WO2022139370A1 - 내균열성이 우수한 용접 구조 부재 및 이의 제조방법 - Google Patents

내균열성이 우수한 용접 구조 부재 및 이의 제조방법 Download PDF

Info

Publication number
WO2022139370A1
WO2022139370A1 PCT/KR2021/019411 KR2021019411W WO2022139370A1 WO 2022139370 A1 WO2022139370 A1 WO 2022139370A1 KR 2021019411 W KR2021019411 W KR 2021019411W WO 2022139370 A1 WO2022139370 A1 WO 2022139370A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating layer
welding
structural member
weld joint
welded structural
Prior art date
Application number
PCT/KR2021/019411
Other languages
English (en)
French (fr)
Inventor
김영훈
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US18/266,777 priority Critical patent/US20240042541A1/en
Priority to EP21911437.8A priority patent/EP4265361A4/en
Priority to CN202180086628.6A priority patent/CN116669896A/zh
Priority to JP2023538046A priority patent/JP2024502759A/ja
Publication of WO2022139370A1 publication Critical patent/WO2022139370A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • B23K9/232Arc welding or cutting taking account of the properties of the materials to be welded of different metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/003Cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0008Welding without shielding means against the influence of the surrounding atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials

Definitions

  • the present invention relates to a welded structural member having excellent crack resistance and a method for manufacturing the same.
  • Zinc-coated steel sheet has excellent corrosion resistance and is used for various purposes such as automobile members, interior and exterior panels of home appliances, and construction members. Among them, Zn-Al-Mg-based plated steel sheet can secure excellent corrosion resistance for a long time, and the demand is increasing as a substitute for conventional zinc-based plated steel sheet and stainless steel.
  • the reason for the improvement in the corrosion resistance of the plated layer compared to the conventional zinc-based plated steel sheet is that a dense and stable corrosion product is uniformly formed on the surface of the plated layer by the action of Mg.
  • Patent Document 1 Patent No. 3149129
  • Patent Document 2 Patent No. 3179401 Publication
  • Patent Document 3 Patent No. 4475787 Publication
  • Patent Document 4 Patent No. 3715220
  • Patent Document 5 Japanese Patent Laid-Open No. 2005-230912
  • One aspect of the present invention is
  • At least one of the first steel sheet and the second steel sheet is a plated steel sheet having a Zn-Al-Mg-based plating layer
  • the microstructure of the portion closest to the weld joint of the Zn-Al-Mg-based plating layer is an area fraction, and provides a welded structural member containing 20 to 40% of a Zn-Mg-based intermetallic compound.
  • water cooling to an average cooling rate of 25 ⁇ 110 °C / s; including,
  • At least one of the first steel sheet and the second steel sheet is a plated steel sheet having a Zn-Al-Mg-based plating layer, and provides a method of manufacturing a welded structural member.
  • FIG. 1 schematically shows a cross section of a torch and a base material during arc welding.
  • FIG. 2 schematically shows the cross-sectional structure of a fillet welded joint.
  • FIG. 3 is an enlarged schematic view of a cross-sectional structure corresponding to the vicinity of the bead toe portion shown in FIG. 2 .
  • FIG. 4 is an enlarged schematic view of a cross-sectional structure corresponding to the vicinity of a bead toe for a welded structural member manufactured using a conventional Zn-Al-Mg-based plated steel sheet.
  • FIG. 5 is a schematic cross-sectional view of a welded structural member manufactured using a Zn-Al-Mg-based plated steel sheet of the present invention by applying water cooling to have a specific cooling rate based on the surface temperature of the weld joint in the state of FIG. 3; is shown as
  • FIG. 6 schematically shows a welding method in a test piece.
  • FIG 8 shows a photograph taken with an optical microscope (OM) at 500 times the magnification of the microstructure of the plating layer closest to the weld joint for Example 2 of the present invention.
  • the plated layer is melted on the surface by the arc heat passing through the plated layer.
  • the liquidus temperature of the Zn-Al-Mg-based plating layer is lower than the melting point of Zn at about 420°C, the molten state is maintained for a relatively long time.
  • the metal of the molten plated layer during arc welding maintains a liquid phase and the residence time on the surface of the steel sheet is longer. lose
  • the present inventors have disclosed that, when manufacturing a welded structural member using a plated steel sheet having a Zn-Al-Mg-based plated layer, cracks when welding using an arc welding method, particularly a solid wire, a flux-cored wire, and a covered arc welding electrode In order to solve this easily occurring problem, a careful review was made.
  • the portion closest to the weld joint among the Zn-Al-Mg-based plated layer is As a microstructure, as an area fraction, it is possible to control to contain 20 to 40% of a Zn-Mg-based intermetallic compound, and through this, it was found that cracking due to intrusion of the hot-dip plated layer can be suppressed and completed the present invention. reached
  • the method for manufacturing a welded structural member includes preparing a first steel plate and a second steel plate, wherein at least one of the first steel plate and the second steel plate is Zn-Al-Mg It is a plated steel sheet (or Zn-Al-Mg-based plated steel sheet) provided with a plated layer.
  • the plated steel sheet having the Zn-Al-Mg-based plating layer refers to a base steel sheet; And it may mean that a Zn-Al-Mg-based plating layer is formed on at least one surface of the base steel sheet. At this time, it may further include an additional layer within the range that does not impair the object of the present invention.
  • the holding steel sheet various steel types can be employed according to the purpose of the present invention, for example, a high-tensile steel sheet may be used, and a steel sheet having an overall average thickness in the range of 1 to 6 mm may be used (at this time , the thickness direction for measuring the thickness means a direction perpendicular to the rolling direction).
  • the base steel sheet one having a composition of 94.5Zn-6.4Al-3.1Mg may be used.
  • the counter steel sheet (ie, the remaining steel sheet) joined to the Zn-Al-Mg-based plated steel sheet among the first and second steel sheets may be a Zn-Al-Mg-based plated steel sheet, or a Zn-Al-Mg-based plated steel sheet. It is applicable to all steel plates other than steel plates. That is, the counter steel sheet may also employ various types of steel depending on the use.
  • a method for manufacturing a welded structural member by arc welding the first steel plate and the second steel plate using any one welding material selected from a solid wire, a flux-cored wire, and a covered arc welding rod, welding is performed. forming a seam.
  • a weld joint is formed using an additional welding material in addition to the first and second steel sheets corresponding to the base material. Therefore, since the physical properties of the weld joint change according to the composition change of the minute weld joint, as described above, in order to obtain a welded structural member excellent in corrosion resistance and crack resistance, the composition of the weld joint is also precisely controlled when arc welding is used. is needed
  • the weld joint is C: 0.09 to 0.15%, Si: 0.35 to 0.39%, Mn: 0.87 to 0.90%, P: 0.004 ⁇ 0.022%, S: 0.002 ⁇ 0.014%, Cr: 0.01 ⁇ 0.11%, Ni: 0.01 ⁇ 0.08%, Cu: 0.01 ⁇ 0.06%, Mo: 0.01% or less, Al: 0.01 ⁇ 0.02%, balance Fe and other inevitable It may contain impurities.
  • the weld joint is C: 0.05 to 0.10%, Si: 0.47 to 0.53%, Mn: 1.10 to 1.16%, P by weight. : 0.009 to 0.025%, S: 0.007 to 0.018%, Cr: 0.03 to 0.13%, Ni: 0.02 to 0.11%, Cu: 0.02 to 0.08%, Mo: 0.02 to 0.07%, Al: 0.005 to 0.02%, balance Fe and other unavoidable impurities.
  • the weld joint is C: 0.06 to 0.14%, Si: 0.42 to 0.49%, Mn: 0.83 to 0.91%, P: 0.015 to 0.035%, S: 0.010 to 0.022%, Cr: 0.07 to 0.20%, Ni: 0.06 to 0.15%, Cu: 0.05 to 0.12%, Mo: 0.05 to 0.10%, Al: 0.01 to 0.02%, balance Fe and It may contain other unavoidable impurities.
  • the composition of the weld joint according to the use of each welding material to satisfy the above-mentioned conditions, it is possible to effectively suppress the molten metal embrittlement cracking property, and at the same time, the corrosion resistance of the weld joint is excellent, and the A welded structural member excellent in crackability and bonding property can be provided.
  • the step of forming the weld joint may be performed with a heat input of 5 to 8 kJ/cm. If the heat input is less than 5 kJ/cm, there may be a problem of non-uniformity of weld bead formation or poor penetration, and if the heat input is more than 8 kJ/cm, there may be a problem of overlap or leakage.
  • FIG. 1 The cross section of the torch and the steel plate to be welded during arc welding used in the present invention is schematically shown in FIG. 1 .
  • the welding torch is advancing in the direction of the arrow while forming the arc 4 in the welding site 3 on the surface of the welding steel sheet 1 .
  • the shield gas 2 is ejected from the gas nozzle around the electrode and the welding wire located in the center of the welding torch, thereby protecting the arc 4 and the surface of the welding steel sheet 1 exposed to high temperature from the atmosphere.
  • the welding torch passes through a part of the welding part 3 by the heat input from the arc 4, it solidifies rapidly and forms the welding bead (welding joint part) comprised from a weld metal.
  • FIG. 2 schematically shows the cross-sectional structure of a welded joint formed in the manufacturing process of a welded structural member, and various types of welded joints by arc welding are used in construction, automobile structures, and the like.
  • two steel plates to be welded ie, a first steel plate and a second steel plate; 10, 10 ′
  • a weld bead 11 is formed on the cross section of one steel plate 10 ′, so that both steel plates are joined to each other.
  • a bead toe part 12 an edge intersection formed by meeting the surfaces of the two steel plates 10 and 10 ′ and the surface of the welding bead 11 is called a bead toe part 12 .
  • FIGS. 3 to 5 are schematic cross-sectional views of enlarged portions corresponding to the vicinity of the bead toe portion 12 shown in FIG. 2 .
  • FIG. 3 schematically shows a cross-sectional state in the vicinity of a high-temperature welded portion immediately after arc heat passes during arc welding when a welded structural member using a Zn-Al-Mg-based plated steel sheet is manufactured.
  • the original Zn-Al-Mg-based plating layer is melted in a portion having a certain distance from the bead toe portion 12 , and exists as a Zn-Al-Mg-based hot-dip plating layer 13 .
  • the original Zn-Al-Mg-based plating layer exists as an unmelted state 14 in a portion farther from the bead tow portion 12 .
  • FIG. 4 schematically shows a cross-sectional view of a welded structural member manufactured using a conventional Zn-Al-Mg-based plated steel sheet.
  • the Zn-Al-Mg-based plating layer is lost in the vicinity of the high-temperature welded portion immediately after the arc heat passes during welding, thereby forming the plating layer evaporation section 15 as in FIG. 3 .
  • the Zn-Al-Mg-based hot-dip plated layer 13 is wetted and diffused in the plating layer evaporation section 15, and accordingly, the surface of the steel sheet 10 is Zn-Al- It is covered with the Mg-based hot-dip plated layer (13).
  • a welded structural member that is excellent in corrosion resistance and capable of suppressing cracking can be manufactured by performing water cooling while precisely controlling cooling conditions after welding. For example, after the welding, based on the surface temperature of the weld joint, water cooling may be performed to an average cooling rate of 25 to 110° C./s. At this time, when the average cooling rate is less than 25 °C / s, there is no short-time solidification effect of the molten plating layer, there may be a problem that the LME is generated. On the other hand, when the average cooling rate exceeds 110° C./s based on the surface temperature of the weld joint, there may be a problem of deterioration in toughness due to martensitic transformation of the material metal.
  • FIG. 5 after welding is performed to have a weld joint having the composition of the present invention in the state of FIG. 3, and at the same time precisely controlling the surface temperature of the weld joint during cooling, water cooling is applied to have a specific cooling rate, the present invention It schematically shows a cross-sectional view of a welded structural member manufactured using a Zn-Al-Mg-based plated steel sheet.
  • the Zn-Al-Mg-based plating layer evaporates and disappears immediately after welding, so that the Zn-Al-Mg-based hot-dip plating layer is solidified without reaching the surface of the steel sheet in the plating layer evaporation section 15, so that the stress is concentrated. Wetting diffusion by the Zn-Al-Mg-based hot-dip plated layer up to the portion 12 is suppressed. As a result, the plating layer evaporation section 15 is maintained even after cooling.
  • the surface of the steel sheet in the vicinity of the bead toe portion 12 is cooled without contact with the Zn-Al-Mg-based hot-dip plated layer, and accordingly, the Zn-Al-Mg-based melting is performed from the bead toe portion 12 .
  • a plating layer evaporation section 15 of a certain section is secured between the solidification regions 17 of the plating layer.
  • the Zn-Al-Mg-based plated layer evaporates and disappears in the vicinity of the weld bead formed during arc welding. After passing through, the Zn-Al-Mg-based plating layer was melted at a position several mm away from the weld bead, and the hot-dip plating layer formed immediately began to spread to the vicinity of the weld bead.
  • the weld bead By suppressing the intrusion of the molten metal layer into the vicinity, it is possible to effectively prevent cracking.
  • the wet diffusion of the Zn-Al-Mg-based plated steel sheet member was prevented by applying the optimized water cooling method within a critical time after passing the welding torch.
  • the present invention provides a method for manufacturing a welded structural member obtained by welding two steel plates, at least one of which is a Zn-Al-Mg-based plated steel plate, by applying water cooling within a few seconds immediately after welding (that is, after passing the welding torch).
  • a welded structural member excellent in crackability can be effectively provided.
  • the water cooling may be started within 3 to 10 seconds after passing through the welding torch, and more preferably within 3 to 9 seconds.
  • the water cooling start time may be set to 3 seconds or more after passing through the welding torch, since it is a critical time that does not affect the progressing torch, welding performance can be secured.
