WO2021125334A1 - カーボンナノウォールとその製造方法および気相成長装置 - Google Patents

カーボンナノウォールとその製造方法および気相成長装置 Download PDF

Info

Publication number
WO2021125334A1
WO2021125334A1 PCT/JP2020/047481 JP2020047481W WO2021125334A1 WO 2021125334 A1 WO2021125334 A1 WO 2021125334A1 JP 2020047481 W JP2020047481 W JP 2020047481W WO 2021125334 A1 WO2021125334 A1 WO 2021125334A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
carbon nanowall
layer
substrate
reaction chamber
Prior art date
Application number
PCT/JP2020/047481
Other languages
English (en)
French (fr)
Inventor
勝 堀
健治 石川
尚博 清水
知範 市川
Original Assignee
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構 filed Critical 国立大学法人東海国立大学機構
Publication of WO2021125334A1 publication Critical patent/WO2021125334A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the technical fields of the present specification relate to carbon nanowalls, their manufacturing methods, and vapor deposition apparatus.
  • the carbon nanowall is a conductive nanostructure mainly composed of carbon atoms formed in a wall shape on a substrate. Therefore, carbon nanowalls are expected to be applied as electrode materials for secondary batteries and capacitors.
  • Patent Document 1 discloses a technique for forming carbon nanowalls on a substrate by a parallel plate type capacitively coupled plasma.
  • Patent Document 1 discloses that the distance between walls saturates at about 180 nm (paragraph [0052] of Patent Document 1). However, depending on the field of application, it may be preferable that the wall spacing is wide. As such an application field, for example, there is a case where it is applied to a cell culture substrate or the like. Further, it may be preferable that the carbon nanowalls do not merge with each other and are independent.
  • the problem to be solved by the technique of the present specification is to provide an independently arranged carbon nanowall, its manufacturing method, and a vapor phase growth apparatus.
  • the carbon nanowall in the first aspect has a substrate, an amorphous carbon layer on the substrate, and a carbon nanowall layer on the amorphous carbon layer.
  • the carbon nanowall layer is isolated and arranged like a wall.
  • the carbon nanowall layer is isolated and arranged like a wall.
  • This carbon nanowall is suitable for, for example, a cell culture substrate.
  • This specification provides independently arranged carbon nanowalls, a method for producing the same, and a vapor phase growth apparatus.
  • carbon nanowalls are conductive nanostructures mainly composed of carbon atoms arranged by growing them in a wall shape on a base material.
  • FIG. 1 is a schematic configuration diagram of the carbon nanowall CNW of the first embodiment.
  • the carbon nanowall CNW has a substrate S1, an amorphous carbon layer AC1, and carbon nanowall layers CNW1 and CNW2.
  • the amorphous carbon layer AC1 is located on the substrate S1.
  • the carbon nanowall layers CNW1 and CNW2 are located on the amorphous carbon layer AC1.
  • the carbon nanowall layer CNW1 and the carbon nanowall layer CNW2 are separate bodies. That is, the carbon nanowall layers CNW1 and CNW2 are isolated in a wall shape. The carbon nanowall layer CNW1 and the carbon nanowall layer CNW2 are independent without merging with each other.
  • FIG. 2 is a diagram conceptually showing the structure of the carbon nanowall CNW of the first embodiment.
  • FIG. 2 illustrates the graphene sheet GS1.
  • Graphite composed of a plurality of graphene sheets GS1 has good conductivity and is suitable.
  • the carbon nanowall layers CNW1 and CNW2 have a graphene sheet GS1.
  • the graphene sheet GS1 exists in the state of graphite in which about 10 layers are laminated in the thickness direction of the carbon nanowall layers CNW1 and CNW2. The number of layers may be other than the above.
  • Graphite on which the graphene sheet GS1 is laminated has higher electrical conductivity than carbon materials such as activated carbon.
  • the amorphous carbon layer AC1 is located between the substrate S1 and the carbon nanowall layers CNW1 and CNW2.
  • the amorphous carbon layer AC1 is a layer that can serve as a starting point for the growth of the graphene sheet GS1 constituting the carbon nanowall layers CNW1 and CNW2.
  • the film thickness of the amorphous carbon layer AC1 is, for example, 10 nm or more and 200 nm or less. It is preferably 10 nm or more and 100 nm or less. Depending on the growth method of the carbon nanowall, the amorphous carbon layer AC1 may not be necessary.
  • the root portion R1 is on the side of the substrate S1, and the tip portion E1 is on the opposite side of the substrate S1.
  • the root portion R1 is a fixing portion that is fixed to the substrate S1 via the amorphous carbon layer AC1 in many cases.
  • the graphene sheet GS1 and the substrate S1 are substantially perpendicular to each other. Therefore, the tip of the graphene sheet GS1 has a tip E1.
  • the tip portion E1 is a portion located at the tip of the graphene sheet GS1.
  • the carbon atom C1 at the tip E1 is bonded to a hydrogen atom. That is, the terminal group of the carbon nanowall layers CNW1 and CNW2 is a hydrogen atom.
  • FIG. 3 is a diagram schematically showing a cross section of the carbon nanowall CNW of the first embodiment.
  • the average height H1 of the graphene sheet GS1 is 0.1 ⁇ m or more and 50 ⁇ m or less. That is, the average height H1 of the carbon nanowall layers CNW1 and CNW3 is 0.1 ⁇ m or more and 50 ⁇ m or less. Preferably, it is 0.5 ⁇ m or more and 40 ⁇ m.
  • the average thickness W1 of the graphene sheet GS1 is about 0.5 nm or more and 100 nm or less. That is, the average thickness W1 of the carbon nanowall layers CNW1 and CNW3 is 0.5 nm or more and 100 nm or less. Preferably, it is 1 nm or more and 50 nm or less. More preferably, it is 2 nm or more and 30 nm or less.
  • the ratio of the height H1 of the carbon nanowall layer CNW1 to the thickness W1 of the carbon nanowall layer CNW1 is 3.3 or more and 40,000 or less. Preferably, it is 500 or more and 5000 or less. This numerical range is an example, and may be a numerical value other than the above.
  • the average wall spacing D1 between the adjacent carbon nanowall layers CNW1 and the carbon nanowall layer CNW3 is, for example, 500 nm or more and 1000 nm or less. Preferably, it is 600 nm or more and 800 nm or less. These numerical ranges are examples and may be numerical values other than the above.
  • the carbon nanowall layers CNW1 and CNW3 are graphite obtained by laminating a large number of graphene sheets GS1.
  • the graphene sheets GS1 do not extend perfectly parallel to each other.
  • the carbon nanowall layers CNW1 and CNW3 are arranged in isolation as described above. As shown in FIG. 2, the distance between adjacent wall-shaped graphites is defined as the wall spacing D1.
  • the average wall spacing which is the average value of the wall spacing D1 is related to the densities of the carbon nanowall layers CNW1 and CNW3. That is, the wider the average wall spacing, the lower the densities of the carbon nanowall layers CNW1 and CNW3. On the contrary, the narrower the average wall spacing, the higher the density of the carbon nanowall layers CNW1 and CNW3.
  • Table 1 shows the numerical values showing the structure of these carbon nanowall layers CNW1 and the like.
  • FIG. 4 is a schematic configuration diagram of the gas phase growth device 1 according to the first embodiment.
