WO2021124998A1 - 熱伝導性組成物及びその製造方法 - Google Patents

熱伝導性組成物及びその製造方法 Download PDF

Info

Publication number
WO2021124998A1
WO2021124998A1 PCT/JP2020/045782 JP2020045782W WO2021124998A1 WO 2021124998 A1 WO2021124998 A1 WO 2021124998A1 JP 2020045782 W JP2020045782 W JP 2020045782W WO 2021124998 A1 WO2021124998 A1 WO 2021124998A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
conductive composition
inorganic particles
composition according
group
Prior art date
Application number
PCT/JP2020/045782
Other languages
English (en)
French (fr)
Inventor
神谷優希
服部真和
Original Assignee
富士高分子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士高分子工業株式会社 filed Critical 富士高分子工業株式会社
Priority to EP20902815.8A priority Critical patent/EP3929242A4/en
Priority to JP2021512467A priority patent/JP6895596B1/ja
Priority to US17/433,500 priority patent/US20220145015A1/en
Priority to CN202080020985.8A priority patent/CN113574115B/zh
Priority to KR1020217026215A priority patent/KR102660031B1/ko
Publication of WO2021124998A1 publication Critical patent/WO2021124998A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/05Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a thermally conductive composition in which interfacial delamination due to stress is reduced and a method for producing the same.
  • Patent Document 1 proposes to reduce the viscosity of the thermally conductive silicone composition before curing to 800 Pa ⁇ s or less at 23 ° C. to improve compressibility, insulation, thermal conductivity and the like. Further, in recent years, a heat conductive composition containing a silicone resin has been proposed as a radiator of a hybrid vehicle, an electric vehicle, a fuel cell vehicle, or the like (Patent Documents 2 to 3).
  • the conventional heat conductive composition has a problem that when inorganic particles having a small specific surface area are added in order to increase the heat conductivity, interfacial peeling occurs between the inorganic particles and the polymer due to stress.
  • the present invention provides a thermally conductive composition having high thermal conductivity, high compressive repulsive force, and reduced interfacial peeling due to stress, and a method for producing the same.
  • the heat conductive composition of the present invention is a heat conductive composition containing a base polymer, an adhesive polymer and heat conductive particles, and the heat conductivity of the heat conductive composition is 0.3 W / m ⁇ K.
  • the thermally conductive particles include inorganic particles (a) having a specific surface area of 1 m 2 / g or less, and the inorganic particles (a) are coated with the adhesive polymer.
  • the method for producing a thermally conductive composition of the thermally conductive composition of the present invention is the above-mentioned method for producing a thermally conductive composition.
  • the heat conductive composition has a thermal conductivity of 0.3 W / m ⁇ K or more, and the heat conductive particles include inorganic particles (a) having a specific surface area of 1 m 2 / g or less, and the inorganic particles. Since (a) is coated with the adhesive polymer, it is possible to provide a thermally conductive composition having high thermal conductivity, high compressive repulsive force, and reduced interfacial peeling due to stress, and a method for producing the same. Further, the production method of the present invention comprises a primary mixing step of mixing an adhesive polymer and inorganic particles (a) having a specific surface area of 1 m 2 / g or less, and coating the inorganic particles (a) with the adhesive polymer. By including a secondary mixing step of adding and mixing the base polymer and a step of curing, the thermally conductive composition of the present invention can be efficiently and rationally produced.
  • FIG. 1A-B are explanatory views showing a method for measuring thermal conductivity used in one embodiment of the present invention.
  • FIG. 2 is an explanatory view showing a method for measuring the tensile shear adhesive strength.
  • FIG. 3 is fracture surface image data of the scanning electron microscope / energy dispersive X-ray spectroscopy (SEM / EDX) of the heat conductive composition sheet obtained in Example 1 of the present invention.
  • FIG. 4 is fracture surface image data of the scanning electron microscope / energy dispersive X-ray spectroscopy (SEM / EDX) of the heat conductive composition sheet obtained in Comparative Example 1.
  • inorganic particles having a small specific surface area such as large particle size inorganic particles
  • a silane coupling agent or the like improvement of the interface between the inorganic particles and the polymer by integral blending.
  • the interface between the inorganic particles and the polymer is easily peeled off, and crack generation starting from the peeling due to stress has become a problem. Therefore, the present inventors first add an adhesive polymer, and first mix the adhesive polymer with the inorganic particles (a) having a specific surface area of 1 m 2 / g or less, and the inorganic particles (b) having a specific surface area of more than 1 m 2 / g.
  • inorganic particles of 1 m 2 / g or less are referred to as inorganic particles (a), and inorganic particles exceeding 1 m 2 / g are referred to as inorganic particles (b).
  • the present invention is a thermally conductive composition containing a base polymer, an adhesive polymer, and thermally conductive particles.
  • the thermal conductivity of the thermally conductive composition is 0.3 W / m ⁇ K or more, preferably 0.5 W / m ⁇ K or more, more preferably 1 W / m ⁇ K or more, and a preferable upper limit is 15 W / m ⁇ K or more. It is less than m ⁇ K. It is also electrically insulating.
  • the thermally conductive particles of the present invention include inorganic particles (a) having a specific surface area of 1 m 2 / g or less.
  • the specific specific surface area of the inorganic particles (a) is 0.1 to 1 m 2 / g, more preferably 0.1 to 0.5 m 2 / g.
  • the inorganic particles (a) are then coated with an adhesive polymer. When the inorganic particles (a) and the adhesive polymer are first mixed, the inorganic particles (a) are coated with the adhesive polymer.
  • Silicone polymer is preferable as the base polymer and adhesive polymer. Silicone polymers have high heat resistance and are less likely to deteriorate or decompose in heat resistance tests.
  • the adhesive polymer preferably has a tensile shear adhesive strength of 50 N / cm 2 or more with the aluminum plate. It is more preferably 80 N / cm 2 or more, and further preferably 100 N / cm 2 or more. Upper limit is preferably 800 N / cm 2 or less, more preferably 500 N / cm 2 or less, more preferably 300N / cm 2 or less.
