WO2021127952A1 - 一种低粘度快响应的液晶组合物及在液晶显示器中的应用 - Google Patents

一种低粘度快响应的液晶组合物及在液晶显示器中的应用 Download PDF

Info

Publication number
WO2021127952A1
WO2021127952A1 PCT/CN2019/127721 CN2019127721W WO2021127952A1 WO 2021127952 A1 WO2021127952 A1 WO 2021127952A1 CN 2019127721 W CN2019127721 W CN 2019127721W WO 2021127952 A1 WO2021127952 A1 WO 2021127952A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
general formula
weight
parts
liquid crystal
Prior art date
Application number
PCT/CN2019/127721
Other languages
English (en)
French (fr)
Inventor
高伟伟
储士红
陈卯先
王杰
陈海光
姜天孟
Original Assignee
北京八亿时空液晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京八亿时空液晶科技股份有限公司 filed Critical 北京八亿时空液晶科技股份有限公司
Priority to CN201980102838.2A priority Critical patent/CN114787320A/zh
Priority to PCT/CN2019/127721 priority patent/WO2021127952A1/zh
Priority to JP2022537801A priority patent/JP7419537B2/ja
Publication of WO2021127952A1 publication Critical patent/WO2021127952A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/46Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing esters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the invention belongs to the technical field of liquid crystal materials, and specifically relates to a low-viscosity and fast-response liquid crystal composition and its application in a liquid crystal display.
  • liquid crystal compounds have been widely used in the field of information display, and at the same time the application in optical communications has also made certain progress.
  • the application fields of liquid crystal compounds have been significantly expanded to various display devices, electro-optical devices, electronic components, sensors, etc.
  • Nematic liquid crystal compounds have been the most widely used in flat panel displays, especially for TFT active The matrix system.
  • liquid crystal compounds have significantly expanded to various display devices, electro-optical devices, electronic components, sensors, etc. For this reason, many different structures have been proposed, especially in the field of nematic liquid crystals. So far, nematic liquid crystal compounds have been widely used in flat panel displays and dimming fields. People's requirements for display technology are constantly improving, and the existing liquid crystal compounds can no longer meet people's needs.
  • a compound of general formula VI 1-40 parts by weight;
  • R 1 represents an alkyl group of 1-7 carbon atoms
  • R 2 represents an alkyl group of 1-7 carbon atoms
  • R 3 represents an alkyl group of 1-7 carbon atoms
  • R 4 represents an alkyl group of 1-7 carbon atoms
  • R 5 represents an alkyl group of 1-7 carbon atoms
  • R 6 represents an alkyl group of 1-7 carbon atoms
  • R 7 represents an alkyl group of 1-7 carbon atoms
  • R 8 represents an alkyl group of 1-7 carbon atoms.
  • R 11 represents an alkyl group of 1-7 carbon atoms
  • R 12 represents an alkyl group of 1-7 carbon atoms
  • R 13 represents an alkyl group of 1-7 carbon atoms
  • R 14 represents an alkyl group of 1-7 carbon atoms.
  • raw material components of the liquid crystal composition include the following compounds in parts by weight:
  • a compound of general formula IV 10-50 parts by weight
  • a compound of general formula VI 1-20 parts by weight
  • the compound of general formula VII 10-50 parts by weight.
  • raw material components of the liquid crystal composition include the following compounds in parts by weight:
  • raw material components of the liquid crystal composition include the following compounds in parts by weight:
  • a compound of general formula I 8 parts by weight
  • a compound of general formula IV 20 parts by weight;
  • a compound of general formula V 10 parts by weight
  • the compound of the general formula I is a polar compound containing a trifluoride structure, and its lateral fluorine substituent not only has a small effect on the reduction of the phase transition temperature, but also ensures a wide temperature system of the liquid crystal composition, and has low viscosity and response fast.
  • the compound represented by general formula I is mostly used in liquid crystal composition systems with large optical anisotropy and low threshold; the compound of general formula I is one or two selected from the following compounds:
  • the compound of the general formula II is a polar compound containing a 2,3-difluorobenzene structure and an alkoxy group.
  • the structure has excellent mutual solubility.
  • the structure has a large optical difference due to the existence of the benzene ring.
  • Anisotropy due to the presence of cyclohexane, makes these compounds have a high clearing point.
  • its lateral fluorine substituent not only has a small effect on the reduction of the phase transition temperature, and ensures a wide temperature system of the liquid crystal composition, but also has low viscosity and fast response.
  • the compound of the general formula II is one or more selected from the following compounds:
  • the compound of the general formula IV is a polar compound containing a 2,3-difluorobenzene structure and a methoxy bridge bond. This structure makes this type of compound possess large optical anisotropy due to the presence of a benzene ring. The presence of hexane makes this type of compound have a high clearing point. In addition, its lateral fluorine substituent not only has a small effect on the reduction of the phase transition temperature, and ensures a wide temperature system of the liquid crystal composition, but also has low viscosity and fast response.
  • the compound of the general formula IV is one or more selected from the following compounds:
  • the compound of the general formula V is a polar compound containing a 2,3-difluorobenzene structure and a methoxy bridge bond. Due to the presence of the benzene ring, this structure makes this type of compound have greater optical anisotropy. Due to the presence of its lateral fluorine substituents, the liquid crystal composition has the characteristics of low viscosity and fast response.
  • the compound of the general formula V is one or more selected from the following compounds:
  • the compound of the general formula VI is a compound containing an ester group and a dicyano group structure, so that the structure has a large dielectric anisotropy and ensures that the liquid crystal composition has a low threshold characteristic.
  • the compound of the general formula VI is one or more selected from the following compounds:
  • the compound of the general formula VII is a compound containing an acetylene bond and a side fluorine substituent structure, so that the structure not only has large optical anisotropy, but also has low viscosity, fast response and excellent mutual solubility.
  • the compound of the general formula VII is one or more selected from the following compounds:
  • the raw material components of the liquid crystal composition further include 0.1-0.5 parts by weight of an ultraviolet absorber
