WO2021125901A2 - 가공성 및 내식성이 우수한 알루미늄계 합금 도금강판 및 이의 제조방법 - Google Patents

가공성 및 내식성이 우수한 알루미늄계 합금 도금강판 및 이의 제조방법 Download PDF

Info

Publication number
WO2021125901A2
WO2021125901A2 PCT/KR2020/018719 KR2020018719W WO2021125901A2 WO 2021125901 A2 WO2021125901 A2 WO 2021125901A2 KR 2020018719 W KR2020018719 W KR 2020018719W WO 2021125901 A2 WO2021125901 A2 WO 2021125901A2
Authority
WO
WIPO (PCT)
Prior art keywords
plating layer
steel sheet
aluminum
alloy
plated steel
Prior art date
Application number
PCT/KR2020/018719
Other languages
English (en)
French (fr)
Other versions
WO2021125901A3 (ko
Inventor
이석규
황현석
김명수
민광태
강대영
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2022537898A priority Critical patent/JP7393553B2/ja
Priority to CN202080084521.3A priority patent/CN114761603B/zh
Priority to US17/786,452 priority patent/US11898252B2/en
Priority to MX2022007617A priority patent/MX2022007617A/es
Priority to EP20903509.6A priority patent/EP4079927A4/en
Publication of WO2021125901A2 publication Critical patent/WO2021125901A2/ko
Publication of WO2021125901A3 publication Critical patent/WO2021125901A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Definitions

