1h,随后脱除过量的氨,自然降至室温得牛磺酸钠的离子液体溶液。
将上述牛磺酸钠的离子液体溶液加入至600g乙醇中,有大量白色固体产生,过滤、干燥后得到牛磺酸钠产品,纯度为99.7%,收率为98.6%(基于羟乙基磺酸钠的用量)。
实施例3牛磺酸钠的制备
本实施例所使用的离子液体结构式为:
在1L反应釜中,加入250g上述离子液体,随后加入50g牛磺酸钠和90g羟乙基磺酸钠,升温至220℃,控制反应体系压力为5Kpa,保温搅拌4h,自然降至室温,得二牛磺酸钠/三牛磺酸钠的离子液体溶液。
色谱分析显示,羟乙基磺酸钠、(二牛磺酸钠+三牛磺酸钠)的质量比为0.05:99.92,即未反应的羟乙基磺酸钠的质量为产物二牛磺酸钠和三牛磺酸钠总质量的0.05%。
水含量分析测试离子液体溶液中的水含量为0.02%。
向上述二牛磺酸钠/三牛磺酸钠的离子液体溶液(其中,二牛磺酸钠+三牛磺酸钠的总质量为134g)中通入17.5g液氨,保持反应釜体系密闭,升温至180℃,保温2h,随后 脱除过量的氨,自然降至室温得牛磺酸钠的离子液体溶液。
将上述牛磺酸钠的离子液体溶液加入至1250g丙醇中,有大量白色固体产生,过滤、干燥后得到牛磺酸钠产品,纯度为99.6%,收率为98.4%(基于羟乙基磺酸钠的用量)。
实施例4牛磺酸钠的制备
本实施例所使用的离子液体结构式为:
在1L反应釜中,加入500g上述离子液体,随后加入50g牛磺酸钠和100g羟乙基磺酸钠,升温至240℃,控制反应体系压力为10Kpa,保温搅拌5h,自然降至室温,得二牛磺酸钠/三牛磺酸钠的离子液体溶液。
色谱分析显示,羟乙基磺酸钠、(二牛磺酸钠+三牛磺酸钠)的质量比为0.01:99.95,即未反应的羟乙基磺酸钠的质量为产物二牛磺酸钠和三牛磺酸钠总质量的0.01%。
水含量分析测试离子液体溶液中的水含量为0.01%。
向上述二牛磺酸钠/三牛磺酸钠的离子液体溶液(其中,二牛磺酸钠+三牛磺酸钠的总质量为144g)中通入56g液氨,保持反应釜体系密闭,升温至240℃,保温3h,随后脱除过量的氨,自然降至室温得牛磺酸钠的离子液体溶液。
将上述牛磺酸钠的离子液体溶液加入至1000g甲醇中,有大量白色固体产生,过滤、干燥后得到牛磺酸钠产品,纯度为99.9%,收率为98.0%(基于羟乙基磺酸钠的用量)。
实施例5牛磺酸钠的制备
本实施例所使用的离子液体结构式为:
在1L反应釜中,加入200g上述离子液体,随后加入50g牛磺酸钠和80g羟乙基磺酸钠,升温至200℃,控制反应体系压力为4Kpa,保温搅拌3h,自然降至室温,得二牛 磺酸钠/三牛磺酸钠的离子液体溶液。
色谱分析显示,羟乙基磺酸钠、(二牛磺酸钠+三牛磺酸钠)相对质量比为0.02:99.96,即未反应的羟乙基磺酸钠的质量为产物二牛磺酸钠和三牛磺酸钠总质量的0.02%。
水含量分析测试离子液体溶液中的水含量为0.01%。
向上述二牛磺酸钠/三牛磺酸钠的离子液体溶液(其中,二牛磺酸钠+三牛磺酸钠的总质量为124g)中通入32g液氨,保持反应釜体系密闭,升温至220℃,保温3h,随后脱除过量的氨,自然降至室温得牛磺酸钠的离子液体溶液。
将上述牛磺酸钠的离子液体溶液加入至2000g甲醇中,有大量白色固体产生,过滤、干燥后得到牛磺酸钠产品,纯度为99.8%,收率为98.3%(基于羟乙基磺酸钠的用量)。
对比例1传统氨解反应制备牛磺酸钠
在0.8L反应釜中加入羟乙基磺酸钠100g、水480g以及液氨184g,升温至260℃,反应釜压力升至18MPa,搅拌反应2h,冷却至室温后,取样分析。
色谱分析显示,羟乙基磺酸钠:牛磺酸钠:(二牛磺酸钠+三牛磺酸钠)=4.9:66.2:28.9(w/w),对应的牛磺酸钠选择性为70%,单程反应收率为66.5%(基于羟乙基磺酸钠的用量)。
通过实施例以及对比例可以看出,本发明的制备方法具有以下特点:1)目标产物的纯度更高、收率也更高;2)氨解过程中反应温度更低,无需加压,液氨的使用量大幅减少。由此可见,本发明的制备方法非常具有工业实用性。
除非特别限定,本发明所用术语均为本领域技术人员通常理解的含义。
本发明所描述的实施方式仅出于示例性目的,并非用以限制本发明的保护范围,本领域技术人员可在本发明的范围内作出各种其他替换、改变和改进,因而,本发明不限于上述实施方式,而仅由权利要求限定。
Claims (10)