  • the ultraviolet absorber is one or a mixture of benzotriazoles, benzophenones, triazines, and benzoic acid esters.
  • the raw material components of the liquid crystal composition further include 0.01-0.05 parts by weight of antioxidant;
  • the antioxidant is one or more mixtures of hindered phenols, phosphites, and a complex type of hindered phenols and phosphites.
  • the preparation method of the liquid crystal composition includes the following steps: take each raw material component, add in order of melting point from high to low, dissolve under heating and stirring conditions, mix well, and filter and remove impurities to obtain The liquid crystal composition.
  • the heating temperature is 60-100°C.
  • the preparation method of the low-viscosity and fast-response liquid crystal composition of the present invention is not particularly limited. Conventional methods can be used to mix two or more compounds for production, such as mixing different components at a high temperature of 60-100°C and dissolving each other
  • the method for preparing the liquid crystal composition wherein the liquid crystal composition is dissolved and mixed in the solvent used for the compound, and then the solvent is distilled off under reduced pressure; or the liquid crystal composition of the present invention can be prepared according to a conventional method, such as The components with a smaller content are dissolved in the main components with a larger content at a higher temperature, or the respective components are dissolved in an organic solvent, such as acetone, chloroform or methanol, etc., and then the solution is mixed to remove the solvent get.
  • an organic solvent such as acetone, chloroform or methanol, etc.
  • the low-viscosity and fast-response liquid crystal composition of the present invention adopts a compound of general formula I, a compound of general formula II, a compound of general formula III, a compound of general formula IV, and a compound of general formula
  • the compound of V, the compound of general formula VI, and the compound of general formula VII are used as raw materials and are appropriately proportioned.
  • the compounds represented by general formula I and general formula II have large optical anisotropy, high-definition bright spots, low viscosity, The characteristics of fast response; the compound represented by general formula III has excellent mutual solubility, low viscosity and fast response; the characteristics of the compound represented by general formula IV and general formula V and the compound represented by general formula I and II above Similar; the compound represented by general formula VI has the characteristics of large dielectric anisotropy and low threshold; the compound represented by general formula VII has the characteristics of large optical anisotropy and high-definition bright spots.
  • the liquid crystal composition of the present invention is suitable for various display devices and PDLC device displays, especially for PDLC device displays, and has more outstanding performance.
  • the liquid crystal composition of the present invention contains compounds with strong polar dielectric anisotropy, low threshold and large optical anisotropy, and also has lower viscosity, faster response and higher clearing point. characteristic.
  • the liquid crystal composition of the present invention has a sufficiently wide nematic phase temperature range and a large optical anisotropy ⁇ n, and has good anti-ultraviolet performance, and at the same time has good mutual solubility, and can be formulated with polymer materials. It is a PDLC (Polymer Dispersed Liquid Crystal) film, which realizes the switching between the scattering state and the transparent state, and is further applied to smart curtains, curtain walls or transparent display devices.
  • the liquid crystal composition provided by the present invention can be made into an inverted PDLC film, which is particularly suitable for automotive window films because it presents a transparent state when it is not energized.
  • the liquid crystal composition is prepared by a thermal dissolution method, including the following steps: weigh each raw material component by weight with a balance, wherein there is no specific requirement for the order of weighing and addition, usually based on each raw material component The melting point of the compound is weighed and mixed in order from high to low, heated and stirred at 60-100° C. to make the components melt uniformly, filtered, revolved, and finally encapsulated to obtain the target liquid crystal composition.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is only that the raw material components also include the ultraviolet absorber V001, and the preparation methods of other raw material components and the liquid crystal compound are the same as those of Embodiment 1.
  • Component Compound code Weight (g) I 3PGUO2 8 II 2CPUO2 4
  • the raw material components also include 0.03% hindered phenolic antioxidant 0001, and the preparation methods of other raw material components and the liquid crystal compound are the same as those of Embodiment 1.
  • Component Compound code Weight (g) I 3PGUO2 8 II 2CPUO2 4 II 3CPUO2 5 III 3CUO2 8 III 5CUO2 8
  • the preparation method of the liquid crystal compound in this comparative example is the same as that of Example 1.
  • the threshold voltage Vth, optical anisotropy ⁇ n, and dielectric anisotropy ⁇ of the liquid crystal composition provided in Example 1 are basically the same.
  • the liquid crystal composition provided in Example 1 The clearing point Cp of the composition is higher, the viscosity ⁇ is lower, and the response is faster, indicating that the liquid crystal compound of the present invention contains strong polar dielectric anisotropy, low threshold and large optical anisotropy compound. At the same time, it also has the characteristics of lower viscosity, faster response and higher clearing point. Therefore, the liquid crystal composition provided by the present invention is suitable for various display devices and PDLC device displays, especially for PDLC device displays, and has more outstanding performance.
  • the present invention is not limited to the above-mentioned best embodiment. Under the enlightenment of the present invention, anyone can derive other products in various forms, but regardless of any changes in its shape or structure, any product that is the same or similar to the present application Approximate technical solutions fall within the protection scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Substances (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明涉及一种低粘度快响应的液晶组合物及其制备方法,所述的液晶组合物通过采用通式为Ⅰ的化合物、通式为Ⅱ的化合物、通式为Ⅲ的化合物、通式为Ⅳ的化合物、通式为Ⅴ的化合物、通式为Ⅵ的化合物、通式为Ⅶ的化合物为原料并进行适当配比,各组分之间协同作用,使本发明所述液晶组合物具有足够宽的温度范围和快的响应速度,还具有高清亮点、大光学各向异性、低粘度、互溶性优良等特性,能够适应低温环境条件。因此本发明所提供的液晶组合物适用于各类显示器件以及PDLC装置显示,尤其应用于PDLC装置显示,性能更为突出。