  • the vapor phase growth apparatus 1 includes a plasma generation chamber 46, a reaction chamber 10, a waveguide 47, a quartz window 48, a slot antenna 49, a radical source introduction port 42, a partition wall 44, a through hole 14, and a substrate. It has a support portion 24, a heater 25, a raw material introduction port 12, an exhaust port 16, and a voltage application unit 100.
  • the plasma generation chamber 46 is for generating plasma inside the plasma generation chamber 46 and also for generating radicals to be supplied to the reaction chamber 10.
  • the reaction chamber 10 is for forming the carbon nanowall layer CNW1 by utilizing the radicals generated in the plasma generation chamber 46.
  • the waveguide 47 is for introducing the microwave 39.
  • the slot antenna 49 is for introducing microwaves 39 from the quartz window 48 into the plasma generation chamber 46.
  • the plasma generation chamber 46 is for generating surface wave plasma (SWP) by microwave 39.
  • the plasma generation chamber 46 is provided with a radical source introduction port 42.
  • the radical source introduction port 42 is for supplying hydrogen gas serving as a radical source 36 to the inside of the plasma 61 generated in the plasma generation chamber 46. Therefore, the plasma generation chamber 46 turns hydrogen gas into plasma.
  • a partition wall 44 is provided between the plasma generation chamber 46 and the reaction chamber 10.
  • the partition wall 44 is for partitioning the plasma generation chamber 46 and the reaction chamber 10.
  • the partition wall 44 also serves as an electrode for applying a voltage.
  • a through hole is formed in the partition wall 44. This is to supply the radicals generated in the plasma generation chamber 46 to the reaction chamber 10.
  • the reaction chamber 10 is for generating a capacitively coupled plasma (CCP). It is also for forming the carbon nanowall layer CNW1 on the substrate S1.
  • the reaction chamber 10 accommodates the substrate support portion 24 and the heater 25, and also has a raw material introduction port 12 and an exhaust port 16.
  • the substrate support portion 24 is for applying a voltage between the substrate support portion 24 and the first electrode 22.
  • the heater 25 is for heating the substrate S1 and controlling the temperature of the substrate S1.
  • the raw material introduction port 12 introduces the carbon-based gas 32, which is the raw material of the carbon nanowall, into the reaction chamber 10 while diffusing it.
  • the exhaust port 16 is connected to a vacuum pump or the like. The vacuum pump regulates the pressure inside the reaction chamber 10.
  • the partition wall 44 also serves as a first electrode 22 for applying a voltage between the partition wall 44 and the substrate support portion 24.
  • the first electrode 22 generates plasma 34 between the first electrode 22 and the substrate support portion 24.
  • a power supply and a circuit are connected to the first electrode 22. This is to control the potential of the first electrode 22 in time.
  • a through hole 14 is formed in the partition wall 44. The through hole 14 communicates the plasma generation chamber 46 with the reaction chamber 10. Therefore, the hydrogen radical can enter the reaction chamber 10 from the plasma generation chamber 46 by passing through the through hole 14.
  • the board support portion 24 is for supporting the board S1.
  • the substrate support portion 24 also serves as a second electrode for applying a voltage between the substrate support portion 24 and the first electrode 22.
  • the substrate support portion 24 is also a mounting table on which the substrate S1 is mounted.
  • the distance between the first electrode 22 and the substrate support portion 24 is about 5 cm. Of course, it is not limited to this value.
  • FIG. 5 is a circuit diagram of the pulse voltage application unit 100 of the vapor phase growth apparatus 1 of the first embodiment.
  • the pulse voltage application unit 100 applies a pulse voltage to the substrate support unit 24.
  • the pulse voltage application unit 100 includes a drive circuit 110, a voltmeter 120, and an ammeter 130.
  • the drive circuit 110 has a voltage input unit 111.
  • the voltage input unit 111 inputs the input voltage Vin.
  • the output voltage Vout of the drive circuit 110 is generated with respect to the input voltage Vin. This output voltage Vout is a pulse voltage that is actually applied to the substrate support portion 24.
  • the pulse voltage is a negative voltage.
  • the pulse width of the pulse voltage is, for example, 100 ns or more and 3 ⁇ s or less.
  • the magnitude of the pulse voltage is, for example, about ⁇ 800 V or more and ⁇ 300 V or less.
  • the period of the pulse voltage is, for example, about 5 times or more and 50 times or less the pulse width.
  • the pulse voltage application unit 100 applies a negative voltage pulse voltage having a pulse width of 100 ns or more and 3 ⁇ s or less to the substrate support unit 24.
  • the substrate S1 is, for example, a metal.
  • a negative pulse voltage is applied to the substrate support portion 24, the pulse voltage is also applied to the substrate S1.
  • the surface of the substrate S1 is negatively charged, the electrons in the plasma 34 are accelerated in the direction away from the substrate S1. Then, cations such as H + and CH 3 + in the plasma 34 are drawn into the substrate S1. Then, when the cations collide with the substrate S1, a current flows through the substrate S1 and the substrate support portion 24.
  • Amorphous carbon layer forming step First, the substrate S1 before forming the carbon nanowall layer CNW1 is placed inside the vapor phase growth apparatus 1. Next, the microwave 39 is introduced into the waveguide 47. The microwave 39 is introduced into the plasma generation chamber 46 through the quartz window 48 by the slot antenna 49. As a result, high-density plasma 60 is generated.
  • the plasma 61 contains radical source ions supplied from the radical source introduction port 42.
  • radical source ions supplied from the radical source introduction port 42.
  • hydrogen gas H 2
  • it may be oxygen, nitrogen or other gas.
  • Most of the ions in the plasma 61 collide with the partition wall 44 and are neutralized to become radicals.
  • the radical 38 passes through the through hole 14 of the partition wall 44 and enters the reaction chamber 10. That is, hydrogen radicals out of the plasma-generated hydrogen gas are supplied to the reaction chamber 10.
  • the carbon-based gas 32 is supplied to the inside of the reaction chamber 10 from the raw material introduction port 12.
  • the carbon-based gas 32 is, for example, CH 4 or C 2 F 6 . Of course, it may be something else.
  • a voltage is applied between the first electrode 22 and the substrate support portion 24. As a result, plasma 34 is generated inside the reaction chamber 10.
  • the carbon-based gas plasma-generated inside the vapor phase growth apparatus 1 is supplied to the substrate S1 to form the amorphous carbon layer AC1 on the substrate S1.
  • the pressure inside the reaction chamber 10 is in the range of 5 to 2000 mTorr (0.65 Pa to 267 Pa).
  • the temperature of the substrate S1 is in the range of 100 to 800 ° C. Of course, these are examples and are not limited to these numerical ranges.
  • the carbon nanowall layer CNW1 is grown on the amorphous carbon layer AC1 inside the vapor phase growth apparatus 1.