- 一种牛磺酸钠的制备方法,其特征在于,包括以下步骤:S1:将羟乙基磺酸钠和原料牛磺酸钠溶解于含胍基的离子液体中,在60~240℃的温度和1~10Kpa的压力下进行反应,得到含有二牛磺酸钠和三牛磺酸钠的混合产物的离子液体溶液;S2:向所述混合产物的离子液体溶液中通入液氨进行反应,得到产物牛磺酸钠的离子液体溶液;以及S3:将所述产物牛磺酸钠的离子液体溶液加入至醇类溶剂中进行溶析,分离出析出的固体即得到产物牛磺酸钠。
- 根据权利要求1或2所述的制备方法,其特征在于,所述步骤S1中,所述羟乙基磺酸钠与所述含胍基的离子液体的质量比为1:1~5,优选为1:1.5~3。
- 根据权利要求1-3任一项所述的制备方法,其特征在于,所述步骤S1中,所述原料牛磺酸钠与所述羟乙基磺酸钠的质量比为1:1.1~2,优选为1:1.5~1.8。
- 根据权利要求1-4任一项所述的制备方法,其特征在于,所述混合产物的离子液体溶液中,未反应的羟乙基磺酸钠的质量为所述二牛磺酸钠和三牛磺酸钠的总质量的0.2%以下。
- 根据权利要求1-5任一项所述的制备方法,其特征在于,所述混合产物的离子液体溶液中,水含量≤0.1wt%。
- 根据权利要求1-6任一项所述的制备方法,其特征在于,所述步骤S2中,所述二牛磺酸钠和三牛磺酸钠的总质量与所述液氨的质量比为2~10:1,优选为4~8:1。
- 根据权利要求1-7任一项所述的制备方法,其特征在于,所述步骤S2的反应温度为60~240℃,优选为180~220℃。
- 根据权利要求1-8任一项所述的制备方法,其特征在于,所述步骤S3中,所述醇类溶剂为甲醇、乙醇、丙醇、异丙醇、正丁醇、异丁醇、仲丁醇、叔丁醇中的一种或多种。
- 根据权利要求9所述的制备方法,其特征在于,所述醇类溶剂与所述含胍基的离子液体的质量比为2~10:1,优选为3~5:1。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/128903 WO2021128220A1 (zh) | 2019-12-26 | 2019-12-26 | 一种牛磺酸钠的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/128903 WO2021128220A1 (zh) | 2019-12-26 | 2019-12-26 | 一种牛磺酸钠的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021128220A1 true WO2021128220A1 (zh) | 2021-07-01 |
Family
ID=76573825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/128903 WO2021128220A1 (zh) | 2019-12-26 | 2019-12-26 | 一种牛磺酸钠的制备方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021128220A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150299114A1 (en) * | 2014-04-18 | 2015-10-22 | Songzhou Hu | Cyclic process for the production of taurine from alkali isethionate and alkali vinyl sulfonate |
CN105732440A (zh) * | 2016-03-21 | 2016-07-06 | 江阴华昌食品添加剂有限公司 | 一种全回收母液生产牛磺酸的方法 |
WO2018026396A1 (en) * | 2016-08-04 | 2018-02-08 | Vitaworks Ip, Llc | Process for producing taurine |
CN108314633A (zh) * | 2014-04-18 | 2018-07-24 | 维生源知识产权有限责任公司 | 由羟乙基磺酸碱金属盐和乙烯基磺酸碱金属盐循环制备牛磺酸的方法 |
CN109535043A (zh) * | 2018-12-11 | 2019-03-29 | 万华化学集团股份有限公司 | 一种由羟乙基磺酸钠制备牛磺酸的方法 |
-
2019