Description

一种低粘度快响应的液晶组合物及在液晶显示器中的应用 技术领域
本发明属于液晶材料技术领域,具体涉及一种低粘度快响应的液晶组合物及在液晶显示器中的应用。
背景技术
目前,液晶化合物在信息显示领域得到了广泛应用,同时在光通讯中的应用也取得了一定的进展。近几年,液晶化合物的应用领域经显著拓宽到各类显示器件、电光器件、电子元件、传感器等,向列型液晶化合物已经在平板显示器中得到最为广泛的应用,特别是用于TFT有源矩阵的系统中。
近几年,液晶化合物的应用领域已经显著拓宽到各类显示器件、电光器件、电子元件、传感器等。为此,已经提出许多不同的结构,特别是在向列型液晶领域,向列型液晶化合物迄今已经在平板显示器中与调光领域得到了广泛应用。人们对显示技术的要求也在不断的提高,现有的液晶化合物已经不能满足人们的需求。
发明内容
为了解决现有技术存在的上述问题,本发明提供了一种光电曲线宽温、低粘度、快响应、大光学各向异性、互溶性优良的液晶组合物及其在液晶显示器中的应用。本发明所述的液晶组合物,具有足够宽的向列相温度范围和大的光学各向异性Δn,且具有较好的抗紫外性能,同时具有良好的互溶性,可与聚合物材料配合制成PDLC(Polymer Dispersed Liquid Crystal)薄膜,实现散射态-透明态的切换,进一步应用于智能窗帘、幕墙或透明显示器件。特别是,本发明所述的液晶组合物,可以制成反型PDLC薄膜,因其在不通电时呈现透明态,所以特别适用于车载窗膜。
本发明所采用的技术方案为:
一种低粘度快响应的液晶组合物,原料组分包括以下重量份的化合物:
通式为Ⅰ的化合物,1-30重量份;
通式为Ⅱ的化合物,1-40重量份;
通式为Ⅲ的化合物,1-50重量份;
通式为Ⅳ的化合物,5-60重量份;
通式为Ⅴ的化合物,1-50重量份;
通式为Ⅵ的化合物,1-40重量份;
通式为Ⅶ的化合物,5-60重量份;
上述7种化合物的结构如下:
所述通式为Ⅰ的化合物的结构为:
Figure PCTCN2019127721-appb-000001
R 1代表1-7个碳原子的烷基;R 2代表1-7个碳原子的烷基;
所述通式为Ⅱ的化合物的结构为:
Figure PCTCN2019127721-appb-000002
R 3代表1-7个碳原子的烷基;R 4代表1-7个碳原子的烷基;
所述通式为III的化合物的结构为:
Figure PCTCN2019127721-appb-000003
R 5代表1-7个碳原子的烷基;R 6代表1-7个碳原子的烷基;
所述通式为IV的化合物的结构为:
Figure PCTCN2019127721-appb-000004
R 7代表1-7个碳原子的烷基;R 8代表1-7个碳原子的烷基。
所述通式为V的化合物的结构为:
Figure PCTCN2019127721-appb-000005
R 9代表1-7个碳原子的烷基;R 10代表1-7个碳原子的烷基;
所述通式为VI的化合物的结构为:
Figure PCTCN2019127721-appb-000006
R 11代表1-7个碳原子的烷基;R 12代表1-7个碳原子的烷基;
所述通式为VII的化合物的结构为:
Figure PCTCN2019127721-appb-000007
R 13代表1-7个碳原子的烷基;R 14代表1-7个碳原子的烷基。
进一步优选所述液晶组合物的原料组分包括以下重量份的化合物:
通式为Ⅰ的化合物,2-20重量份;
通式为Ⅱ的化合物,5-25重量份;
通式为Ⅲ的化合物,5-45重量份;
通式为Ⅳ的化合物,10-50重量份;
通式为Ⅴ的化合物,5-40重量份;
通式为Ⅵ的化合物,1-20重量份;
通式为Ⅶ的化合物,10-50重量份。
进一步优选所述液晶组合物的原料组分包括以下重量份的化合物:
通式为Ⅰ的化合物,5-15重量份;
通式为Ⅱ的化合物,5-15重量份;
通式为Ⅲ的化合物,10-30重量份;
通式为Ⅳ的化合物,10-40重量份;
通式为Ⅴ的化合物,5-20重量份;
通式为Ⅵ的化合物,1-10重量份;
通式为Ⅶ的化合物,15-40重量份。
进一步优选所述液晶组合物的原料组分包括以下重量份的化合物:
通式为Ⅰ的化合物,8重量份;
通式为Ⅱ的化合物,9重量份;
通式为Ⅲ的化合物,16重量份;
通式为Ⅳ的化合物,20重量份;
通式为Ⅴ的化合物,10重量份;
通式为Ⅵ的化合物,6重量份;
通式为Ⅶ的化合物,31重量份。
所述通式为Ⅰ的化合物为含有三氟结构的极性化合物,其侧向氟取代基不仅对相转温度的降低影响较小,保证了液晶组合物的宽温体系,而且粘度低、响应快。通式I所代表的化合物多应用于大光学各向异性、低阈值的液晶组合物体系;所述通式为Ⅰ的化合物为选自以下化合物中的一种或两种:
Figure PCTCN2019127721-appb-000008
所述通式为II的化合物为含有2,3–二氟苯结构与烷氧基的极性化合物,该结构具有优良的互溶性,该结构由于苯环的存在使得该类化合物具有大光学各向异性,由于环己烷的存在,使得该类化合物具有高的清亮点。此外,其侧向氟取代基不仅对相转温度的降低影响较小,保证了液晶组合物的宽温体系,而且粘度低、响应快。所述通式为II的化合物为选自以下化合物中的一种或几种:
Figure PCTCN2019127721-appb-000009