  • the water cooling start time can be set to 10 seconds or less after passing through the welding torch, crack resistance can be ensured by preventing the hot-dip plated layer generated after passing through the welding torch from advancing to the vicinity of the weld bead.
  • the flow rate of the water cooling may be 15 ⁇ 60mm 3 /hr.
  • the flow rate of the water cooling may be 15 mm 3 /hr or more.
  • the cooling effect of the hot-dip plated layer generated after passing through the welding torch can be sufficiently secured.
  • the flow rate of the water cooling may be set to 60 mm 3 /hr or less, it is possible to prevent contamination of the work environment due to unnecessary flow rate supply, as well as suppress problems caused by excessive cooling.
  • the water cooling may be maintained for 5 to 15 seconds.
  • the water cooling holding time may be set to 5 seconds or more, it is possible to sufficiently secure the cooling effect of the hot-dip plated layer by water cooling, thereby securing the effect of improving the crack resistance.
  • the water cooling holding time By setting the water cooling holding time to 15 seconds or less, it is possible to prevent contamination of the work environment due to unnecessary flow rate supply, as well as suppress problems caused by excessive cooling.
  • the water cooling is most preferably supplied to the torch passing portion within 3 to 10 seconds after passing through the welding torch, and 15 to 60 mm 3 /hr of water cooling flow rate for 5 to 15 seconds.
  • the droplet size of the water sprayed to the weld joint can be controlled in the range of 20 ⁇ 100 ⁇ m.
  • a welded structural member includes: a first steel plate; a second steel plate; and a welded joint for coupling the first steel plate and the second steel plate.
  • first steel plate the second steel plate
  • welded joint the description of the method for manufacturing the welded structural member described above is equally applicable.
  • the microstructure of the portion closest to the weld joint of the Zn-Al-Mg-based plating layer contains 20 to 40% of the Zn-Mg-based intermetallic compound as an area fraction.
  • the portion closest to the weld joint of the Zn-Al-Mg-based plating layer is a 'region in which the plating layer does not exist from the bead toe of the weld joint' corresponding to the evaporation section 15 of the plating layer. Except for up to, it may mean a region from the region closest to the weld joint in the Zn-Al-Mg-based plating layer to the point at which it becomes 10 mm in the rolling direction of the steel sheet.
  • the microstructure of the portion closest to the weld joint is in the thickness direction (i.e., from the region closest to the weld joint to the point of 10 mm in the rolling direction of the steel sheet in the Zn-Al-Mg-based plating layer described above). , it can be measured by observing the cut surface in the direction perpendicular to the rolling direction of the steel sheet) with an optical microscope (OM) at 500 times magnification.
  • OM optical microscope
  • the Zn-Mg-based intermetallic compound corresponds to a matrix structure while the Zn-Al-Mg-based hot-dip plated layer formed immediately after arc welding in the present invention is rapidly cooled by a subsequent water cooling process.
  • the Zn-Mg-based intermetallic compound may further include components such as Al in addition to Zn and Mg, for example, Zn/MgZn 2 binary phase and Zn/MgZn 2 /Al 3 An original shape etc. are mentioned.
  • the microstructure of the portion closest to the weld joint of the Zn-Al-Mg-based plating layer is 20-40% ( More preferably, 24-38%) contains.
  • the area fraction of the Zn-Mg-based intermetallic compound is less than 20%, it is difficult to expect the effect of preventing LME, and if it exceeds 40%, the welding structure desired in the present invention is excellent in both corrosion resistance and crack resistance The member cannot be manufactured.
  • the microstructure of the portion closest to the weld joint of the Zn-Al-Mg-based plating layer may include a single Zn phase as a matrix structure, as an area fraction, for example, It may contain 60% or more of Zn single phase.
  • the microstructure of the portion closest to the weld joint of the Zn-Al-Mg-based plating layer is a Zn-Al-Mg-based plating layer that has not been melted from the beginning (that is, the Zn-Al- It is formed differently from the microstructure of the Mg-based plating layer (parts other than the portion closest to the weld joint).
  • the Zn-Al-Mg-based hot-dip plated layer formed immediately after the above-described arc welding is rapidly cooled by the water cooling process in which the cooling conditions are precisely controlled as described above, and is different from the Zn-Al-Mg-based plated layer that was not melted from the beginning. form microstructure.
  • the average diameter of the Zn-Mg-based intermetallic compound is 1 based on the cut surface in the thickness direction (meaning the direction perpendicular to the rolling direction of the steel sheet), It may be in the range of ⁇ 30 ⁇ m.
  • the microstructure of the portion closest to the weld joint satisfies the above-described characteristics, so that the molten metal embrittlement cracking property can be effectively suppressed, and thus the corrosion resistance is excellent
  • a welded structural member having excellent crack resistance and bonding property can be obtained.
  • the hardness of the portion closest to the weld joint of the Zn-Al-Mg-based plating layer may be 69.5% or more (100% or less) compared to the hardness of the plating layer before welding.
  • the hardness of the plating layer closest to the weld joint refers to a value obtained by measuring the hardness of the plating layer at the point closest to the bead toe part 12 .
  • the distance between the plating layer from the bead toe portion 12 of the weld joint may be 3 to 10 mm, and this plating layer evaporation section 15 ) length can be controlled by applying the water cooling method to meet the average cooling rate in a specific range immediately after welding.
  • the length of the evaporation section 15 of the plating layer by making the length of the evaporation section 15 of the plating layer to be 3 mm or more, the occurrence of cracks due to the hot-dip plated metal layer in the vicinity of the bead toe part 12 is prevented, thereby cracking resistance can be obtained
  • the length of the evaporation section 15 of the plating layer 10 mm or less it is possible to obtain the effect of securing corrosion resistance by the formation of the plating layer.
  • the Zn-Al-Mg-based plating layer is, by weight, Al: 1-20.9%, Al: 1-20.9%, Mg: 0.04-10%, Ti: 0.1% or less ( 0%), B: 0.05% or less (including 0%), Si: 2% or less (including 0%), Fe: 2.5% or less (including 0%), the balance may be composed of Zn and other unavoidable impurities.
  • the composition of the plating layer as described above, the object of the present invention of securing crack resistance during welding can be more effectively achieved.
  • the plating adhesion per side of the Zn-Al-Mg-based plating layer may be 50 ⁇ 250 g / m 2 .
  • the corrosion resistance of the plated steel sheet can be secured by setting the plating adhesion amount per side of the plating layer to 50 g/m 2 or more, and by setting it to 250 g/m 2 or less, blowholes are prevented from occurring during welding, thereby securing the strength of the welded part. have.
  • the corrosion resistance effect of the plating layer can be sufficiently secured, and the effect of the anticorrosion method due to the sacrificial action of the plating layer can be sufficiently obtained.
  • the evaporation section of the plating layer when the evaporation section of the plating layer is generated in the vicinity of the weld bead generated after passing through the welding torch, it is preferable to control the plating adhesion amount per one side of the plating layer to 50 to 250 g/m 2 , and 50 to 200 g/m 2 It is more preferable to control by m 2 .
  • the composition of the plating layer described above reflects the composition for hot-dip plating, and the method of hot-dip plating is not particularly limited, but it is preferable from an economical point of view to use a generally known in-line annealing type hot-dip plating facility.
  • the component system of the plating layer will be described preferentially.
  • the content unit of each component below is weight %.
  • Al improves the corrosion resistance of the plated steel sheet and suppresses the generation of Mg oxide-based dross in the plating bath.
  • it is necessary to secure an Al content of 1% or more.
  • it is possible to ensure corrosion resistance and dross prevention effect, and by setting it to 20.9% or less, overgrowth of a soft Fe-Al alloy layer on the underside of the plating layer is prevented, and plating adhesion can be secured.
  • Mg produces a uniform corrosion product on the surface of the plated layer, thereby remarkably increasing the corrosion resistance of the plated steel sheet.
  • the Mg content is more preferably 1% to 5%.
  • B in the hot-dip plating bath also increases the alloy range of other components during hot-dip plating, thereby increasing the degree of freedom of manufacturing conditions.
  • B by containing B at 0.1% or less, the effect of increasing the alloy range of other components can be exhibited.
  • Fe is easy to mix with the characteristic of immersing the steel sheet. Accordingly, Fe may be contained in the plating layer in an amount of 2.5% or less, and by setting the Fe content to 2.5% or less, it is possible to secure the corrosion resistance and quality of the plated steel sheet. On the other hand, more preferably, the Fe content may be 0.0001 to 2.5%, and by setting the Fe content to 0.0001% or more, it is economical because additional cleaning costs do not occur.
  • a cold-rolled steel strip having a plate thickness of 1.5 mm and a plate width of 1000 mm having the composition of Table 1 was passed through a hot-dip plating line showing the composition of Table 3, and hot-dip Zn-Al-Mg-based plated steel sheets having various plating layer compositions were manufactured.
  • Molten Zn-Al-Mg alloy plating grater plating layer composition Plating with Zn alloy composition of 65% or more (Additional composition range Al:1.0 ⁇ 20.0%, Mg:0.05 ⁇ 10.0%, Ti:0 ⁇ 0.10%, B:0 ⁇ 0.05%, Si:0 ⁇ 2.0%, Fe:0 ⁇ 2.5%) steel plate for plating low carbon steel size Plate thickness 1.5mm, plate width 200mm, plate length 200mm Plating amount 50 ⁇ 250g/m2 on one side welding process gas metal arc welding flux cored welding clad arc welding Welding wire type solid wire flux cored wire Covered Arc Welding Rod Welding wire name / diameter KC-25M / 1.2 mm ⁇ K-71T / 1.2 mm ⁇ KR-3000 / 2.6 mm ⁇ welding gas 80% Ar + 20% CO 2 80% Ar + 20% CO 2 - Welding gas flow 15 L/min 15 L/min - welding current 150A 180A 150A welding voltage 20V 20V - welding speed
  • Table 4 shows the results of crack occurrence and hardness value change rate for the above-mentioned experiments.
  • arc welding was performed under the welding conditions shown in Table 2 in the center of a 200 mm ⁇ 200 mm test piece (molten Zn-Al-Mg-based plated steel sheet member) to weld between the test pieces. Specifically, after passing the welding starting point S in a clockwise direction from the welding start point S, the beads were also overlapped and the welding proceeded to create the overlapping part of the weld bead, and then welding was performed to the welding end point E. During welding, the test piece 22 was made into the state restrained on the flat plate. This test was conducted under a condition in which molten metal embrittlement cracks could easily occur by giving constraint conditions.
  • radioactive non-destructive testing was performed to determine the presence or absence of "melted metal embrittlement cracking", and the results are shown in Table 4 based on the following criteria.
  • a cross section perpendicular to the bead direction including the weld bead and its adjacent steel plate was subjected to mirror polishing and etching in a nitric acid concentration of 0.2% by volume nital solution, followed by observation with a scanning electron microscope.
  • the length of the plating layer evaporation section 15 shown in FIG. 5 was measured by observing the vicinity of the bead toe part 12, and also the plating layer hardness near the bead toe part 12 after welding and the plating layer hardness before welding were measured, and the rate of change is shown in Table 4 below.
  • the microstructure of the portion closest to the weld joint of the Zn-Al-Mg-based plating layer defined in the present invention contains 20-40% of the Zn-Mg-based intermetallic compound, .
  • the crack resistance was superior to that of Comparative Examples 1 to 3 that did not satisfy this, and the rate of change of hardness value before and after welding was also 69.5% or more, indicating corrosion resistance was also confirmed to be excellent.
  • the microstructure of the Zn-Al-Mg-based plated layer closest to the weld joint was observed, and Inventive Examples 4 to 59
  • the microstructure of the part closest to the weld joint contains 20-40% of Zn-Mg-based intermetallic compound and 60% or more of Zn single phase (that is, the remainder Zn single phase) was confirmed.
  • the length of the evaporation section 15 of the plating layer in the test piece was less than 3 mm, and the crack caused by the deepest hot-dip metal layer was from the bead toe part 12 in most samples. The distance occurred in a site
  • the length of the plating layer evaporation section 15 was also 3 mm or more and 10 mm or less.
  • microstructure of the plating layer closest to the weld joint was measured in the same manner as in the above-described specification, and photos using an optical microscope (OM) are shown in FIGS. 7 and 8 .
  • FIG. 7 shows the microstructure of the plating layer closest to the weld joint for Comparative Example 10 of the present application, and it was confirmed that the microstructure was homogenized (corresponding to A of FIG. 7 ) under slow cooling conditions.
  • FIG. 8 shows the microstructure of the plating layer closest to the weld joint for Example 2 of the present invention, and the matrix structure (corresponding to B of FIG. 8) consisting of a single Zn phase due to the rapid cooling according to the present invention (corresponding to B of FIG. 8) and Zn as a secondary phase -Mg-based intermetallic compound (including binary phase and ternary phase; corresponding to C of FIG. 8), contains the Zn-Mg-based intermetallic compound in the range of 20 to 40%, and the Zn single phase is 60% It was confirmed that the above was included. At this time, it was confirmed that the Zn-Mg-based intermetallic compound had an average diameter of 1 to 30 ⁇ m based on the cut surface in the thickness direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Arc Welding In General (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

본 발명은 내식성 및 내균열성이 우수한 용접 구조 부재 및 이의 제조방법에 관한 것이다.