  • the adhesive polymer preferably contains a methyl hydrogen polysiloxane, an epoxy group-containing alkyltrialkoxysilane, and a cyclic polysiloxane oligomer. As a result, the adhesiveness with the inorganic particles (A) can be maintained high.
  • the base polymer is preferably an addition-curable silicone polymer.
  • the reason is that the addition-curing type is easier to control the curing than the peroxide-curing type and the condensation-curing type, and no by-products are generated. Further, in the condensation curing type, the internal curing may be insufficient. Therefore, the addition curing type is preferable.
  • the thermally conductive composition preferably further contains silicone oil.
  • silicone oil By adding the adhesive polymer, the viscosity of the material before curing tends to increase, and the hardness of the cured product tends to become hard. Therefore, by adding silicone oil, the viscosity of the material before curing is lowered and the workability is improved. Also, the cured product becomes soft.
  • the amount of the silicone oil added is preferably 5 to 30 parts by weight with respect to 100 parts by weight of the base polymer component in terms of curability and workability.
  • the thermally conductive particles are preferably at least one selected from alumina, zinc oxide, magnesium oxide, aluminum nitride, boron nitride, aluminum hydroxide and silica. This is because these particles have high thermal conductivity, excellent electrical insulation, and are easy to use as a raw material for a thermally conductive composition sheet.
  • the thermally conductive composition is preferably sheet-molded. If it is sheet-molded, it is easy to use. Other than the sheet, it may be a potting material. Potting material is synonymous with casting material (cast material). When making a potting material, leave it in an uncured state, cast it, and then cure it.
  • the heat conductive particles preferably contain 100 to 3000 parts by weight with respect to 100 parts by weight of the matrix component. As a result, the thermal conductivity of the heat conductive composition sheet becomes 0.3 W / m ⁇ K or more.
  • the heat conductive particles are 400 to 3000 parts by weight, more preferably 800 to 3000 parts by weight, based on 100 parts by weight of the matrix component. Further, assuming that the total amount of the heat conductive particles is 100 parts by weight, the amount of the inorganic particles (a) having a specific surface area of 1 m 2 / g or less is preferably 10 to 90 parts by weight.
  • the matrix component refers to a mixture of a base polymer, an adhesive polymer, and a silicone oil.
  • the thermally conductive particles may be surface-treated with a silane compound, a titanate compound, an aluminate compound, or a partial hydrolyzate thereof. As a result, deactivation of the curing catalyst and the cross-linking agent can be prevented, and storage stability can be improved.
  • the thermally conductive composition of the present invention is preferably obtained by cross-linking a compound having the following composition.
  • 1 Primary mixing step By mixing the adhesive polymer and the inorganic particles (a) having a specific surface area of 1 m 2 / g or less, the inorganic particles (a) are coated with the adhesive polymer to obtain a primary mixture.
  • the amount of the adhesive polymer added is preferably 5 to 35 parts by weight with respect to 100 parts by weight of the base polymer.
  • the adhesive polymer preferably contains a methyl hydrogen polysiloxane, an epoxy group-containing alkyltrialkoxysilane, and a cyclic polysiloxane oligomer.
  • the epoxy group-containing alkyltrialkoxysilane is, for example, ⁇ -glycidoxypropyltrimethoxysilane represented by the following chemical formula (Chemical formula 1)
  • the cyclic polysiloxane oligomer is, for example, octamethylcyclotetra represented by the following chemical formula (Chemical formula 2).
  • the heat conductive particles are preferably added in an amount of 400 to 3000 parts by weight with respect to 100 parts by weight of the matrix component. Assuming that the total amount of the thermally conductive particles is 100 parts by weight, the amount of the inorganic particles (a) having a specific surface area of 1 m 2 / g or less is preferably 10 to 90 parts by weight.
  • the base polymer contains the following base polymer component (A component), cross-linking component (B component), and catalyst component (C component).
  • Base polymer component (A component)
  • the base polymer component is an organopolysiloxane containing two or more alkenyl groups bonded to silicon atoms in one molecule, and the organopolysiloxane containing two or more alkenyl groups is the main agent in the silicone rubber composition of the present invention.
  • Base polymer component This organopolysiloxane has two or more alkenyl groups bonded to silicon atoms, such as a vinyl group and an allyl group, having 2 to 8 carbon atoms, particularly 2 to 6, as alkenyl groups.
  • the viscosity is preferably 10 to 100,000 mPa ⁇ s at 25 ° C., particularly 100 to 10,000 mPa ⁇ s, from the viewpoint of workability and curability.
  • an organopolysiloxane containing an average of two or more alkenyl groups bonded to silicon atoms at both ends of the molecular chain in one molecule represented by the following general formula (Chemical Formula 3) is used.
  • the side chain is a linear organopolysiloxane sealed with an alkyl group.
  • a viscosity at 25 ° C. of 10 to 100,000 mPa ⁇ s is desirable from the viewpoint of workability and curability.
  • the linear organopolysiloxane may contain a small amount of branched structure (trifunctional siloxane unit) in the molecular chain.
  • R 1 is an unsubstituted or substituted monovalent hydrocarbon group that does not have the same or different aliphatic unsaturated bonds
  • R 2 is an alkenyl group
  • k is 0 or a positive integer.
  • the unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond of R 1 for example, one having 1 to 10 carbon atoms, particularly 1 to 6 is preferable, and specifically, , Methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, decyl group and other alkyl groups, phenyl Aryl groups such as groups, trill groups, xsilyl groups and naphthyl groups, aralky
  • Examples thereof include those substituted with a halogen atom, a cyano group, etc., such as a halogen-substituted alkyl group such as a chloromethyl group, a chloropropyl group, a bromoethyl group, and a trifluoropropyl group, and a cyanoethyl group.
  • a halogen-substituted alkyl group such as a chloromethyl group, a chloropropyl group, a bromoethyl group, and a trifluoropropyl group, and a cyanoethyl group.
  • alkenyl group of R 2 for example, those having 2 to 6 carbon atoms, particularly 2 to 3 are preferable, and specifically, a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, an isobutenyl group and a hexenyl group.