所述通式为III的化合物为含有2,3–二氟苯结构与烷氧基的极性化合物,该结构由于侧向氟取代基的存在,使得液晶组合物具有粘度低、响应快的特性。所述通式为III的化合物为选自以下化合物中的一种或几种:
Figure PCTCN2019127721-appb-000010
所述通式为Ⅳ的化合物为含2,3–二氟苯结构与甲氧基桥键的极性化合物,,该结构由于苯环的存在使得该类化合物具有大光学各向异性,由于环己烷的存在,使得该类化合物具有高的清亮点。此外,其侧向氟取代基不仅对相转温度的降低影响较小,保证了液晶组合物的宽温体系,而且粘度低、响应快。所述通式为Ⅳ的化合物为选自以下化合物中的一种或几种:
Figure PCTCN2019127721-appb-000011
所述通式为Ⅴ的化合物为含2,3–二氟苯结构与甲氧基桥键的极性化合物,该结构由于苯环的存在,使得该类化合物具有较大的光学各向异性,由于其侧 向氟取代基的存在,使得液晶组合物具有粘度低、响应快的特性。所述通式为Ⅴ的化合物为选自以下化合物中的一种或几种:
Figure PCTCN2019127721-appb-000012
所述通式为Ⅵ的化合物为含有酯基和双氰基结构的化合物,使得该结构具有大的介电各向异性,保证了该液晶组合物具有低阈值的特性。所述通式为Ⅵ的化合物为选自以下化合物中的一种或几种:
Figure PCTCN2019127721-appb-000013
所述通式为Ⅶ的化合物为含炔键与侧向氟取代基结构的化合物,使得该结构不仅具有大的光学各向异性而且具有低粘度、快响应和优良的互溶性。所述通式为Ⅶ的化合物为选自以下化合物中的一种或几种:
Figure PCTCN2019127721-appb-000014
进一步优选所述液晶组合物的原料组分还包括0.1-0.5重量份的紫外线吸收剂;
所述紫外吸收剂为苯并三唑类、二苯甲酮类、三嗪类、苯甲酸酯类中的一种或几种的混合物。
进一步优选所述液晶组合物的原料组分还包括0.01-0.05重量份的抗氧化剂;
所述抗氧化剂为受阻酚类、亚磷酸酯类以及受阻酚类和亚磷酸酯类复合型中的一种或多种混合物。
所述液晶组合物的制备方法,包括如下步骤:取各原料组分,按照熔点由高到低的顺序依次加入,加热搅拌条件下进行溶解,充分混合均匀,经过滤、除杂后,即得所述液晶组合物。
所述加热的温度为60-100℃。
所述低粘度快响应的液晶组合物在液晶显示器中的应用。
本发明所述低粘度快响应的液晶组合物的制备方法无特殊限制,可采用常规方法将两种或多种化合物混合进行生产,如通过在高温60-100℃下混合不同组分并彼此溶解的方法制备,其中,将液晶组合物溶解在用于该化合物的溶剂 中并混合,然后在减压下蒸馏出该溶剂;或者本发明所述液晶组合物可按照常规的方法制备,如将其中含量较小的组分在较高的温度下溶解在含量较大的主要组分中,或将各所属组分在有机溶剂中溶解,如丙酮、氯仿或甲醇等,然后将溶液混合去除溶剂后得到。
本发明的有益效果为:
(1)本发明所述的低粘度快响应的液晶组合物,通过采用通式为Ⅰ的化合物、通式为Ⅱ的化合物、通式为Ⅲ的化合物、通式为Ⅳ的化合物、通式为Ⅴ的化合物、通式为Ⅵ的化合物、通式为Ⅶ的化合物为原料并进行适当配比,其中通式I和通式II所代表的化合物具有大光学各向异性、高清亮点、低粘度、快响应的特性;通式III代表的化合物具有优良的互溶性、低粘度和快响应的特性;通式IV和通式V所代表的化合物与上述通式I和通式II所代表的化合物特性相似;通式VI代表的化合物具有大介电各向异性、低阈值的特性;通式VII代表的化合物具有大光学各向异性和高清亮点的特性。各组分之间协同作用,使本发明所述液晶组合物具有足够宽的温度范围和快的响应速度,还具有高清亮点、大光学各向异性、低粘度、互溶性优良等特性,能够适应低温环境条件。因此本发明所提供的液晶组合物适用于各类显示器件以及PDLC装置显示,尤其应用于PDLC装置显示,性能更为突出。
(2)本发明所述的液晶组合物,含有强极性的介电各向异性、低阈值以及大光学各向异性化合物的同时,还具有粘度更低、响应更快和清亮点更高的特性。本发明所述的液晶组合物,具有足够宽的向列相温度范围和大的光学各向异性Δn,且具有较好的抗紫外性能,同时具有良好的互溶性,可与聚合物材料配合制成PDLC(Polymer Dispersed Liquid Crystal)薄膜,实现散射态-透明态的切换,进一步应用于智能窗帘、幕墙或透明显示器件。特别是本发明所提供的液晶组合物,可以制成反型PDLC薄膜,因其在不通电时呈现透明态,所以特别适用于车载窗膜。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例用于说明本发明,但不用来限制本发明的范围。
除非另有说明,本发明中百分比为重量百分比;Cp代表液晶组合物的清亮点(单位:℃);Δn代表光学各向异性(20℃);Δε(Δε=ε∥-ε⊥)代表介电各向异性(25℃,1000Hz),ε∥和ε⊥分别代表平行和垂直介电常数(25℃,1000Hz);Vth代表液晶组合物的阈值(单位:V)(测试条件:25℃);η代表液晶组合物的粘度(测试条件:20℃)。
以下各实施例中,液晶化合物中基团结构用表1所示代码表示。
表1-液晶化合物的基团结构代码
Figure PCTCN2019127721-appb-000015