Description

내균열성이 우수한 용접 구조 부재 및 이의 제조방법
본 발명은 내균열성이 우수한 용접 구조 부재 및 이의 제조방법에 관한 것이다.
아연계 도금 강판은 내식성이 우수하여 자동차용 부재, 가전기기의 내외판용 부재, 건축용 부재 등 다양한 용도로 사용되고 있다. 그 중에서도, Zn-Al-Mg계 도금 강판은 오랜 시간 동안 우수한 내식성의 확보가 가능하여, 종래의 아연계 도금 강판 및 스테인리스 스틸 대체용으로서 그 수요가 증가하고 있다.
이러한 Zn-Al-Mg계 도금 강판이 종래의 아연계 도금 강판에 비해 도금층의 내식성이 향상되는 요인으로는 도금층 표면에서 Mg의 작용에 의한 치밀하고 안정적인 부식 생성물이 균일하게 형성되기 때문으로 추정된다.
한편, 종래 기술의 하나로서 용접 구조 부재를 제조할 때에 고주파 저항 용접법이 사용되기도 하였다. 그러나, 이러한 용접법의 경우, 모재를 용융 및 압접함으로써 2 이상의 모재를 결합시키므로 추가적인 설비의 필요성으로 인해 비용이 증가하는 문제가 있을 뿐만 아니라, 파이프 형상 및 H형강에만 적용 가능한 문제가 있었다.
이에 따라, 아크 용접 사용의 필요성이 대두되었고, 특히 Zn-Al-Mg계 도금 강판을 이용하여 용접 구조 부재를 제조할 때에는 대형의 설비 투자 없이 용접기 및 용접 재료만으로도 다양한 형상 및 구조물에도 적용이 가능한 기술에 대한 수요로 인해 아크 용접법을 이용하고 있었다. 그러나, 이러한 Zn-Mg-Al계 도금 강판에 아크 용접을 가하면, Mg의 함유에 의해 도금층의 액상선 온도가 저하되어 잔존하는 도금층에 균열이 발생하는 문제가 있었다.
(특허문헌 1) 특허 제 3149129호 공보
(특허문헌 2) 특허 제 3179401호 공보
(특허문헌 3) 특허 제 4475787호 공보
(특허문헌 4) 특허 제 3715220호 공보
(특허문헌 5) 특개2005-230912호 공보
본 발명의 일 측면에 따르면, 내식성 및 내균열성이 우수한 용접 구조 부재 및 이의 제조방법을 제공하고자 한다.
본 발명의 과제는 전술한 내용에 한정하지 아니한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 누구라도 본 발명 명세서 전반에 걸친 내용으로부터 본 발명의 추가적인 과제를 이해하는 데 어려움이 없을 것이다.
본 발명의 일 측면은,
제1 강판;
제2 강판; 및
상기 제1 강판과 제2 강판을 결합하는 용접 이음부;
를 포함하고,
상기 제1 강판 및 제2 강판 중 적어도 하나가 Zn-Al-Mg계 도금층을 구비한 도금 강판이고,
상기 Zn-Al-Mg계 도금층 중 상기 용접 이음부에 최인접한 부분의 미세조직은 면적분율로, Zn-Mg계 금속간 화합물을 20~40% 포함하는, 용접 구조 부재를 제공한다.
또한, 본 발명의 또 다른 일 측면은,
제1 강판 및 제2 강판을 준비하는 단계;
솔리드 와이어, 플럭스 코어드 와이어 및 피복아크 용접봉 중에서 선택된 어느 하나의 용접재료를 이용하여, 상기 제1 강판 및 제2 강판을 아크 용접함으로써 용접 이음부를 형성하는 단계; 및
상기 용접 이음부의 표면 온도를 기준으로, 25~110℃/s의 평균 냉각 속도가 되도록 수냉하는 단계;를 포함하고,
상기 제1 강판 및 제2 강판 중 적어도 하나는 Zn-Al-Mg계 도금층을 구비한 도금강판인, 용접 구조 부재의 제조방법을 제공한다.
본 발명의 일 측면에 따르면, 내식성 및 내균열성이 우수한 용접 구조 부재 및 이의 제조방법을 제공할 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않고, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 아크 용접 중, 토치 및 모재의 단면을 모식적으로 나타낸 것이다.
도 2는 필렛 용접 이음부의 단면 구조를 모식적으로 나타낸 것이다.
도 3은 도 2에 나타낸 비드 토우부의 부근에 해당하는 단면 구조를 확대하여 모식적으로 나타낸 것이다.
도 4는 종래 Zn-Al-Mg계 도금강판을 이용하여 제조되는 용접 구조 부재에 대한 비드 토우부의 부근에 해당하는 단면 구조를 확대하여 모식적으로 나타낸 것이다.
도 5는 도 3의 상태에서 용접 이음부의 표면 온도를 기준으로 특정 냉각 속도를 갖도록 수냉을 적용하고, 본 발명의 Zn-Al-Mg계 도금강판을 이용하여 제조되는 용접 구조 부재의 단면도를 모식적으로 나타낸 것이다.
도 6은 시험편에서의 용접 방법을 모식적으로 나타낸 것이다.
도 7은 본원 비교예 10에 대한 용접 이음부에 최인접하는 도금층의 미세조직을 광학 현미경(OM) 500배 배율로 촬영한 사진을 나타낸 것이다.
도 8은 본원 발명예 2에 대한 용접 이음부에 최인접하는 도금층의 미세조직을 광학 현미경(OM) 500배 배율로 촬영한 사진을 나타낸 것이다.
본 명세서에서 사용되는 용어는 특정 실시예를 설명하기 위한 것이고, 본 발명을 한정하는 것을 의도하지 않는다. 또한, 본 명세서에서 사용되는 단수 형태들은 관련 정의가 이와 명백히 반대되는 의미를 나타내지 않는 한 복수 형태들도 포함한다.
명세서에서 사용되는 "포함하는"의 의미는 구성을 구체화하고, 다른 구성의 존재나 부가를 제외하는 것은 아니다.
달리 정의하지 않는 한, 본 명세서에서 사용되는 기술 용어 및 과학 용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 사전에 정의된 용어들은 관련 기술문헌과 현재 개시된 내용에 부합하는 의미를 가지도록 해석된다.
종래에 Zn-Al-Mg계 도금층을 구비하는 도금강판을 이용하여 용접 구조 부재를 제조할 때에는 아크 용접법을 통상적으로 사용하였다. 그런데, 이러한 아크 용접법을 사용할 때에는 Zn-Al-Mg계 도금층이 형성된 도금강판 중에 Mg 함유에 의해 도금층의 액상선 온도가 저하되어 균열이 쉽게 발생하는 문제가 있었다.
즉, 도금강판의 아크 용접 시에는 도금층을 통과하는 아크 열에 의해 표면 상에서 도금층이 용융된다. 그런데, Zn의 융점이 약 420℃에 비해 Zn-Al-Mg계 도금층은 액상선의 온도가 낮기 때문에, 비교적 오랜 시간 동안 용융 상태를 유지한다.
이에 따라, Zn-Al-Mg계 도금층을 구비한 도금강판의 경우, 아연 도금강판과 비교해서 아크 용접 시에 용융된 도금층의 금속이 액상을 유지한 채로 소지강판의 표면 상에 체류하는 시간이 길어진다.
따라서, 아크 용접 직후의 냉각 시에 인장 응력 상태가 되어 있는 소지강판의 표면이 용융된 도금층에 장시간 노출되면, 그 용융된 도금층은 소지강판의 결정립계에 침입하여 균열을 일으키는 원인이 된다. 이러한 용융된 도금층의 침입에 의한 균열의 발생 시, 구조물의 강도, 내피로 특성, 내식성 등이 저하하는 문제가 발생한다.
이에, 본 발명자들은 Zn-Al-Mg계 도금층을 구비한 도금강판을 이용하여 용접 구조 부재의 제조 시, 아크 용접법으로서, 특히 솔리드 와이어, 플럭스 코어드 와이어, 피복아크 용접봉을 사용하여 용접할 때 균열이 쉽게 발생하는 문제를 해결하기 위해 예의 검토하였다.
그 결과, Zn-Al-Mg계 도금강판을 사용하여 용접을 실시한 후, 냉각 조건과, 용접 이음부의 조성을 정밀하게 제어함으로써, 상기 Zn-Al-Mg계 도금층 중 상기 용접 이음부에 최인접한 부분의 미세조직으로서, 면적분율로, Zn-Mg계 금속간 화합물을 20~40% 포함하도록 제어할 수 있고, 이를 통해, 용융 도금층의 침입에 의한 균열을 억제할 수 있음을 발견하고 본 발명을 완성하기에 이르렀다.
우선, 용접 구조 부재의 제조방법에 대하여 먼저 설명한다. 구체적으로, 본 발명의 일 측면에 따른 용접 구조 부재의 제조방법은, 제1 강판 및 제2 강판을 준비하는 단계를 포함하고, 상기 제1 강판 및 제2 강판 중 적어도 하나는 Zn-Al-Mg계 도금층을 구비한 도금강판(혹은, Zn-Al-Mg계 도금강판)이다. 여기서, 상기 Zn-Al-Mg계 도금층을 구비한 도금강판이라 함은, 소지강판; 및 상기 소지강판의 적어도 일면에 Zn-Al-Mg계 도금층이 형성된 것을 의미할 수 있다. 이 때, 본 발명의 목적을 해치지 않는 범위 안에서 추가의 층을 더 포함할 수 도 있다.
한편, 상기 소지강판으로는 본 발명의 용도에 맞게 다양한 강종을 채용할 수 있고, 일례로, 고장력 강판을 사용할 수도 있고, 소지강판의 전체 평균 두께가 1~6mm 범위인 것을 사용할 수도 있다(이 때, 상기 두께를 측정하는 두께방향은 압연방향과 수직인 방향을 의미한다). 특별히 한정하는 것은 아니나, 대표적인 예로서, 상기 소지강판으로는 94.5Zn-6.4Al-3.1Mg의 조성을 가지는 것을 사용할 수 있다.
또한, 상기 제1 강판 및 제2 강판 중 Zn-Al-Mg계 도금강판과 접합하는 상대 강판(즉, 나머지 강판)은 Zn-Al-Mg계 도금강판일 수도 있고, Zn-Al-Mg계 도금강판 이외의 모든 강판에도 적용 가능하다. 즉, 상기 상대 강판 역시 용도에 따라 다양한 강종을 채용할 수 있다.
본 발명의 일 측면에 따른 용접 구조 부재의 제조방법은, 솔리드 와이어, 플럭스 코어드 와이어 및 피복아크 용접봉 중에서 선택된 어느 하나의 용접재료를 이용하여, 상기 제1 강판 및 제2 강판을 아크 용접함으로써 용접 이음부를 형성하는 단계를 포함한다.
상기 아크 용접을 이용하는 경우에는, 모재에 해당하는 제1 강판 및 제2 강판 이외에, 추가의 용접 재료를 사용하여 용접 이음부를 형성한다. 따라서, 미세한 용접 이음부의 조성 변화에 따라 용접 이음부의 물성이 변화하므로, 전술한 바와 같이, 내식성 및 내균열성이 우수한 용접 구조 부재를 얻기 위해서는, 아크 용접법의 이용 시에는 용접 이음부의 조성 역시 정밀한 제어가 필요하다.
이에, 상기 아크 용접 시, 용접재료로서 솔리드 와이어를 사용하는 경우에는, 상기 용접 이음부가 중량%로, C: 0.09~0.15%, Si: 0.35~0.39%, Mn: 0.87~0.90%, P: 0.004~0.022%, S: 0.002~0.014%, Cr: 0.01~0.11%, Ni: 0.01~0.08%, Cu: 0.01~0.06%, Mo: 0.01% 이하, Al: 0.01 ~ 0.02%, 잔부 Fe 및 기타 불가피한 불순물을 포함할 수 있다.
또한, 상기 아크 용접 시, 용접재료로서 플럭스 코어드 와이어를 사용하는 경우에는, 상기 용접 이음부가 중량%로, C: 0.05~0.10%, Si: 0.47~0.53%, Mn: 1.10~1.16%, P: 0.009~0.025%, S: 0.007~0.018%, Cr: 0.03~0.13%, Ni: 0.02~0.11%, Cu: 0.02~0.08%, Mo: 0.02~0.07%, Al: 0.005~0.02%, 잔부 Fe 및 기타 불가피한 불순물을 포함할 수 있다.
또한, 상기 아크 용접 시, 용접재료로서 피복아크 용접봉을 사용하는 경우에는, 상기 용접 이음부가 중량%로, C: 0.06~0.14%, Si: 0.42~0.49%, Mn: 0.83~0.91%, P: 0.015~0.035%, S: 0.010~0.022%, Cr: 0.07~0.20%, Ni: 0.06~0.15%, Cu: 0.05~0.12%, Mo: 0.05~0.10%, Al: 0.01~0.02%, 잔부 Fe 및 기타 불가피한 불순물을 포함할 수 있다.
이렇듯, 상기 아크 용접 시, 각 용접재료를 사용함에 따른 용접 이음부의 조성이 전술한 조건을 충족하도록 제어함으로써, 용융 금속취화 균열성을 효과적으로 억제할 수 있고, 용접 이음부의 내식성이 우수함과 동시에, 내균열성 및 결합성이 우수한 용접 구조 부재를 제공할 수 있다.
이 때, 상기 아크 용접, 솔리드 와이어, 플럭스 코어드 와이어, 피복아크 용접봉에 대해서는 전술한 설명을 제외하고, 당해 기술분야에서 통상적으로 알려진 사항을 본 발명에도 동일하게 적용할 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 용접 이음부를 형성하는 단계는, 5~8kJ/cm의 입열량으로 수행될 수 있다. 상기 입열량이 5kJ/cm 미만이면 용접비드 불균일 형성 혹은 용입 불량의 문제가 생길 수 있고, 상기 입열량이 8kJ/cm 초과이면 오버랩 혹은 용략이 생기는 문제가 있을 수 있다.
본 발명에서 사용되는 아크 용접 중의 토치 및 용접되는 강판의 단면을 도 1에 모식적으로 나타내었다. 구체적으로, 용접 토치는 용접 강판(1)의 표면 상의 용접 부위(3)에 아크(4)를 형성하면서 화살표 방향으로 진행되고 있다. 용접 토치의 중심부에 위치하는 전극과 용접 와이어의 주위인 가스 노즐에서 실드 가스(2)가 분출하고, 이로 인해 아크(4) 및 고온에 노출되는 용접 강판(1)의 표면을 대기로부터 보호한다. 아크(4)로부터의 입열에 의해 용접 부위(3)의 일부는 용접 토치가 통과한 후, 급속히 응고하여 용접 금속으로 구성되는 용접 비드(용접 이음부)를 형성한다.
도 2에는 용접 구조 부재의 제조 과정에서 형성되는 용접 이음부의 단면 구조를 모식적으로 나타낸 것으로서, 건설, 자동차 구조물 등에는 아크 용접에 의한 다양한 종류의 용접 조인트가 사용된다.
즉, 도 2에 있어서, 용접되는 2개의 강판(즉, 제1 강판 및 제2 강판; 10, 10')이 겹쳐져서 배치되고, 상기 2개의 강판 중 어느 하나의 강판(10)의 표면과 다른 하나의 강판(10')의 단면에 용접 비드(11)가 형성되어 양 강판이 서로 접합한다. 이 때, 상기 2개의 강판(10, 10')의 표면과 용접 비드(11)의 표면이 만나서 형성하는 가장자리 교점을 비드토우(toe)부(12)라고 한다.