  • the present invention relates to an aluminum-based alloy plated steel sheet having excellent workability and corrosion resistance and a method for manufacturing the same.
  • an aluminum (Al) plated steel sheet or a zinc (Zn) plated steel sheet has been used for hot forming, but there is a problem in that micro cracks occur or corrosion resistance deteriorates due to an alloy phase formed during heat treatment.
  • productivity is lowered.
  • corrosion resistance after processing may become a problem.
  • an aluminum alloy plated steel sheet in which Si is added to 4% or less in a plating bath, and the plating layer is alloyed at an alloying temperature of 700° C. and an alloying time of 20 seconds.
  • the alloying time is 20 seconds, there is a problem in that it is difficult to perform an alloying treatment in a seal line, and strong cooling is required after alloying.
  • the plating bath temperature is very high, about 700° C., so there is a problem in that durability of structures such as sink rolls immersed in the plating bath is remarkably deteriorated.
  • Patent Document 1 Korean Patent Publication No. 1997-0043250
  • One aspect of the present invention is
  • the alloy plating layer is, by weight, Fe: 35 to 50%, Zn: 1 to 20%, Mn: 5% or less, Si: less than 0.1%, the balance includes Al and other unavoidable impurities,
  • the ratio of the area occupied by the base steel sheet in the region from the center line of the surface roughness of the alloy plating layer to 3/4t is 30% or more , to provide an aluminum-based alloy plated steel sheet.
  • the alloy plating layer is
  • Fe 35-50%, Zn: 1-20%, Mn: 5% or less, Si: less than 0.1%, the balance of the first alloy plating layer containing Al and other unavoidable impurities;
  • Fe 30-40%
  • Zn 1-22%
  • Mn 2% or less
  • Si less than 0.1%
  • the remainder comprising a second alloying plating layer containing Al and other unavoidable impurities
  • the ratio of the area occupied by the base steel sheet in the region from the center line of the surface roughness of the alloy plating layer to 3/4t is 30% or more , to provide an aluminum-based alloy plated steel sheet.
  • Another aspect of the present invention is
  • a method for manufacturing an aluminum-based plated steel sheet used for hot press forming comprising:
  • the step of obtaining an aluminum-based plated steel sheet through on-line alloying in which the heat treatment is continuously maintained in a heating temperature range of 650 to 750° C. for 1 to 20 seconds; provides
  • another aspect of the present invention provides a hot-formed member obtained by hot press forming the above-described aluminum-based alloy plated steel sheet.
  • FIG. 1 schematically shows a manufacturing apparatus in which a manufacturing method according to an aspect of the present invention is implemented.
  • FIG. 3 is a photograph observed with a scanning electron microscope (SEM) of a cross section of the aluminum-based alloy plated steel sheet prepared in Inventive Example 1.
  • SEM scanning electron microscope
  • FIG 4 is a photograph of a cross-section of the aluminum-based alloy plated steel sheet manufactured according to Inventive Example 6 through a scanning electron microscope (SEM).
  • the aluminum-based alloy plated steel sheet manufactured according to the prior art had poor hot formability, such as microcracks generated during hot forming or fusion of rolls occurred during hot forming, and the corrosion resistance of the plated steel sheet was insufficient.
  • Si was added to the plating bath in an amount of 4% or less in order to improve corrosion resistance and hot formability.
  • Si is included in the Fe-Al alloy phase, there is a problem that alloying cannot be achieved in a short time of 20 seconds or less by suppressing the diffusion of Fe.
  • the temperature of the structure became too high, it was not possible to solve problems such as the decrease in the durability of the structure.
  • the present inventors have studied intensively to solve the problems of the prior art described above, and as a result, the surface of the alloy plating layer and the area of the base steel sheet toward the upper side with respect to the line that becomes a specific point with respect to the distance of the lowest end in contact with the base material side It has been found that the above-mentioned problems of the prior art can be solved by securing the area occupied by this area by a certain amount or more, and the present invention was completed.
  • the aluminum-based alloy-coated steel sheet according to the present invention includes a case in which the alloy plating layer is a single layer or two layers, and each case will be separately described below.
  • One aspect of the present invention is
  • the alloy plating layer is, by weight, Fe: 35 to 50%, Zn: 1 to 20%, Mn: 5% or less, Si: less than 0.1%, the balance includes Al and other unavoidable impurities,
  • the ratio of the area occupied by the base steel sheet in the region from the center line of the surface roughness of the alloy plating layer to 3/4t is 30% or more , to provide an aluminum-based alloy plated steel sheet.
  • the aluminum-based alloy plated steel sheet according to one aspect of the present invention may include a single or two alloy plating layers (a first alloy plating layer and a second alloy plating layer) formed on the base steel sheet and the base steel sheet, and the single layer or 2
  • the alloy plating layer of the layer may be formed on one side or both sides of the base steel sheet.
  • the alloying heat treatment process when the alloying heat treatment process is performed, Fe and/or Mn of the base steel sheet diffuses into the plating layer. As a result of this diffusion, alloying occurs in the plating layer, and through this, a single or two-layer alloy plating layer having a specific composition is formed on the base steel sheet.
  • the aluminum-based alloy plated steel sheet according to an aspect of the present invention forms the alloy plated layer as a single layer will be first described.
  • the alloy plating layer according to an aspect of the present invention is a single layer, the alloy plating layer is in weight %, Fe: 35-50%, Zn: 1-20%, Mn: 5% or less (including 0%), Si: less than 0.1% (including 0%), the balance may have a composition containing Al and other unavoidable impurities.
  • the composition of the alloy plating layer is by weight %, Fe: 35-50%, Zn: 1-20%, Mn: 5% or less (0% included), Si: less than 0.1% (including 0%), the remainder Al and other unavoidable impurities.
  • the Zn serves to improve the adhesion and corrosion resistance of the coated steel sheet as well as the adhesion of the alloy plating layer after the alloying treatment. Therefore, in the plated steel sheet of the present invention, it is preferable that the Zn content in the alloy plating layer is 1 to 20%. In the present invention, when the Zn content in the alloying plating layer is less than 1%, the effect of improving the sintering property and corrosion resistance cannot be expected, and when the Zn content in the alloying plating layer exceeds 20%, the adhesion of the plating layer after the alloying treatment is poor there is a problem.
  • the lower limit of the Zn content may be preferably 5%, more preferably 10%.
  • the upper limit of the Zn content may be preferably 18%, more preferably 15%.
  • the Mn content in the single-layer alloy plating layer, may be 5% or less, and may include a case where it is 0%. That is, in the present invention, Mn present in the alloy plating layer is that Mn present in the base steel sheet is introduced through alloying treatment, and the lower limit of the Mn content is not particularly limited. However, the upper limit of the Mn content is preferably 5% or less in terms of securing plating properties to suppress the occurrence of non-plating. Meanwhile, more preferably, the Mn content in the single-layer alloy plating layer may be 2 to 5%.
  • the Si content in the single-layer alloy plating layer, may be less than 0.1%, including the case of 0%. That is, in the present invention, an element such as Si may be included as an additional element in the hot-dip plating bath in an amount of less than 0.1%, and may not contain Si, so the lower limit thereof is not specifically limited. On the other hand, it is preferable that the Si content is less than 0.1% in terms of securing crack resistance during the above-described processing. Meanwhile, more preferably, the upper limit of the Si content in the single-layer alloy plating layer may be 0.09% (ie, 0.09% or less).
  • the content of Al is 40 to 60
  • the content of Fe is 35 to 50% It is preferable to be By satisfying the above-mentioned composition, it is possible to secure the desired seizure properties and corrosion resistance in the present invention, and furthermore, it is possible to secure the adhesion of the plating layer.
  • the Al content is 43 to 60% in terms of securing plating adhesion.
  • the thickness of the single-layer alloy plating layer may be 5 ⁇ 25 ⁇ m. If the thickness of the alloy plating layer is 5 ⁇ m or more, corrosion resistance can be secured, and when it is 25 ⁇ m or less, weldability can be secured. Therefore, in the present invention, the thickness of the alloying plating layer is preferably 5 to 25 ⁇ m, more preferably, the lower limit of the alloying plating layer may be 10 ⁇ m, the upper limit of the alloying plating layer may be 20 ⁇ m.
  • the single-layer alloy plating layer is diffused into the aluminum plating layer having a high content of Al and Zn by the alloying treatment after plating during the manufacturing process, wherein Fe and/or Mn of the base steel sheet is high, As a result, an alloy plating layer mainly composed of an intermetallic compound of Fe and Al may be formed.
  • the alloy phase of the Fe-Al-based intermetallic compound mainly constituting the alloy plating layer is Fe 2 Al 5 .
  • the single-layer alloy plating layer may include 80% or more of an alloy phase of Fe 2 Al 5 , and more preferably 90% or more of an alloy phase of Fe 2 Al 5 .
  • the alloy plating layer of the single layer may be formed onto the employed alloy (i.e., more than 80% provided that Fe 2 Al 5) Zn, such as Mn and / or Si to the Al 5 Fe 2 by default.
  • composition of the alloy phase implies that other unavoidable impurities may be included, and other components may be included in a range that does not impair the purpose of the present invention.
  • the distance from the center line of the surface roughness of the alloy plated layer to the lowest line of the alloy plated layer is t.
  • the ratio (As) of the area occupied by the base steel sheet in the region from the center line of the surface roughness to 3/4t is 30% or more.
  • the lowermost line of the alloy plating layer means a line drawn at the lowest end of the alloy plating layer in a direction perpendicular to the thickness direction of the steel sheet. Also, according to one aspect of the present invention, the lowermost line may mean a line drawn to be horizontal with the center line of the surface roughness.
  • the alloy plating layer according to the present invention is formed as a single layer is shown in FIG. 4, and as can be seen in FIG. 4, the alloy plating layer having a single layer is the surface roughness center line of the alloy plating layer in the region from the center line to 3/4t.
  • the interface between the alloy plating layer and the base steel plate is formed in a sawtooth shape so that the ratio (As) of the area occupied by the base steel sheet is 30% or more.
  • the alloy plating layer according to one aspect of the present invention can suppress the occurrence of cracks during processing by forming the boundary with the base steel sheet, which is a base material, in the form of teeth as described above, thereby securing excellent crack resistance. .
  • the upper limit of the As value may not be separately limited in that the larger the value, the better the effect of crack resistance during processing.
  • the upper limit of the value of As may be 80% (most preferably 60%).
  • the alloy plating layer is formed on the base steel sheet means that the alloy plating layer is formed in contact with the base steel sheet.
  • that the alloy plating layer is formed as a single layer means that a single layer is formed as the alloy plating layer, but does not mean that another layer cannot be provided on the alloy plating layer.
  • the aluminum alloy plated steel sheet according to another aspect of the present invention has an alloy plated layer in two layers will be first described below.
  • the alloy plating layer is
  • Fe 35-50%, Zn: 1-20%, Mn: 5% or less, Si: less than 0.1%, the balance of the first alloy plating layer containing Al and other unavoidable impurities;
  • Fe 30-40%
  • Zn 1-22%
  • Mn 2% or less
  • Si less than 0.1%
  • the remainder comprising a second alloying plating layer containing Al and other unavoidable impurities
  • the ratio of the area occupied by the base steel sheet in the region from the center line of the surface roughness of the alloy plating layer to 3/4t is 30% or more , to provide an aluminum-based alloy plated steel sheet.
  • the description of the case in which the above-described single-layer alloy plating layer is provided except that the first alloy plating layer and the second alloy plating layer are formed can be applied in the same manner.
  • the alloy plating layer is formed of two layers including a first alloy plating layer and a second alloy plating layer
  • the first alloy plating layer is, by weight, Fe: 35-50%, Zn: 1-20%, Mn: 5% or less (including 0%), Si: less than 0.1% (including 0%), the remainder Al and other unavoidable impurities;
  • the second alloy plating layer is, by weight, Fe: 30-40%, Zn: 1-22%, Mn: 2% or less (including 0%), Si: less than 0.1% (including 0%), the balance Al and other unavoidable impurities.
  • the first alloy plating layer is an alloy plating layer formed on the base steel sheet, in weight%, Fe: 35-50%, Zn: 1-20%, and Mn: 5 % or less (including 0%), Si: less than 0.1% (including 0%), the remainder including Al, and other unavoidable impurities and other elements within a range that does not impair the purpose of the present invention.
  • the first alloy plating layer is, by weight, Fe: 35-50%, Zn: 1-20%, Mn: 5% or less, Si: less than 0.1% (including 0%) ), the remainder Al and other unavoidable impurities.
  • the Al content is 40 to 60% by weight, and more preferably It can be 43-60%.
  • the Al content by satisfying the Al content, it is possible to easily secure the desired adhesion properties, corrosion resistance, and the plating layer.
  • the Fe content is preferably 35-50% by weight, and the desired sintering property by satisfying the Fe content in the first alloying plated layer , corrosion resistance and adhesion of the plating layer can be easily secured.
  • the second alloy plating layer is formed on the first alloy plating layer, and as an alloy plating layer distinct from the first alloy plating layer, in weight%, Fe: 30-40%, Zn: 1 to 22%, Mn: 2% or less (including 0%), Si: less than 0.1% (including 0%), and the remainder including Al, in addition to other unavoidable impurities and within a range that does not impair the purpose of the present invention It may contain other elements.
  • the second alloy plating layer is, by weight, Fe: 30-40%, Zn: 1-22%, Mn: 2% or less (including 0%), Si: 0.1% less than (including 0%), the balance may consist of Al and other unavoidable impurities.
  • the Al content may be 40 to 65% by weight, preferably 44 to 65%, more preferably 44 to It can be 60%.
  • the Al content by satisfying the Al content, it is possible to easily secure the desired adhesion properties, corrosion resistance, and the plating layer.
  • the Fe content by weight preferably 30 to 40%, more preferably 32 to 40%.
  • the Fe content by satisfying the Fe content, it is possible to easily secure desired sintering property, corrosion resistance, and adhesion of the plating layer.
  • the present invention by having the specific composition of the first alloy plating layer and the second alloy plating layer described above, it is possible to improve the sintering property and corrosion resistance of the plated steel sheet, as well as the adhesion of the plating layer after the alloying treatment.
  • the desired effect of the present invention can be exhibited. Therefore, as the composition of the above-described first alloy plating layer and the second alloy plating layer, when the content of any one component is not satisfied, the effect of excellent adhesion, corrosion resistance and adhesion according to the present invention cannot be expected.
  • the content of Si may be less than 0.1%, including the case of 0%. That is, in the present invention, an element such as Si may be included as an additional element in the hot-dip plating bath in an amount of less than 0.1%, and may not contain Si, so the lower limit thereof is not specifically limited. On the other hand, it is preferable that the Si content is less than 0.1% in terms of securing crack resistance during the above-described processing. Meanwhile, more preferably, the upper limit of the Si content in the single-layer alloy plating layer may be 0.09% (ie, 0.09% or less).
  • the Zn not only improves the adhesion and corrosion resistance of the plated steel sheet, but also plays an important role in improving the adhesion of the plating layer after the alloying treatment do Therefore, in the plated steel sheet of the present invention, it is preferable that the Zn content in the first alloyed plating layer is 1 to 20%, and the Zn content in the second alloyed plating layer is 1 to 22%.
  • the Zn content in the first alloying plating layer and the second alloying plating layer is not satisfied, the effect of improving the sintering property and corrosion resistance cannot be expected.
  • the upper limit of the Zn content in the first alloying plating layer and the second alloying plating layer is not met, there is a problem in that the adhesion of the plating layer after the alloying treatment is deteriorated.
  • the Zn content in the first alloying plating layer is 1 to 20%, and it is more preferable that the Zn content in the second alloying plating layer is 1.5 to 22%.
  • the Zn content in the second alloying plating layer may be greater than the Zn content in the first alloying plating layer, which is a cooling and alloying process after immersing the steel sheet in the plating bath. This is because, as a result of diffusion of Fe in the base steel sheet, Zn in the second alloy plating layer far away from the base steel sheet is concentrated.
  • the Mn content in the first alloying plating layer may be greater than the Mn content in the second alloying plating layer.
  • the Fe content in the first alloy plating layer may be greater than the Fe content in the second alloy plating layer.