以如下化合物结构为例:
Figure PCTCN2019127721-appb-000016
表示为:2CZWO5。
Figure PCTCN2019127721-appb-000017
表示为:2CQUO2。
以下各实施例中,所述液晶组合物的制备均采用热溶解方法,包括以下步骤:用天平按重量百分比称量各原料组分,其中称量加入顺序无特定要求,通常以各原料组分的熔点由高到低的顺序依次称量混合,在60-100℃下加热搅拌使得各组分熔解均匀,再经过滤、旋蒸,最后封装即得目标液晶组合物。
以下各实施例中,所述液晶组合物中各组分的重量百分比及所得目标液晶组合物的性能参数见下述表格。
实施例1
表2-液晶组合物中各组分的重量百分比及液晶组合物的性能参数
Figure PCTCN2019127721-appb-000018
实施例2
表3-液晶组合物中各组分的重量百分比及液晶组合物的性能参数
Figure PCTCN2019127721-appb-000019
实施例3
表4-液晶组合物中各组分的重量百分比及液晶组合物的性能参数
Figure PCTCN2019127721-appb-000020
Figure PCTCN2019127721-appb-000021
实施例4
表5-液晶组合物中各组分的重量百分比及液晶组合物的性能参数
Figure PCTCN2019127721-appb-000022
Figure PCTCN2019127721-appb-000023
实施例5
表6-液晶组合物中各组分的重量百分比及液晶组合物的性能参数
Figure PCTCN2019127721-appb-000024
实施例6
表7-液晶组合物中各组分的重量百分比及液晶组合物的性能参数
Figure PCTCN2019127721-appb-000025
实施例7
表8-液晶组合物中各组分的重量百分比及液晶组合物的性能参数
Figure PCTCN2019127721-appb-000026
Figure PCTCN2019127721-appb-000027
实施例8
表9-液晶组合物中各组分的重量百分比及液晶组合物的性能参数
Figure PCTCN2019127721-appb-000028
Figure PCTCN2019127721-appb-000029
实施例9
表10-液晶组合物中各组分的重量百分比及液晶组合物的性能参数
Figure PCTCN2019127721-appb-000030
实施例10
表11-液晶组合物中各组分的重量百分比及液晶组合物的性能参数
Figure PCTCN2019127721-appb-000031
实施例11
本实施例与实施例1的区别仅在于:原料组分还包括紫外线吸收剂V001,其他原料组分以及液晶化合物的制法均与实施例1相同。
本实施例所述液晶组合物的原料组分如表12所示。
表12-液晶化合物中各原料组分的用量
组分 化合物代码 重量(g)
I 3PGUO2 8
II 2CPUO2 4
II 3CPUO2 5
III 3CUO2 8
III 5CUO2 8
IV 2CCQUO2 10
IV 3CCQUO2 10
V 3CQUO2 10
VI 2CZWO4 3
VI 3CZWO4 3
VII 3PPTA2 16
VII 3PPTA4 8
VII 3PPTA5 7
实施例12
本实施例与实施例1的区别仅在于:原料组分还包括0.03%的受阻酚类抗氧化剂0001,其他原料组分以及液晶化合物的制法均与实施例1相同。
本实施例所述液晶组合物的原料组分如表13所示。
表13-液晶化合物中各原料组分的用量
组分 化合物代码 重量(g)
I 3PGUO2 8
II 2CPUO2 4
II 3CPUO2 5
III 3CUO2 8
III 5CUO2 8
IV 2CCQUO2 10
IV 3CCQUO2 10
V 3CQUO2 10
VI 2CZWO4 3
VI 3CZWO4 3
VII 3PPTA2 16
VII 3PPTA4 8
VII 3PPTA5 7
对比例1
表14-液晶组合物中各组分的重量百分比及液晶组合物的性能参数
Figure PCTCN2019127721-appb-000032
本对比例所述液晶化合物的制法与实施例1相同。
将实施例1与对比例1所得液晶组合物的各性能参数值进行汇总比较,参见表15。
表15-实施例1与对比例1所得液晶组合物的性能参数比较
液晶化合物 Δn Δε Vth Cp η
实施例1 0.204 -5.8 2.07 103 27
对比例1 0.203 -5.7 2.07 98 35
从表15可以看出,与对比例1相比,实施例1提供的液晶组合物的的阈值电压Vth、光学各向异性Δn、介电各向异性Δε基本一致,然而实施例1提供的液晶组合物的的清亮点Cp更高,粘度η更低对应的响应更快,从而说明本发明所述的液晶化合物含有强极性的介电各向异性、低阈值以及大光学各向异性化合物的同时,还具有粘度更低、响应更快和清亮点更高的特性。因此本发明所提供的液晶组合物适用于各类显示器件以及PDLC装置显示,尤其应用于PDLC装置显示,性能更为突出。
本发明不局限于上述最佳实施方式,任何人在本发明的启示下都可得出其他各种形式的产品,但不论在其形状或结构上作任何变化,凡是具有与本申请相同或相近似的技术方案,均落在本发明的保护范围之内。