한편, 통상 아크 용접을 이용하여, Zn-Al-Mg계 도금강판을 이용한 용접 구조 부재를 제조할 때에는 전술한 비드토우부(12) 부근에서 대부분의 균열의 문제가 발생한다.
이에, 도 3 내지 5에는 도 2에 나타낸 비드토우부(12)의 인근에 해당하는 부분을 확대한 모식적인 단면도를 나타내었다. 구체적으로, 도 3은 Zn-Al-Mg계 도금강판을 이용한 용접 구조 부재를 제조할 때, 아크 용접 시 아크 열이 통과한 직후의 고온 용접부 근방의 단면 상태를 모식적으로 나타낸 것이다. 용접 전 강판(10)의 표면은 균일한 도금층으로 덮여 있지만, 아크의 통과에 의해 비드토우부(12) 근처에서는 도금층의 금속이 증발하여 소실된 상태가 되고, 이에 따라 도금층 증발 구간(15)를 형성한다. 이에 비해, 상기 비드토우부(12)로부터 어느 정도 거리가 있는 부분에서는 원래의 Zn-Al-Mg계 도금층이 용융되어, Zn-Al-Mg계 용융 도금층(13)으로서 존재한다. 또한, 상기 비드토우부(12)로부터 거리가 먼 부분에서는 원래의 Zn-Al-Mg계 도금층이 용융되지 않은 상태(14)로서 존재한다.
도 4는 종래에, Zn-Al-Mg계 도금강판을 이용하여 제조되는 용접 구조 부재의 단면도를 모식적으로 나타낸 것이다. 도 4의 경우, 용접 시에 아크 열이 통과한 직후의 고온 용접부 근방에서는 Zn-Al-Mg계 도금층이 소실되고, 이에 따라 도 3과 마찬가지로 도금층 증발 구간(15)을 형성한다. 이후, 상기 도금층 증발 구간(15)에 Zn-Al-Mg계 용융 도금층(13)이 젖음 확산이 일어나게 되고, 이에 따라 강판(10)의 표면은 비드토우부(12)까지 전체가 Zn-Al-Mg계 용융 도금층(13)으로 덮힌다.
따라서, 종래의 Zn-Al-Mg계 도금강판을 이용하여 제조되는 용접 구조 부재의 경우, 도 4와 같이, 비드토우부(12) 인근까지 모두 Zn-Al-Mg계 용융 도금층의 응고 영역(15)이 되어버린다. 이 경우에는 전술한 바와 같이, Zn-Al-Mg계 용융 도금층의 금속 액상선의 온도가 낮기 때문에, 냉각 후의 응고 영역이 되는 강판(10)의 표면 부분은 용접 후 냉각 과정으로 인해, Zn-Al-Mg계 용융 도금층과 접촉하는 시간이 비교적 길어진다. 따라서, 강판(10)의 상기 비드토우부(12)에 가까운 부근에서는 용접 후의 냉각으로 인장 응력이 발생하고 있으므로, 강판(10)의 결정립계 중에 Zn-Al-Mg계 용융 도금층 중의 성분이 침입하기 쉽다. 이로 인해, 결정립계에 침입한 상기 성분은 용접 이음부에 균열을 일으키는 요인이 된다.
이에, 본 발명자들은, 상기 용접 후, 냉각 조건을 정밀하게 제어하면서 수냉을 실시함으로써, 내식성이 우수함과 동시에, 균열 발생을 억제 가능한 용접 구조 부재를 제조 가능함을 발견하였다. 예를 들어, 상기 용접 후, 용접 이음부의 표면 온도를 기준으로, 25~110℃/s의 평균 냉각 속도가 되도록 수냉을 실시할 수 있다. 이 때, 상기 평균 냉각 속도가 25℃/s 미만일 때에는 도금 용융층의 단시간 응고 효과가 없어 LME가 발생하는 문제가 생길 수 있다. 반면, 용접 이음부의 표면 온도를 기준으로, 상기 평균 냉각 속도가 110℃/s를 초과하면 소재 금속의 마르텐사이트 변태로 인성 저하의 문제가 생길 수 있다.
한편, 도 5에는 도 3의 상태에서 본 발명의 조성을 갖는 용접 이음부를 갖도록 용접을 실시한 후, 냉각 시 용접 이음부의 표면 온도를 정밀히 제어함과 동시에, 특정 냉각 속도를 갖도록 수냉을 적용함으로써, 본 발명의 Zn-Al-Mg계 도금강판을 이용하여 제조되는 용접 구조 부재의 단면도를 모식적으로 나타낸 것이다.
이로 인해, 용접 직후 Zn-Al-Mg계 도금층이 증발되어 소실됨으로써 도금층 증발 구간(15)의 강판 표면까지 도달하지 않은 상태로 Zn-Al-Mg계 용융 도금층이 응고됨으로써, 응력이 집중되는 비드토우부(12)까지의 Zn-Al-Mg계 용융 도금층에 의한 젖음 확산이 억제된다. 그 결과, 냉각 후에도 도금층 증발 구간(15)이 유지된다. 즉, 상기 비드토우부(12) 부근의 강판 표면은 Zn-Al-Mg계 용융 도금층과 접촉하지 않은 상태로 냉각이 종료되고, 이에 따라 상기 비드토우부(12)로부터 Zn-Al-Mg계 용융 도금층의 응고 영역(17) 사이에 일정 구간의 도금층 증발 구간(15)이 확보된다.
따라서, 상기 비드토우부(12) 부근에서는 강판으로의 용융 금속 성분의 침입이 방지되고, 이에 따라 강판의 강종에 의존하지 않고, 우수한 내균열성을 확보한 용접 구조 부재를 얻을 수 있다. 또한, Zn-Al-Mg계 용융 도금 금속층에 있어서, 이러한 용융 도금층의 높이 위치가 변하는 어떠한 용접 자세에 있어서도, 전술한 효과에 의해 젖음 확산이 억제될 수 있다. 예를 들어, 아래보기 자세를 비롯한, 수평보기 용접, 수직보기 용접, 위보기 용접 등에서도 동일하게 적용될 수 있다.
즉, Zn-Al-Mg계 도금강판을 이용하여 용접 구조 부재를 제조할 때에, 아크 용접 시 형성된 용접 비드의 인근에서는 Zn-Al-Mg계 도금층이 증발하여 소실되는데, 종래에는 용접에 의한 아크 열이 통과한 후에는 상기 용접 비드에서 수mm 떨어진 위치에서 Zn-Al-Mg계 도금층이 용융되어 형성된 용융 도금층이 즉시 용접 비드 부근으로 젖음 확산이 일어났다.
그러나, 본 발명에서는 전술한 증발하여 소실된 상태를 유지한 채로 냉각이 완료됨과 동시에, 용접 이음부의 조성을 정밀하게 제어하거나, 및/또는 용접 이음부에 최인접한 도금층의 미세조직을 제어함으로써, 용접 비드 인근으로의 용융 금속층의 침입을 억제함으로서 균열을 효과적으로 방지할 수 있게 된다.
구체적으로, 본 발명에서는 용접 토치 통과 후 임계 시간 이내에 최적화된 수냉의 방법을 적용함으로써, Zn-Al-Mg계 도금 강판 부재의 젖음 확산이 방지되는 것을 발견하였다.
즉, 본 발명은 적어도 하나가 Zn-Al-Mg계 도금강판인 2개의 강판을 용접하여 얻어지는 용접 구조 부재의 제조방법에 있어서, 용접 직후(즉, 용접 토치 통과 후) 수초 이내에 수냉을 적용함으로써 내균열성이 우수한 용접 구조 부재를 효과적으로 제공할 수 있다.
따라서, 본 발명의 일 측면에 따르면, 균열이 발생하기 쉬운 아크 용접 시에도, 내균열성이 우수함과 동시에, 내식성 및 결합성도 우수한 용접 구조 부재를 효과적으로 제공할 수 있을 뿐만 아니라, 도금층의 원소 제한이나 추가 없이도 비교적 경제적으로 전술한 특성이 우수한 용접 구조 부재를 제공할 수 있다.
뿐만 아니라, 본 발명의 일 측면에 따르면, Zn-Al-Mg계 도금강판의 소지강판에 대하여 별다른 강종의 제약없이도 효율적으로 내균열성이 우수한 용접 구조 부재를 제공할 수 있어, 고장력 강판에도 적용 가능하고, 부품의 형상이나 크기에도 제약없이 적용할 수 있다.
구체적으로, 본 발명의 일 측면에 따르면, 상기 수냉은 용접 토치 통과 후 3~10초 이내에 개시할 수 있고, 보다 바람직하게는 3~9초 이내에 개시할 수 있다. 이러한 수냉의 개시 시간을 용접 토치 통과 후 3초 이상으로 함으로써, 진행하는 토치에 영향을 미치지 않는 임계 시간이므로 용접 성능을 확보할 수 있다. 또한, 상기 수냉의 개시 시간을 용접 토치 통과 후 10초 이하로 함으로써, 용접 토치 통과 후 생성되는 용융 도금층이 용접 비드 부근까지 진행하는 것을 방지함으로써 내균열성을 확보할 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 수냉의 유량은 15~60mm3/hr일 수 있다. 상기 수냉의 유량을 15mm3/hr 이상으로 함으로써, 용접 토치 통과 후 생성되는 용융 도금층의 냉각 효과를 충분히 확보할 수 있다. 또한, 상기 수냉의 유량을 60 mm3/hr 이하로 함으로써, 불필요한 유량 공급으로 인한 작업 환경의 오염을 방지할 수 있을 뿐만 아니라, 과도한 냉각으로 인해 발생하는 문제를 억제할 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 수냉은 5~15초간 유지될 수 있다. 상기 수냉의 유지 시간을 5초 이상으로 함으로써, 수냉에 의한 용융 도금층의 냉각 효과를 충분히 확보하여 내균열성이 향상되는 효과를 확보할 수 있다. 상기 수냉의 유지 시간을 15초 이하로 함으로써, 불필요한 유량 공급으로 인한 작업 환경의 오염을 방지할 수 있을 뿐만 아니라, 과도한 냉각으로 인해 발생하는 문제를 억제할 수 있다.
즉, 본 발명의 일 측면에 따르면, 상기 수냉은 용접 토치 통과 후 3~10초 이내에, 15~60mm3/hr의 수냉 유량을 5~15초간 토치 통과 부위에 공급하는 것이 가장 바람직하다.
혹은, 본 발명의 일 측면에 따르면, 전술한 바와 같이, 용접 이음부의 냉각 속도를 제어하기 위해서는, 전술한 다양한 냉각 조건의 제어와 동시에, 용접 토치 통과 후, 3~10초 이내에 5~38℃ 범위의 온도로 제어되는 물을 용접 이음부 표면에 분사할 수 있다. 이 때, 상기 용접 이음부에 분사되는 물의 액적 크기는 20~100㎛ 범위로 제어할 수 있다.
본 발명의 일 측면에 따른 용접 구조 부재는, 제1 강판; 제2 강판; 및 상기 제1 강판과 제2 강판을 결합하는 용접 이음부를 포함한다. 여기서, 상기 제1 강판, 제2 강판, 용접 이음부에 대해서는, 전술한 용접 구조 부재의 제조방법에 대한 설명을 동일하게 적용할 수 있다.
또한, 상기 용접 구조에 있어서, 상기 Zn-Al-Mg계 도금층 중 상기 용접 이음부에 최인접한 부분의 미세조직은 면적분율로, Zn-Mg계 금속간 화합물을 20~40% 포함한다.
본 발명에 있어서, 상기 Zn-Al-Mg계 도금층 중 상기 용접 이음부에 최인접한 부분이라 함은, 도금층 증발 구간(15)에 해당하는 '용접 이음부의 비드토우부로부터 도금층이 존재하지 않는 영역'까지를 제외하고, Zn-Al-Mg계 도금층 중에 용접 이음부에 최인접한 영역에서부터 강판의 압연방향으로 10mm가 되는 지점까지의 영역을 의미할 수 있다.
따라서, 상기 용접 이음부에 최인접한 부분의 미세조직은 전술한 Zn-Al-Mg계 도금층 중에 용접 이음부에 최인접한 영역에서부터 강판의 압연방향으로 10mm가 되는 지점까지의 영역에 대하여 두께방향(즉, 강판의 압연방향과 수직인 방향)으로의 절단면을 광학 현미경(OM) 500배 배율로 관찰하여 측정할 수 있다.
본 발명의 일 측면에 따르면, 상기 Zn-Mg계 금속간 화합물이라 함은, 본 발명에서 아크 용접 직후 형성된 Zn-Al-Mg계 용융 도금층이 후속하는 수냉 공정에 의해 급속 냉각되면서, 기지 조직에 해당하는 Zn 단상 이외에 형성되는 2차상인 Zn 및 Mg을 포함하는 금속간 화합물을 의미한다. 이 때, 상기 Zn-Mg계 금속간 화합물이라 함은, Zn 및 Mg 외에 Al 등의 성분을 추가로 더 포함할 수 있고, 예를 들어, Zn/MgZn2 2원상 및 Zn/MgZn2/Al 3원상 등을 들 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 Zn-Al-Mg계 도금층 중 상기 용접 이음부에 최인접한 부분의 미세조직은 면적분율로, 전술한 Zn-Mg계 금속간 화합물을 20~40%(보다 바람직하게는 24~38%) 포함한다. 본 발명에 있어서, 상기 Zn-Mg계 금속간 화합물의 면적분율이 20% 미만이면 LME 방지의 효과를 기대하기 어렵고, 40%를 초과하면 내식성과 내균열성이 모두 우수한 본 발명에서 목적하는 용접 구조 부재를 제조할 수 없게 된다.
또한, 본 발명의 일 측면에 따르면, 상기 Zn-Al-Mg계 도금층 중 상기 용접 이음부에 최인접한 부분의 미세조직은 면적분율로, Zn 단상을 기지조직으로서 포함할 수 있고, 예를 들어 상기 Zn 단상을 60% 이상 포함할 수 있다.
본 발명의 일 측면에 따르면, 상기 Zn-Al-Mg계 도금층 중 상기 용접 이음부에 최인접한 부분의 미세조직이, 처음부터 용융되지 않은 Zn-Al-Mg계 도금층(즉, 상기 Zn-Al-Mg계 도금층 중 상기 용접 이음부에 최인접한 부분 이외의 부분)의 미세조직과는 상이하게 형성된다.
즉, 전술한 아크 용접 직후 형성된 Zn-Al-Mg계 용융 도금층은 전술한 바와 같이 냉각 조건을 정밀하게 제어한 수냉 공정에 의해 급속 냉각되어 처음부터 용융되지 않았던 Zn-Al-Mg계 도금층과는 상이한 미세조직을 형성한다. 이 때, 상기 상기 용접 이음부에 최인접한 부분에 있어서, Zn-Mg계 금속간 화합물의 평균 직경은, 두께방향(강판의 압연방향과 수직인 방향을 의미함)으로의 절단면을 기준으로, 1~30㎛ 범위일 수 있다. 이러한 냉각의 영향으로 형성된 Zn-Al-Mg계 도금층 중 상기 용접 이음부에 최인접한 부분의 미세조직이 전술한 특징을 충족함으로써, 용융 금속취화 균열성을 효과적으로 억제할 수 있고, 이로 인해 내식성이 우수함과 동시에, 내균열성 및 결합성이 우수한 용접 구조 부재를 얻을 수 있다.
본 발명의 일 측면에 따르면, 상기 Zn-Al-Mg계 도금층 중 상기 용접 이음부에 최인접한 부분의 경도는 용접 전 도금층 경도 대비 69.5% 이상 (100% 이하)일 수 있다. 여기서, 상기 용접 이음부에서 최인접한 도금층의 경도란, 비드토우부(12)에서 가장 가까운 지점에서의 도금층에 대한 경도를 측정한 값을 나타낸다.