  • k is generally 0 or a positive integer satisfying 0 ⁇ k ⁇ 10000, preferably an integer satisfying 5 ⁇ k ⁇ 2000, and more preferably 10 ⁇ k ⁇ 1200. Is.
  • the organopolysiloxane of component A for example, 3 or more alkenyl groups bonded to silicon atoms having 2 to 8 carbon atoms such as vinyl group and allyl group, particularly 2 to 6 in one molecule, usually 3 to 30.
  • an organopolysiloxane having about 3 to 20 may be used in combination.
  • the molecular structure may be any of linear, cyclic, branched, and three-dimensional network-like molecular structures.
  • the main chain consists of repeating diorganosiloxane units, both ends of the molecular chain are sealed with triorganosyloxy groups, and the viscosity at 25 ° C. is 10 to 100,000 mPa ⁇ s, particularly 100 to 10,000 mPa ⁇ .
  • s is a linear organopolysiloxane.
  • the alkenyl group may be attached to any part of the molecule.
  • those bonded to a silicon atom at the end of the molecular chain or at the non-end of the molecular chain (in the middle of the molecular chain) may be included.
  • each having 1 to 3 alkenyl groups on the silicon atoms at both ends of the molecular chain represented by the following general formula (Chemical Formula 4) (however, the alkenyl group bonded to the silicon atom at the end of the molecular chain is If the total number of both ends is less than 3, the direct group having at least one alkenyl group bonded to a silicon atom at the non-terminal (in the middle of the molecular chain) of the molecular chain (for example, as a substituent in the diorganosiloxane unit).
  • a chain organopolysiloxane having a viscosity at 25 ° C.
  • the linear organopolysiloxane may contain a small amount of branched structure (trifunctional siloxane unit) in the molecular chain.
  • R 3 is an unsubstituted or substituted monovalent hydrocarbon group that is the same as or different from each other, and at least one is an alkenyl group.
  • R 4 is an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond of the same or different species from each other,
  • R 5 is an alkenyl group, and l and m are 0 or a positive integer.
  • the monovalent hydrocarbon group of R 3 preferably has 1 to 10 carbon atoms, particularly 1 to 6, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and the like.
  • Alkyl groups such as isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group and decyl group, aryl group such as phenyl group, tolyl group, xsilyl group and naphthyl group, benzyl Aralkyl groups such as groups, phenylethyl groups and phenylpropyl groups, vinyl groups, allyl groups, propenyl groups, isopropenyl groups, butenyl groups, hexenyl groups, cyclohexenyl groups, octenyl groups and other alkenyl groups, and hydrogens of these groups.
  • halogen atoms such as fluorine, bromine and chlorine, cyano groups, etc.
  • halogen-substituted alkyl groups such as chloromethyl group, chloropropyl group, bromoethyl group, trifluoropropyl group and cyanoethyl group. And so on.
  • the monovalent hydrocarbon group of R 4 those having 1 to 10 carbon atoms, particularly 1 to 6 are preferable, and the same group as the specific example of R 1 can be exemplified, but the alkenyl group is not included. ..
  • the alkenyl group of R 5 for example, one having 2 to 6 carbon atoms, particularly 2 to 3 carbon atoms is preferable, and specifically, the same group as R 2 in the above formula (Chemical Formula 3) is exemplified, and a vinyl group is preferable. Is.
  • l, m are generally 0 or a positive integer satisfying 0 ⁇ l + m ⁇ 10000, preferably 5 ⁇ l + m ⁇ 2000, more preferably 10 ⁇ l + m ⁇ 1200, and 0 ⁇ l / (l + m). ) ⁇ 0.2, preferably 0.0011 ⁇ l / (l + m) ⁇ 0.1.
  • the organohydrogenpolysiloxane of the B component of the present invention acts as a cross-linking agent, and a cured product is formed by an addition reaction (hydrosilylation) between the SiH group in this component and the alkenyl group in the A component. It is a thing.
  • the organohydrogenpolysiloxane may be any as long as it has two or more hydrogen atoms (that is, SiH groups) bonded to silicon atoms in one molecule, and the molecular structure of this organohydrogenpolysiloxane is , Linear, cyclic, branched, or three-dimensional network structure, but the number of silicon atoms in one molecule (that is, the degree of polymerization) is 2 to 1000, especially about 2 to 300. Can be used.
  • the position of the silicon atom to which the hydrogen atom is bonded is not particularly limited, and may be the end of the molecular chain or the non-end (in the middle).
  • Examples of the organic group bonded to the silicon atom other than the hydrogen atom include an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond similar to R 1 of the general formula (Chemical Formula 3). ..
  • Examples of the organohydrogenpolysiloxane of the B component include those having the following structure.
  • R 6 is the same or different hydrogen, alkyl group, phenyl group, epoxy group, acryloyl group, metaacryloyl group, alkoxy group, and at least two are hydrogen.
  • L is an integer of 0 to 1,000, particularly an integer of 0 to 300, and M is an integer of 1 to 200.
  • the catalytic component of component C is a component that promotes curing in the first stage of the present composition.
  • a catalyst used for the hydrosilylation reaction can be used.
  • platinum black for example, platinum black, secondary platinum chloride, platinum chloride, reaction products of platinum chloride and monovalent alcohol, complexes of platinum chloride with olefins and vinyl siloxane, platinum-based catalysts such as platinum bisacetacetate, and palladium.
  • platinum group metal catalysts such as system catalysts and rhodium catalysts.
  • the blending amount of the C component may be any amount necessary for curing, and can be appropriately adjusted according to a desired curing rate and the like. It is preferable to add 0.01 to 1000 ppm as the metal atomic weight to the component A.
  • the inorganic particles (b) having a specific surface area of more than 1 m 2 / g are used. Assuming that the total amount of the thermally conductive particles is 100 parts by weight, the amount of the inorganic particles (a) having a specific surface area of 1 m 2 / g or less is preferably 10 to 90 parts by weight. The rest is preferably inorganic particles (b). As a result, the thermally conductive inorganic particles having a small particle size are embedded between the large particle diameters, and the particles can be filled in a state close to the densest packing, and the thermal conductivity is improved.