  • Plasma 61 is generated in the same manner as in the case of growing the amorphous carbon layer AC1.
  • hydrogen gas (H 2 ) is used as the radical source of the radical 38
  • CH 4 or C 2 F 6 is used as the carbon-based gas 32.
  • the carbon-based gas plasma-generated inside the vapor phase growth apparatus 1 is supplied to the substrate S1 to grow the carbon nanowall layer CNW1 on the amorphous carbon layer AC1.
  • the pressure inside the reaction chamber 10 is in the range of 5 to 2000 mTorr (0.65 Pa to 267 Pa).
  • the temperature of the substrate S1 is in the range of 100 to 800 ° C. Of course, these are examples and are not limited to these numerical ranges.
  • the substrate S1 is taken out.
  • the height H1 of the carbon nanowall layer CNW1 at this time is, for example, 1000 nm.
  • the carbon nanowall layer CNW1 and the carbon nanowall layer CNW2 are arranged in isolation from each other. Further, the average wall spacing D1 of the carbon nanowall layer CNW1 is wider than that of the conventional carbon nanowall layer.
  • the first carbon nanowall layer forming step and the second carbon nanowall layer forming step may be carried out.
  • a pulse voltage is applied
  • a pulse voltage is not applied.
  • fine carbon nanowalls are formed in the gaps between the large isolated carbon nanowalls.
  • the carbon nanowall thus formed has a second carbon nanowall layer that is not isolated between the isolated carbon nanowall layers.
  • the second carbon nanowall layers merge with each other.
  • Example 1 Experimental method A carbon nanowall was formed using the vapor phase growth apparatus 1. H 2 was used as the radical source of the radical 38, and CH 4 was used as the carbon-based gas 32. The internal pressure was 1 Pa. The temperature of the stage supporting the substrate was 650 ° C. Further, a pulse voltage was appropriately applied. As the input voltage Vin, 0V, 90V, 120V, and 150V were used.
  • FIG. 6 is a graph showing the measured values of the pulse voltage and the pulse current of the gas phase growth apparatus 1 used in the experiment.
  • the pulse voltage and pulse current are as shown in FIG.
  • FIG. 7 is a photograph showing the experimental results. The film formation time is 290 seconds in each case.
  • FIG. 7A is a surface photograph of the carbon nanowall layer when no pulse voltage is applied.
  • FIG. 7E is a cross-sectional photograph of the carbon nanowall layer when no pulse voltage is applied. As shown in FIG. 7A, the carbon nanowall layers are densely packed and merge with each other.
  • FIG. 7B is a surface photograph of the carbon nanowall layer when a pulse voltage of 90 V is applied as an input voltage Vin.
  • FIG. 7 (f) is a cross-sectional photograph of the carbon nanowall layer when a pulse voltage of 90 V is applied as an input voltage Vin. As shown in FIG. 7 (b), the wall spacing of the carbon nanowall layer is wider than that in FIG. 7 (a).
  • FIG. 7 (c) is a surface photograph of the carbon nanowall layer when a pulse voltage of 120 V is applied as an input voltage Vin.
  • FIG. 7 (g) is a cross-sectional photograph of the carbon nanowall layer when a pulse voltage of 120 V is applied as an input voltage Vin.
  • the wall spacing of the carbon nanowall layer is wider than that in FIG. 7 (b).
  • the carbon nanowall layers are arranged in isolation.
  • FIG. 7D is a surface photograph of the carbon nanowall layer when a pulse voltage of 150 V is applied as an input voltage Vin.
  • FIG. 7 (h) is a cross-sectional photograph of the carbon nanowall layer when a pulse voltage of 150 V is applied as an input voltage Vin. As shown in FIG. 7 (d), the wall spacing of the carbon nanowall layer is wider than that in FIG. 7 (c). In addition, the carbon nanowall layers are arranged in isolation.
  • the peak value of the current when the input voltage Vin is 90V is about -0.5A.
  • the peak value of the current is about -1A. Therefore, when the current value is ⁇ 0.8 A or less, it is considered that the carbon nanowall layer arranged in isolation is formed.
  • FIG. 8 is a graph showing the relationship between the input voltage Vin and the average wall spacing.
  • the horizontal axis of FIG. 8 is the input voltage Vin.
  • the vertical axis of FIG. 8 is the average wall spacing. As shown in FIG. 8, in the range where the input voltage Vin is 90 V or more, the larger the input voltage Vin, the larger the average wall interval. That is, the larger the absolute value of the output voltage Vout, the larger the average wall interval.
  • FIG. 9 is a graph showing the relationship between the input voltage Vin and the film thickness of the amorphous carbon layer.
  • the horizontal axis of FIG. 9 is the input voltage Vin.
  • the vertical axis of FIG. 9 is the film thickness of the amorphous carbon layer.
  • FIG. 10 is a surface photograph of a carbon nanowall layer subjected to two-step growth.
  • the input voltage Vin was set to 150 V and the growth time was set to 180 seconds.
  • the input voltage Vin was set to 0 V and the growth time was set to 120 seconds.
  • a carbon nanowall layer having a narrow wall spacing is formed between isolated carbon nanowall layers having a wide wall spacing.
  • the carbon nanowall layers with narrow wall spacing merge with each other.
  • the carbon nanowall in the first aspect has a substrate, an amorphous carbon layer on the substrate, and a carbon nanowall layer on the amorphous carbon layer.
  • the carbon nanowall layer is isolated and arranged like a wall.
  • the carbon nanowall in the second aspect has a second carbon nanowall layer that is not isolated between the carbon nanowall layers arranged in isolation.
  • hydrogen gas is converted into plasma and sent out while being diffused in a reaction chamber, methane gas is sent out while being diffused in a reaction chamber, and methane gas is converted into plasma inside the reaction chamber.
  • the mixed gas with hydrogen gas is turned into plasma.
  • a negative pulse voltage having a pulse width of 100 ns or more and 3 ⁇ s or less is applied to the substrate support portion to grow an isolated carbon nanowall layer on the substrate supported by the substrate support portion inside the reaction chamber. ..
  • the method for producing carbon nanowalls in the fourth aspect is to grow a second carbon nanowall layer that is not isolated between the isolated carbon nanowall layers without applying a pulse voltage to the substrate support. Let me.
  • the gas phase growth apparatus includes a substrate support portion that supports the substrate, a pulse voltage application portion that applies a pulse voltage to the substrate support portion, a reaction chamber that houses the substrate support portion, and a substrate support portion.
  • a first electrode that generates plasma between them, a plasma generation chamber that converts hydrogen gas into plasma, a through hole that connects the plasma generation chamber and the reaction chamber, and introduction of raw materials that are introduced into the reaction chamber while diffusing carbon-based gas.
  • the pulse voltage application unit applies a negative voltage pulse voltage having a pulse width of 100 ns or more and 3 ⁇ s or less to the substrate support portion.
  • CNW Carbon nanowall S1 ... Substrate AC1 ... Amorphous carbon layer CNW1, CNW2, CNW3 ... Carbon nanowall layer 1 ... Gas phase growth device 100 ... Pulse voltage application unit 110 ... Drive circuit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Plasma Technology (AREA)