  • the present invention after plating is performed by immersing the base steel sheet in the aluminum plating bath during the manufacturing process described above, by alloying heat treatment, Fe and/or Mn of the base steel sheet is diffused into the aluminum plating layer, and as a result, Fe and a first alloy plating layer and a second alloy plating layer mainly composed of an intermetallic compound of Al are formed.
  • the first alloy plating layer may mainly include an alloy phase of Fe 2 Al 5
  • the second alloy plating layer is an alloy of FeAl 3 It may primarily include awards.
  • the first alloying plating layer may include 80% or more of the alloy phase of Fe 2 Al 5
  • the second alloying plating layer may include 80% or more of the alloy phase of FeAl 3 .
  • the first alloying plating layer may include 90% or more of the alloy phase of Fe 2 Al 5
  • the second alloying plating layer may include 90% or more of the alloy phase of FeAl 3 . have.
  • the first alloy plating layer is based on Fe 2 Al 5 (that is, more than 80% Fe 2 Al 5 ) Zn, Mn and / or Si as a solid-dissolved alloy phase.
  • the second alloy plating layer may be formed of an alloy phase in which Zn, Mn, and/or Si are dissolved based on FeAl 3 (ie, 80% or more is FeAl 3 ).
  • composition of the alloy phase implies that other unavoidable impurities may be included, and other components may be included in a range that does not impair the purpose of the present invention.
  • the alloy plating layer is formed in two layers, in the aluminum-based alloy plated steel sheet according to the present invention, the distance from the center line of the surface roughness of the alloy plating layer to the lowest line of the alloy plating layer is t, the alloy plating layer
  • the ratio (As) of the area occupied by the base steel sheet in the area from the center line of the surface roughness of to 3/4t is 30% or more.
  • the lowermost line of the alloy plating layer means a line drawn at the lowest end of the alloy plating layer in a direction perpendicular to the thickness direction of the steel sheet.
  • the lowermost line of the alloy plating layer may mean a line drawn to be horizontal with the center line of the surface roughness.
  • the alloy plating layer according to the present invention is formed in two layers is shown in FIG. 3, and as can be seen in FIG. 3, the base steel sheet in the region from the center line of the surface roughness of the alloy plating layer to 3/4t
  • the interface between the alloy plating layer and the base steel sheet is formed in a sawtooth shape so that the ratio (As) of the area occupied is 30% or more.
  • the alloy plating layer according to one aspect of the present invention can suppress the occurrence of cracks during processing by forming the boundary with the base steel sheet, which is a base material, in the form of teeth as described above, thereby securing excellent crack resistance. .
  • the upper limit of the As value may not be separately limited in that the larger the value, the better the effect of crack resistance during processing.
  • the upper limit of the value of As may be 80%.
  • the meaning of the boundary between the alloy plating layer and the base steel sheet described above is that the first alloy plating layer is formed on the base steel sheet as the base material, so specifically, the first alloy plating layer and the base material It may mean the boundary of the steel plate.
  • the thickness of the first alloy plating layer may be 1 ⁇ 25 ⁇ m
  • the thickness of the second alloy plating layer may be 3 ⁇ 20 ⁇ m.
  • the effect of corrosion resistance is exhibited by making the thickness of the first alloy plating layer 1 ⁇ m or more, and adhesion can be ensured by setting the thickness of the first alloy plating layer to 25 ⁇ m or less.
  • the effect of corrosion resistance is exhibited by making the thickness of the said 2nd alloying plating layer 3 micrometers or more, and adhesiveness can be ensured by making the thickness of the said 2nd alloying plating layer 25 micrometers or less.
  • that the second alloy plating layer is formed on the first alloy plating layer means that the second alloy plating layer is formed so as to be in contact with the first alloy plating layer.
  • the base steel sheet included in the aluminum-based plated steel sheet is a steel sheet for hot press forming, and is not particularly limited if used for hot press forming. does not
  • a steel sheet containing Mn in the range of 1 to 25% may be used as the steel sheet.
  • a steel sheet containing Mn in the range of 1 to 25% may be used as the steel sheet.
  • C 0.05 to 0.3%
  • Si 0.1 to 1.5%
  • Mn 0.5 to 8%
  • B 50 ppm or less
  • the balance Fe and other unavoidable impurities Branches can use a steel plate.
  • the present invention it is possible to provide a plated steel sheet having excellent corrosion resistance and adhesion of the plating layer while suppressing the seizure of the plating layer attached to the press die or roll generated during hot forming.
  • an example of a method for manufacturing an aluminum-based alloy plated steel sheet used for hot press forming according to an aspect of the present invention will be described.
  • the following manufacturing method of the aluminum-based alloy plated steel sheet for hot press forming is an example, and the aluminum-based alloy plated steel sheet for hot press forming of the present invention is not necessarily manufactured by the present manufacturing method.
  • Another aspect of the present invention is a method for manufacturing an aluminum-based plated steel sheet used for hot press forming
  • the step of obtaining an aluminum-based plated steel sheet through on-line alloying in which the heat treatment is continuously maintained in a heating temperature range of 650 to 750° C. for 1 to 20 seconds; provides
  • a base steel sheet is prepared in order to manufacture an aluminum alloy plated steel sheet.
  • the above-described description may be applied in the same manner.
  • the aluminum-based plated steel sheet according to an aspect of the present invention Zn: 3 to 30%, Si: less than 0.1%, the remainder Al and other unavoidable impurities on the surface of the base steel sheet in an aluminum plating bath containing impurities It can be obtained by performing hot-dip aluminum plating using the molten metal, followed by cooling continuously in the plating process, and then performing an on-line alloying treatment in which heat treatment is performed immediately.
  • the composition of the plating bath may be a molten aluminum alloy plating bath containing Zn: 3 to 30%, Si: less than 0.1%, the remainder Al and other unavoidable impurities, more preferably Zn: 3 to 30%, Si: less than 0.1%, and Al: 70 to 97% may be included, and other unavoidable impurities may also be included.
  • an additional element may be further added to the aluminum plating bath within a range that does not impair the object of the present invention.
  • the molten aluminum alloy plating bath may be made of Zn: 3 to 30%, Si: less than 0.1%, Al: 70 to 97% and other unavoidable impurities.
  • Zn added to the aluminum plating bath is preferably added in an amount of 3 to 30% by weight.
  • the Zn content exceeds 30%, since a large amount of ash in the plating bath is generated, there is a problem in that workability is deteriorated due to generation of dust and the like.
  • the Zn content is less than 3%, the melting point of the plating bath is not greatly reduced, and Zn does not remain in the plating layer due to evaporation of Zn during alloying, so that improvement of corrosion resistance cannot be obtained.
  • the lower limit of the Zn content is preferably 5%, more preferably 10%.
  • the upper limit of the Zn content is preferably 25%, more preferably 20%.
  • the temperature of the plating bath as high as 20 to 50 ° C compared to the melting point (Tb) of the plating bath (that is, in the range of Tb + 20 ° C to Tb + 50 ° C).
  • Tb melting point
  • the plating amount per side (the amount of adhesion per side of the plating layer) may be 20 ⁇ 100 g/m 2 , which after immersing the steel sheet in the hot-dip aluminum plating bath It can be controlled by applying an air wipping process.
  • the plating amount per side is 20 g/m 2 or more, the corrosion resistance effect is exhibited, and when the plating amount per side during the plating is 100 g/m 2 or less, the effect of securing the adhesion can be exhibited.
  • air heated to 200 to 300° C. may be supplied to the aluminum-plated steel sheet to be cooled to form an oxide film on the surface of the aluminum-plated steel sheet.
  • This cooling step is important in the present invention in that it is a means of forming a uniform alloy layer. That is, by supplying and exposing air heated to 200 ⁇ 300 °C to the aluminum plated steel sheet during cooling, an oxide film (aluminum oxide film; AlO x ) is formed on the surface of the aluminum plated steel sheet.
  • an oxide film can be formed on the surface of the aluminum plated steel sheet by 10% or more (more preferably 10% or more and 20% or less) based on the total thickness of the hot-dip aluminum plating layer. have.
  • 10% or more of the oxide film it is possible to prevent Zn contained in the plating layer from volatilizing during the alloying process, and thus it is possible to secure excellent sintering property, corrosion resistance and adhesion of the plating layer.
  • an on-line alloying treatment in which heat treatment is performed continuously immediately after the above-described cooling may be performed.
  • Fe and/or Mn of the base steel sheet is diffused into the aluminum plating layer, whereby alloying of the plating layer can be made.
  • the alloying heat treatment temperature is in the range of 650 ⁇ 750 °C
  • the holding time may be 1 ⁇ 20 seconds.
  • the on-line alloying process refers to a process of heat treatment by increasing the temperature after molten aluminum plating, as can be seen in the schematic diagram shown in FIG. 1 .
  • the online alloying heat treatment method according to the present invention since the heat treatment for alloying starts before the plating layer is cooled and hardened after hot-dip aluminum plating, alloying is possible in a short time.
  • the conventionally known plating layer composition system of aluminum-coated steel sheet since the alloying rate was slow and sufficient alloying could not be completed in a short time, it was difficult to apply an on-line alloying method in which heat treatment was performed immediately after plating.
  • alloying of the aluminum plating layer can be achieved despite a relatively short heat treatment time of 1 to 20 seconds by controlling the composition and manufacturing conditions of the plating bath that affect the alloying rate.
  • the alloying heat treatment temperature is based on the surface temperature of the steel sheet to be heat treated, and if the heat treatment temperature is less than 650 ° C, there may be a problem that the alloying of the plating layer is insufficient, whereas the heat treatment temperature exceeds 750 ° C. There is a problem in that there is a problem in the cooling of the plating adhesion is deteriorated.
  • the configuration of the alloying plating layer is changed by adjusting the alloying heat treatment temperature.
  • the alloying heat treatment temperature is 650 to 680 ° C.
  • the alloying plating layer is two layers (the first alloying plating layer and the second alloying layer described above).
  • the alloy plating layer is formed as a single layer at 680 to 750°C.
  • the holding time during the alloying heat treatment may be performed in the range of 1 to 20 seconds.
  • the holding time means the time during which the heating temperature (including deviation ⁇ 10° C.) is maintained in the steel sheet.
  • the lower limit of the holding time during the alloying heat treatment may be 1 second, more preferably 3 seconds.
  • the upper limit of the holding time during the alloying heat treatment may be 20 seconds, more preferably 10 seconds.
  • the method of manufacturing an aluminum alloy plated steel sheet according to an aspect of the present invention may further include the step of cooling after the alloying treatment.
  • the cooling may cool the steel sheet discharged from the alloying treatment to 300° C. or less at an average cooling rate of 15 to 25° C./s.
  • the cooling may be air cooling or mist cooling, and according to an aspect of the present invention, most preferably, the cooling may be air cooling and rapid cooling.
  • the average cooling rate is set to 15°C or higher, the temperature of the steel sheet is cooled to 300°C or lower to prevent adsorption to the roll, and the average cooling rate is set to 25°C/s or lower. By doing so, the effect of increasing the operation speed is exhibited.
  • the cooling can be performed for 6 to 30 seconds, and by setting the cooling time to 6 seconds or more, the effect of cooling to a desired steel sheet temperature is exhibited, and the cooling time is reduced to 30
  • the effect of cooling the steel sheet temperature to a desired temperature while maximizing productivity can be exhibited by setting it to a second or less.
  • the Fe content in the alloying plated layer can be expressed by Relation 1 as follows, and the heat treatment temperature during alloying and the Zn content in the plating bath are titrated By controlling within the range, the effects of excellent cauterization, corrosion resistance, and/or plating layer adhesion can be easily exhibited.
  • [T] represents the alloying heat treatment temperature (°C)
  • [wt%Zn] represents the Zn wt% content in the plating bath
  • [wt%Fe] represents the Fe wt% content in the alloy plating layer indicates.
  • another aspect of the present invention provides a hot-formed member obtained by hot press forming the above-described aluminum alloy plated steel sheet.
  • the hot press forming may use a method generally used in the art. For example, after the plated steel sheet is heated in a temperature range of 800 to 950° C. for 3 to 10 minutes, the heated steel sheet may be hot formed into a desired shape using a press, but is not limited thereto.
  • composition of the holding steel sheet of the hot press-formed member may be the same as the composition of the holding steel sheet described above.
  • a cold-rolled steel sheet for hot press forming having a thickness of 1.2 mm having a composition shown in Table 1 below was prepared as a base steel sheet, and then the base steel sheet was immersed and ultrasonically cleaned to remove materials such as rolling oil present on the surface.
  • the base steel sheet is immersed in a plating bath under the plating bath composition and plating bath temperature conditions shown in Table 2 below.
  • the plating bath was immersed, the immersion temperature was maintained at the same temperature as the plating bath temperature, and the plating bath was maintained at a temperature that was raised by 40° C. for the melting point (Tb) of each plating component system.
  • the plating amount was kept constant at 60 g/m 2 on one side using air wiping to compare alloying.
  • the aluminum-plated steel sheet was cooled by supplying air heated to 200 to 300° C. to the aluminum-plated steel sheet, and then alloying heat treatment was performed under the alloying heat treatment conditions shown in Table 2, which was cooled by air cooling to plated aluminum alloy A steel plate was prepared.
  • the content and thickness of each component in the first alloy plated layer and the second alloy plated layer are measured in the case of a single-layer or two-layer alloy plating layer and are shown in Table 3 It was.
  • Components in the plating layer were measured by point analysis using an EDS (Energy Dispersive Spectroscopy) method, and the thickness of the cross-section was measured with an electron microscope.
  • the alloy phase was analyzed by the XRD (X-Ray Diffraction) method for the alloy plating layer formed as a single layer of Inventive Example 4, and it was confirmed that the alloy plating layer was made of an alloy phase of Fe 2 Al 5 at least 80%.
  • the alloy phase analysis was performed with the method of XRD (X-Ray Diffraction) and EDS analysis on the alloyed plating layer formed of the two-layer of Invention Example 1, and the first alloying plating layer was mainly composed of an alloy phase of Fe 2 Al 5 It was confirmed that the second alloy plating layer was made of an alloy phase of FeAl 3 by 80% or more.
  • the ratio of the upper plated layer among the total plated layer was measured by using a scanning electron microscope (SEM) to measure the ratio of the cross-sectional thickness and is shown in Table 4 below.
  • SEM scanning electron microscope
  • the plating layer upper ratio, sintering property, corrosion resistance, and plating adhesion were evaluated in the following manner.
  • the plated steel sheet thus prepared was heated at 900° C. for 5 minutes to evaluate the physical properties of the plating, and then visually observed whether the alloy plating layer was fused to the die and evaluated according to the following criteria.
  • Corrosion resistance After the salt spray test for 720 hours, the corrosion product formed on the surface was removed, the depth of corrosion formed by corrosion was measured, and the case below the reference value (70 ⁇ m) was marked as good as follows.
  • Plating adhesion was measured by converting the degree of peeling of the plating layer using a tape to the weight by using a tape to measure the degree of peeling of the plating layer due to cracks when a shear stress was applied to the plating layer through a single-sided friction test after alloying. It was evaluated as a standard.
  • FIG. 1 shows a photograph of observing a cross section of an aluminum-based plated steel sheet with a scanning electron microscope for an additional experimental example in which 7% of Si was added to an aluminum plating bath according to the prior art.
  • the ratio of the area occupied by the base steel sheet in the region from the center line of the surface roughness of the alloy plating layer to 3/4t was less than 30%.
  • FIG. 2 is a photograph of a cross-section of the aluminum alloy plated steel sheet manufactured according to Invention Example 1 observed with a scanning electron microscope, as an example in which a two-layer alloy plating layer is formed, and an alloy plating layer and a base material as a base material by adding Zn.
  • the boundary of the steel sheet was formed in a sawtooth shape, and accordingly, it was confirmed that the ratio of the area occupied by the base steel sheet in the area from the center line of the surface roughness of the alloying layer described above to 3/4t was 30% or more.
  • Figure 3 is a scanning electron microscope photograph of observing the cross section of the aluminum-based alloy plated steel sheet prepared in Inventive Example 6, and the boundary between the alloying plated layer and the base steel sheet as the base material was formed in a sawtooth shape by Zn addition. Accordingly, the ratio of the area occupied by the base steel sheet in the region from the center line of the surface roughness of the alloy plating layer to 3/4t was 30% or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