  • the thermally conductive particles to be mixed in the primary and secondary mixing steps are preferably at least one selected from alumina, zinc oxide, magnesium oxide, aluminum nitride, boron nitride, aluminum hydroxide and silica.
  • alumina zinc oxide, magnesium oxide, aluminum nitride, boron nitride, aluminum hydroxide and silica.
  • Various shapes such as spherical, scaly, and polyhedral can be used.
  • alumina ⁇ -alumina having a purity of 99.5% by mass or more is preferable.
  • the specific surface area is the BET specific surface area, and the measuring method follows JIS R1626.
  • the average particle size is used, the particle size is measured by the laser diffraction light scattering method, and the cumulative particle size distribution D50 (median size) based on the volume is measured.
  • this measuring instrument for example, there is a laser diffraction / scattering type particle distribution measuring device LA-950S2 manufactured by H
  • the inorganic particles (b) to be mixed in the secondary mixing step are Ra Si (OR') 3-a (R is an unsubstituted or substituted organic group having 1 to 20 carbon atoms, and R'is an alkyl having 1 to 4 carbon atoms.
  • the group, a is preferably surface-treated with a silane compound represented by 0 or 1), or a partial hydrolyzate thereof.
  • An alkoxysilane compound represented by R a Si (OR') 3-a R is an unsubstituted or substituted organic group having 1 to 20 carbon atoms, R'is an alkyl group having 1 to 4 carbon atoms, and a is 0 or 1).
  • silane (Hereinafter simply referred to as "silane”), as an example, methyltrimethoxylan, ethyltrimethoxylan, propyltrimethoxylan, butyltrimethoxylan, pentiltrimethoxylan, hexyltrimethoxylan, hexyltriethoxysilane, octyltri.
  • silane compounds There are silane compounds.
  • the silane compound can be used alone or in admixture of two or more.
  • alkoxysilane and one-terminal silanolsiloxane may be used in combination.
  • the surface treatment referred to here includes not only covalent bonds but also adsorption.
  • the silicone oil is preferably a polydimethylsiloxane type.
  • the viscosity of the silicone oil is preferably 10 to 10000 mPa ⁇ s (25 ° C.) on a rotational viscometer.
  • ingredients other than the above can be added to the composition of the present invention, if necessary.
  • an inorganic pigment such as red iron oxide, an alkyltrialkoxysilane or the like may be added for the purpose of surface treatment of inorganic particles.
  • Alkoxy group-containing silicone may be added as a material to be added for the purpose of surface treatment of inorganic particles.
  • the thermal conductivity of the thermally conductive composition was measured by a hot disk (ISO 22007-2 compliant). As shown in FIG. 1A, the thermal conductivity measuring device 11 sandwiches a polyimide film sensor 12 between two heat conductive composition samples 13a and 13b, applies a constant power to the sensor 12, and generates a constant heat to generate the sensor 12. Analyze the thermal characteristics from the temperature rise value of.
  • the sensor 12 has a tip 14 having a diameter of 7 mm and has a double spiral structure of electrodes as shown in FIG. 1B, and an applied current electrode 15 and a resistance value electrode (temperature measurement electrode) 16 are arranged at the bottom. Has been done.
  • the thermal conductivity was calculated by the following formula (Equation 1).
  • Test method A tensile test was performed using the above test piece, and the maximum value (N) of the force at break was defined as the bond breaking load (load at the break point), and the value divided by the bond area (3 cm x 2.5 cm) was calculated. The tensile shear adhesive strength (N / cm 2 ) was used. Curing conditions: Room temperature 24 hours Tensile rate: 500 mm / min ⁇ Tensile strength> The measurement was performed by the following method according to JIS K 6521.
  • Measuring instrument A & D RTG-1210 (load cell 1kN)
  • Test piece JIS K6251 type 2 dumbbell-shaped test method: A tensile test was performed using the above test piece, and the tensile strength (MPa) at break was measured.
  • Tensile rate 500 mm / min ⁇ Compression repulsion force>
  • Measuring instrument MODEL1310NW (load cell 1kN) manufactured by Aiko Engineering Specimen: 16 mm in diameter
  • Aluminum plate 22.8 mm x 22.8 mm x 4 mmt
  • SUS plate Diameter 13.9 mm x 4 mmt
  • Compression rate 10 mm / min
  • Test method A test piece was placed on an aluminum plate, and the SUS plate was compressed to 0.4 mm in a state where the SUS plate was placed on the aluminum plate, and the load value when the test piece was allowed to stand for 10 minutes was defined as the compressive repulsive force (N).
  • Example 1 Adhesive Polymer Methyl hydrogen polysiloxane 20 to 30% by mass, ⁇ -glycidoxypropyltrimethoxysilane 1 to 10% by mass represented by the chemical formula (Chemical formula 1), and the chemical formula (Chemical formula 2). Octamethylcyclotetrasiloxane 0.1 to 1% by mass, carbon black 1 to 10% by mass, and the remainder were commercially available adhesive polymers containing a silicone polymer. The tensile shear adhesive strength of the adhesive polymer to the aluminum plate is as shown in Table 1. (2) Base polymer A commercially available two-component room temperature curing silicone polymer was used as the base polymer.
  • a base polymer component and a platinum-based metal catalyst are previously added to the liquid A of the two-component room temperature-curable silicone polymer, and a base polymer component and a cross-linking component are previously added to the liquid B.
  • the tensile shear adhesive strength of the base polymer with respect to the aluminum plate is as shown in Table 1.
  • Silicone oil A dimethylpolysiloxane-based silicone oil having a viscosity of 97 mPa ⁇ s by a rotational viscometer was used.
  • Thermally conductive particles Alumina shown in Table 2 was used as the thermally conductive particles.
  • FIG. 3-4 is a surface photograph of a scanning electron microscope / energy dispersive X-ray spectroscopy (SEM / EDX). Table 4 shows the results of measuring the Si and Al mass concentrations (mass%) on the surface of the inorganic particles (a) having a specific surface area of 1 m 2 / g or less using SEM / EDX.
  • SEM / EDX scanning electron microscope / energy dispersive X-ray spectroscopy
  • Example 3 the tensile strength and the compressive repulsive force of Example 1 were higher than those of Comparative Example 1. It is considered that this is due to the high adhesive force of the surface of the inorganic particles (a) with the adhesive polymer.