Abstract

【課題】 独立して配置されているカーボンナノウォールとその製造方法および気相成長装置を提供することである。 【解決手段】 カーボンナノウォールCNWは、基板S1と、基板S1の上のアモルファスカーボン層AC1と、アモルファスカーボン層AC1の上のカーボンナノウォール層CNW1、CNW2と、を有する。カーボンナノウォール層CNW1、CNW2が壁状に孤立して配置されている。カーボンナノウォール層CNW1とカーボンナノウォール層CNW2とは、互いに離れており、合流していない。

Description

カーボンナノウォールとその製造方法および気相成長装置
 本明細書の技術分野は、カーボンナノウォールとその製造方法および気相成長装置に関する。
 カーボンナノウォールは、基板上に壁状に形成された炭素原子を主成分とする導電性ナノ構造体である。そのため、カーボンナノウォールは二次電池やキャパシタの電極材料としての応用が期待されている。
 例えば、特許文献1には、平行平板型容量結合プラズマにより、基板上にカーボンナノウォールを形成する技術が開示されている。
特開2006-69816号公報
 特許文献1には、壁間間隔が180nm程度で飽和する旨が開示されている(特許文献1の段落[0052])。しかし、応用分野によってはウォール間隔が広いことが好ましいことがある。そのような応用分野として例えば、細胞培養基材等に応用する場合が挙げられる。さらに、カーボンナノウォールが互いに合流せず、独立していることが好ましいことがある。
 本明細書の技術が解決しようとする課題は、独立して配置されているカーボンナノウォールとその製造方法および気相成長装置を提供することである。
 第1の態様におけるカーボンナノウォールは、基板と、基板の上のアモルファスカーボン層と、アモルファスカーボン層の上のカーボンナノウォール層と、を有する。カーボンナノウォール層が壁状に孤立して配置されている。
 このカーボンナノウォールにおいては、カーボンナノウォール層が壁状に孤立して配置されている。このカーボンナノウォールは、例えば、細胞培養基材に好適である。
 本明細書では、独立して配置されているカーボンナノウォールとその製造方法および気相成長装置が提供されている。
第1の実施形態のカーボンナノウォールの概略構成図である。 第1の実施形態のカーボンナノウォールの構造を概念的に示す図である。 第1の実施形態のカーボンナノウォールの断面を模式的に示す図である。 第1の実施形態の気相成長装置の概略構成図である。 第1の実施形態の気相成長装置のパルス電圧印加部の回路図である。 実験で用いた気相成長装置のパルス電圧およびパルス電流の測定値を示すグラフである。 カーボンナノウォールを示す表面写真および断面写真である。 入力電圧Vinと平均ウォール間隔との間の関係を示すグラフである。 入力電圧Vinとアモルファスカーボン層の膜厚との間の関係を示すグラフである。 二段階成長を実施したカーボンナノウォール層の表面写真である。
 以下、具体的な実施形態について、カーボンナノウォールとその製造方法および気相成長装置を例に挙げて図を参照しつつ説明する。
(第1の実施形態)
1.カーボンナノウォール
 本明細書において、カーボンナノウォールとは、基材上に壁状に成長させることにより配置された炭素原子を主成分とする導電性ナノ構造体である。
1-1.カーボンナノウォールの構造
 図1は、第1の実施形態のカーボンナノウォールCNWの概略構成図である。図1に示すように、カーボンナノウォールCNWは、基板S1と、アモルファスカーボン層AC1と、カーボンナノウォール層CNW1、CNW2と、を有する。アモルファスカーボン層AC1は、基板S1の上に位置している。カーボンナノウォール層CNW1、CNW2は、アモルファスカーボン層AC1の上に位置している。
 図1に示すように、カーボンナノウォール層CNW1とカーボンナノウォール層CNW2とは、別体である。すなわち、カーボンナノウォール層CNW1、CNW2は、壁状に孤立して配置されている。カーボンナノウォール層CNW1とカーボンナノウォール層CNW2とは、互いに合流することなく独立している。
 図2は、第1の実施形態のカーボンナノウォールCNWの構造を概念的に示す図である。図2では、グラフェンシートGS1を例示している。複数のグラフェンシートGS1から構成させるグラファイトが導電性もよく、好適である。
 カーボンナノウォール層CNW1、CNW2は、グラフェンシートGS1を有する。グラフェンシートGS1は、カーボンナノウォール層CNW1、CNW2の厚み方向に10層程度積層されたグラファイトの状態で存在する。その積層数は上記以外であってもよい。グラフェンシートGS1が積層されたグラファイトは、活性炭等の炭素材料に比べて高い電気伝導率を備えている。
 アモルファスカーボン層AC1は、基板S1とカーボンナノウォール層CNW1、CNW2との間に位置している。アモルファスカーボン層AC1は、カーボンナノウォール層CNW1、CNW2を構成するグラフェンシートGS1の成長の起点となり得る層である。アモルファスカーボン層AC1の膜厚は、例えば、10nm以上200nm以下である。好ましくは、10nm以上100nm以下である。なお、カーボンナノウォールの成長方法によっては、アモルファスカーボン層AC1が無くてもよい場合がある。
 カーボンナノウォール層CNW1、CNW2において、基板S1の側には根元部R1があり、基板S1の反対側には、先端部E1がある。根元部R1は、多くの場合アモルファスカーボン層AC1を介して基板S1に固定されている固定部である。
 図2では、グラフェンシートGS1と、基板S1とは、ほぼ垂直である。そのため、グラフェンシートGS1の先端には、先端部E1がある。先端部E1は、グラフェンシートGS1の先端に位置する箇所である。なお、先端部E1における炭素原子C1は、水素原子と結合している。つまり、カーボンナノウォール層CNW1、CNW2の終端基は、水素原子である。