또한, 본 발명의 일 측면에 따르면, 상기 용접이음부의 비드토우부(12)로부터 도금층 사이의 거리(도금층 증발 구간(15)에 해당)는 3~10mm일 수 있고, 이러한 도금층 증발 구간(15)의 길이는 용접 직후 특정 범위의 평균 냉각 속도를 충족하도록 수냉의 방식을 적용함으로써 제어할 수 있다.
구체적으로, 본 발명의 일 측면에 따르면, 상기 도금층의 증발 구간(15)의 길이를 3mm 이상으로 함으로써, 비드토우부(12) 부근에서의 용융 도금 금속층에 의한 균열의 발생을 방지하여 내균열성을 확보할 수 있다. 상기 도금층의 증발 구간(15)의 길이를 10mm 이하로 함으로써, 도금층의 형성에 의한 내식성 확보의 효과를 얻을 수 있다.
한편, 본 발명의 일 측면에 따르면, 상기 Zn-Al-Mg계 도금층은 중량%로, Al: 1~20.9%, Al: 1~20.9%, Mg: 0.04~10%, Ti: 0.1% 이하(0% 포함), B: 0.05% 이하(0%포함), Si: 2% 이하(0% 포함), Fe: 2.5% 이하(0% 포함), 잔부 Zn 및 기타 불가피한 불순물로 구성될 수 있다. 또한, 본 발명에 있어서, 도금층의 조성을 전술한 바와 같이 함으로써, 용접 시 내균열성 확보라는 본 발명의 목적을 보다 효과적으로 달성할 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 Zn-Al-Mg계 도금층의 편면 당 도금 부착량은 50~250g/m2일 수 있다. 상기 도금층의 편면당 도금 부착량을 50g/m2 이상으로 함으로써 도금강판의 내식성을 확보할 수 있고, 250g/m2 이하로 함으로써 용접 시에 블로우홀이 발생하는 것을 방지하여 용접부의 강도를 확보할 수 있다.
즉, 도금층의 편면당 도금 부착량을 적정량 이상으로 제어함으로써, 도금층의 내식성 효과를 충분히 확보할 수 있고, 도금층의 희생 작용에 의한 방식의 효과를 충분히 얻을 수 있다.
따라서, 본 발명과 같이, 용접 토치 통과 후 발생한 용접 비드의 근방에 도금층 증발 구간이 생기게 될 경우에는 상기 도금층의 편면당 도금 부착량을 50~250g/m2으로 제어하는 것이 바람직하고, 50~200g/m2으로 제어하는 것이 보다 바람직하다.
한편, 전술한 도금층의 조성은 용융 도금용 조성을 거의 반영한 것으로써, 용융 도금의 방법을 특별히 한정하지는 않으나, 일반적으로 알려진 인라인 소둔형 용융 도금 설비를 사용하는 것이 경제적인 관점에서 바람직하다.
이하에서는 도금층의 성분계에 대하여 우선적으로 설명한다. 이 때, 하기 각 성분의 함량 단위는 중량%이다.
Al: 1~20.9%
Al은 도금 강판의 내식성을 향상시키고 또한 도금욕에 있어서 Mg 산화물계 드로스 발생을 억제한다. 이러한 효과를 얻기 위해서는 1% 이상의 Al함량을 확보할 필요가 있다. 1% 이상으로 함으로써, 내식성 확보 및 드로스 방지효과를 확보할 수 있고, 20.9% 이하로 함으로써, 도금층의 하지에 무른 Fe-Al 합금층의 과성장을 방지하여 도금 밀착성을 확보할 수 있다.
Mg: 0.04~10%
Mg는 도금 층표면에 균일한 부식 생성물을 생성시켜 도금 강판의 내식성을 현저하게 높이는 작용을 나타낸다. 한편, 상기 Mg의 함량을 0.04% 이상으로 함으로써 내식성 향상의 효과를 확보할 수 있고, 10% 이하로 함으로써 Mg 산화물계 드로스 발생을 억제하여 도금층의 품질을 확보할 수 있다. 또한, 상기 Mg함량은 1%~5%로 하는 것이 더욱 바람직하다.
Ti: 0~0.1%
용융 도금욕 중에 Ti 를 함유시키면, 용융 도금 시의 타성분의 합금 범위를 증대시켜 제조 조건의 자유도가 확대하는 장점이 있다. 한편, Ti을 0.1% 이하로 함유함으로써, 타성분의 합금범위 증대의 효과를 발휘할 수 있다. 또한, 상기 Ti 함량은 0.0005~0.005%로 하는 것이 보다 효과적이고, 상기 Ti 함량을 0.005% 이상으로 함으로써 타성분 합금범위의 증대 효과가 있다. 반면, 상기 Ti 함량을 0.005% 이하로 함으로써 석출물의 생성으로 인한 도금층 표면의 외관 불량을 억제할 수 있다.
B: 0~0.05%
용융 도금욕 중에 B 첨가 또한 용융 도금 시의 타성분의 합금범위를 증대시켜 제조 조건의 자유도가 확대하는 장점이 있다. 한편, B를 0.1% 이하로 함유함으로써, 타성분의 합금범위 증대의 효과를 발휘할 수 있다. 또한, 상기 B 함량은 0.0001~0.005%로 하는 것이 보다 효과적이고, 상기 B 함량을 0.0001% 이상으로 함으로써 타성분 합금범위의 증대 효과가 있다, 반면, 상기 B 함량을 0.05% 이하로 함으로써 석출물의 생성으로 인한 도금층 표면의 외관 불량을 억제할 수 있다.
Si: 0~2%
용융 도금욕 중에 Si를 함유시키면, 도금 원판 표면과 도금층의 계면에 생성하는 Fe-Al합금층이 과도한 성장이 억제되고 용융 Zn-Al-Mg계 도금 강판의 가공성을 향상시키는데 있어서 유리하다. 따라서, 상기 Si 함량을 2% 이하로 함으로써, 전술한 도금 강판 가공성 향상의 효과를 발휘할 수 있다. 한편, 상기 Si함량은 0.005~2%로 하는 것이 보다 효과적이고, 상기 Si 함량을 0.005% 이상으로 함으로써 Fe-Al 합금층의 과도 성장 억제의 효과가 발휘되고, 상기 Si 함량을 2% 이하로 함으로써 용융 도금욕 중의 도로스량의 증대를 억제할 수 있다.
Fe: 0~2.5%
용융 도금욕 중에는 강판을 침지 통과시키는 특성상, Fe가 혼입하기 쉽다. 따라서, 도금층 중에는 Fe가 2.5% 이하로 포함될 수 있고, Fe 함량을 2.5% 이하로 함으로써 도금강판의 내식성 및 품질을 확보할 수 있다. 한편, 보다 바람직하게는 상기 Fe 함량은 0.0001~2.5%일 수 있고, 상기 Fe 함량을 0.0001% 이상으로 함으로써 추가적인 청정비용이 발생하지 않아 경제적이다.
이하, 본 발명의 일 측면에 따른 도금강판에 대하여 자세히 설명한다. 본 발명에서 각 원소의 함량을 나타낼 때에는 특별히 달리 정의하지 않는 한, 중량%를 의미한다.
(실시예)
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 하기 실시예는 예시를 통하여 본 발명을 설명하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에서 유의할 필요가 있다. 본 발명의 권리범위는 특허 청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
(실험예 1)
표 1의 조성을 가지는 판 두께 1.5㎜, 판 폭 1000㎜의 냉연강대를 표 3의 조성을 나타내는 용융 도금 라인에 통판하여, 다양한 도금층 조성을 가지는 용융 Zn-Al-Mg계 도금 강판을 제조하였다.
이어서, 하기 표 2에 나타내는 용접 조건으로 아크 용접을 하고, 내용융 금속취화 균열성을 조사했다. 또한, 도금층 조성, 도금 부착량, 수냉 조건, 경도값은 표 3 및 4에 나타내었다.
성분 (중량%) C Si Mn Al Ni Cr Mo 특성
400MPa급 고장력강
강재 0.17 0.01 0.5 0.03 0.015 0.03 0.003
용융 Zn-Al-Mg계
합금도금
강판
도금층 조성 65% 이상의 Zn 합금조성을 가지는 도금
(추가 조성범위Al:1.0~20.0%, Mg:0.05~10.0%, Ti:0~0.10%, B:0~0.05%, Si:0~2.0%, Fe:0~2.5%)
도금용 강판 저탄소강
사이즈 판두께 1.5mm, 판폭 200mm, 판길이 200mm
도금부착량 편면 50 ~ 250g/㎡
용접 프로세스 가스 금속 아크용접 플럭스 코어드 용접 피복 아크 용접
용접와이어 종류 솔리드 와이어 플럭스 코어드 와이어 피복아크 용접봉
용접와이어명 / 직경 KC-25M / 1.2 mmΨ K-71T / 1. 2 mmΨ KR-3000 / 2.6 mmΨ
용접가스 80% Ar + 20% CO2 80% Ar + 20% CO2 -
용접가스 유량 15 L/min 15 L/min -
용접전류 150A 180A 150A
용접전압 20V 20V -
용접속도 0.5 m/min 0.5 m/min 0.8 m/min
비드길이 300 ㎜ 300 ㎜ 300 ㎜
용접 입엽량 3.6 kJ/cm 4.3 kJ/cm 3.9 kJ/cm
전술한 실험에 대한 균열 발생 여부 및 경도값 변화율의 결과를 하기 표 4에 나타내었다. 본 발명에서 규정하는 조건을 만족할 때 도금층 증발 구간(15)의 길이가 3~10mm로 확보되고, 액화 금속취화 균열이 방지되는 것을 확인할 수 있다.
[내용융 금속취화 균열성 시험 방법]
도 6에 나타난 바와 같이, 200㎜×200㎜의 시험편(용융 Zn-Al-Mg계 도금 강판 부재)의 중앙부에 표 2에 나타난 용접 조건에서 아크 용접을 하여 시험편간 용접을 하였다. 구체적으로는 용접 개시점 S에서 시계 방향으로 용접 개시점 S를 지난 후도 또한 비드를 겹치고 용접을 진행시켜 용접 비드의 겹침부 분을 생성한 후의 용접 종료점 E까지 용접을 했다. 용접 중, 시험편(22)는 평판상에 구속된 상태로 했다. 이 시험은 구속조건을 주어 용융금속 취화균열 발생이 용이한 상황으로 하였다.
용접 후, 방사성 비파괴검사를 실시하여 「용융 금속취화 균열」 유무를 판단하여, 하기와 같은 기준으로 그 결과를 표 4에 나타내었다.
◎ : 균열이 발생하지 않음
○ : 표면균열 5㎛ 이하의 균열 흔적만 있고 거의 발생하지 않음
× : 표면균열 5㎛ 초과 및 전파된 균열이 발생함
[도금층 증발 구간 의 길이 및 경도값 변화율 측정 방법]
용접 비드 및 그 인근의 강판을 포함한 비드 방향으로 수직의 단면에 대해서 경면 연마 및 질산 농도 0.2 체적% 나이탈 용액에서의 식각을 실시한 후, 주사형 전자현미경으로 관찰하였다. 비드토우부(12) 근방을 관찰함으로써 도 5에 나타낸 도금층 증발 구간(15)의 길이를 측정하였고, 또한 용접 후 비드토우부(12) 근방의 도금층 경도와 용접 전의 도금층 경도를 측정하여, 그 변화율을 하기 표 4에 나타내었다.
또한, Zn-Al-Mg계 도금층 중 상기 용접 이음부에 최인접한 부분의 미세조직을 관찰하기 위하여, 두께방향으로의 단면 시편에 대해 광학 현미경(OM) 500배 배율로 촬영한 후, Zn/MgZn2 2원상 및 Zn/MgZn2/Al 3원상을 포함하는 Zn-Mg계 금속간 화합물과, Zn 단상(Zn을 70% 이상 포함)의 면적분율을 측정하였다. 또한, 용접 이음부에 대한 인장강도(YS)를 측정하여 하기 표 5에 나타내었다. 한편, 하기 표들에 있어서, 빈칸은 '0'인 경우를 나타낸다.
구분 Zn-Al-Mg계 도금층 조성 (질량%, 잔부 Zn)
Al Mg Si Ti B Fe
발명예 1 4.5 0.05
발명예 2 4.5 0.05
발명예 3 4.5 0.05
비교예1 6.4 3.1 0.5 0.05 0.02
비교예2 19.1 8.9 0.5 0.3
비교예3 4.4 1.2 0.5
구분 용접전
도금층
경도 (Hv)
도금
부착량 (g/m2)
테스트 조건
용접와이어 종류 평균 냉각 속도 (℃/s)
발명예 1 114.2 50 솔리드 와이어 85.8
발명예 2 114.2 50 플럭스 코어드 와이어 85.2
발명예 3 114.2 50 피복아크 용접봉 106.9
비교예1 148.4 135 솔리드 와이어 14.8
비교예2 205.9 135 플럭스 코어드 와이어 12.8
비교예3 130.6 183 피복아크 용접봉 11.3
구분 상기 Zn-Al-Mg계 도금층 중 상기 용접 이음부에 최인접한 부분 균열 발생
여부
용접후 도금층
경도 변화율
(%)
Zn-Mg계 금속간 화합물의 면적분율 (%) Zn 단상의 면적분율(%)
발명예 1 35.1 64.9 87.2
발명예 2 28.3 71.7 75.5
발명예 3 25.7 74.3 73.7
비교예1 11.2 88.8 X 55.2
비교예2 8.7 91.3 X 53.1
비교예3 5.3 94.7 X 53.2
상기 표 3~5에서 볼 수 있듯이, 본 발명에서 규정하는 상기 Zn-Al-Mg계 도금층 중 상기 용접 이음부에 최인접한 부분의 미세조직은 Zn-Mg계 금속간 화합물을 20~40% 포함하고, Zn 단상을 60% 이상 포함하는 발명예 1~3의 경우, 이를 충족하지 않는 비교예 1~3에 비해, 내균열성이 보다 우수하였고, 또한 용접 전후의 경도값 변화율 역시 69.5% 이상으로서 내식성도 우수함을 확인하였다.
(실험예 2)
하기 표 5~8에 기재된 조건으로 변경한 것 외에는, 전술한 실험예 1과 동일한 방법으로 평가하였다. 또한, 하기의 방법을 통해 얻어지는 용접 구조 부재에 있어서, 솔리드 와이어, 플럭스 코어드 와이어 및 피복아크 용접봉을 사용한 각 경우에 대한 용접 이음부의 조성범위를 발광분광 분석기 장치로 측정하여 하기 표 6에 나타내었다. 한편, 하기 표들에 있어서, 빈칸은 '0'인 경우를 나타낸다.
성분(중량%) C Si Mn P S Cr Ni Cu Mo Al
솔리드 와이어 0.13 0.40 0.87 0.012 0.01 0.021 0.013 0.015 - 0.02
플럭스 코어드
와이어
0.09 0.48 1.15 0.022 0.009 0.042 0.028 0.021 0.02 0.012
피복아크 용접봉 0.08 0.45 0.91 0.02 0.02 0.09 0.08 0.05 0.05 0.01
(잔부: Fe 및 기타 불가피한 불순물)
구분 Zn-Al-Mg계 도금층 조성 (질량%, 잔부 Zn)
Al Mg Si Ti B Fe
발명예 4 6.4 3.1 0.5 0.05 0.02
발명예 5 19.9 9.8 0.5 0.02 0.01 0.6
발명예 6 6.7 3.1 1.5 0.4
발명예 7 6.5 3.3 0.5 0.04 0.01