본 발명은 가공성 및 내식성이 우수한 알루미늄계 합금 도금 강판 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 열간 성형 시 발생되는 마이크로 크랙의 발생을 억제하고, 또한 소착성 및 내식성이 우수한 알루미늄 합금 도금 강판 및 이의 제조방법에 관한 것이다.

Description

가공성 및 내식성이 우수한 알루미늄계 합금 도금강판 및 이의 제조방법
본 발명은 가공성 및 내식성이 우수한 알루미늄계 합금 도금강판 및 이의 제조방법에 관한 것이다.
종래부터 열간 성형을 위해 알루미늄(Al) 도금 강판이나 아연(Zn) 도금 강판을 사용하고 있으나, 마이크로 크랙이 발생하거나, 열처리 시 형성된 합금상으로 인해 내식성이 열화되는 문제점이 있었다. 또한, 열간 성형 시 도금층의 액화가 발생하여 롤에 융착하는 문제점이 있어, 900℃까지 급속하게 승온시키지 못하여 생산성이 저하되는 문제도 있었다. 또한, 알루미늄 도금 강판의 경우에는 알루미늄의 희생 방식성이 없으므로, 가공 후 내식성이 문제가 되는 경우가 있다.
이러한 내식성과 열간 성형성을 개선하기 위하여, 종래에는 도금욕 중에 Si를 4% 이하로 첨가하고, 합금화 온도 700℃ 및 합금화 시간 20초로 하여 도금층을 합금화한 알루미늄 합금화 도금 강판을 개시하였다.
그러나, 상기의 조건에서는 합금화 시간이 20초로 장시간 소요되므로, 실 라인에서 합금화 처리하는 데 어려움이 있고, 합금화 후 강한 냉각이 필요한 문제점이 있다. 또한, Si 함량이 감소함에 따라 도금욕 온도가 700℃ 정도로 매우 높기 때문에, 도금욕에 침지되어 있는 싱크롤 등 구조물의 내구성이 현저하게 떨어지는 문제점이 있다.
(특허문헌 1) 한국 특허공개공보 1997-0043250호
본 발명의 일 측면에 따르면, 열간 성형 시 발생되는 마이크로 크랙의 발생을 억제하고, 또한 소착성 및 내식성이 우수한 알루미늄계 합금 도금 강판 및 이의 제조방법을 제공하고자 한다.
본 발명의 과제는 전술한 내용에 한정하지 아니한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 누구라도 본 발명 명세서 전반에 걸친 내용으로부터 본 발명의 추가적인 과제를 이해하는 데 어려움이 없을 것이다.
본 발명의 일 측면은,
소지 강판; 및
상기 소지 강판 상에 형성된 단층의 합금화 도금층을 포함하고,
상기 합금화 도금층은 중량%로, Fe: 35~50%, Zn: 1~20%, Mn: 5% 이하, Si: 0.1% 미만, 잔부 Al 및 기타 불가피한 불순물을 포함하고,
상기 합금화 도금층의 표면 조도 중심선으로부터, 합금화 도금층의 최하단선까지의 거리를 t라고 하였을 때, 상기 합금화 도금층의 표면 조도 중심선으로부터 3/4t까지의 영역 내에서 상기 소지 강판이 차지하는 면적의 비가 30% 이상인, 알루미늄계 합금 도금 강판을 제공한다.
한편, 본 발명의 또 다른 일 측면은,
소지 강판;
상기 소지 강판 상에 형성된 합금화 도금층을 포함하고,
상기 합금화 도금층은
중량%로, Fe: 35~50%, Zn: 1~20%, Mn: 5% 이하, Si: 0.1% 미만, 잔부 Al 및 기타 불가피한 불순물을 포함하는 제1 합금화 도금층; 및
중량%로, Fe: 30~40%, Zn: 1~22%, Mn: 2% 이하, Si: 0.1% 미만, 잔부 Al 및 기타 불가피한 불순물을 포함하는 제2 합금화 도금층을 포함하고,
상기 합금화 도금층의 표면 조도 중심선으로부터, 합금화 도금층의 최하단선까지의 거리를 t라고 하였을 때, 상기 합금화 도금층의 표면 조도 중심선으로부터 3/4t까지의 영역 내에서 상기 소지 강판이 차지하는 면적의 비가 30% 이상인, 알루미늄계 합금 도금 강판을 제공한다.
본 발명의 또 다른 일 측면은,
열간 프레스 성형에 이용되는 알루미늄계 도금 강판의 제조방법으로서,
소지 강판을 준비하는 단계;
상기 소지 강판을, 중량%로, Zn: 3~30%, Si: 0.1% 미만, 잔부 Al 및 기타 불가피한 불순물을 포함하는 알루미늄 도금욕에 침지하여 알루미늄 도금 강판을 얻는 단계;
알루미늄 도금 후, 200~300℃로 가열된 공기를 상기 알루미늄 도금 강판에 공급하여 알루미늄 도금 강판의 표면에 산화피막을 형성하는 냉각 단계; 및
상기 냉각 후 연속하여 650~750℃의 가열 온도 범위에서 1~20초 유지하여 열처리하는 온라인(on-line) 합금화를 통해 알루미늄계 도금 강판을 얻는 단계;를 포함하는, 알루미늄계 도금 강판의 제조방법을 제공한다.
또한, 본 발명의 또 다른 일 측면은, 전술한 알루미늄계 합금 도금 강판을 열간 프레스 성형하여 얻어지는 열간 성형 부재를 제공한다.
본 발명에 의하면, 열간 성형 시 발생되는 마이크로 크랙을 억제하고, 소착성 및 내식성을 향상시킨 알루미늄계 합금 도금 강판 및 이를 이용한 열간 성형 부재를 효과적으로 제공할 수 있다.
도 1은 본 발명의 일 측면에 따른 제조방법이 구현된 제조장치를 개략적으로 나타낸 것이다.
도 2는 Si을 7% 정도로 첨가하고 Zn을 첨가하지 않은 종래 기술에 해당하는 알루미늄계 합금 도금 강판의 단면을 주사전자현미경(SEM)으로 관찰한 사진이다.
도 3은 발명예 1에 의해 제조된 알루미늄계 합금 도금 강판의 단면을 주사전자현미경(SEM)으로 관찰한 사진이다.
도 4는 발명예 6에 의해 제조된 알루미늄계 합금 도금 강판의 단면을 주사전자현미경(SEM)으로 관차한 사진이다.
이하, 본 발명에 대하여 상세히 설명한다. 먼저, 본 발명의 일 측면인 알루미늄계 합금 도금 강판에 대하여 상세히 설명한다.
종래 기술에 따라 제조되는 알루미늄계 합금 도금 강판은 열간 성형 과정에서 마이크로 크랙이 발생하거나, 열간 성형 중에 롤의 융착이 발생하는 등 열간 성형성이 좋지 못했고, 또한 도금 강판의 내식성이 부족한 문제가 있었다.
이러한 문제를 해결하기 위해, 종래에는 내식성과 열간 성형성의 개선을 위해 도금욕에 Si를 4% 이하로 첨가하였다. 그러나, 이렇게 Al 도금욕에 Si가 소량 첨가될 경우에는 Fe-Al 합금상에 Si가 포함되므로, Fe의 확산을 억제하여 20초 이하의 짧은 시간에 합금화가 이루어지지 못하는 문제가 있었고, 또한 도금욕의 온도가 너무 높아짐에 따라 구조물의 내구성이 떨어지는 등의 문제를 해결할 수 없었다.
이에, 본 발명자들은 전술한 종래 기술의 문제점을 해결하기 위해 예의 검토한 결과, 합금화 도금층의 표면과, 모재측에 접하는 최하단의 거리에 대하여 특정 지점이 되는 선을 기준으로, 상부측으로 소지 강판의 영역이 차지하는 면적을 특정량 이상 확보함으로써, 전술한 종래 기술의 문제를 해결할 수 있음을 발견하고 본 발명을 완성하기에 이르렀다.
구체적으로, 본 발명에 따른 알루미늄계 합금 도금 강판은 합금화 도금층이 단층이거나, 혹은 2층인 경우를 포함하고, 이하에서는 각 경우를 나누어서 설명한다.
[합금화 도금층이 단층인 경우]
본 발명의 일 측면은,
소지 강판; 및
상기 소지 강판 상에 형성된 단층의 합금화 도금층을 포함하고,
상기 합금화 도금층은 중량%로, Fe: 35~50%, Zn: 1~20%, Mn: 5% 이하, Si: 0.1% 미만, 잔부 Al 및 기타 불가피한 불순물을 포함하고,
상기 합금화 도금층의 표면 조도 중심선으로부터, 합금화 도금층의 최하단선까지의 거리를 t라고 하였을 때, 상기 합금화 도금층의 표면 조도 중심선으로부터 3/4t까지의 영역 내에서 상기 소지 강판이 차지하는 면적의 비가 30% 이상인, 알루미늄계 합금 도금 강판을 제공한다.
본 발명의 일 측면에 따른 알루미늄계 합금 도금 강판은, 소지 강판 및 소지 강판 상에 형성된 단층 또는 2층의 합금화 도금층(제1 합금화 도금층 및 제2 합금화 도금층)을 포함할 수 있고, 상기 단층 또는 2층의 합금화 도금층은 소지 강판의 일면 또는 양면에 형성될 수 있다.
한편, 본 발명의 일 측면에 따르면, 소지 강판을 알루미늄 도금욕에 침지하여 도금한 후, 합금화 열처리의 과정을 거치면, 소지 강판의 Fe 및/또는 Mn이 도금층으로 확산한다. 이러한 확산의 결과, 도금층에 합금화가 일어나고, 이를 통해 소지 강판 상에 특정 조성을 가지는 단층 또는 2층의 합금화 도금층이 형성된다.
이하에서는 본 발명의 일 측면에 따른 알루미늄계 합금 도금 강판이 합금화 도금층을 단층으로 형성하는 경우에 대하여 우선 설명한다.
즉, 본 발명의 일 측면에 따른 합금화 도금층이 단층인 경우, 상기 합금화 도금층은 중량%로, Fe: 35~50%, Zn: 1~20%, Mn: 5% 이하(0%를 포함), Si: 0.1% 미만(0%를 포함), 잔부 Al 및 기타 불가피한 불순물을 포함하는 조성을 가질 수 있다.
혹은, 본 발명의 일 측면에 따르면, 합금화 도금층이 단층인 경우에, 합금화 도금층의 조성은 중량%로, Fe: 35~50%, Zn: 1~20%, Mn: 5% 이하(0%를 포함), Si: 0.1% 미만(0%를 포함), 잔부 Al 및 기타 불가피한 불순물로 이루어질 수 있다.
본 발명의 일 측면에 따른 단층의 합금화 도금층에 있어서, 상기 Zn은 도금 강판의 소착성 및 내식성을 향상시킬 뿐만 아니라, 합금화 처리 이후의 합금화 도금층의 밀착성을 향상시키는 역할을 한다. 따라서, 본 발명의 도금 강판에서는 합금화 도금층 내 Zn 함량이 1~20%인 것이 바람직하다. 본 발명에 있어서, 상기 합금화 도금층 내 Zn 함량이 1% 미만이면, 소착성 및 내식성 향상의 효과를 기대할 수 없고, 상기 합금화 도금층 내 Zn 함량이 20%를 초과하면, 합금화 처리 후의 도금층의 밀착성이 떨어지는 문제가 있다.
한편, 본 발명의 일 측면에 따르면, 상기 단층의 합금화 도금층에 있어서, 상기 Zn 함량의 하한은 바람직하게는 5%일 수 있고, 보다 바람직하게는 10%일 수 있다. 또한, 상기 Zn 함량의 상한은 바람직하게는 18%일 수 있고, 보다 바람직하게는 15%일 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 단층의 합금화 도금층에 있어서, 상기 Mn의 함량은 5% 이하일 수 있고, 0%인 경우를 포함할 수 있다. 즉, 본 발명에서, 합금화 도금층 내에 존재하는 Mn은 소지 강판에 존재하는 Mn이 합금화 처리를 통해 유입된 것으로서, Mn의 함량은 그 하한은 특별히 한정하지 않는다. 다만, Mn 함량의 상한은 미도금 발생 억제를 위한 도금성 확보의 차원에서 5% 이하인 것이 바람직하다. 한편, 보다 바람직하게는 상기 단층의 합금화 도금층에 있어서 Mn 함량은 2~5%일 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 단층의 합금화 도금층에 있어서, 상기 Si의 함량은 0.1% 미만일 수 있고, 0%인 경우를 포함한다. 즉, 본 발명에서는 용융 도금욕에 추가의 원소로서 Si 등의 원소를 0.1% 미만으로 포함할 수 있고, Si를 포함하지 않는 경우도 가능하므로, 그 하한은 별도로 한정하지 않는다. 한편, 전술한 가공 시 크랙의 저항성 확보라는 측면에서 상기 Si 함량은 0.1% 미만인 것이 바람직하다. 한편, 보다 바람직하게는 상기 단층의 합금화 도금층에 있어서 Si 함량의 상한은 0.09%(즉, 0.09% 이하)일 수 있다.
또한, 본 발명의 일 측면에 따르면, 전술한 합금화 처리에 의해 Fe 및/또는 Mn의 확산에 의해, 단층의 합금화 도금층에 있어서, Al의 함량은 40~60이고, Fe의 함량은 35~50%인 것이 바람직하다. 전술한 조성을 만족함으로써, 본 발명에서 목적하는 소착성, 내식성을 확보할 수 있고, 또한 도금층의 밀착성도 확보할 수 있다.
한편, 본 발명의 일 측면에 따르면, 전술한 단층의 합금화 도금층에 있어서, Al 함량은 43~60%인 것이 도금 밀착성의 확보 측면에서 보다 바람직하다.
또한, 본 발명의 일 측면에 따르면, 상기 단층의 합금화 도금층의 두께는 5~25㎛일 수 있다. 상기 합금화 도금층의 두께가 5㎛ 이상이면, 내식성을 확보할 수 있고, 25㎛ 이하이면, 용접성을 확보할 수 있다. 따라서, 본 발명에 있어서 합금화 도금층의 두께는 5~25㎛인 것이 바람직하고, 보다 바람직하게는 상기 합금화 도금층의 하한은 10㎛일 수 있고, 상기 합금화 도금층의 상한은 20㎛일 수 있다.
한편, 본 발명의 일 측면에 따르면, 상기 단층의 합금화 도금층은 전술한 제조 과정 중의 도금 후 합금화 처리에 의해, 소지 강판의 Fe 및/또는 Mn은 Al 및 Zn의 함량이 높은 알루미늄 도금층으로 확산되고, 그 결과 Fe 및 Al의 금속간 화합물로 주로 이루어지는 합금화 도금층이 형성될 수 있다.
구체적으로, 본 발명의 일 측면에 따르면, 전술한 합금화 도금층이 단층인 경우, 합금화 도금층을 주로 이루는 Fe-Al계 금속간 화합물의 합금상이 Fe 2Al 5인 것이 바람직하다. 즉, 상기 단층의 합금화 도금층은 Fe 2Al 5의 합금상을 80% 이상 포함할 수 있고, 보다 바람직하게는 Fe 2Al 5의 합금상을 90% 이상 포함할 수 있다. 따라서, 상기 단층의 합금화 도금층은 Fe 2Al 5를 기본으로 하는(즉, 80% 이상이 Fe 2Al 5이되) Zn, Mn 및/또는 Si 등이 고용된 합금상으로 이루어질 수 있다.
본 명세서에 있어서, 상기 합금상으로 이루어진다는 것은, 기타 불가피한 불순물이 포함될 수도 있고, 본 발명의 목적을 해치지 않는 범위에서 다른 성분을 포함할 수 있음을 내포한다.
한편, 합금화 도금층이 단층으로 형성되는 경우로서, 본 발명에 따른 알루미늄계 합금 도금 강판은, 상기 합금화 도금층의 표면 조도 중심선으로부터, 합금화 도금층의 최하단선까지의 거리를 t라고 하였을 때, 상기 합금화 도금층의 표면 조도 중심선으로부터 3/4t까지의 영역 내에서 상기 소지 강판이 차지하는 면적의 비(As)가 30% 이상이다.
본 명세서에 있어서, 상기 합금화 도금층의 최하단선은 강판의 두께 방향에 수직인 방향으로 합금화 도금층의 가장 하단을 그린 선을 의미한다. 또한, 본 발명의 일 측면에 따르면, 상기 최하단선은 상기 표면 조도 중심선과 수평이 되도록 그린 선을 의미할 수 있다.
구체적으로, 본 발명에 따른 합금화 도금층이 단층으로 형성되는 경우를 도 4에 나타내었고, 도 4에서 볼 수 있듯이 단층인 합금화 도금층은 상기 합금화 도금층의 표면 조도 중심선으로부터 3/4t까지의 영역 내에서 상기 소지 강판이 차지하는 면적의 비(As)가 30% 이상이 되도록, 합금화 도금층과 소지 강판의 계면이 톱니 형태로 형성된다.
본 발명의 일 측면에 따른 합금화 도금층은, 모재인 소지 강판과의 경계를 전술한 바와 같이 톱니의 형태로 형성함으로써, 가공 시의 크랙이 유발되는 것을 억제할 수 있어 우수한 크랙 저항성을 확보할 수 있다.
이 때, 상기 합금화 도금층이 단층인 경우, As의 값은 그 값이 클수록 가공 시 크랙 저항성의 효과가 보다 우수하다는 점에서 그 상한을 별도로 한정하지 않을 수 있다. 다만, 보다 바람직하게는 상기 As의 값의 상한은 80%(가장 바람직하게는 60%)일 수 있다.
본 발명에 있어서, 소지 강판 상에 합금화 도금층이 형성된다는 것은, 소지 강판 상에 합금화 도금층이 접하도록 형성되는 것을 의미한다. 또한, 본 발명에 있어서, 합금화 도금층이 단일층으로 형성된다는 것은 합금화 도금층으로서 단일의 층을 형성한다는 의미이지, 상기 합금화 도금층 상에 다른 층을 구비할 수 없다는 것을 의미하는 것은 아니다.
[합금화 도금층이 2층인 경우]
한편, 이하에서는 본 발명의 또 다른 일 측면에 따른 알루미늄 합금 도금 강판이 합금화 도금층을 2층으로 형성하는 경우 대하여 우선 설명한다.
구체적으로, 본 발명의 또 다른 일 측면은,
소지 강판;
상기 소지 강판 상에 형성된 합금화 도금층을 포함하고,
상기 합금화 도금층은
중량%로, Fe: 35~50%, Zn: 1~20%, Mn: 5% 이하, Si: 0.1% 미만, 잔부 Al 및 기타 불가피한 불순물을 포함하는 제1 합금화 도금층; 및
중량%로, Fe: 30~40%, Zn: 1~22%, Mn: 2% 이하, Si: 0.1% 미만, 잔부 Al 및 기타 불가피한 불순물을 포함하는 제2 합금화 도금층을 포함하고,
상기 합금화 도금층의 표면 조도 중심선으로부터, 합금화 도금층의 최하단선까지의 거리를 t라고 하였을 때, 상기 합금화 도금층의 표면 조도 중심선으로부터 3/4t까지의 영역 내에서 상기 소지 강판이 차지하는 면적의 비가 30% 이상인, 알루미늄계 합금 도금 강판을 제공한다.