1-2.カーボンナノウォールのサイズ
 図3は、第1の実施形態のカーボンナノウォールCNWの断面を模式的に示す図である。グラフェンシートGS1の平均高さH1は、0.1μm以上50μm以下である。つまり、カーボンナノウォール層CNW1、CNW3の平均高さH1が0.1μm以上50μm以下である。好ましくは、0.5μm以上40μmである。
 グラフェンシートGS1の平均厚みW1は、0.5nm以上100nm以下の程度である。つまり、カーボンナノウォール層CNW1、CNW3の平均厚みW1が0.5nm以上100nm以下である。好ましくは、1nm以上50nm以下である。より好ましくは、2nm以上30nm以下である。
 カーボンナノウォール層CNW1の厚みW1に対するカーボンナノウォール層CNW1の高さH1の比は、3.3以上40000以下である。好ましくは、500以上5000以下である。この数値範囲は例示であり、上記以外の数値であってもよい。
1-3.ウォール間隔
 隣り合うカーボンナノウォール層CNW1とカーボンナノウォール層CNW3との間の平均ウォール間隔D1は、例えば、500nm以上1000nm以下である。好ましくは、600nm以上800nm以下である。これらの数値範囲は例示であり、上記以外の数値であってもよい。
 また、前述のように、カーボンナノウォール層CNW1、CNW3は、グラフェンシートGS1を多数枚積層したグラファイトである。実際には、互いのグラフェンシートGS1が完全に平行に延びているわけではない。しかし、各々のカーボンナノウォール層CNW1、CNW3は、前述のように孤立して配置されている。図2に示すように、隣り合う壁状のグラファイト間の距離をウォール間隔D1ということとする。
 このウォール間隔D1の平均値である平均ウォール間隔は、カーボンナノウォール層CNW1、CNW3の密度と関連している。つまり、平均ウォール間隔が広いほど、カーボンナノウォール層CNW1、CNW3の密度は低い。逆に、平均ウォール間隔が狭いほど、カーボンナノウォール層CNW1、CNW3の密度は高い。
 これらカーボンナノウォール層CNW1等の構造を示す数値を表1に示す。
[表1]
   ウォールの高さ  100nm以上    50μm以下
   ウォールの厚み  0.5nm以上   100nm以下
   ウォールの間隔  500nm以上  1000nm以下
2.気相成長装置
 図4は、第1の実施形態における気相成長装置1の概略構成図である。気相成長装置1は、プラズマ生成室46と、反応室10と、導波路47と、石英窓48と、スロットアンテナ49と、ラジカル源導入口42と、隔壁44と、貫通孔14と、基板支持部24と、ヒーター25と、原料導入口12と、排気口16と、電圧印加部100と、を有している。
 プラズマ生成室46は、その内部でプラズマを発生させるとともに、反応室10に供給するラジカルをも発生させるためのものである。反応室10は、プラズマ生成室46で生じたラジカルを利用して、カーボンナノウォール層CNW1を形成するためのものである。
 導波路47は、マイクロ波39を導入するためのものである。スロットアンテナ49は、石英窓48からプラズマ生成室46にマイクロ波39を導入するためのものである。
 プラズマ生成室46は、マイクロ波39により表面波プラズマ(SWP)を発生させるためのものである。プラズマ生成室46には、ラジカル源導入口42が設けられている。ラジカル源導入口42は、プラズマ生成室46に発生するプラズマ61の内部にラジカル源36となる水素ガスを供給するためのものである。そのため、プラズマ生成室46は、水素ガスをプラズマ化する。
 プラズマ生成室46と、反応室10との間には、隔壁44が設けられている。隔壁44は、プラズマ生成室46と、反応室10とを仕切るためのものである。隔壁44は、電圧を印加するための電極も兼ねている。そして、隔壁44には、貫通孔が形成されている。プラズマ生成室46で生成されたラジカルを反応室10に供給するためである。
 反応室10は、容量結合型プラズマ(CCP)を発生させるためのものである。また、基板S1の上にカーボンナノウォール層CNW1を形成するためのものでもある。反応室10は、基板支持部24と、ヒーター25と、を収容するとともに、原料導入口12と、排気口16と、を有している。
 基板支持部24は、第1電極22との間に電圧を印加するためのものである。ヒーター25は、基板S1を加熱して、基板S1の温度を制御するためのものである。原料導入口12は、カーボンナノウォールの原料となる炭素系ガス32を拡散しつつ反応室10に導入する。排気口16は、真空ポンプ等に接続されている。真空ポンプは、反応室10の内部の圧力を調整する。
 隔壁44は、基板支持部24との間に電圧を印加するための第1電極22を兼ねている。第1電極22は、基板支持部24との間にプラズマ34を発生させる。第1電極22には、電源および回路が接続されている。第1電極22の電位を時間的に制御するためである。隔壁44には貫通孔14が形成されている。貫通孔14は、プラズマ生成室46と反応室10とを連通する。そのため、水素ラジカルは、貫通孔14を通過することによりプラズマ生成室46から反応室10に進入することができる。
 基板支持部24は、基板S1を支持するためのものである。基板支持部24は、第1電極22との間に電圧を印加するための第2電極を兼ねている。そして、基板支持部24は、基板S1を載置するための載置台でもある。第1電極22と基板支持部24との間の距離は約5cmである。もちろん、この値に限らない。
3.パルス電圧印加部