  • the ratio of Si to Al in Example 1 was higher than that in Comparative Example 1. This indicates that a large amount of polymer component is present on the surface of the large particles.
  • SEM / EDX scanning electron microscope / energy dispersive X-ray spectroscopy
  • the inorganic particles (a) are exposed in Comparative Example 1 (FIG. 4), whereas in Example 1. (Fig. 3) confirmed that the surface of the inorganic particles (a) was covered with a polymer component.
  • the thermally conductive composition of the present invention is useful as an LED, an electronic component such as a home appliance, an information communication module including an optical communication device, and a radiator between a heat generating part and a heat radiating part for in-vehicle use. Furthermore, it is useful as a radiator for electronic components including semiconductors.
  • Thermal conductivity measuring device 12 Polyimide film sensors 13a, 13b Thermal conductive composition sample 14 Sensor tip 15 Electrode for applied current 16 Electrode for resistance value (electrode for temperature measurement) 21 and 22 Aluminum alloy plate 23 Polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

ベースポリマーと接着性ポリマーと熱伝導性粒子を含む熱伝導性組成物であって、熱伝導率は0.3W/m・K以上であり、熱伝導性粒子は比表面積が1m2/g以下の無機粒子(a)を含み、無機粒子(a)は前記接着性ポリマーによって被覆されている。この製造方法は、接着性ポリマーと比表面積が1m2/g以下の無機粒子(a)を混合し、前記無機粒子(a)を前記接着性ポリマーによって被覆する一次混合工程と、ベースポリマーを加えて混合する二次混合工程と、硬化させる工程を含む。これにより、熱伝導性が高く、圧縮反発力も高く、かつ応力による界面剥離を低減した熱伝導性組成物及びその製造方法を提供する。

Description

熱伝導性組成物及びその製造方法
 本発明は、応力による界面剥離を低減した熱伝導性組成物及びその製造方法に関する。
 近年のCPU等の半導体の性能向上はめざましくそれに伴い発熱量も膨大になっている。そのため発熱するような電子部品には放熱体が取り付けられ、半導体と放熱部との密着性を改善する為に熱伝導性シートが使われている。しかし近年、機器の小型化、高性能化に伴い熱伝導性シートには高い熱伝導率及び定常荷重値が低く柔らかい特性が求められている。特許文献1には、硬化前の熱伝導性シリコーン組成物の粘度を23℃において800Pa・s以下とし、圧縮性、絶縁性、熱伝導性などを改良することが提案されている。さらに近年はハイブリッド自動車、電気自動車、燃料電池自動車などの放熱体としてシリコーン樹脂を含む熱伝導性組成物が提案されている(特許文献2~3)。
特開2013-147600号公報 特開2014-224189号公報 特開2019-009237号公報
 しかし、従来の熱伝導性組成物は、熱伝導性を高くするために比表面積の小さい無機粒子を添加すると、応力により上記無機粒子とポリマー間で界面剥離を起こす問題があった。
 本発明は前記従来の問題を解決するため、熱伝導性が高く、圧縮反発力も高く、かつ応力による界面剥離を低減した熱伝導性組成物及びその製造方法を提供する。
 本発明の熱伝導性組成物は、ベースポリマーと接着性ポリマーと熱伝導性粒子を含む熱伝導性組成物であって、前記熱伝導性組成物の熱伝導率は0.3W/m・K以上であり、前記熱伝導性粒子は比表面積が1m2/g以下の無機粒子(a)を含み、前記無機粒子(a)は前記接着性ポリマーによって被覆されていることを特徴とする。
 本発明の熱伝導性組成物の熱伝導性組成物の製造方法は、前記の熱伝導性組成物の製造方法であって、
 接着性ポリマーと比表面積が1m2/g以下の無機粒子(a)を混合し、前記無機粒子(a)を前記接着性ポリマーによって被覆する一次混合工程と、ベースポリマーを加えて混合する二次混合工程と、硬化させる工程を含むことを特徴とする。
 本発明は、熱伝導性組成物の熱伝導率が0.3W/m・K以上であり、熱伝導性粒子は比表面積が1m2/g以下の無機粒子(a)を含み、前記無機粒子(a)は前記接着性ポリマーによって被覆されていることにより、熱伝導性が高く、圧縮反発力も高く、かつ応力による界面剥離を低減した熱伝導性組成物及びその製造方法を提供できる。また、本発明の製造方法は、接着性ポリマーと比表面積が1m2/g以下の無機粒子(a)を混合し、前記無機粒子(a)を前記接着性ポリマーによって被覆する一次混合工程と、ベースポリマーを加えて混合する二次混合工程と、硬化させる工程を含むことにより、本発明の熱伝導性組成物を効率よく合理的に製造できる。
図1A-Bは本発明の一実施例で使用する熱伝導率の測定方法を示す説明図である。 図2は同、引張りせん断接着強さの測定方法を示す説明図である。 図3は本発明の実施例1で得られた熱伝導性組成物シートの走査型電子顕微鏡/エネルギー分散型X線分光法(SEM/EDX)の破断面画像データである。 図4は比較例1で得られた熱伝導性組成物シートの走査型電子顕微鏡/エネルギー分散型X線分光法(SEM/EDX)の破断面画像データである。