상기 합금화 도금층이 2층인 경우로서, 제1 합금화 도금층 및 제2 합금화 도금층을 형성한다는 점을 제외하고는 전술한 단층의 합금화 도금층이 구비되는 경우에 대한 설명을 동일하게 적용할 수 있다.
본 발명의 일 측면에 따르면, 합금화 도금층이 제1 합금화 도금층 및 제2 합금화 도금층을 포함하는 2층으로 형성되는 경우에는,
상기 제1 합금화 도금층은 중량%로, Fe: 35~50%, Zn: 1~20%, Mn: 5% 이하(0%를 포함), Si: 0.1% 미만(0%를 포함), 잔부 Al 및 기타 불가피한 불순물을 포함하고,
상기 제2 합금화 도금층은 중량%로, Fe: 30~40%, Zn: 1~22%, Mn: 2% 이하(0%를 포함), Si: 0.1% 미만(0%를 포함), 잔부 Al 및 기타 불가피한 불순물을 포함하는 조성을 가진다.
구체적으로, 본 발명의 일 측면에 따르면, 상기 제1 합금화 도금층은 상기 소지 강판 상에 형성되는 합금화 도금층으로서, 중량%로, Fe: 35~50%, Zn: 1~20%, 및 Mn: 5% 이하(0%를 포함), Si: 0.1% 미만(0%를 포함), 잔부 Al을 포함하고, 이외에 기타 불가피한 불순물 및 본 발명의 목적을 해치지 않는 범위에서 다른 원소를 포함할 수 있다. 혹은, 본 발명의 일 측면에 따르면, 상기 제1 합금화 도금층은 중량%로, Fe: 35~50%, Zn: 1~20%, Mn: 5% 이하, Si: 0.1% 미만(0%를 포함), 잔부 Al 및 기타 불가피한 불순물로 이루어질 수 있다.또한, 본 발명의 일 측면에 따르면, 상기 제1 합금화 도금층에 있어서, Al 함량은 중량%로, 40~60%일 수 있고, 보다 바람직하게는 43~60%일 수 있다. 한편, 상기 제1 합금화 도금층에 있어서, 상기 Al 함량을 만족함으로써 목적하는 소착성, 내식성 및 도금층의 밀착성을 용이하게 확보할 수 있다.
마찬가지로, 본 발명의 일 측면에 따르면, 상기 제1 합금화 도금층에 있어서, Fe 함량은 중량%로, 35~50%인 것이 바람직하고, 제1 합금화 도금층에 있어서 상기 Fe 함량을 만족함으로써 목적하는 소착성, 내식성 및 도금층의 밀착성을 용이하게 확보할 수 있다.
본 발명의 일 측면에 따르면, 상기 제2 합금화 도금층은 상기 제1 합금화 도금층 상에 형성되고, 상기 제1 합금화 도금층과는 구분되는 합금화 도금층으로서, 중량%로, Fe: 30~40%, Zn: 1~22%, Mn: 2% 이하(0%를 포함), Si: 0.1% 미만(0%를 포함), 및 잔부 Al을 포함하고, 이외에 기타 불가피한 불순물 및 본 발명의 목적을 해치지 않는 범위에서 다른 원소를 포함할 수 있다. 혹은, 본 발명의 일 측면에 따르면, 상기 제2 합금화 도금층은 중량%로, Fe: 30~40%, Zn: 1~22%, Mn: 2% 이하(0%를 포함), Si: 0.1% 미만(0%를 포함), 잔부 Al 및 기타 불가피한 불순물로 이루어질 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 제2 합금화 도금층에 있어서, Al 함량은 중량%로, 40~65%일 수 있고, 바람직하게는 44~65%일 수 있고, 보다 바람직하게는 44~60%일 수 있다. 한편, 상기 제2 합금화 도금층에 있어서, 상기 Al 함량을 만족함으로써 목적하는 소착성, 내식성 및 도금층의 밀착성을 용이하게 확보할 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 제2 합금화 도금층에 있어서, Fe 함량은 중량%로, 30~40%인 것이 바람직하고, 32~40%인 것이 보다 바람직하다. 제2 합금화 도금층에 있어서 상기 Fe 함량을 만족함으로써 목적하는 소착성, 내식성 및 도금층의 밀착성을 용이하게 확보할 수 있다.
즉, 본 발명의 일 측면에 따르면, 제1 합금화 도금층 및 제2 합금화 도금층이 전술한 특정의 조성을 가짐으로써, 도금 강판의 소착성 및 내식성을 향상시킬 수 있을 뿐만 아니라, 합금화 처리 후의 도금층의 밀착성이라는 본 발명의 목적하는 효과를 발휘할 수 있다. 따라서, 전술한 제1 합금화 도금층 및 제2 합금화 도금층의 조성으로서, 어느 하나의 성분 함량이라도 만족하지 못하는 경우에는 본 발명에 의한 우수한 소착성, 내식성 및 밀착성의 효과를 기대할 수 없다.
또한, 본 발명의 일 측면에 따르면, 상기 제1 합금화 도금층 및 제2 합금화 도금층에 있어서, 상기 Si의 함량은 0.1% 미만일 수 있고, 0%인 경우를 포함한다. 즉, 본 발명에서는 용융 도금욕에 추가의 원소로서 Si 등의 원소를 0.1% 미만으로 포함할 수 있고, Si를 포함하지 않는 경우도 가능하므로, 그 하한은 별도로 한정하지 않는다. 한편, 전술한 가공 시 크랙의 저항성 확보라는 측면에서 상기 Si 함량은 0.1% 미만인 것이 바람직하다. 한편, 보다 바람직하게는 상기 단층의 합금화 도금층에 있어서 Si 함량의 상한은 0.09%(즉, 0.09% 이하)일 수 있다.
특히, 본 발명의 일 측면에 따르면, 상기 제1 합금화 도금층 및 제2 합금화 도금층에 있어서, Zn은 도금 강판의 소착성 및 내식성을 향상시킬 뿐만 아니라, 합금화 처리 이후의 도금층의 밀착성을 향상시키는 중요한 역할을 한다. 따라서, 본 발명의 도금 강판에서는 상기 제1 합금화 도금층 내 Zn 함량이 1~20%이고, 제2 합금화 도금층 내 Zn 함량이 1~22%인 것이 바람직하다. 본 발명에 있어서, 상기 상기 제1 합금화 도금층 및 제2 합금화 도금층 내 Zn 함량의 하한을 충족하지 못하면, 소착성 및 내식성 향상의 효과를 기대할 수 없다. 또한, 상기 상기 제1 합금화 도금층 및 제2 합금화 도금층 내 Zn 함량의 상한을 충족하지 못하면, 합금화 처리 후의 도금층의 밀착성이 떨어지는 문제가 있다.
본 발명의 일 측면에 따르면, 상기 제1 합금화 도금층 내 Zn 함량은 1~20%이고, 제2 합금화 도금층 내 Zn 함량은 1.5~22%인 것이 보다 바람직하다.
또한, 본 발명의 일 측면에 따르면, 상기 제2 합금화 도금층 내 Zn 함량이 상기 제1 합금화 도금층 내 Zn 함량보다 클 수 있고, 이는 소지 강판을 도금욕에 침지한 후, 냉각 및 합금화 처리의 과정을 거치면서, 소지 강판 중의 Fe의 확산의 결과, 소지 강판으로부터 거리가 먼 제2 합금화 도금층에서의 Zn이 농화되기 때문이다.
또한, 본 발명의 일 측면에 따르면, 상기 제1 합금화 도금층 내 Mn 함량이 상기 제2 합금화 도금층 내 Mn 함량보다 클 수 있다. 또한, 본 발명의 일 측면에 따르면, 상기 제1 합금화 도금층 내 Fe 함량이 상기 제2 합금화 도금층 내 Fe 함량보다 클 수 있다.
본 발명의 일 측면에 따르면, 전술한 제조 과정 중의 알루미늄 도금욕에 소지강판을 침지하여 도금을 행한 후, 합금화 열처리에 의해, 소지 강판의 Fe 및/또는 Mn이 알루미늄 도금층으로 확산되고, 그 결과 Fe 및 Al의 금속간 화합물로 주로 이루어지는 제1 합금화 도금층 및 제2 합금화 도금층이 형성된다.
한편, 이것으로 한정되는 것은 아니나, 본 발명의 일 측면에 따르면, 바람직하게는 상기 제1 합금화 도금층은 Fe 2Al 5의 합금상을 주로 포함할 수 있고, 상기 제2 합금화 도금층은 FeAl 3의 합금상을 주로 포함할 수 있다. 구체적으로, 본 발명의 일 측면에 따르면, 상기 제1 합금화 도금층은 Fe 2Al 5의 합금상을 80% 이상 포함할 수 있고, 상기 제2 합금화 도금층은 FeAl 3의 합금상을 80% 이상 포함할 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 제1 합금화 도금층은 Fe 2Al 5의 합금상을 90% 이상 포함할 수 있고, 상기 제2 합금화 도금층은 FeAl 3의 합금상을 90% 이상 포함할 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 제1 합금화 도금층은 Fe 2Al 5을 기본으로(즉, 80% 이상이 Fe 2Al 5이되) Zn, Mn 및/또는 Si 등이 고용된 합금상으로 이루어지고, 상기 제2 합금화 도금층은 FeAl 3을 기본으로(즉, 80% 이상이 FeAl 3이되) Zn, Mn 및/또는 Si 등이 고용된 합금상으로 이루어질 수 있다.
즉, 본 명세서에 있어서, 상기 합금상으로 이루어진다는 것은, 기타 불가피한 불순물이 포함될 수도 있고, 본 발명의 목적을 해치지 않는 범위에서 다른 성분을 포함할 수 있음을 내포한다.
한편, 합금화 도금층이 2층으로 형성되는 경우로서, 본 발명에 따른 알루미늄계 합금 도금 강판은, 상기 합금화 도금층의 표면 조도 중심선으로부터, 합금화 도금층의 최하단선까지의 거리를 t라고 하였을 때, 상기 합금화 도금층의 표면 조도 중심선으로부터 3/4t까지의 영역 내에서 상기 소지 강판이 차지하는 면적의 비(As)가 30% 이상이다.
본 명세서에 있어서, 상기 합금화 도금층의 최하단선은 강판의 두께 방향에 수직인 방향으로 합금화 도금층의 가장 하단을 그린 선을 의미한다. 또한, 본 발명의 일 측면에 따르면, 상기 합금화 도금층의 최하단선은 상기 표면 조도 중심선과 수평이 되도록 그린 선을 의미할 수 있다.
구체적으로, 본 발명에 따른 합금화 도금층이 2층으로 형성되는 경우를 도 3에 나타내었고, 도 3에서 볼 수 있듯이, 상기 합금화 도금층의 표면 조도 중심선으로부터 3/4t까지의 영역 내에서 상기 소지 강판이 차지하는 면적의 비(As)가 30% 이상이 되도록, 합금화 도금층과 소지 강판의 계면이 톱니 형태로 형성된다.
본 발명의 일 측면에 따른 합금화 도금층은, 모재인 소지 강판과의 경계를 전술한 바와 같이 톱니의 형태로 형성함으로써, 가공 시의 크랙이 유발되는 것을 억제할 수 있어 우수한 크랙 저항성을 확보할 수 있다.
이 때, 상기 As의 값은 그 값이 클수록 가공 시 크랙 저항성의 효과가 보다 우수하다는 점에서 그 상한을 별도로 한정하지 않을 수 있다. 다만, 보다 바람직하게는 상기 As의 값의 상한은 80%일 수 있다.
한편, 상기 합금화 도금층이 2층으로 형성되는 경우, 전술한 합금화 도금층과 소지 강판의 경계라는 의미는, 제1 합금화 도금층이 모재인 소지 강판 상에 형성되는 것이므로, 구체적으로는 제1 합금화 도금층과 소지 강판의 경계를 의미하는 것일 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 제1 합금화 도금층의 두께는 1~25㎛일 수 있고, 상기 제2 합금화 도금층의 두께는 3~20㎛일 수 있다. 본 발명의 일 측면에 따르면, 상기 제1 합금화 도금층의 두께를 1㎛ 이상으로 함으로써 내식성의 효과가 발휘되고, 제1 합금화 도금층의 두께를 25㎛ 이하로 함으로써 밀착성을 확보할 수 있다. 또한, 상기 제2 합금화 도금층의 두께를 3㎛ 이상으로 함으로써 내식성의 효과가 발휘되고, 상기 제2 합금화 도금층의 두께를 25㎛ 이하로 함으로써 밀착성을 확보할 수 있다.
한편, 본 발명에 있어서, 제1 합금화 도금층 상에 제2 합금화 도금층이 형성된다는 것은, 제1 합금화 도금층 상에 제2 합금화 도금층이 접하도록 형성되는 것을 의미한다.
또한, 본 발명의 일 측면에 따르면, 합금화 도금층이 1층 또는 2층으로 형성되는 경우 모두, 알루미늄계 도금 강판에 포함되는 소지 강판은 열간 프레스 성형용 강판으로서, 열간 프레스 성형에 사용된다면 특별히 한정하지 않는다.
다만, 한가지 비제한적인 예를 든다면, 소지 강판으로서 Mn을 1~25%의 범위로 포함하는 강판을 사용할 수 있다. 혹은, 보다 바람직하게는 소지 강판으로서, 중량%로, C: 0.05~0.3%, Si: 0.1~1.5%, Mn: 0.5~8%, B: 50ppm 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 조성을 가지는 소지 강판을 사용할 수 있다.
즉, 본 발명에 의하면, 열간 성형시 발생되는 프레스 다이(die)나 롤에 부착되는 도금층의 소착을 억제할 수 있는 동시에, 내식성 및 도금층의 밀착성이 우수한 도금 강판을 제공할 수 있다.
[알루미늄계 합금 도금 강판의 제조 방법]
이하, 본 발명의 일 측면에 따른 열간 프레스 성형에 사용되는, 알루미늄계 합금 도금 강판의 제조방법에 대한 한가지 예를 설명하면 하기와 같다. 다만, 하기의 열간 프레스 성형용 알루미늄계 합금 도금 강판의 제조방법은 한가지 예시로서 본 발명의 열간 프레스 성형용 알루미늄계 합금 도금 강판이 반드시 본 제조방법에 의해 제조되어야 한다는 것은 아니다.
본 발명의 또 다른 일 측면은, 열간 프레스 성형에 이용되는 알루미늄계 도금 강판의 제조방법으로서,
소지 강판을 준비하는 단계;
상기 소지 강판을, 중량%로, Zn: 3~30%, Si: 0.1% 미만, 잔부 Al 및 기타 불가피한 불순물을 포함하는 알루미늄 도금욕에 침지하여 알루미늄 도금 강판을 얻는 단계;
알루미늄 도금 후, 200~300℃로 가열된 공기를 상기 알루미늄 도금 강판에 공급하여 알루미늄 도금 강판의 표면에 산화피막을 형성하는 냉각 단계; 및
상기 냉각 후 연속하여 650~750℃의 가열 온도 범위에서 1~20초 유지하여 열처리하는 온라인(on-line) 합금화를 통해 알루미늄계 도금 강판을 얻는 단계;를 포함하는, 알루미늄계 도금 강판의 제조방법을 제공한다.
먼저, 알루미늄 합금 도금강판을 제조하기 위하여 소지 강판을 준비한다. 상기 소지 강판에 대해서는 전술한 설명을 동일하게 적용할 수 있다.
다음으로, 본 발명의 일 측면에 따른 알루미늄계 도금 강판은 소지강판의 표면에 중량%로, Zn: 3~30%, Si: 0.1% 미만, 잔부 Al 및 기타 불가피한 불순물을 포함하는 알루미늄 도금욕을 이용하여 용융 알루미늄 도금을 실시하고, 도금 공정에 연속하여 냉각한 후, 이어서 곧바로 열처리하는 온라인(on-line) 합금화 처리를 실시함으로써 얻을 수 있다.
구체적으로, 소지 강판을 용융 알루미늄 도금욕에 침지함으로써 도금을 행한다. 한편, 본 발명의 일 측면에 따르면, 상기 도금욕의 조성은 Zn: 3~30%, Si: 0.1% 미만, 잔부 Al 및 기타 불가피한 불순물을 포함하는 용융 알루미늄 합금 도금욕일 수 있고, 보다 바람직하게는 Zn: 3~30%, Si: 0.1% 미만 및 Al: 70~97%을 포함할 수 있고, 이외에 기타 불가피한 불순물도 포함할 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 알루미늄 도금욕에는 본 발명의 목적을 해치지 않는 범위에서 추가의 원소를 더 첨가할 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 용융 알루미늄 합금 도금욕은 Zn: 3~30%, Si: 0.1% 미만, Al: 70~97% 및 기타 불가피한 불순물로 이루어질 수 있다.
본 발명의 일 측면에 따르면, 상기 알루미늄 도금욕에 첨가되는 Zn은 중량%로, 3~30%로 첨가하는 것이 바람직하다. 상기 Zn 함량이 30%를 초과하면, 도금욕의 애쉬(ash)가 다량 발생하기 때문에 분진 발생 등으로 인해 작업성이 떨어지는 문제가 생긴다. 또한, 상기 Zn 함량이 3% 미만이면, 도금욕의 용융점이 크게 감소하지 않고, 합금화 시 Zn의 증발로 인해 도금층 중에 Zn이 잔류하지 않게 되어 내식성의 향상을 얻을 수 없다.
다만, 본 발명의 효과를 보다 극대화하기 위해서, 상기 Zn 함량의 하한은 5%인 것이 바람직하고, 10%인 것이 보다 바람직하다. 마찬가지로, 본 발명의 효과를 보다 극대화하기 위하여, 상기 Zn 함량의 상한은 25%인 것이 바람직하고, 20%인 것이 보다 바람직하다.
한편, 본 발명의 일 측면에 따르면, 상기 도금욕의 온도는 도금욕의 융점(Tb) 대비 20~50℃ 정도로 높게(즉, Tb+20℃~Tb+50℃ 범위로) 관리하는 것이 바람직하다. 상기 도금욕의 온도를 Tb+20℃ 이상으로 제어함로써, 도금욕의 유동성으로 인한 도금 부착량의 제어가 가능해지고, 상기 도금욕의 온도를 Tb+50℃ 이하로 제어함으로써 도금욕 중의 구조물 침식을 방지할 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 도금 시, 편면당 도금량(도금층의 편면당 부착량)은 20~100g/m 2일 수 있 있고, 이는 소지 강판을 용융 알루미늄 도금욕에 침지한 후, 에어 와이핑(air wipping) 공정을 적용함으로써 제어될 수 있다. 상기 도금 시, 편면당 도금량이 20g/m 2 이상이면, 내식성 효과가 발휘되고, 상기 도금시 편면당 도금량이 100g/m 2 이하이면, 밀착성이 확보되는 효과가 발휘될 수 있다.