 図5は、第1の実施形態の気相成長装置1のパルス電圧印加部100の回路図である。パルス電圧印加部100は、基板支持部24にパルス電圧を印加する。図5に示すように、パルス電圧印加部100は、駆動回路110と、電圧計120と、電流計130と、を有する。駆動回路110は、電圧入力部111を有する。電圧入力部111は、入力電圧Vinを入力する。入力電圧Vinに対して、駆動回路110の出力電圧Voutが発生する。この出力電圧Voutは、基板支持部24に実際に印加されることとなるパルス電圧である。
 パルス電圧は負の電圧である。パルス電圧のパルス幅は、例えば、100ns以上3μs以下である。パルス電圧の大きさは、例えば、-800V以上-300V以下の程度である。パルス電圧の周期は、例えば、パルス幅の5倍以上50倍以下の程度である。このようにパルス電圧印加部100は、100ns以上3μs以下のパルス幅の負電圧のパルス電圧を基板支持部24に印加する。これらの数値は、目安であり、上記以外の値であってもよい。
4.パルス電圧とプラズマの振る舞い
 基板S1は、例えば、金属である。負電圧のパルス電圧が基板支持部24に印加されることにより、基板S1にもパルス電圧が印加される。基板S1の表面が負に帯電することにより、プラズマ34中の電子が基板S1から遠ざかる向きに加速される。そして、プラズマ34中のH、CH といった陽イオンが基板S1に引き込まれる。そして、陽イオンが基板S1に衝突することにより、基板S1および基板支持部24に電流が流れることとなる。
 このような基板S1への陽イオンの瞬間的な引き込みが、孤立して配置されているカーボンナノウォール層CNW1、CNW2の生成に影響していると考えられる。
5.カーボンナノウォールの製造方法
5-1.アモルファスカーボン層形成工程
 まず、気相成長装置1の内部に、カーボンナノウォール層CNW1を形成する前の基板S1を載置する。次に、マイクロ波39を導波路47に導入する。マイクロ波39は、スロットアンテナ49により、石英窓48から、プラズマ生成室46に導入される。これにより、高密度プラズマ60が発生する。
 そして、この高密度プラズマ60がプラズマ生成室46の内部で拡散して、プラズマ61となる。このプラズマ61は、ラジカル源導入口42から供給されるラジカル源のイオンを含んでいる。ラジカル源として、例えば、水素ガス(H)を用いる。もしくは、酸素、窒素、その他の気体であってもよい。プラズマ61中の大部分のイオンは、隔壁44に衝突して中性化して、ラジカルとなる。ラジカル38は、隔壁44の貫通孔14を通過して、反応室10に入る。つまり、プラズマ化させた水素ガスのうち水素ラジカルが反応室10に供給される。
 反応室10の内部には、ラジカル38の他に、原料導入口12から炭素系ガス32が供給される。炭素系ガス32とは、例えば、CHやCである。もちろん、それ以外のものであってもよい。そして、第1電極22と、基板支持部24との間に電圧を印加する。これにより、反応室10の内部にプラズマ34が発生する。
 プラズマ34の雰囲気中には、原料である炭素系ガス32と、ラジカル38とが混在している。そして、このプラズマ34の雰囲気中で基板S1の表面にアモルファスカーボン層AC1が成長する。
 このように、気相成長装置1の内部でプラズマ化した炭素系ガスを基板S1に供給して基板S1の上にアモルファスカーボン層AC1を形成する。
 反応室10の内部の圧力は、5~2000mTorr(0.65Pa~267Pa)の範囲内である。また、基板S1の温度は、100~800℃の範囲内である。もちろん、これらは例示であり、これらの数値範囲に限らない。
5-2.カーボンナノウォール成長工程
 続いて、気相成長装置1の内部で、アモルファスカーボン層AC1の上にカーボンナノウォール層CNW1を成長させる。アモルファスカーボン層AC1を成長させる場合と同様に、プラズマ61を発生させる。ラジカル38のラジカル源として、例えば、水素ガス(H)を用い、炭素系ガス32として、例えば、CHやCを用いる。
 このように、気相成長装置1の内部でプラズマ化した炭素系ガスを基板S1に供給してアモルファスカーボン層AC1の上にカーボンナノウォール層CNW1を成長させる。
 つまり、水素ガスをプラズマ化して反応室10に拡散させつつ送出し、メタンガスを反応室10に拡散させつつ送出する。反応室10の内部でメタンガスとプラズマ化させた水素ガスとの混合ガスをプラズマ化する。基板支持部24に100ns以上3μs以下のパルス幅の負電圧のパルス電圧を印加し、反応室10の内部の基板支持部24に支持される基板S1の上に孤立して配置されたカーボンナノウォール層CNW1、CNW2を成長させる。
 反応室10の内部の圧力は、5~2000mTorr(0.65Pa~267Pa)の範囲内である。また、基板S1の温度は、100~800℃の範囲内である。もちろん、これらは例示であり、これらの数値範囲に限らない。
 カーボンナノウォール層CNW1の成長がある程度進んだ後に、基板S1を取り出す。このときのカーボンナノウォール層CNW1の高さH1は、例えば、1000nmである。
6.第1の実施形態の効果
 カーボンナノウォール層CNW1とカーボンナノウォール層CNW2とは、それぞれ孤立して配置されている。また、カーボンナノウォール層CNW1の平均ウォール間隔D1は、従来のカーボンナノウォール層に比べて広い。
7.変形例
7-1.二段階成長
 カーボンナノウォール層を形成する際に、第1のカーボンナノウォール層形成工程と、第2のカーボンナノウォール層形成工程と、を実施してもよい。第1のカーボンナノウォール層形成工程では、パルス電圧を印加し、第2のカーボンナノウォール層形成工程では、パルス電圧を印加しない。これにより、孤立した大きなカーボンナノウォールの隙間に、微細なカーボンナノウォールが形成される。このようにして形成されたカーボンナノウォールは、孤立して配置されたカーボンナノウォール層の間に孤立していない第2のカーボンナノウォール層を有する。第2のカーボンナノウォール層は、互いに合流している。