Claims (10)

  1. 一种低粘度快响应的液晶组合物,其特征在于,原料组分包括以下重量份的化合物:
    通式为Ⅰ的化合物,1-30重量份;
    通式为Ⅱ的化合物,1-40重量份;
    通式为Ⅲ的化合物,1-50重量份;
    通式为Ⅳ的化合物,5-60重量份;
    通式为Ⅴ的化合物,1-50重量份;
    通式为Ⅵ的化合物,1-40重量份;
    通式为Ⅶ的化合物,5-60重量份;
    上述7种化合物的结构如下:
    所述通式为Ⅰ的化合物的结构为:
    Figure PCTCN2019127721-appb-100001
    R 1代表1-7个碳原子的烷基;R 2代表1-7个碳原子的烷基;
    所述通式为Ⅱ的化合物的结构为:
    Figure PCTCN2019127721-appb-100002
    R 3代表1-7个碳原子的烷基;R 4代表1-7个碳原子的烷基;
    所述通式为III的化合物的结构为:
    Figure PCTCN2019127721-appb-100003
    R 5代表1-7个碳原子的烷基;R 6代表1-7个碳原子的烷基;
    所述通式为IV的化合物的结构为:
    Figure PCTCN2019127721-appb-100004
    R 7代表1-7个碳原子的烷基;R 8代表1-7个碳原子的烷基。
    所述通式为V的化合物的结构为:
    Figure PCTCN2019127721-appb-100005
    R 9代表1-7个碳原子的烷基;R 10代表1-7个碳原子的烷基;
    所述通式为VI的化合物的结构为:
    Figure PCTCN2019127721-appb-100006
    R 11代表1-7个碳原子的烷基;R 12代表1-7个碳原子的烷基;
    所述通式为VII的化合物的结构为:
    Figure PCTCN2019127721-appb-100007
    R 13代表1-7个碳原子的烷基;R 14代表1-7个碳原子的烷基。
  2. 根据权利要求1所述的液晶组合物,其特征在于,原料组分包括以下重量份的化合物:
    通式为Ⅰ的化合物,2-20重量份;
    通式为Ⅱ的化合物,5-25重量份;
    通式为Ⅲ的化合物,5-45重量份;
    通式为Ⅳ的化合物,10-50重量份;
    通式为Ⅴ的化合物,5-40重量份;
    通式为Ⅵ的化合物,1-20重量份;
    通式为Ⅶ的化合物,10-50重量份。
  3. 根据权利要求1所述的液晶组合物,其特征在于,原料组分包括以下重量份的化合物:
    通式为Ⅰ的化合物,5-15重量份;
    通式为Ⅱ的化合物,5-15重量份;
    通式为Ⅲ的化合物,10-30重量份;
    通式为Ⅳ的化合物,10-40重量份;
    通式为Ⅴ的化合物,5-20重量份;
    通式为Ⅵ的化合物,1-10重量份;
    通式为Ⅶ的化合物,15-40重量份。
  4. 根据权利要求1所述的液晶组合物,其特征在于,原料组分包括以下重量份的化合物:
    通式为Ⅰ的化合物,8重量份;
    通式为Ⅱ的化合物,9重量份;
    通式为Ⅲ的化合物,16重量份;
    通式为Ⅳ的化合物,20重量份;
    通式为Ⅴ的化合物,10重量份;
    通式为Ⅵ的化合物,6重量份;
    通式为Ⅶ的化合物,31重量份。
  5. 根据权利要求1所述的液晶组合物,其特征在于,所述通式为Ⅰ的化合物为含有三氟结构的极性化合物,所述通式为Ⅰ的化合物为选自以下化合物中的一种或两种:
    Figure PCTCN2019127721-appb-100008
    所述通式为II的化合物为含有2,3–二氟苯结构与烷氧基的极性化合物,所述通式为II的化合物为选自以下化合物中的一种或几种:
    Figure PCTCN2019127721-appb-100009
    所述通式为III的化合物为含有2,3–二氟苯结构与烷氧基的极性化合物,所述通式为III的化合物为选自以下化合物中的一种或几种:
    Figure PCTCN2019127721-appb-100010
    所述通式为Ⅳ的化合物为含2,3–二氟苯结构与甲氧基桥键的极性化合物,所述通式为Ⅳ的化合物为选自以下化合物中的一种或几种:
    Figure PCTCN2019127721-appb-100011
    所述通式为Ⅴ的化合物为含2,3–二氟苯结构与甲氧基桥键的极性化合物,所述通式为Ⅴ的化合物为选自以下化合物中的一种或几种:
    Figure PCTCN2019127721-appb-100012
    所述通式为Ⅵ的化合物为含有酯基和双氰基结构的化合物,所述通式为Ⅵ的化合物为选自以下化合物中的一种或几种:
    Figure PCTCN2019127721-appb-100013
    所述通式为Ⅶ的化合物为含炔键与侧向氟取代基结构的化合物,所述通式为Ⅶ的化合物为选自以下化合物中的一种或几种:
    Figure PCTCN2019127721-appb-100014
  6. 根据权利要求1-5任一项所述的液晶组合物,其特征在于,原料组分还包括0.1-0.5重量份的紫外线吸收剂;
    所述紫外吸收剂为苯并三唑类、二苯甲酮类、三嗪类、苯甲酸酯类中的一种或几种的混合物。
  7. 根据权利要求1-5任一项所述的液晶组合物,其特征在于,原料组分还包括0.01-0.05重量份的抗氧化剂;
    所述抗氧化剂为受阻酚类、亚磷酸酯类、复合型中的一种或多种混合物。
  8. 一种制备权利要求1-7任一项所述液晶组合物的方法,其特征在于,包括如下步骤:取各原料组分,按照熔点由高到低的顺序依次加入,加热搅拌条件下进行溶解,充分混合均匀,经过滤、除杂后,即得所述液晶组合物。
  9. 根据权利要求8所述的方法,其特征在于,所述加热的温度为60-100℃。
  10. 权利要求1-7任一项所述低粘度快响应的液晶组合物在液晶显示器中的应用。
PCT/CN2019/127721 2019-12-24 2019-12-24 一种低粘度快响应的液晶组合物及在液晶显示器中的应用 WO2021127952A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980102838.2A CN114787320A (zh) 2019-12-24 2019-12-24 一种低粘度快响应的液晶组合物及在液晶显示器中的应用
PCT/CN2019/127721 WO2021127952A1 (zh) 2019-12-24 2019-12-24 一种低粘度快响应的液晶组合物及在液晶显示器中的应用
JP2022537801A JP7419537B2 (ja) 2019-12-24 2019-12-24 低粘度で応答の速い液晶組成物及び液晶ディスプレイにおける応用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127721 WO2021127952A1 (zh) 2019-12-24 2019-12-24 一种低粘度快响应的液晶组合物及在液晶显示器中的应用