발명예 8 14.8 7.6 1.5 2
발명예 9 18.1 8.3 2 2.3
발명예 10 19.1 8.9 0.5 0.3
발명예 11 4.8 0.06 0.8 0.1 0.02
발명예 12 14.3 5.1 0.05
발명예 13 0.5 1.6
발명예 14 6.2 2.9 0.1
발명예 15 20.5 9.5 0.3
발명예 16 4.5 1.1 0.5
발명예 17 8.3 2.5 2.7
발명예 18 21 9.9 0.11 0.01
발명예 19 6.3 3 0.5 0.12 0.01
발명예 20 15.3 6.8 1.5
발명예 21 5.5 0.9
발명예 22 21.5 8.1 2.7
발명예 23 18 9.2 1.3 0.15 1.2
발명예 24 6.4 3.1 0.5 0.05 0.02
발명예 25 4.5 0.04 0.3 0.5
발명예 26 6.7 3.1 1.5 0.4
발명예 27 6.5 3.3 0.5 0.04 0.01
발명예 28 11.2 2.8 0.2
발명예 29 14.3 5.1 0.05
발명예 30 14.8 7.6 1.5 2
발명예 31 4.8 0.06 0.8 0.1 0.02
발명예 32 13.8 9.3
발명예 33 20.9 9.8 0.5 0.02 0.01 0.6
발명예 34 18.1 8.3 2 2.3
발명예 35 0.5 1.6
발명예 36 6.2 2.9 0.1
발명예 37 20.5 9.5 0.3
발명예 38 4.5 1.1 0.5
발명예 39 8.3 2.5 2.7
발명예 40 21 9.9 0.11 0.01
발명예 41 6.3 3 0.5 0.12 0.01
발명예 42 15.3 6.8 1.5
발명예 43 5.5 0.9
발명예 44 21.5 8.1 2.7
발명예 45 18 9.2 1.3 0.15 1.2
발명예 46 4.5 0.04 0.3 0.5
발명예 47 6.5 3.3 0.5 0.04 0.01
발명예 48 11.2 2.8 0.2
발명예 49 4.8 0.06 0.8 0.1 0.02
발명예 50 12 4.9 2 2.3
발명예 51 11.5 4.1 0.5 0.02 0.01 0.6
발명예 52 10.3 3.9 0.05
발명예 53 0.5 1.6
발명예 54 20.5 9.5 0.3
발명예 55 4.5 1.1 0.5
발명예 56 8.3 2.5 2.7
발명예 57 15.3 6.8 1.5
발명예 58 5.5 0.9
발명예 59 21.5 8.1 2.7
비교예4 17.5 7.1
비교예5 12.5 0.04 0.3 0.03
비교예6 6.7 1.2 1.5 0.4
비교예7 6.5 3.3 0.5 0.04 0.01
비교예8 6.3 2.5 1.2 0.04 0.01
비교예9 4.4 1.2 0.5
비교예10 6.3 2.5 1.2 0.04 0.01
비교예11 21.5 8.1 2.7
비교예12 14.3 5.1 0.05
비교예13 6.3 3 0.5 0.12 0.01
비교예14 4.8 0.06 0.8 0.1 0.02
비교예15 6.7 1.2 1.5 0.4
비교예16 6.5 3.3 0.5 0.04 0.01
비교예17 6.7 3.1 1.5 0.4
비교예18 20.5 9.5 0.3
비교예19 14.3 5.1 0.05
비교예20 5.5 0.9
비교예21 17.5 7.1
구분 용접전
도금층
경도
(Hv)
도금
부착량
(g/m2)
용접 와이어
종류
용접후
수냉 개시
소요 시간
(초)
유량
(mm3/
hr)
수냉
지속
시간
(초)
냉각
속도
(℃/s)
균열
발생
여부
용접후
도금층
경도
변화율
(%)
발명예 4 148.4 135 솔리드
와이어
9 31 10 45.4 71.4
발명예 5 218.2 60 솔리드
와이어
8 28 5 49.5 73.5
발명예 6 166.1 110 솔리드
와이어
3 55 13 85.7 88.1
발명예 7 149.9 85 솔리드
와이어
5 45 8 66.9 83.2
발명예 8 228.7 65 솔리드
와이어
10 21 9 41.8 73.4
발명예 9 246.6 125 솔리드
와이어
8 15 5 49.3 70.1
발명예 10 205.9 67 솔리드
와이어
6 60 8 60.2 71.0
발명예 11 126.6 148 솔리드
와이어
10 12 3 41.6 69.0
발명예 12 161.7 175 솔리드
와이어
5 48 11 66.9 76.3
발명예 13 125.8 34 솔리드
와이어
8 13 15 49.5 65.2
발명예 14 140.5 92 솔리드
와이어
15 35 11 29.6 54.0
발명예 15 204.9 180 솔리드
와이어
5 33 1 66.8 61.3
발명예 16 129.8 45 솔리드
와이어
8 11 4 49.4 63.3
발명예 17 172.2 80 솔리드
와이어
13 35 8 33.6 62.1
발명예 18 206.1 40 솔리드
와이어
3 5 11 83.4 69.3
발명예 19 148.3 25 솔리드
와이어
4 31 3 75.3 68.1
발명예 20 195.7 290 솔리드
와이어
12 38 7 36.1 61.0
발명예 21 121.9 240 솔리드
와이어
12 50 10 36.0 57.3
발명예 22 225.1 155 솔리드
와이어
8 35 1 49.5 65.2
발명예 23 232.4 180 솔리드
와이어
4 32 3 75.0 59.1
발명예 24 148.4 135 플럭스 코어드 와이어 5 31 10 66.7 70.2
발명예 25 124.7 89 플럭스 코어드 와이어 6 35 15 59.4 70.5
발명예 26 166.1 110 플럭스 코어드 와이어 3 55 13 85.4 75.9
발명예 27 149.9 85 플럭스 코어드 와이어 5 45 8 66.5 72.5
발명예 28 142.9 55 플럭스 코어드 와이어 7 38 10 53.8 70.0
발명예 29 161.7 175 플럭스 코어드 와이어 5 48 11 66.9 70.7
발명예 30 228.7 65 플럭스 코어드 와이어 6 21 9 58.2 69.6
발명예 31 126.6 148 플럭스 코어드 와이어 10 12 3 40.0 60.7
발명예 32 196.5 161 플럭스 코어드 와이어 6 31 7 57.7 70.3
발명예 33 218.6 60 플럭스 코어드 와이어 8 28 5 47.3 70.2
발명예 34 246.6 125 플럭스 코어드 와이어 8 15 5 48.1 69.5
발명예 35 125.8 34 플럭스 코어드 와이어 8 13 15 47.4 67.1
발명예 36 140.5 92 플럭스 코어드 와이어 15 35 11 28.0 57.4
발명예 37 204.9 180 플럭스 코어드 와이어 5 33 1 64.4 68.8
발명예 38 129.8 45 플럭스
코어드
와이어
8 11 4 47.6 66.2
발명예 39 172.2 80 플럭스
코어드
와이어
13 35 8 32.0 60.4
발명예 40 206.1 40 플럭스
코어드
와이어
7 5 11 55.4 67.5
발명예 41 148.3 25 플럭스
코어드
와이어
7 20 3 55.3 68.8
발명예 42 195.7 290 플럭스
코어드
와이어
12 38 7 34.4 56.8
발명예 43 121.9 240 플럭스
코어드
와이어
12 50 10 34.6 59.2
발명예 44 225.1 155 플럭스
코어드
와이어
8 35 1 47.6 65.3
발명예 45 232.4 180 플럭스
코어드
와이어
4 20 3 72.7 69.2
발명예 46 124.7 89 피복아크
용접봉
4 35 15 80.6 70.3
발명예 47 149.9 85 피복아크
용접봉
5 50 12 72.3 70.2
발명예 48 142.9 55 피복아크
용접봉
5 35 10 72.6 69.5
발명예 49 126.6 148 피복아크
용접봉
3 35 10 92.9 70.0
발명예 50 215.2 125 피복아크
용접봉
3 38 15 92.6 71.1
발명예 51 166.3 60 피복아크
용접봉
5 70 12 72.3 65
발명예 52 149.9 175 피복아크
용접봉
5 70 11 72.2 68
발명예 53 125.8 34 피복아크
용접봉
8 13 15 53.9 67.1
발명예 54 204.9 180 피복아크
용접봉
5 30 1 71.7 68.5
발명예 55 129.8 45 피복아크
용접봉
8 11 4 53.5 66.2
발명예 56 172.2 80 피복아크
용접봉
13 35 8 36.4 60.4
발명예 57 195.7 290 피복아크
용접봉
12 38 7 39.0 56.8
발명예 58 121.9 240 피복아크
용접봉
12 50 10 39.3 59.2
발명예 59 225.1 155 피복아크
용접봉
8 35 1 52.5 65.3
비교예4 179.4 280 솔리드
와이어
- - - 16.3 X 56.8
비교예5 121.7 120 솔리드
와이어
- - - 15.5 X 55.0
비교예6 150.0 230 솔리드
와이어
- - - 14.4 X 56.9
비교예7 149.9 85 솔리드
와이어
- - - 16.2 X 55.3
비교예8 152.3 200 솔리드
와이어
- - - 16.3 X 54.8
비교예9 130.6 183 솔리드
와이어
- - - 16.9 X 56.9
비교예10 152.3 200 플럭스
코어드
와이어
- - - 13.1 X 55.4
비교예11 225.1 120 플럭스
코어드
와이어
- - - 13.8 X 50.8
비교예12 161.7 215 플럭스
코어드
와이어
- - - 12.6 X 52.0
비교예13 148.3 200 플럭스
코어드
와이어
- - - 12.1 X 51.3
비교예14 126.6 183 플럭스
코어드
와이어
- - - 12.4 X 55.4
비교예15 150.0 230 플럭스
코어드
와이어
- - - 12.7 X 53.3
비교예16 149.9 85 피복아크
용접봉
- - - 10.9 X 52.7
비교예17 166.1 180 피복아크
용접봉
- - - 11.2 X 52.3
비교예18 204.9 210 피복아크
용접봉
- - - 11.1 X 53.3
비교예19 161.7 215 피복아크
용접봉
- - - 11.2 X 53.1
비교예20 121.9 181 피복아크
용접봉
- - - 11.4 X 55.5
비교예21 179.4 280 피복아크
용접봉
- - - 11.2 X 55.8
상기 표 6~8에 나타난 결과와 같이, 본 발명에서 규정하는 상기 Zn-Al-Mg계 도금층 중 상기 용접 이음부에 최인접한 부분의 미세조직 및 아크 용접 후 냉각 조건을 충족하는 발명예 4~59의 경우에는, 용접 후 냉각 시, 용접 토치 통과 후 3~10초 이내에 30℃ 범위의 온도로 제어되는 물을 용접 이음부 표면에 분사하였고, 액적의 크기는 50 ㎛ 범위로 제어하였다. 이 때, 용접부에 균열이 관측되지 않았고, 용접 전후의 경도값 변화율 역시 69.5% 이상을 확보할 수 있었다.
특히, 상기 실험예 1과 동일한 방법으로 발명예 4~59로부터 얻어지는 도금 강판에 대하여, Zn-Al-Mg계 도금층 중 상기 용접 이음부에 최인접한 부분의 미세조직을 관찰하였고, 발명예 4~59의 경우, Zn-Al-Mg계 도금층 중 상기 용접 이음부에 최인접한 부분의 미세조직이 Zn-Mg계 금속간 화합물을 20~40% 및 Zn 단상을 60% 이상(즉, 잔부 Zn 단상) 포함함을 확인하였다.
반면, 본 발명에서 규정하는 도금층의 조성을 만족하지만 본 발명에서 규정하는 냉각조건을 충족하지 않도록 공냉을 행하고, 또한 용접 이음부에 최인접하는 도금층의 미세조직이 본 발명에서 규정하는 조건을 충족하지 못하는 비교예 4~21의 경우에는, 모두 용접부에 균열이 발생하였고, 용접 전후의 경도값 변화율 역시 69.5% 미만이었다.
또한, 비교예 4~21의 경우, 모두 시험편에서의 도금층 증발 구간(15)의 길이가 3㎜ 미만이었고, 가장 깊은 용융 도금 금속층에 의한 균열은 대부분의 시료에 있어서 비드토우부(12)로부터의 거리가 3 ㎜ 이내의 부위에 발생하였다.
반면, 본 발명예들에서는 용융금속 취화균열이 관측되지 않았고, 또한 도금층 증발 구간(15)의 길이 역시 모두 3㎜ 이상 10mm 이하이었다.
특히, 용접 이음부에 최인접하는 도금층의 미세조직을 전술한 명세서의 측정방법과 동일하게 측정하였고, 광학 현미경(OM)을 이용한 사진을 도 7 및 8에 나타내었다.
도 7은 본원 비교예 10에 대한 용접 이음부에 최인접하는 도금층의 미세조직을 나타내고, 서냉 조건 하에서 미세조직의 균질화(도 7의 A에 해당)가 이루어짐을 확인하였다.
반면, 도 8은 본원 발명예 2에 대한 용접 이음부에 최인접하는 도금층의 미세조직을 나타내고, 본 발명에 의한 급냉으로 인해 Zn 단상으로 이루어지는 기지 조직(도 8의 B에 해당)과 2차상인 Zn-Mg계 금속간 화합물(2원상 및 3원상을 포함; 도 8의 C에 해당)로 이루어지고, 상기 Zn-Mg계 금속간 화합물을 20~40% 범위로 포함하고, 상기 Zn 단상을 60% 이상 포함함을 확인하였다. 이 때, 상기 Zn-Mg계 금속간 화합물은 두께방향으로의 절단면을 기준으로, 1~30㎛의 평균 직경을 가짐을 확인하였다.
(부호의 설명)
1: 용접 강판
2: 실드 가스
3: 용접 부위
4: 아크
5: 용접 와이어
6: 전극
7: 용접 토치
10, 10': 용접되는 2개의 강판
11: 용접 비드
12: 비드토우부
13: Zn-Al-Mg계 용융 도금 금속층
14: 용융되지 않은 Zn-Al-Mg계 도금층
15: 도금층 증발 구간
16: Zn-Al-Mg계 용융 도금 금속층의 응고 영역
17: Zn-Al-Mg계 용융 도금 금속층의 응고 영역
18: 기존 도금 금속층
20: 강관
21: 도금 금속층
22: 시험편
23: 용접 비드
24: 비드 겹침부
S: 용접 개시점
E: 용접 종료점