(実験)
1.実験方法
 気相成長装置1を用いてカーボンナノウォールを成膜した。ラジカル38のラジカル源としてHを用い、炭素系ガス32としてCHを用いた。内圧は1Paであった。基板を支持するステージの温度は650℃であった。また、パルス電圧を適宜印加した。入力電圧Vinとして0V、90V、120V、150Vを用いた。
2.パルス電圧
 図6は、実験で用いた気相成長装置1のパルス電圧およびパルス電流の測定値を示すグラフである。パルス電圧およびパルス電流は、図6の通りである。入力電圧Vinの絶対値が大きいほど、出力電圧Voutの絶対値は大きい。また、電流値の絶対値が大きいほど、基板S1に到達する陽イオンの数が多い。
3.結果
3-1.ウォール間隔
 図7は、実験結果を示す写真である。成膜時間はいずれも290秒である。図7(a)は、パルス電圧を印加していない場合のカーボンナノウォール層の表面写真である。図7(e)は、パルス電圧を印加していない場合のカーボンナノウォール層の断面写真である。図7(a)に示すように、カーボンナノウォール層は密集し、互いに合流している。
 図7(b)は、入力電圧Vinが90Vのパルス電圧を印加している場合のカーボンナノウォール層の表面写真である。図7(f)は、入力電圧Vinが90Vのパルス電圧を印加している場合のカーボンナノウォール層の断面写真である。図7(b)に示すように、カーボンナノウォール層のウォール間隔は、図7(a)に比べて広がっている。
 図7(c)は、入力電圧Vinが120Vのパルス電圧を印加している場合のカーボンナノウォール層の表面写真である。図7(g)は、入力電圧Vinが120Vのパルス電圧を印加している場合のカーボンナノウォール層の断面写真である。図7(c)に示すように、カーボンナノウォール層のウォール間隔は、図7(b)に比べて広がっている。また、カーボンナノウォール層は、それぞれ孤立して配置されている。
 図7(d)は、入力電圧Vinが150Vのパルス電圧を印加している場合のカーボンナノウォール層の表面写真である。図7(h)は、入力電圧Vinが150Vのパルス電圧を印加している場合のカーボンナノウォール層の断面写真である。図7(d)に示すように、カーボンナノウォール層のウォール間隔は、図7(c)に比べて広がっている。また、カーボンナノウォール層は、それぞれ孤立して配置されている。
 入力電圧Vinが90Vのときの電流のピーク値は、-0.5A程度である。入力電圧Vinが120Vのときの電流のピーク値は、-1A程度である。そのため、電流値が-0.8A以下の場合に、孤立して配置されているカーボンナノウォール層が形成されると考えられる。
 図8は、入力電圧Vinと平均ウォール間隔との間の関係を示すグラフである。図8の横軸は入力電圧Vinである。図8の縦軸は平均ウォール間隔である。図8に示すように、入力電圧Vinが90V以上の範囲では、入力電圧Vinが大きいほど平均ウォール間隔が大きい。つまり、出力電圧Voutの絶対値が大きいほど平均ウォール間隔が大きい。
3-2.アモルファスカーボン層
 図9は、入力電圧Vinとアモルファスカーボン層の膜厚との間の関係を示すグラフである。図9の横軸は入力電圧Vinである。図9の縦軸はアモルファスカーボン層の膜厚である。
3-3.二段階成長
 図10は、二段階成長を実施したカーボンナノウォール層の表面写真である。第1段階目を成長させる際には入力電圧Vinを150Vとして成長時間を180秒とした。第2段階目を成長させる際には入力電圧Vinを0Vとして成長時間を120秒とした。
 図10に示すように、ウォール間隔の広い孤立したカーボンナノウォール層の間に、ウォール間隔の狭いカーボンナノウォール層が形成されている。ウォール間隔の狭いカーボンナノウォール層は互いに合流している。
(付記)
 第1の態様におけるカーボンナノウォールは、基板と、基板の上のアモルファスカーボン層と、アモルファスカーボン層の上のカーボンナノウォール層と、を有する。カーボンナノウォール層が壁状に孤立して配置されている。
 第2の態様におけるカーボンナノウォールは、孤立して配置されたカーボンナノウォール層の間に孤立していない第2のカーボンナノウォール層を有する。
 第3の態様におけるカーボンナノウォールの製造方法は、水素ガスをプラズマ化して反応室に拡散させつつ送出し、メタンガスを反応室に拡散させつつ送出し、反応室の内部でメタンガスとプラズマ化させた水素ガスとの混合ガスをプラズマ化する。基板支持部に100ns以上3μs以下のパルス幅の負電圧のパルス電圧を印加し、反応室の内部の基板支持部に支持される基板の上に孤立して配置されたカーボンナノウォール層を成長させる。
 第4の態様におけるカーボンナノウォールの製造方法は、基板支持部にパルス電圧を印加しないで、孤立して配置されたカーボンナノウォール層の間に孤立していない第2のカーボンナノウォール層を成長させる。
 第5の態様における気相成長装置は、基板を支持する基板支持部と、基板支持部にパルス電圧を印加するパルス電圧印加部と、基板支持部を収容する反応室と、基板支持部との間にプラズマを発生させる第1電極と、水素ガスをプラズマ化するプラズマ生成室と、プラズマ生成室と反応室とを連通する貫通孔と、炭素系ガスを拡散しつつ反応室に導入する原料導入口と、を有する。パルス電圧印加部は、100ns以上3μs以下のパルス幅の負電圧のパルス電圧を基板支持部に印加する。
CNW…カーボンナノウォール
S1…基板
AC1…アモルファスカーボン層
CNW1、CNW2、CNW3…カーボンナノウォール層
1…気相成長装置
100…パルス電圧印加部
110…駆動回路