 一般的に、大粒径無機粒子等の比表面積の小さい無機粒子は、シランカップリング剤等による表面処理プロセスやインテグラルブレンドによる上記無機粒子とポリマーの界面改良の効果が得られにくいことが知られている。
 そのため、上記無機粒子とポリマー界面は剥離しやすく、応力による剥離が起点となるクラック発生が問題となっている。
 そこで、本発明者らは、接着性ポリマーを添加すること、及び比表面積が1m2/g以下の無機粒子(a)と接着性ポリマーをまず混合し、1m2/gを超える無機粒子(b)及びベースポリマーを混合すると、クラック抑制に効果があることを見出した。本発明はこのような着想から完成したものである。
 本明細書において、1m2/g以下の無機粒子を無機粒子(a)、1m2/gを超える無機粒子を無機粒子(b)という。
 本発明は、ベースポリマーと接着性ポリマーと熱伝導性粒子を含む熱伝導性組成物である。前記熱伝導性組成物の熱伝導率は0.3W/m・K以上であり、好ましくは0.5W/m・K以上、さらに好ましくは1W/m・K以上であり、好ましい上限は15W/m・K以下である。また、電気絶縁性である。
 本発明の熱伝導性粒子は比表面積が1m2/g以下の無機粒子(a)を含む。無機粒子(a)の好ましい比表面積は0.1~1m2/g、さらに好ましくは0.1~0.5m2/gである。そして、無機粒子(a)は接着性ポリマーによって被覆されている。無機粒子(a)と接着性ポリマーをまず混合すると、無機粒子(a)は接着性ポリマーによって被覆される。
 前記ベースポリマー及び接着性ポリマーはシリコーンポリマーが好ましい。シリコーンポリマーは耐熱性が高く、耐熱試験により劣化したり分解する恐れは少ない。
 前記接着性ポリマーは、アルミ板との引張りせん断接着強さが50N/cm2以上あるのが好ましい。より好ましくは80N/cm2以上であり、さらに好ましくは100N/cm2以上である。上限値は800N/cm2以下が好ましく、より好ましくは500N/cm2以下であり、さらに好ましくは300N/cm2以下である。
 前記接着性ポリマーは、メチル水素ポリシロキサンと、エポキシ基含有アルキルトリアルコキシシランと、環状ポリシロキサンオリゴマーを含むのが好ましい。これにより、無機粒子(A)との接着性を高く維持できる。
 前記ベースポリマーは、付加硬化型シリコーンポリマーが好ましい。その理由は、付加硬化型は過酸化物硬化型、縮合硬化型と比較して、硬化のコントロールがしやすく、副生成物が発生しない。また、縮合硬化型は、内部の硬化が不十分となることがある。そのため、付加硬化型が好ましい。
 前記熱伝導性組成物は、さらにシリコーンオイルを含むのが好ましい。接着性ポリマーを加えたことにより、硬化前の材料粘度が上昇したり、硬化物の硬さが硬くなりやすい。そこで、シリコーンオイルを加えることで、硬化前の材料粘度が下がり作業性が良くなる。また、硬化物も柔らかくなる。シリコーンオイルの添加量はベースポリマー成分100重量部に対し、5~30重量部含むのが硬化性と作業性の点で好ましい。
 前記熱伝導性粒子は、アルミナ、酸化亜鉛、酸化マグネシウム、窒化アルミニウム、窒化ホウ素、水酸化アルミニウムおよびシリカから選ばれる少なくとも一つであるのが好ましい。これらの粒子は熱伝導性が高く、電気絶縁性に優れ、熱伝導性組成物シートの原料として使いやすいからである。
 前記熱伝導性組成物は、シート成形されているのが好ましい。シート成形されていると、使い勝手が良い。シート以外としては、ポッテング材としてもよい。ポッテング材は注型材料(キャスト材料)と同義である。ポッテング材にする場合は、未硬化状態とし、注型した後に硬化させる。
 マトリックス成分100重量部に対し、熱伝導性粒子は100~3000重量部を含むのが好ましい。これにより熱伝導性組成物シートの熱伝導率は0.3W/m・K以上となる。好ましくは、マトリックス成分100重量部に対し、熱伝導性粒子は400~3000重量部であり、さらに好ましくは800~3000重量部である。また、熱伝導性粒子合計量を100重量部とすると、比表面積が1m2/g以下の無機粒子(a)は、10~90重量部とするのが好ましい。前記においてマトリックス成分とは、ベースポリマーと、接着性ポリマーと、シリコーンオイルの混合物のことをいう。
 前記熱伝導性粒子は、シラン化合物、チタネート化合物、アルミネート化合物、もしくはその部分加水分解物により表面処理されていてもよい。これにより、硬化触媒や架橋剤の失活を防止でき、貯蔵安定性を向上できる。
 本発明の熱伝導性組成物は、下記組成のコンパウンドを架橋して得るのが好ましい。
1 一次混合工程
 接着性ポリマーと比表面積が1m2/g以下の無機粒子(a)を混合することで、無機粒子(a)を接着性ポリマーによって被覆し、一次混合物とする。接着性ポリマーの添加量はベースポリマー100重量部に対して好ましくは5~35重量部である。
 接着性ポリマーは、メチル水素ポリシロキサンと、エポキシ基含有アルキルトリアルコキシシランと、環状ポリシロキサンオリゴマーを含むのが好ましい。エポキシ基含有アルキルトリアルコキシシランは、例えば下記化学式(化1)で示されるγ-グリシドキシプロピルトリメトキシシランがあり、環状ポリシロキサンオリゴマーは例えば下記化学式(化2)で示されるオクタメチルシクロテトラシロキサンがある。
 熱伝導性粒子は、マトリックス成分100重量部に対して400~3000重量部添加するのが好ましい。熱伝導性粒子合計量を100重量部とすると、比表面積が1m2/g以下の無機粒子(a)は、10~90重量部とするのが好ましい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
2 二次混合工程
 次に一次混合物と、ベースポリマー、触媒、無機粒子(b)、触媒その他の添加物を加えて混合し、シート成形し、硬化する。ベースポリマーには、下記のベースポリマー成分(A成分)と架橋成分(B成分)と触媒成分(C成分)が含まれる。
 以下、二次混合工程で混合する各成分について説明する。
(1)ベースポリマー成分(A成分)
 ベースポリマー成分は、一分子中にケイ素原子に結合したアルケニル基を2個以上含有するオルガノポリシロキサンであり、アルケニル基を2個以上含有するオルガノポリシロキサンは本発明のシリコーンゴム組成物における主剤(ベースポリマー成分)である。このオルガノポリシロキサンは、アルケニル基として、ビニル基、アリル基等の炭素原子数2~8、特に2~6の、ケイ素原子に結合したアルケニル基を一分子中に2個以上有する。粘度は25℃で10~100,000mPa・s、特に100~10,000mPa・sであることが作業性、硬化性などから望ましい。