Claims (13)

  1. 제1 강판;
    제2 강판; 및
    상기 제1 강판과 제2 강판을 결합하는 용접 이음부;
    를 포함하고,
    상기 제1 강판 및 제2 강판 중 적어도 하나가 Zn-Al-Mg계 도금층을 구비한 도금 강판이고,
    상기 Zn-Al-Mg계 도금층 중 상기 용접 이음부에 최인접한 부분의 미세조직은 면적분율로, Zn-Mg계 금속간 화합물을 20~40% 포함하는, 용접 구조 부재.
  2. 청구항 1에 있어서,
    상기 Zn-Al-Mg계 도금층 중 상기 용접 이음부에 최인접한 부분의 미세조직은 면적분율로, Zn 단상을 60% 이상 더 포함하는, 용접 구조 부재.
  3. 청구항 1에 있어서,
    상기 용접 이음부의 비드토우부로부터 도금층 사이의 거리가 3~10mm인, 용접 구조 부재.
  4. 청구항 1에 있어서,
    상기 Zn-Al-Mg계 도금층 중 상기 용접 이음부에 최인접한 부분의 경도는 용접 전 도금층 경도 대비 69.5% 이상인, 용접 구조 부재.
  5. 청구항 1에 있어서,
    상기 Zn-Mg계 금속간 화합물의 평균 직경은 1~30㎛ 범위인, 용접 구조 부재.
  6. 제1 강판 및 제2 강판을 준비하는 단계;
    솔리드 와이어, 플럭스 코어드 와이어 및 피복아크 용접봉 중에서 선택된 어느 하나의 용접재료를 이용하여, 상기 제1 강판 및 제2 강판을 아크 용접함으로써 용접 이음부를 형성하는 단계; 및
    상기 용접 이음부의 표면 온도를 기준으로, 25~110℃/s의 평균 냉각 속도가 되도록 수냉하는 단계;를 포함하고,
    상기 제1 강판 및 제2 강판 중 적어도 하나는 Zn-Al-Mg계 도금층을 구비한 도금강판인, 용접 구조 부재의 제조방법.
  7. 청구항 6에 있어서,
    상기 용접 재료는 솔리드 와이어이고,
    상기 용접 이음부는 중량%로, C: 0.09~0.15%, Si: 0.35~0.39%, Mn: 0.87~0.90%, P: 0.004~0.022%, S: 0.002~0.014%, Cr: 0.01~0.11%, Ni: 0.01~0.08%, Cu: 0.01~0.06%, Mo: 0.01% 이하(0% 포함), Al: 0.01 ~ 0.02%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는, 용접 구조 부재의 제조방법.
  8. 청구항 6에 있어서,
    상기 용접 재료는 플럭스 코어드 와이어이고,
    상기 용접 이음부는 중량%로, C: 0.05~0.10%, Si: 0.47~0.53%, Mn: 1.10~1.16%, P: 0.009~0.025%, S: 0.007~0.018%, Cr: 0.03~0.13%, Ni: 0.02~0.11%, Cu: 0.02~0.08%, Mo: 0.02~0.07%, Al: 0.005~0.02%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는, 용접 구조 부재의 제조방법.
  9. 청구항 6에 있어서,
    상기 용접 재료는 피복아크 용접봉이고,
    상기 용접 이음부는 중량%로, C: 0.06~0.14%, Si: 0.42~0.49%, Mn: 0.83~0.91%, P: 0.015~0.035%, S: 0.010~0.022%, Cr: 0.07~0.20%, Ni: 0.06~0.15%, Cu: 0.05~0.12%, Mo: 0.05~0.10%, Al: 0.01~0.02%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는, 용접 구조 부재의 제조방법.
  10. 청구항 6에 있어서,
    상기 수냉하는 단계는 용접 토치 통과 후, 3~10초 이내에 냉각을 개시하는, 용접 구조 부재의 제조방법.
  11. 청구항 6에 있어서,
    상기 수냉하는 단계는 15~60mm3/hr의 유량으로 수행되는, 용접 구조 부재의 제조방법.
  12. 청구항 6에 있어서,
    상기 수냉하는 단계는 용접 이음부에서 수냉이 시작된 시점으로부터 5~15초간 수냉이 지속되도록 수행되는, 용접 구조 부재의 제조방법.
  13. 청구항 6에 있어서,
    상기 용접 이음부를 형성하는 단계는 3~8kJ/cm의 입열량으로 수행되는, 용접 구조 부재의 제조방법.
PCT/KR2021/019411 2020-12-21 2021-12-20 내균열성이 우수한 용접 구조 부재 및 이의 제조방법 WO2022139370A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/266,777 US20240042541A1 (en) 2020-12-21 2021-12-20 Welded structural member having excellent crack resistance and manfuacturing method thereof
EP21911437.8A EP4265361A4 (en) 2020-12-21 2021-12-20 WELDED STRUCTURAL ELEMENT HAVING EXCELLENT CRACK RESISTANCE AND METHOD FOR MANUFACTURING SAME
CN202180086628.6A CN116669896A (zh) 2020-12-21 2021-12-20 具有优异的抗裂性的焊接结构构件及其制造方法
JP2023538046A JP2024502759A (ja) 2020-12-21 2021-12-20 耐割れ性に優れた溶接構造部材及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0179508 2020-12-21
KR1020200179508A KR102402239B1 (ko) 2020-12-21 2020-12-21 내균열성이 우수한 용접 구조 부재 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2022139370A1 true WO2022139370A1 (ko) 2022-06-30