- 2019-12-26 WO PCT/CN2019/128903 patent/WO2021128220A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150299114A1 (en) * | 2014-04-18 | 2015-10-22 | Songzhou Hu | Cyclic process for the production of taurine from alkali isethionate and alkali vinyl sulfonate |
CN108314633A (zh) * | 2014-04-18 | 2018-07-24 | 维生源知识产权有限责任公司 | 由羟乙基磺酸碱金属盐和乙烯基磺酸碱金属盐循环制备牛磺酸的方法 |
CN105732440A (zh) * | 2016-03-21 | 2016-07-06 | 江阴华昌食品添加剂有限公司 | 一种全回收母液生产牛磺酸的方法 |
WO2018026396A1 (en) * | 2016-08-04 | 2018-02-08 | Vitaworks Ip, Llc | Process for producing taurine |
CN109535043A (zh) * | 2018-12-11 | 2019-03-29 | 万华化学集团股份有限公司 | 一种由羟乙基磺酸钠制备牛磺酸的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114702431B (zh) | 一种6,6-二甲基-3-氮杂双环[3.1.0]己烷的制备方法 | |
CN103539662B (zh) | 一种2-甲基-5-碘苯甲酸的制备及回收方法 | |
CN100584821C (zh) | 一种制备光学纯度叔亮氨酸的方法 | |
CN111116430B (zh) | 一种牛磺酸钠的制备方法 | |
WO2021128220A1 (zh) | 一种牛磺酸钠的制备方法 | |
CN112645799B (zh) | 一种间苯二酚的后处理工艺 | |
CN112479938B (zh) | 一种n-环己基-2-氨基乙磺酸的制备方法 | |
EP2247572A1 (en) | A one-pot process for preparing 3-(2,2,2-trimethylhydrazinium)propionate dihydrate | |
TWI728077B (zh) | 氘代咪唑二酮類化合物的製備方法 | |
CN112094205B (zh) | 一种制备Fmoc-Ser(tBu)-OH的方法 | |
CN109651120B (zh) | 一种4-(4-甲酰基苯氧基)苯甲醛的制备方法 | |
CN104529815B (zh) | 合成2,4-二硝基苯氧胺的方法 | |
CN103739502B (zh) | 一种氨溴索碱的分离精制工艺 | |
CN111072450B (zh) | 一种烯丙醇类衍生物的合成方法 | |
CN114380717A (zh) | 3-(叔丁氧基羰基-甲氧基羰基甲基-氨基)-丙酸甲酯及其中间体的制备方法 | |
CN112645889A (zh) | 一种法匹拉韦的精制方法 | |
CN113861034A (zh) | 2-氟-3-硝基苯甲酸的制备方法 | |
CN117510383B (zh) | 一种1,4-二硫苏糖醇的制备方法 | |
CN111233685B (zh) | 一种外消旋d/l-叔亮氨酸的制备方法 | |
CN111217709A (zh) | 一种(1-氟环丙基)甲胺盐酸盐的制备方法 | |
WO2024087156A1 (zh) | 4-羟基-n,n,2-三甲基苯并咪唑-6-甲酰胺的可放大生产方法 | |
JP2501852B2 (ja) | S−カルボキシメチル−l−システインの製造法 | |
CN113773223B (zh) | 沉淀法提纯2-氨基-4-乙酰氨基苯甲醚的方法 | |
WO2024140423A1 (zh) | 一种拉西地平中间体的制备方法 | |
CN116606198A (zh) | 一种1,3-环己二酮的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19957731 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19957731 Country of ref document: EP Kind code of ref document: A1 |