Claims (5)

  1. 基板と、
    前記基板の上のアモルファスカーボン層と、
    前記アモルファスカーボン層の上のカーボンナノウォール層と、
    を有し、
     前記カーボンナノウォール層が壁状に孤立して配置されていること
    を含むカーボンナノウォール。
  2. 請求項1に記載のカーボンナノウォールにおいて、
     孤立して配置された前記カーボンナノウォール層の間に孤立していない第2のカーボンナノウォール層を有すること
    を含むカーボンナノウォール。
  3.  水素ガスをプラズマ化して反応室に拡散させつつ送出し、
     メタンガスを前記反応室に拡散させつつ送出し、
     前記反応室の内部で前記メタンガスとプラズマ化させた前記水素ガスとの混合ガスをプラズマ化し、
     基板支持部に100ns以上3μs以下のパルス幅の負電圧のパルス電圧を印加し、
     前記反応室の内部の前記基板支持部に支持される基板の上に孤立して配置されたカーボンナノウォール層を成長させること
    を含むカーボンナノウォールの製造方法。
  4. 請求項3に記載のカーボンナノウォールの製造方法において、
     前記基板支持部にパルス電圧を印加しないで、
      孤立して配置された前記カーボンナノウォール層の間に孤立していない第2のカーボンナノウォール層を成長させること
    を含むカーボンナノウォールの製造方法。
  5. 基板を支持する基板支持部と、
    前記基板支持部にパルス電圧を印加するパルス電圧印加部と、
    前記基板支持部を収容する反応室と、
    前記基板支持部との間にプラズマを発生させる第1電極と、
    水素ガスをプラズマ化するプラズマ生成室と、
    前記プラズマ生成室と前記反応室とを連通する貫通孔と、
    炭素系ガスを拡散しつつ前記反応室に導入する原料導入口と、
    を有し、
     前記パルス電圧印加部は、
      100ns以上3μs以下のパルス幅の負電圧のパルス電圧を前記基板支持部に印加すること
    を含む気相成長装置。
PCT/JP2020/047481 2019-12-20 2020-12-18 カーボンナノウォールとその製造方法および気相成長装置 WO2021125334A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-230432 2019-12-20
JP2019230432A JP7274747B2 (ja) 2019-12-20 2019-12-20 カーボンナノウォールの製造方法

Publications (1)

Publication Number Publication Date
WO2021125334A1 true WO2021125334A1 (ja) 2021-06-24

Family

ID=76478638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047481 WO2021125334A1 (ja) 2019-12-20 2020-12-18 カーボンナノウォールとその製造方法および気相成長装置

Country Status (2)

Country Link
JP (1) JP7274747B2 (ja)
WO (1) WO2021125334A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186363A (ja) * 2006-01-11 2007-07-26 National Univ Corp Shizuoka Univ カーボンナノチューブの製造方法および製造装置
WO2008013309A1 (fr) * 2006-07-25 2008-01-31 Toyota Jidosha Kabushiki Kaisha Nanoparoi de carbone à structure contrôlée et procédé de contrôle de la structure d'une nanoparoi de carbone
JP2011190156A (ja) * 2010-03-16 2011-09-29 Nagoya Univ カーボンナノウォールの選択成長方法、およびカーボンナノウォールを用いた電子デバイス
WO2013140822A1 (ja) * 2012-03-23 2013-09-26 国立大学法人名古屋大学 細胞培養基材および細胞培養方法
JP2014105129A (ja) * 2012-11-28 2014-06-09 Ihi Corp ナノ構造物の製造方法、ナノ構造物、センサ、および、太陽電池
JP2017064676A (ja) * 2015-10-02 2017-04-06 株式会社Ihi 触媒の製造装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186363A (ja) * 2006-01-11 2007-07-26 National Univ Corp Shizuoka Univ カーボンナノチューブの製造方法および製造装置
WO2008013309A1 (fr) * 2006-07-25 2008-01-31 Toyota Jidosha Kabushiki Kaisha Nanoparoi de carbone à structure contrôlée et procédé de contrôle de la structure d'une nanoparoi de carbone
JP2011190156A (ja) * 2010-03-16 2011-09-29 Nagoya Univ カーボンナノウォールの選択成長方法、およびカーボンナノウォールを用いた電子デバイス
WO2013140822A1 (ja) * 2012-03-23 2013-09-26 国立大学法人名古屋大学 細胞培養基材および細胞培養方法
JP2014105129A (ja) * 2012-11-28 2014-06-09 Ihi Corp ナノ構造物の製造方法、ナノ構造物、センサ、および、太陽電池
JP2017064676A (ja) * 2015-10-02 2017-04-06 株式会社Ihi 触媒の製造装置

Also Published As

Publication number Publication date
JP7274747B2 (ja) 2023-05-17
JP2021098624A (ja) 2021-07-01

Similar Documents

Publication Publication Date Title
CN103890897B (zh) 用于先进等离子体离子能量处理系统的晶圆吸附系统
Wang et al. Low-temperature plasma synthesis of carbon nanotubes and graphene based materials and their fuel cell applications
JP3962420B2 (ja) カーボンナノウォールの製造方法、カーボンナノウォールおよび製造装置
US8398927B2 (en) Carbon nanotube manufacturing apparatus, carbon nanotube manufacturing method, and radical producing apparatus
WO2010058560A1 (ja) プラズマ処理装置
JP2012041249A (ja) カーボンナノ構造体の製造方法
US7842135B2 (en) Equipment innovations for nano-technology aquipment, especially for plasma growth chambers of carbon nanotube and nanowire
DE102009020436A1 (de) Verfahren und Vorrichtung zur Plasmabehandlung eines flachen Substrats
CN110950329A (zh) 竖直石墨烯及其生长方法
WO2021125334A1 (ja) カーボンナノウォールとその製造方法および気相成長装置
JP3837451B2 (ja) カーボンナノチューブの作製方法
JP5484375B2 (ja) プラズマ成膜装置及びプラズマ成膜方法
JP2008171888A (ja) プラズマcvd装置、薄膜形成方法
JP4975289B2 (ja) カーボンナノウォールを用いた電子素子
JP4737672B2 (ja) プラズマcvdによる成膜方法、電子放出源、電界放射型ディスプレイおよび照明ランプ
CN101235488A (zh) 在放置于射频等离子体之外的衬底上形成薄膜的技术
CN211078480U (zh) 竖直石墨烯的生长装置
CN102719807B (zh) 一种静电吸附载板、制膜设备及薄膜制备工艺
JP2007126749A (ja) 新しい膜特性を達成するためのpecvd放電源の電力及び電力関連ファンクションの変調のためのシステム及び方法
CN101017754A (zh) 循序电泳沉积制作碳纳米管电子发射源的方法
JPS6066422A (ja) 半導体製造法
JP4284438B2 (ja) 成膜方法
JP5148124B2 (ja) 電子エミッタ用基材の製造方法および電子エミッタの製造方法
JP7406775B1 (ja) プラズマ処理装置
Amanatides et al. Electrical and optical properties of CH4/H2 RF plasmas for diamond-like thin film deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901095

Country of ref document: EP

Kind code of ref document: A1