Publications (1)

Publication Number Publication Date
WO2021127952A1 true WO2021127952A1 (zh) 2021-07-01

Family

ID=76573550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127721 WO2021127952A1 (zh) 2019-12-24 2019-12-24 一种低粘度快响应的液晶组合物及在液晶显示器中的应用

Country Status (3)

Country Link
JP (1) JP7419537B2 (zh)
CN (1) CN114787320A (zh)
WO (1) WO2021127952A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113755184A (zh) * 2021-10-12 2021-12-07 重庆汉朗精工科技有限公司 一种具有大的光学各向异性的液晶组合物及应用
CN113773855A (zh) * 2021-09-01 2021-12-10 重庆汉朗精工科技有限公司 一种负性液晶组合物及其应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4368135A (en) * 1979-07-18 1983-01-11 Bbc, Brown, Boveri & Company, Ltd. Anisotropic compounds with negative or positive DC-anisotropy and low optical anisotropy
CN101698802A (zh) * 2009-10-09 2010-04-28 江苏和成化学材料有限公司 具有极低负介电的液晶混合物
CN101735823A (zh) * 2009-12-18 2010-06-16 北京八亿时空液晶材料科技有限公司 一种负介电各向异性液晶组合物
CN102344815A (zh) * 2011-07-12 2012-02-08 石家庄诚志永华显示材料有限公司 负介电各向异性液晶材料混合物
CN102492430A (zh) * 2011-11-28 2012-06-13 江苏和成化学材料有限公司 液晶组合物和包含该液晶组合物的液晶显示元件
CN103254907A (zh) * 2013-04-23 2013-08-21 石家庄诚志永华显示材料有限公司 负介电各向异性液晶组合物
CN104152155A (zh) * 2014-07-17 2014-11-19 北京大学 一种高双折射率低粘度的高负介电各向异性液晶混合物及其应用
CN104531164A (zh) * 2014-12-05 2015-04-22 深圳市万明精工科技有限公司 高分子增强负性胆甾相混合液晶材料及其应用方法
CN105419816A (zh) * 2015-12-07 2016-03-23 石家庄诚志永华显示材料有限公司 一种液晶介质以及包含该液晶介质的液晶显示器
CN107400519A (zh) * 2016-05-19 2017-11-28 北京八亿时空液晶科技股份有限公司 一种正负混合液晶组合物及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054107A1 (ja) 2017-09-12 2019-03-21 Jnc株式会社 液晶組成物および液晶表示素子