Family

ID=81809597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019411 WO2022139370A1 (ko) 2020-12-21 2021-12-20 내균열성이 우수한 용접 구조 부재 및 이의 제조방법

Country Status (6)

Country Link
US (1) US20240042541A1 (ko)
EP (1) EP4265361A4 (ko)
JP (1) JP2024502759A (ko)
KR (1) KR102402239B1 (ko)
CN (1) CN116669896A (ko)
WO (1) WO2022139370A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145824A1 (ja) * 2022-01-31 2023-08-03 日本製鉄株式会社 溶接継手

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3149129A (en) 1961-12-22 1964-09-15 Smith Kline French Lab Benzo-1, 3-dioxole derivatives
US3179401A (en) 1962-07-05 1965-04-20 Armstrong Patents Co Ltd Vehicle telescopic suspension units
US3715220A (en) 1969-03-19 1973-02-06 Corning Glass Works Ceramic article and method of making it
US4475787A (en) 1981-02-06 1984-10-09 Xerox Corporation Single facet wobble free scanner
JP2005230912A (ja) 2004-01-22 2005-09-02 Nippon Steel Corp 耐液体金属脆化割れ性に優れたアーク溶接用フラックス入りワイヤおよびアーク溶接方法
JP2006035294A (ja) * 2004-07-29 2006-02-09 Nippon Steel Corp 接合部の耐食性に優れた亜鉛系合金めっき鋼板の接合方法
KR20080053395A (ko) * 2005-09-28 2008-06-12 신닛뽄세이테쯔 카부시키카이샤 아연 기재 합금으로 코팅한 강판을 용접하기 위한스테인레스강 기재 용접 금속으로 이루어진 용접 접합부
JP4320238B2 (ja) * 2003-10-15 2009-08-26 日新製鋼株式会社 Zn−Al−Mg合金めっき鋼板の溶接方法
JP2010082692A (ja) * 2008-09-08 2010-04-15 Nissan Motor Co Ltd マグネシウム合金と鋼との異種金属接合方法
JP2016160476A (ja) * 2015-02-27 2016-09-05 新日鐵住金株式会社 亜鉛系合金めっき溶接h形鋼及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3149129U (ja) 2008-12-26 2009-03-12 株式会社ビラハウジング ユニットバス
JP5823333B2 (ja) * 2012-03-30 2015-11-25 日新製鋼株式会社 溶融Al、Mg含有Znめっき鋼板およびその製造方法
TWM450034U (zh) 2012-06-04 2013-04-01 Winstar Display Co Ltd 導電玻璃基板型電子紙顯示裝置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3149129A (en) 1961-12-22 1964-09-15 Smith Kline French Lab Benzo-1, 3-dioxole derivatives
US3179401A (en) 1962-07-05 1965-04-20 Armstrong Patents Co Ltd Vehicle telescopic suspension units
US3715220A (en) 1969-03-19 1973-02-06 Corning Glass Works Ceramic article and method of making it
US4475787A (en) 1981-02-06 1984-10-09 Xerox Corporation Single facet wobble free scanner
US4475787B1 (en) 1981-02-06 1995-04-11 Xeros Corp Single facet wobble free scanner.
JP4320238B2 (ja) * 2003-10-15 2009-08-26 日新製鋼株式会社 Zn−Al−Mg合金めっき鋼板の溶接方法
JP2005230912A (ja) 2004-01-22 2005-09-02 Nippon Steel Corp 耐液体金属脆化割れ性に優れたアーク溶接用フラックス入りワイヤおよびアーク溶接方法
JP2006035294A (ja) * 2004-07-29 2006-02-09 Nippon Steel Corp 接合部の耐食性に優れた亜鉛系合金めっき鋼板の接合方法
KR20080053395A (ko) * 2005-09-28 2008-06-12 신닛뽄세이테쯔 카부시키카이샤 아연 기재 합금으로 코팅한 강판을 용접하기 위한스테인레스강 기재 용접 금속으로 이루어진 용접 접합부
JP2010082692A (ja) * 2008-09-08 2010-04-15 Nissan Motor Co Ltd マグネシウム合金と鋼との異種金属接合方法
JP2016160476A (ja) * 2015-02-27 2016-09-05 新日鐵住金株式会社 亜鉛系合金めっき溶接h形鋼及びその製造方法

Also Published As

Publication number Publication date
EP4265361A4 (en) 2024-06-05
US20240042541A1 (en) 2024-02-08
JP2024502759A (ja) 2024-01-23
KR102402239B1 (ko) 2022-05-26
CN116669896A (zh) 2023-08-29
EP4265361A1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
WO2017111525A1 (ko) 내수소지연파괴특성, 내박리성 및 용접성이 우수한 열간성형용 알루미늄-철 합금 도금강판 및 이를 이용한 열간성형 부재
WO2016104879A1 (ko) 프레스성형시 내파우더링성이 우수한 hpf 성형부재 및 이의 제조방법
WO2017105064A1 (ko) 표면품질 및 점 용접성이 우수한 고강도 용융아연도금강판 및 그 제조방법
WO2018117543A1 (ko) 충격특성이 우수한 열간성형용 도금강판, 열간성형 부재 및 그들의 제조방법
WO2016104880A1 (ko) 내박리성이 우수한 hpf 성형부재 및 그 제조방법
WO2015023012A1 (ko) 초고강도 강판 및 그 제조방법
WO2014104731A1 (ko) 충격인성이 우수한 초고강도 플럭스 코어드 아크 용접이음부 및 이를 제조하기 위한 용접 와이어
WO2016098964A1 (ko) 재질 불균일이 작고 성형성이 우수한 고강도 냉연강판, 용융아연도금강판, 및 그 제조 방법
WO2019231023A1 (ko) Twb 용접 특성이 우수한 열간성형용 al-fe 합금화 도금강판, 열간성형 부재 및 그들의 제조방법
WO2012165838A2 (ko) 도금 조성물, 이를 이용한 도금 강재의 제조방법 및 도금 조성물이 코팅된 도금 강재
WO2018117724A1 (ko) 연속 생산성이 우수한 고강도 열연강판 및 냉연강판 그리고 표면 품질 및 도금 밀착성이 우수한 고강도 용융아연도금강판 및 이들의 제조방법
WO2022139370A1 (ko) 내균열성이 우수한 용접 구조 부재 및 이의 제조방법
WO2015099218A1 (ko) 내열강용 용접재료
WO2019124927A1 (ko) 용접 액화 취성에 대한 저항성 및 도금 밀착성이 우수한 알루미늄 합금 도금강판
WO2020111874A2 (ko) 용접열영향부 인성이 우수한 강재 및 이의 제조방법
WO2017111491A1 (ko) 도금성 및 용접성이 우수한 오스테나이트계 용융 알루미늄 도금강판 및 그 제조방법
WO2016104837A1 (ko) 표면품질이 우수한 고강도 아연도금강판용 열연강판 및 이의 제조방법
WO2019132339A1 (ko) 점용접성 및 내식성이 우수한 다층 아연합금도금강재
WO2017111428A1 (ko) 연성, 구멍가공성 및 표면처리 특성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2021125901A2 (ko) 가공성 및 내식성이 우수한 알루미늄계 합금 도금강판 및 이의 제조방법
WO2016105157A1 (ko) 인산염 처리성과 스폿 용접성이 우수한 아연합금도금강판 및 그 제조방법
WO2020130675A1 (ko) 굽힘 가공성이 우수한 고강도 냉연강판 및 그 제조방법
WO2016104838A1 (ko) 표면품질이 우수한 고강도 아연도금강판용 열연강판 및 이의 제조방법
WO2018117703A1 (ko) 희생방식성 및 도금성이 우수한 고망간 용융 알루미늄 도금강판 및 그 제조방법
WO2021112488A1 (ko) 내구성이 우수한 후물 복합조직강 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911437

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18266777

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023538046

Country of ref document: JP

Ref document number: 202180086628.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021911437

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021911437

Country of ref document: EP

Effective date: 20230721