이어서, 알루미늄 도금 후, 200~300℃로 가열된 공기를 상기 알루미늄 도금 강판에 공급하여 알루미늄 도금 강판의 표면에 산화피막을 형성하도록 냉각할 수 있다. 이러한 냉각 단계는 균일한 합금층을 형성하는 수단인 점에서 본 발명에서 중요하다. 즉, 냉각 시 200~300℃로 가열된 공기를 알루미늄 도금 강판에 공급하여 노출시킴으로써, 알루미늄 도금 강판의 표면에는 산화 피막(알루미늄 산화막; AlO x)을 형성하게 된다.
본 발명의 일 측면에 따르면, 전술한 바와 같이 합금화 처리 전에, 산화 피막을 알루미늄 도금 강판의 표면에 용융 알루미늄 도금층 전체 두께에 대하여 10% 이상(보다 바람직하게는 10% 이상 20% 이하) 형성할 수 있다. 전술한 바와 같이, 산화 피막을 10% 이상 형성함으로써, 도금층에 포함되는 Zn이 합금화 처리 과정에서 휘발되는 것을 방지할 수 있고, 이에 따라 우수한 소착성, 내식성 및 도금층의 밀착성을 확보할 수 있다.
다음으로, 전술한 냉각 후 바로 연속하여 열처리하는 온리안(on-line) 합금화 처리를 실시할 수 있다. 이러한 합금화 열처리를 통해, 소지 강판의 Fe 및/또는 Mn이 알루미늄 도금층으로 확산되고, 이로 인해 도금층의 합금화가 이루어질 수 있다.
구체적으로, 본 발명에 있어서, 상기 합금화 열처리 온도는 650~750℃ 범위이고, 유지시간은 1~20초일 수 있다.
본 발명에 있어서, 온라인 합금화 처리는 도 1에 도시된 개략도에서 볼 수 있는 바와 같이, 용융 알루미늄 도금 후 승온하여 열처리하는 공정을 의미한다. 본 발명에 따른 온라인 합금화 열처리 방식에서는 용융 알루미늄 도금 후 도금층이 냉각되어 굳어지기 전에 합금화를 위한 열처리가 시작되기 때문에 짧은 시간에 합금화가 가능하다. 종래 알려진 알루미늄 도금 강판의 도금층 성분계에서는 합금화 속도가 느려 짧은 시간 안에 충분한 합금화를 완료시킬 수 없었기 때문에, 도금 후 바로 열처리하는 온라인(on-line) 합금화 방법을 적용하기 어려웠다. 그러나, 본 발명에서는 합금화 속도에 영향을 미치는 도금욕의 조성 및 제조 조건 등을 제어함으로써 1~20초의 비교적 짧은 열처리 시간에도 불구하고 알루미늄 도금층의 합금화를 이룰 수 있다.
한편, 상기 합금화 열처리 온도는 열처리되는 강판의 표면온도를 기준으로 하고, 상기 열처리 온도가 650℃ 미만이면 도금층의 합금화가 불충분해지는 문제가 발생할 수 있고, 반면 상기 열처리 온도가 750℃를 초과하면 도금강판의 냉각에 문제가 생겨 도금 밀착성이 열화되는 문제가 있다.
한편, 본 발명의 일 측면에 따르면, 합금화 열처리 온도를 조절함으로써 합금화 도금층의 구성이 달라지게 되는데, 합금화 열처리 온도가 650~680℃에서는 합금화 도금층이 2층(전술한 제1 합금화 도금층 및 제2 합금화 도금층에 대응)으로 형성되는 반면, 680~750℃에서는 합금화 도금층이 단층으로 형성된다.
또한, 본 발명의 일 측면에 따르면, 상기 합금화 열처리 시 유지 시간은 1~20초 범위에서 행할 수 있다. 본 발명에서 유지시간이라 함은 강판에서 상기 가열 온도(편차 ±10℃ 포함)가 유지되는 시간을 의미한다. 상기 유지 시간을 1초 이상으로 함으로써 충분한 합금화가 가능해지고, 상기 유지 시간을 20초 이하로 함으로써 생산성 확보의 효과가 있다.
본 발명의 일 측면에 따르면, 본 발명의 효과를 보다 향상시키기 위해, 상기 합금화 열처리 시 유지 시간의 하한은 1초일 수 있고, 보다 바람직하게는 3초일 수 있다. 마찬가지로, 상기 합금화 열처리 시 유지 시간의 상한은 20초일 수 있고, 보다 바람직하게는 10초일 수 있다.
전술한 바와 같이, 종래 기술에서는 Si가 포함됨으로써 Fe의 확산이 억제되므로 20초 이하의 짧은 시간에 합금화가 이루어지는 것이 불가능했던 반면, 본 발명에 의하면, 도금욕의 조성 및 합금화 열처리 시의 조건을 제어함으로써, 20초 이하라는 비교적 짧은 시간에 합금화가 이루어질 수 있다.
한편, 본 발명의 일 측면에 따른 알루미늄 합금 도금강판의 제조방법은, 상기 합금화 처리 후에 냉각하는 단계를 더 포함할 수 있다.
본 발명의 일 측면에 따르면, 상기 냉각은 합금화 처리로부터 배출된 강판을 300℃ 이하까지 15~25℃/s의 평균 냉각 속도로 냉각할 수 있다. 한편, 상기 냉각은 공냉(air cooling), 급냉(mist cooling)일 수 있고, 본 발명의 일 측면에 따르면, 가장 바람직하게 상기 냉각은 공냉 및 급냉일 수 있다. 본 발명의 일 측면에 따르면, 상기 평균 냉각 속도를 15℃ 이상으로 함으로써, 강판의 온도를 300℃ 이하로 냉각시켜 롤에 흡착되는 문제점을 방지할 수 있고 상기 평균 냉각 속도를 25℃/s이하로 함으로써 조업속도를 상승시킬 수 있는 효과가 발휘된다.
또한, 본 발명의 일 측면에 따르면, 상기 냉각은 6~30초 동안 실시할 수 있고, 상기 냉각 시간을 6초 이상으로 함으로써 원하는 강판온도까지 냉각시킬 수 있는 효과가 발휘되고, 상기 냉각 시간을 30초 이하로 함으로써 생산성을 최대화 하면서 강판온도를 원하는 온도까지 냉각시킬 수 있는 효과가 발휘될 수 있다.
한편, 본 발명의 일 측면에 따르면, 본 발명을 통해 제조되는 도금 강판에 있어서, 합금화 도금층 중의 Fe 함량은 하기와 같은 관계식 1로 나타낼 수 있고, 합금화 중의 열처리 온도 및 도금욕에서의 Zn 함량을 적정 범위로 제어함으로써, 우수한 소착성, 내식성 및/또는 도금층 밀착성의 효과를 용이하게 발휘할 수 있다.
[관계식 1]
150 - 0.4×[T]+3.3×10-4×[T] 2 - 0.38×[wt%Zn] ≤ [wt%Fe] ≤ 180 - 0.4×[T]+3.3×10-4×[T] 2 - 0.38×[wt%Zn]
(상기 관계식 1 중, [T]는 합금화 열처리 온도(℃)를 나타내고, [wt%Zn]은 도금욕에서의 Zn 중량% 함량을 나타내고, [wt%Fe]는 합금화 도금층에서의 Fe 중량% 함량을 나타낸다.)
한편, 본 발명의 또 다른 일 측면은, 전술한 알루미늄 합금 도금 강판을 열간 프레스 성형하여 얻어지는 열간 성형 부재를 제공한다.
상기 열간 프레스 성형은 당해 기술분야에서 일반적으로 이용되는 방법을 이용할 수 있다. 예컨대 도금 강판을 800~950℃의 온도범위에서 3~10분 가열한 후, 프레스(press)를 이용하여 상기 가열된 강판을 원하는 형상으로 열간 성형할 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 열간 프레스 성형 부재의 소지강판의 조성은 전술한 소지강판의 조성과 동일할 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명을 예시하여 구체화하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에서 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.
(실험예 1)
먼저, 소지 강판으로 하기 표 1의 조성을 가지는 두께 1.2㎜인 열간 프레스 성형용 냉연강판을 준비한 후, 소지강판을 침지하고 초음파 세척하여 표면에 존재하는 압연유 등의 물질을 제거하였다.
이후, 이를 환원성 분위기로 유지되고 있는 로(Furnace)에서 소둔 온도 800℃, 소둔시간 50초에서 열처리한 후에, 상기 소지 강판을 하기 표 2에 나타낸 도금욕 조성 및 도금욕 온도 조건으로 도금욕에 침지하여 알루미늄 도금을 실시하였다. 상기 도금욕 침지 시, 침지 온도는 도금욕의 온도와 동일하게 유지하였고, 도금욕의 온도는 각각의 도금 성분계의 융점(Tb)에 대해 일괄적으로 40℃ 상향시킨 온도로 도금욕을 유지하였다. 도금량은 합금화를 비교하기 위하여 에어 와이핑(air wipping)을 이용하여 편면 60g/m 2으로 일정하게 유지하였다.
이어서, 알루미늄 도금된 강판을 200~300℃로 가열된 공기를 상기 알루미늄 도금 강판에 공급하여 냉각하였고, 이후, 표 2에 나타낸 합금화 열처리 조건으로 합금화 열처리를 실시하였고, 이를 공냉으로 냉각하여 알루미늄 합금 도금 강판을 제조하였다.
원소 C Si Mn Al Ti B Fe
함량 (%) 0.22 0.25 1.3 0.03 0.03 25ppm bal.
비고 도금욕 조성(wt%) 합금화
Al Zn 온도[℃] 시간[초]
비교예 1 100 - 750 20
발명예 1 bal. 3 700 7
비교예 2 bal. 5 630 30
발명예 2 bal. 5 650 10
발명예 3 bal. 5 680 10
발명예 4 bal. 5 750 5
비교예 3 bal. 20 630 20
발명예 5 bal. 20 650 10
발명예 6 bal. 20 680 5
발명예 7 bal. 20 750 3
비교예 4 bal. 30 630 15
발명예 8 bal. 30 650 10
발명예 9 bal. 30 680 7
발명예 10 bal. 30 750 3
비교예 5 bal. 32 630 25
비교예 6 bal. 32 650 25
비교예 7 bal. 32 680 20
비교예 8 bal. 32 750 10
비고 합금화 도금층이 단층인 경우 또는 제1 합금화 도금층 제2 합금화 도금층 As*
성분[wt%] 두께
[㎛]
성분[wt%] 두께
[㎛]
Al Zn Mn Fe Al Zn Mn Fe
비교예 1 bal 2 45 10 bal 0.0 1.5 0 12 18
발명예 1 bal 1 0 46 10 bal 1.5 1 38 5 80
비교예 2 bal 2 0.3 44 10 bal 1.0 0.1 0 15 15
발명예 2 bal 2 1 44 1 bal 4.0 0.3 39 20 70
발명예 3 bal 2 1 45 5 bal 3.5 0.5 40 15 65
발명예 4 bal 1 2 50 15 bal - - - 60
비교예 3 bal 17 0.5 37 10 bal 19.0 1 0 15 27
발명예 5 bal 15 1 38 15 bal 17.0 1.2 34 5 50
발명예 6 bal 12 2 39 17 bal 14.0 1.5 35 3 45
발명예 7 bal 10 3 48 20 bal - - - 40
비교예 4 bal 23 1.5 35 5 bal 25.0 1 0 10 24
발명예 8 bal 20 2 35 20 bal 22.0 1.5 32 4 42
발명예 9 bal 18 3 36 15 bal 20.0 2 33 3 36
발명예 10 bal 15 5 40 25 bal - - - 31
비교예 5 bal 27 2 33 10 bal 29.0 1 0 20 17
비교예 6 bal 25 4 34 10 bal 27.0 2 30 18 10
비교예 7 bal 23 5 35 12 bal 25.0 3 31 16 27
비교예 8 bal 22 6 35 30 - - - - 25
As*: 합금화 도금층의 표면 조도 중심선으로부터, 합금화 도금층의 최하단선까지의 거리를 t라고 하였을 때, 상기 합금화 도금층의 표면 조도 중심선으로부터 3/4t까지의 영역 내에서 상기 소지 강판이 차지하는 면적의 비 [%]
한편, 전술한 방법으로 제조된 알루미늄 합금 도금 강판에 있어서, 합금화 도금층이 단층인 경우 또는 2층인 경우로서 제1 합금화 도금층 및 제2 합금화 도금층에서의 각 성분 함량 및 두께를 측정하여 상기 표 3에 나타내었다. 상기 도금층에서의 성분은 EDS(Energy Dispersive Spectroscopy)의 방법으로 점분석으로 측정하였고, 두께는 전자현미경으로 단면의 두께를 측정하였다.
또한, 상기 발명예 4의 단일층으로 형성된 합금화 도금층에 대하여 XRD(X-Ray Diffraction)의 방법으로 합금상을 분석하였으며 합금화 도금층은 Fe 2Al 5의 합금상으로 80% 이상 이루어지는 것을 확인하였다.
또한, 상기 발명예 1의 2층으로 형성된 합금화 도금층에 대하여 도XRD(X-Ray Diffraction)의 방법과 EDS분석으로 합금상 분석을 행하여, 제1 합금화 도금층은 Fe 2Al 5의 합금상으로 주로 이루어지고, 제2 합금화 도금층은 FeAl 3의 합금상으로 80% 이상 이루어지는 것을 확인하였다.
이렇게 제조된 도금 강판에 대하여, 전체 도금층 중 상부 도금층이 차지하는 비율을 SEM(주사식 전자현미경)을 이용하여 단면두께의 비율을 측정하여 하기 표 4에 나타내었다. 또한, 도금 강판의 물성 평가를 위해, 하기와 같은 방법으로 도금층 상부 비율, 소착성, 내식성 및 도금 밀착성을 평가하였다.
[소착성]
이렇게 제조된 도금 강판에 대하여, 도금의 물성 평가를 위해 900℃의 조건에서 5분간 가열한 후, 합금화 도금층이 다이(die)에 융착되어 있는 지를 육안으로 관찰하여 하기와 같은 기준으로 평가하였다.
○: 소착없음
×: 도금층 용융으로 인한 다이 흡착이 발생
[내식성]
도금 강판에 대하여 염수 분무 실험을 한 후 720시간 동안 방치하였고, 이후에 표면에 형성된 부식 생성물을 제거하여 표면에 형성되어 있는 부식 생성물의 최대 깊이를 측정하였다.
내식성: 720시간 염수 분무 실험을 한 후, 표면에 형성된 부식 생성물을 제거하고, 부식에 의해 형성된 부식의 깊이를 측정하여 하기와 같이 기준치(70㎛) 이하일 경우를 양호로 표시하였다.
○: 70㎛ 이하
×: 70㎛ 초과
[도금 밀착성]
도금 밀착성은 합금화 후 도금층을 편면마찰실험을 통해 도금층에 전단응력을 가했을 경우 크랙(crack)이 발생하여 도금층이 박리되는 정도를 테이프를 이용하여 박리되는 정도를 무게로 환산하여 측정하였고, 하기와 같은 기준으로 평가하였다.
○: 0.5g/㎡이하
×: 0.5g/㎡초과
도금층의 상부 비율(%) 소착성 내식성 도금 밀착성 도금층의 구성
비교예 1 55% × × 이중층
발명예 1 33% 이중층
비교예 2 60% × × 이중층
발명예 2 95% 이중층
발명예 3 75% 이중층
발명예 4 0% 단층
비교예 3 60% × 이중층
발명예 5 25% 이중층
발명예 6 15% 이중층
발명예 7 0% 단층
비교예 4 67% × 이중층
발명예 8 17% 이중층
발명예 9 17% 이중층
발명예 10 0% 단층
비교예 5 67% × × 이중층
비교예 6 64% × 이중층
비교예 7 57% × 이중층
비교예 8 0% × 단상
상기 표 1~4에서와 같이, 본 발명에서 규정하는 도금욕의 조성 및 합금화 조건을 충족하는 발명예 1~10의 경우, 소착성, 내식성 및 도금 밀착성이 모두 양호하였고, 이에 따라 열간 성형 시 발생되는 프레스 다이나 롤에 도금층이 소착되거나, 마이크로 크랙이 발생하는 것을 방지할 수 있었다.
반면, 본 발명에서 규정하는 도금욕의 Zn 함량을 충족하지 못하거나, 합금화 조건을 충족하지 못하는 비교예 1~8의 경우, 소착성, 내식성 및 도금 밀착성 중 하나 이상의 물성이 좋지 않았고, 이에 따라 열간 선형 시 프레스 다이나 롤에 도금층이 소착되거나, 마이크로 크랙이 발생하는 등의 문제가 발생하였다.
한편, 도 1은 종래 기술에 따라 알루미늄 도금욕에 Si를 7% 첨가한 추가의 실험예에 대한 알루미늄계 도금 강판의 단면을 주사전자현미경으로 관찰한 사진을 나타낸 것이다. 이 경우, 합금화 도금층의 표면 조도 중심선으로부터 3/4t까지의 영역 내에서 상기 소지 강판이 차지하는 면적의 비가 30% 미만이었다.
반면, 도 2는 상기 발명예 1에 의해 제조된 알루미늄 합금 도금 강판의 단면을 주사전자현미경으로 관찰한 사진으로서, 2층의 합금화 도금층을 형성한 예로서, Zn 첨가에 의해 합금화 도금층과 모재인 소지 강판의 경계가 톱니 형태로 형성되었고, 이에 따라 전술한 합금화 도금층의 표면 조도 중심선으로부터 3/4t까지의 영역 내에서 상기 소지 강판이 차지하는 면적의 비가 30% 이상임을 확인하였다.
또한, 도 3은 발명예 6에 의해 제조된 알루미늄계 합금 도금 강판의 단면을 관찰한 주사전자현미경으로 사진으로서, 마찬가지로 Zn 첨가에 의해 합금화 도금층과 모재인 소지 강판의 경계가 톱니 형태로 형성되었고, 이에 따라 전술한 합금화 도금층의 표면 조도 중심선으로부터 3/4t까지의 영역 내에서 상기 소지 강판이 차지하는 면적의 비가 30% 이상이었다.
1: 열처리로
2: 알루미늄 도금욕
3: 냉각 장치
4: 합금화 열처리 장치