 具体的には、下記一般式(化3)で表される1分子中に平均2個以上かつ分子鎖両末端のケイ素原子に結合したアルケニル基を含有するオルガノポリシロキサンを使用する。側鎖はアルキル基で封鎖された直鎖状オルガノポリシロキサンである。25℃における粘度は10~100,000mPa・sのものが作業性、硬化性などから望ましい。なお、この直鎖状オルガノポリシロキサンは少量の分岐状構造(三官能性シロキサン単位)を分子鎖中に含有するものであってもよい。
Figure JPOXMLDOC01-appb-C000003
 式中、R1は互いに同一又は異種の脂肪族不飽和結合を有さない非置換又は置換一価炭化水素基であり、R2はアルケニル基であり、kは0又は正の整数である。ここで、R1の脂肪族不飽和結合を有さない非置換又は置換の一価炭化水素基としては、例えば、炭素原子数1~10、特に1~6のものが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、並びに、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基等のハロゲン置換アルキル基、シアノエチル基等が挙げられる。R2のアルケニル基としては、例えば炭素原子数2~6、特に2~3のものが好ましく、具体的にはビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられ、好ましくはビニル基である。一般式(3)において、kは、一般的には0≦k≦10000を満足する0又は正の整数であり、好ましくは5≦k≦2000、より好ましくは10≦k≦1200を満足する整数である。
 A成分のオルガノポリシロキサンとしては一分子中に例えばビニル基、アリル基等の炭素原子数2~8、特に2~6のケイ素原子に結合したアルケニル基を3個以上、通常、3~30個、好ましくは、3~20個程度有するオルガノポリシロキサンを併用しても良い。分子構造は直鎖状、環状、分岐状、三次元網状のいずれの分子構造のものであってもよい。好ましくは、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された、25℃での粘度が10~100,000mPa・s、特に100~10,000mPa・sの直鎖状オルガノポリシロキサンである。
 アルケニル基は分子のいずれかの部分に結合していればよい。例えば、分子鎖末端、あるいは分子鎖非末端(分子鎖途中)のケイ素原子に結合しているものを含んでも良い。なかでも下記一般式(化4)で表される分子鎖両末端のケイ素原子上にそれぞれ1~3個のアルケニル基を有し(但し、この分子鎖末端のケイ素原子に結合したアルケニル基が、両末端合計で3個未満である場合には、分子鎖非末端(分子鎖途中)のケイ素原子に結合したアルケニル基を、(例えばジオルガノシロキサン単位中の置換基として)、少なくとも1個有する直鎖状オルガノポリシロキサンであって)、上記でも述べた通り25℃における粘度が10~100,000mPa・sのものが作業性、硬化性などから望ましい。なお、この直鎖状オルガノポリシロキサンは少量の分岐状構造(三官能性シロキサン単位)を分子鎖中に含有するものであってもよい。
Figure JPOXMLDOC01-appb-C000004
 式中、R3は互いに同一又は異種の非置換又は置換一価炭化水素基であって、少なくとも1個がアルケニル基である。R4は互いに同一又は異種の脂肪族不飽和結合を有さない非置換又は置換一価炭化水素基であり、R5はアルケニル基であり、l,mは0又は正の整数である。ここで、R3の一価炭化水素基としては、炭素原子数1~10、特に1~6のものが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基、オクテニル基等のアルケニル基や、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基等のハロゲン置換アルキル基やシアノエチル基等が挙げられる。
 また、R4の一価炭化水素基としても、炭素原子数1~10、特に1~6のものが好ましく、上記R1の具体例と同様のものが例示できるが、但しアルケニル基は含まない。R5のアルケニル基としては、例えば炭素数2~6、特に炭素数2~3のものが好ましく、具体的には前記式(化3)のR2と同じものが例示され、好ましくはビニル基である。
 l,mは、一般的には0<l+m≦10000を満足する0又は正の整数であり、好ましくは5≦l+m≦2000、より好ましくは10≦l+m≦1200で、かつ0<l/(l+m)≦0.2、好ましくは、0.0011≦l/(l+m)≦0.1を満足する整数である。
(2)架橋成分(B成分)
 本発明のB成分のオルガノハイドロジェンポリシロキサンは架橋剤として作用するものであり、この成分中のSiH基とA成分中のアルケニル基とが付加反応(ヒドロシリル化)することにより硬化物を形成するものである。かかるオルガノハイドロジェンポリシロキサンは、一分子中にケイ素原子に結合した水素原子(即ち、SiH基)を2個以上有するものであればいずれのものでもよく、このオルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、環状、分岐状、三次元網状構造のいずれであってもよいが、一分子中のケイ素原子の数(即ち、重合度)は2~1000、特に2~300程度のものを使用することができる。
 水素原子が結合するケイ素原子の位置は特に制約はなく、分子鎖の末端でも非末端(途中)でもよい。また、水素原子以外のケイ素原子に結合した有機基としては、前記一般式(化3)のR1と同様の脂肪族不飽和結合を有さない非置換又は置換一価炭化水素基が挙げられる。
 B成分のオルガノハイドロジェンポリシロキサンとしては下記構造のものが例示できる。
Figure JPOXMLDOC01-appb-C000005
 上記の式中、R6は互いに同一又は異種の水素、アルキル基、フェニル基、エポキシ基、アクリロイル基、メタアクリロイル基、アルコキシ基であり、少なくとも2つは水素である。Lは0~1,000の整数、特には0~300の整数であり、Mは1~200の整数である。
(3)触媒成分(C成分)