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4368135A (en) * 1979-07-18 1983-01-11 Bbc, Brown, Boveri & Company, Ltd. Anisotropic compounds with negative or positive DC-anisotropy and low optical anisotropy
CN101698802A (zh) * 2009-10-09 2010-04-28 江苏和成化学材料有限公司 具有极低负介电的液晶混合物
CN101735823A (zh) * 2009-12-18 2010-06-16 北京八亿时空液晶材料科技有限公司 一种负介电各向异性液晶组合物
CN102344815A (zh) * 2011-07-12 2012-02-08 石家庄诚志永华显示材料有限公司 负介电各向异性液晶材料混合物
CN102492430A (zh) * 2011-11-28 2012-06-13 江苏和成化学材料有限公司 液晶组合物和包含该液晶组合物的液晶显示元件
CN103254907A (zh) * 2013-04-23 2013-08-21 石家庄诚志永华显示材料有限公司 负介电各向异性液晶组合物
CN104152155A (zh) * 2014-07-17 2014-11-19 北京大学 一种高双折射率低粘度的高负介电各向异性液晶混合物及其应用
CN104531164A (zh) * 2014-12-05 2015-04-22 深圳市万明精工科技有限公司 高分子增强负性胆甾相混合液晶材料及其应用方法
CN105419816A (zh) * 2015-12-07 2016-03-23 石家庄诚志永华显示材料有限公司 一种液晶介质以及包含该液晶介质的液晶显示器
CN107400519A (zh) * 2016-05-19 2017-11-28 北京八亿时空液晶科技股份有限公司 一种正负混合液晶组合物及其应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773855A (zh) * 2021-09-01 2021-12-10 重庆汉朗精工科技有限公司 一种负性液晶组合物及其应用
CN113755184A (zh) * 2021-10-12 2021-12-07 重庆汉朗精工科技有限公司 一种具有大的光学各向异性的液晶组合物及应用
CN113755184B (zh) * 2021-10-12 2023-11-10 重庆汉朗精工科技有限公司 一种具有大的光学各向异性的液晶组合物及应用

Also Published As

Publication number Publication date
CN114787320A (zh) 2022-07-22
JP7419537B2 (ja) 2024-01-22
JP2023508305A (ja) 2023-03-02

Similar Documents

Publication Publication Date Title
TWI795539B (zh) 液晶組合物及液晶顯示元件、液晶顯示器
WO2021203554A1 (zh) 一种具有负介电各向异性的液晶组合物及其应用
WO2016145907A1 (zh) 一种液晶组合物及其应用
CN111484856B (zh) 液晶组合物及液晶显示元件、液晶显示器
WO2021127952A1 (zh) 一种低粘度快响应的液晶组合物及在液晶显示器中的应用
CN112175629B (zh) 一种含三联苯的快速响应液晶组合物及其应用
WO2022088915A1 (zh) 一种含三联苯的液晶组合物及其应用
TWI808519B (zh) 一種含吡喃與三聯苯的液晶組合物及其應用
CN112175630A (zh) 一种含有三联苯与末端含有环烷基的液晶组合物及其应用
WO2021134885A1 (zh) 一种含有苯丙噻吩的高对比负性液晶组合物及其应用
WO2022252416A1 (zh) 一种负介电各向异性液晶组合物及其应用
WO2021134884A1 (zh) 一种具有高对比度的负性液晶组合物及其应用
WO2021134883A1 (zh) 含有甲氧基桥键负性液晶化合物的液晶组合物及其应用
WO2021134882A1 (zh) 含有甲氧基桥键负性液晶化合物的具有大弹性常数的液晶组合物及其应用
WO2021134880A1 (zh) 一种含有2-甲基-3,4,5三氟苯结构的液晶组合物及其应用
TWI820620B (zh) 一種液晶組合物及其應用
CN114144499A (zh) 一种液晶组合物及其应用
WO2021127949A1 (zh) 一种能适应较宽工作温度的液晶组合物及在器件中的应用
WO2021134886A1 (zh) 一种具有大的弹性常数的负性液晶组合物及其应用
CN112111283B (zh) 一种快速响应的液晶组合物及其应用
CN111748357B (zh) 液晶组合物及液晶显示元器件
CN112195030B (zh) 一种含四氢吡喃与三联苯的液晶组合物及其应用
WO2021134881A1 (zh) 一种含有三联苯结构的大弹性常数液晶组合物及其应用
WO2022088917A1 (zh) 一种含有三联苯与末端含有环烷基的液晶组合物及其应用
CN113652245B (zh) 一种宽温的负性向列相液晶组合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022537801

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957178

Country of ref document: EP

Kind code of ref document: A1