Claims (15)

  1. 소지 강판; 및
    상기 소지 강판 상에 형성된 단층의 합금화 도금층을 포함하고,
    상기 합금화 도금층은 중량%로, Fe: 35~50%, Zn: 1~20%, Mn: 5% 이하, Si: 0.1% 미만, 잔부 Al 및 기타 불가피한 불순물을 포함하고,
    상기 합금화 도금층의 표면 조도 중심선으로부터, 합금화 도금층의 최하단선까지의 거리를 t라고 하였을 때, 상기 합금화 도금층의 표면 조도 중심선으로부터 3/4t까지의 영역 내에서 상기 소지 강판이 차지하는 면적의 비가 30% 이상인, 알루미늄계 합금 도금 강판.
  2. 소지 강판;
    상기 소지 강판 상에 형성된 합금화 도금층을 포함하고,
    상기 합금화 도금층은
    중량%로, Fe: 35~50%, Zn: 1~20%, Mn: 5% 이하, Si: 0.1% 미만, 잔부 Al 및 기타 불가피한 불순물을 포함하는 제1 합금화 도금층; 및
    중량%로, Fe: 30~40%, Zn: 1~22%, Mn: 2% 이하, Si: 0.1% 미만, 잔부 Al 및 기타 불가피한 불순물을 포함하는 제2 합금화 도금층을 포함하고,
    상기 합금화 도금층의 표면 조도 중심선으로부터, 합금화 도금층의 최하단선까지의 거리를 t라고 하였을 때, 상기 합금화 도금층의 표면 조도 중심선으로부터 3/4t까지의 영역 내에서 상기 소지 강판이 차지하는 면적의 비가 30% 이상인, 알루미늄계 합금 도금 강판.
  3. 제 1 항에 있어서,
    상기 합금화 도금층의 두께는 5~25㎛인 것인, 알루미늄계 합금 도금 강판.
  4. 제 1 항에 있어서,
    상기 합금화 도금층은 Fe 2Al 5의 합금상을 80% 이상 포함하는, 알루미늄계 합금 도금 강판.
  5. 제 1 항에 있어서,
    상기 합금화 도금층 내 Al의 함량은 40~60%인 것인, 알루미늄계 합금 도금 강판.
  6. 제 2 항에 있어서,
    상기 제2 합금화 도금층 내 Zn 함량이 상기 제1 합금화 도금층 내 Zn 함량보다 큰 것인, 알루미늄계 합금 도금 강판.
  7. 제 2 항에 있어서,
    상기 제1 합금화 도금층 내 Zn 함량은 1~20%이고,
    상기 제2 합금화 도금층 내 Zn 함량은 1.5~22%인 것인, 알루미늄계 합금 도금 강판.
  8. 제 2 항에 있어서,
    상기 제1 합금화 도금층 내 Al 함량은 40~60%이고,
    상기 제2 합금화 도금층 내 Al 함량은 40~65%인, 알루미늄계 합금 도금 강판.
  9. 제 2 항에 있어서,
    상기 제1 합금화 도금층의 두께는 1~25㎛이고,
    상기 제2 합금화 도금층의 두께는 4~20㎛인 것인, 알루미늄계 합금 도금 강판.
  10. 제 2 항에 있어서,
    상기 제1 합금화 도금층은 Fe 2Al 5의 합금상을 80% 이상 포함하고,
    상기 제2 합금화 도금층은 FeAl 3의 합금상을 80% 이상 포함하는, 알루미늄계 합금 도금 강판.
  11. 제 1 항 또는 제 2 항에 있어서,
    상기 소지 강판은 중량%로, C: 0.05~0.3%, Si: 0.1~1.5%, Mn: 0.5~8%, B: 50ppm 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는, 알루미늄계 합금 도금 강판.
  12. 열간 프레스 성형에 이용되는 알루미늄계 합금 도금 강판의 제조방법으로서,
    소지 강판을 준비하는 단계;
    상기 소지 강판을, 중량%로, Zn: 3~30%, Si: 0.1% 미만, 잔부 Al 및 기타 불가피한 불순물을 포함하는 알루미늄 도금욕에 침지하여 알루미늄 도금 강판을 얻는 단계;
    알루미늄 도금 후, 200~300℃로 가열된 공기를 상기 알루미늄 도금 강판에 공급하여 알루미늄 도금 강판의 표면에 산화피막을 형성하는 냉각 단계; 및
    상기 냉각 후 연속하여 650~750℃의 가열 온도 범위에서 1~20초 유지하여 열처리하는 온라인(on-line) 합금화를 통해 알루미늄계 도금 강판을 얻는 단계;를 포함하는, 알루미늄계 합금 도금 강판의 제조방법.
  13. 제 12 항에 있어서,
    하기 관계식 1을 충족하도록 합금화 온도를 제어하는 것인, 알루미늄계 합금 도금 강판의 제조방법.
    [관계식 1]
    150 - 0.4×[T]+3.3×10-4×[T] 2 - 0.38×[wt%Zn] ≤ [wt%Fe] ≤ 180 - 0.4×[T]+3.3×10-4×[T] 2 - 0.38×[wt%Zn]
    (상기 관계식 1 중, [T]는 합금화 열처리 온도(℃)를 나타내고, [wt%Zn]은 도금욕에서의 Zn 중량% 함량을 나타내고, [wt%Fe]는 합금화 도금층에서의 Fe 중량% 함량을 나타낸다.)
  14. 제 12 항에 있어서,
    상기 산화 피막은 표면에 용융 알루미늄 도금층 전체 두께에 대하여 10% 이상 형성되는 것인, 알루미늄계 합금 도금 강판의 제조방법.
  15. 제 1 항 또는 제 2 항의 알루미늄계 합금 도금 강판을 열간 프레스 성형하여 얻어지는, 열간 성형 부재.
PCT/KR2020/018719 2019-12-20 2020-12-18 가공성 및 내식성이 우수한 알루미늄계 합금 도금강판 및 이의 제조방법 WO2021125901A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022537898A JP7393553B2 (ja) 2019-12-20 2020-12-18 加工性及び耐食性に優れたアルミニウム系合金めっき鋼板及びこの製造方法
CN202080084521.3A CN114761603B (zh) 2019-12-20 2020-12-18 加工性和耐蚀性优异的铝基合金镀覆钢板及其制造方法
US17/786,452 US11898252B2 (en) 2019-12-20 2020-12-18 Aluminum-based alloy-plated steel sheet having excellent workability and corrosion resistance, and manufacturing method therefor
MX2022007617A MX2022007617A (es) 2019-12-20 2020-12-18 Lamina de acero chapada con aleacion a base de aluminio que tiene excelente trabajabilidad y resistencia a la corrosion, y metodo de manufactura para la misma.
EP20903509.6A EP4079927A4 (en) 2019-12-20 2020-12-18 STEEL SHEET COATED WITH A DEPOSIT OF ALUMINUM-BASED ALLOY HAVING EXCELLENT WORKABILITY AND EXCELLENT CORROSION RESISTANCE, AND METHOD OF MANUFACTURING THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0172300 2019-12-20
KR1020190172300A KR102307954B1 (ko) 2019-12-20 2019-12-20 가공성 및 내식성이 우수한 알루미늄계 합금 도금강판 및 이의 제조방법

Publications (2)

Publication Number Publication Date
WO2021125901A2 true WO2021125901A2 (ko) 2021-06-24
WO2021125901A3 WO2021125901A3 (ko) 2021-08-12

Family

ID=76478269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018719 WO2021125901A2 (ko) 2019-12-20 2020-12-18 가공성 및 내식성이 우수한 알루미늄계 합금 도금강판 및 이의 제조방법

Country Status (7)

Country Link
US (1) US11898252B2 (ko)
EP (1) EP4079927A4 (ko)
JP (1) JP7393553B2 (ko)
KR (1) KR102307954B1 (ko)
CN (1) CN114761603B (ko)
MX (1) MX2022007617A (ko)
WO (1) WO2021125901A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102311503B1 (ko) * 2019-12-20 2021-10-13 주식회사 포스코 가공성 및 내식성이 우수한 알루미늄계 합금 도금강판 및 이의 제조방법
KR20240098840A (ko) * 2022-12-21 2024-06-28 주식회사 포스코 내수소취성이 우수한 열간성형부재 및 그 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970043250A (ko) 1995-12-29 1997-07-26 김종진 가공성 및 표면 외관이 우수한 용융 알루미늄 도금강판의 제조방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2924492B2 (ja) * 1992-09-21 1999-07-26 住友金属工業株式会社 端面耐食性に優れたAl合金めっき金属板とその製法
JPH0987859A (ja) 1995-09-22 1997-03-31 Nippon Steel Corp 優れた加工性を有する溶融アルミニウム系めっき鋼板の製造法
CN1105787C (zh) 1999-12-28 2003-04-16 中国科学院力学研究所 钢材热浸镀用稀土铝合金
DE10023312C1 (de) 2000-05-15 2001-08-23 Thyssenkrupp Stahl Ag Galvannealed-Feinblech und Verfahren zum Herstellen von derartigem Feinblech
JP2004059968A (ja) 2002-07-26 2004-02-26 Nippon Steel Corp 加工性に優れた高耐食溶融めっき鋼線
JP5505132B2 (ja) 2010-06-30 2014-05-28 新日鐵住金株式会社 溶接性に優れたAl−Zn系合金めっき鋼材
JP5672849B2 (ja) 2010-08-20 2015-02-18 Jfeスチール株式会社 熱間プレス用鋼板、その製造方法およびそれを用いた熱間プレス部材の製造方法
KR101528011B1 (ko) * 2012-12-26 2015-06-10 주식회사 포스코 열간프레스 성형용 도금강판 및 열간프레스 성형품, 그의 제조방법
EP2980260B2 (en) 2013-03-25 2024-02-28 JFE Steel Corporation Al-Zn-BASED PLATED STEEL SHEET
US10584407B2 (en) 2014-12-24 2020-03-10 Posco Zinc alloy plated steel material having excellent weldability and processed-part corrosion resistance and method of manufacturing same
WO2017017483A1 (en) 2015-07-30 2017-02-02 Arcelormittal Steel sheet coated with a metallic coating based on aluminum
KR101858863B1 (ko) 2016-12-23 2018-05-17 주식회사 포스코 내식성 및 가공성이 우수한 용융 알루미늄계 도금강재
JP6939393B2 (ja) 2017-10-18 2021-09-22 日本製鉄株式会社 Alめっき鋼管部品
KR102010082B1 (ko) 2017-12-26 2019-08-12 주식회사 포스코 열간 프레스용 철-알루미늄계 합금 도금 강판, 그 제조방법 및 열간 프레스 성형 부품
KR102010084B1 (ko) 2017-12-26 2019-08-12 주식회사 포스코 수소지연파괴특성이 우수한 철-알루미늄 합금 도금강판, 그 제조방법 및 그로부터 제조된 열간 프레스 성형 부재
KR102153172B1 (ko) 2018-08-30 2020-09-07 주식회사 포스코 열간 성형성 및 내식성이 우수한 알루미늄-아연 합금 도금강판 및 그 제조방법
JP7241283B2 (ja) * 2018-11-30 2023-03-17 ポスコ カンパニー リミテッド 耐食性及び溶接性に優れた熱間プレス用アルミニウム-鉄系めっき鋼板及びその製造方法
KR102311503B1 (ko) * 2019-12-20 2021-10-13 주식회사 포스코 가공성 및 내식성이 우수한 알루미늄계 합금 도금강판 및 이의 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970043250A (ko) 1995-12-29 1997-07-26 김종진 가공성 및 표면 외관이 우수한 용융 알루미늄 도금강판의 제조방법

Also Published As

Publication number Publication date
KR102307954B1 (ko) 2021-09-30
KR20210079987A (ko) 2021-06-30
CN114761603A (zh) 2022-07-15
US20230026159A1 (en) 2023-01-26
US11898252B2 (en) 2024-02-13
CN114761603B (zh) 2024-03-26
EP4079927A2 (en) 2022-10-26
JP2023507638A (ja) 2023-02-24
JP7393553B2 (ja) 2023-12-06
EP4079927A4 (en) 2022-12-28
MX2022007617A (es) 2022-09-12
WO2021125901A3 (ko) 2021-08-12

Similar Documents

Publication Publication Date Title
WO2016104879A1 (ko) 프레스성형시 내파우더링성이 우수한 hpf 성형부재 및 이의 제조방법
WO2016104880A1 (ko) 내박리성이 우수한 hpf 성형부재 및 그 제조방법
WO2019132461A1 (ko) 열간 프레스 성형용 도금강판, 이를 이용한 성형부재 및 이들의 제조방법
WO2017111525A1 (ko) 내수소지연파괴특성, 내박리성 및 용접성이 우수한 열간성형용 알루미늄-철 합금 도금강판 및 이를 이용한 열간성형 부재
WO2018117543A1 (ko) 충격특성이 우수한 열간성형용 도금강판, 열간성형 부재 및 그들의 제조방법
WO2012091385A2 (en) High corrosion resistant hot dip zn alloy plated steel sheet and method of manufacturing the same
WO2016190538A1 (ko) 내박리성이 우수한 hpf 성형부재 및 그 제조방법
WO2018038499A1 (ko) 내골링성, 성형성 및 실러 접착성이 우수한 용융 아연도금 강판 및 그 제조방법
WO2021125901A2 (ko) 가공성 및 내식성이 우수한 알루미늄계 합금 도금강판 및 이의 제조방법
WO2012165838A2 (ko) 도금 조성물, 이를 이용한 도금 강재의 제조방법 및 도금 조성물이 코팅된 도금 강재
WO2015093793A1 (ko) 용접성 및 내식성이 우수한 열간 프레스 성형용 도금강판, 성형부재, 및 그 제조방법
WO2014017805A1 (ko) 내식성 및 표면외관이 우수한 용융아연합금 도금강판 및 그 제조방법
WO2019124927A1 (ko) 용접 액화 취성에 대한 저항성 및 도금 밀착성이 우수한 알루미늄 합금 도금강판
WO2022139370A1 (ko) 내균열성이 우수한 용접 구조 부재 및 이의 제조방법
WO2016104837A1 (ko) 표면품질이 우수한 고강도 아연도금강판용 열연강판 및 이의 제조방법
WO2019125020A1 (ko) 저온 밀착성과 가공성이 우수한 용융아연도금강판 및 그 제조방법
WO2019124781A1 (ko) 상온내시효성 및 소부경화성이 우수한 아연계 도금강판 및 그 제조방법
WO2016105157A1 (ko) 인산염 처리성과 스폿 용접성이 우수한 아연합금도금강판 및 그 제조방법
WO2022092404A1 (ko) 알루미늄계 도금 블랭크 및 이의 제조방법
WO2021125888A2 (ko) 가공성 및 내식성이 우수한 알루미늄계 합금 도금강판 및 이의 제조방법
WO2016104838A1 (ko) 표면품질이 우수한 고강도 아연도금강판용 열연강판 및 이의 제조방법
WO2021125887A2 (ko) 가공성 및 내식성이 우수한 알루미늄계 합금 도금강판 및 이의 제조방법
WO2018117703A1 (ko) 희생방식성 및 도금성이 우수한 고망간 용융 알루미늄 도금강판 및 그 제조방법
WO2022086049A1 (ko) 열적 안정성이 우수한 고강도 강판 및 이의 제조방법
WO2018221992A1 (ko) 도장 밀착성과 도장 후 내식성이 우수한 열간 프레스 성형 부재용 강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903509

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2022537898

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020903509

Country of ref document: EP

Effective date: 20220720