 C成分の触媒成分は、本組成物の一段階目の硬化を促進させる成分である。C成分としては、ヒドロシリル化反応に用いられる触媒を用いることができる。例えば白金黒、塩化第2白金酸、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸とオレフィン類やビニルシロキサンとの錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒などの白金族金属触媒が挙げられる。C成分の配合量は、硬化に必要な量であればよく、所望の硬化速度などに応じて適宜調整することができる。A成分に対して金属原子重量として0.01~1000ppm添加するのが好ましい。
(4)熱伝導性粒子
 二次混合工程で熱伝導性粒子を添加する場合は、比表面積が1m2/gを超える無機粒子(b)とする。熱伝導性粒子合計量を100重量部とすると、比表面積が1m2/g以下の無機粒子(a)は、10~90重量部とするのが好ましい。残りは無機粒子(b)とするのが好ましい。これにより、大きな粒子径の間に小さな粒子径の熱伝導性無機粒子が埋まり、最密充填に近い状態で充填でき、熱伝導性が高くなる。
 一次及び二次混合工程で混合する熱伝導性粒子としては、アルミナ,酸化亜鉛,酸化マグネシウム、窒化アルミニウム、窒化ホウ素、水酸化アルミニウム及びシリカから選ばれる少なくとも一つであることが好ましい。形状は球状,鱗片状,多面体状等様々なものを使用できる。アルミナを使用する場合は、純度99.5質量%以上のα-アルミナが好ましい。比表面積はBET比表面積であり、測定方法はJIS R1626にしたがう。平均粒子径を用いる場合は、粒子径の測定はレーザー回折光散乱法により、体積基準による累積粒度分布のD50(メジアン径)を測定する。この測定器としては、例えば堀場製作所社製のレーザー回折/散乱式粒子分布測定装置LA-950S2がある。
 二次混合工程で混合する無機粒子(b)は、RaSi(OR’)3-a(Rは炭素数1~20の非置換または置換有機基、R’は炭素数1~4のアルキル基、aは0もしくは1)で示されるシラン化合物、もしくはその部分加水分解物で表面処理するのが好ましい。RaSi(OR’)3-a(Rは炭素数1~20の非置換または置換有機基、R’は炭素数1~4のアルキル基、aは0もしくは1)で示されるアルコキシシラン化合物(以下単に「シラン」という。)は、一例としてメチルトリメトキシラン,エチルトリメトキシラン,プロピルトリメトキシラン,ブチルトリメトキシラン,ペンチルトリメトキシラン,ヘキシルトリメトキシラン,ヘキシルトリエトキシシラン,オクチルトリメトキシシラン,オクチルトリエトキシラン,デシルトリメトキシシラン,デシルトリエトキシシラン,ドデシルトリメトキシシラン,ドデシルトリエトキシシラン,ヘキサデシルトリメトキシシラン,ヘキサデシルトリエトキシシラン,オクタデシルトリメトキシシラン,オクタデシルトリエトキシシラン等のシラン化合物がある。前記シラン化合物は、一種又は二種以上混合して使用することができる。表面処理剤として、アルコキシシランと片末端シラノールシロキサンを併用してもよい。ここでいう表面処理とは共有結合のほか吸着なども含む。
(5)シリコーンオイル
 シリコーンオイルは、ポリジメチルシロキサン系が好ましい。シリコーンオイルの粘度は回転粘度計で、10~10000mPa・s(25℃)が好ましい。
(6)その他の添加物
 本発明の組成物には、必要に応じて前記以外の成分を配合することができる。例えばベンガラなどの無機顔料、無機粒子の表面処理等の目的でアルキルトリアルコキシシランなどを添加してもよい。無機粒子表面処理などの目的で添加する材料として、アルコキシ基含有シリコーンを添加しても良い。
 以下実施例を用いて説明する。本発明は実施例に限定されるものではない。
<熱伝導率>
 熱伝導性組成物の熱伝導率は、ホットディスク(ISO 22007-2準拠)により測定した。この熱伝導率測定装置11は図1Aに示すように、ポリイミドフィルム製センサ12を2個の熱伝導性組成物試料13a,13bで挟み、センサ12に定電力をかけ、一定発熱させてセンサ12の温度上昇値から熱特性を解析する。センサ12は先端14が直径7mmであり、図1Bに示すように、電極の2重スパイラル構造となっており、下部に印加電流用電極15と抵抗値用電極(温度測定用電極)16が配置されている。熱伝導率は以下の式(数1)で算出した。
Figure JPOXMLDOC01-appb-M000006
<粘度>
JIS K7117-1:1999準拠
測定装置:ブルックフィールド型回転粘度計C型(スピンドル番号は粘度に合わせて変更)
回転速度:10RPM
測定温度:25℃
<硬さ>
 JIS K7312に準拠するAsker C硬さを測定した。
<引張りせん断接着強さ>
 JIS K6850準拠する下記の方法で測定した。説明図は図2に示す。
測定器:東洋ボールドウィン製UTM-4-100
接着面積:L1=3cm、L2=2.5cm
試験片:1対のアルミニウム合金板21,22がポリマー23によって接着されたものを試験片として用意した。ポリマーの厚みL3=0.14cmとなるよう固定し、硬化させた。
試験方法:上記試験片を用いて引張試験を行い、破断時の力の最大値(N)を接着破断荷重(破断点の荷重)とし、接着面積(3cm×2.5cm)で除した値を引張せん断接着強度(N/cm2)とした。
硬化条件:室温24時間
引張速度:500mm/min
<引張り強度>
 JIS K 6521に準拠する下記の方法で測定した。
測定器:エーアンドディ製RTG-1210(ロードセル 1kN)
試験片:JIS K6251 2号型 ダンベル状
試験方法: 上記試験片を用いて引張試験を行い、破断時の引張強さ(MPa)を測定した。
引張速度:500mm/min
<圧縮反発力>
測定器:アイコーエンジニアリング製 MODEL1310NW(ロードセル 1kN)
試験片:直径16mm
アルミプレート:22.8mm×22.8mm×4mmt
SUSプレート:直径13.9mm×4mmt
圧縮速度:10mm/min
試験方法:アルミプレートの上に試験片を乗せ、その上にSUSプレートを重ねた状態で0.4mmまで圧縮し、10分静置した際の荷重値を圧縮反発力(N)とした。
 (実施例1)
(1)接着性ポリマー
 メチル水素ポリシロキサン20~30質量%と、前記化学式(化1)で示されるγ-グリシドキシプロピルトリメトキシシラン1~10質量%と、前記化学式(化2)で示されるオクタメチルシクロテトラシロキサン0.1~1質量%と、カーボンブラック1~10質量%、残余はシリコーンポリマーを含む市販の接着性ポリマーを用いた。
 アルミ板に対する接着性ポリマーの引張りせん断接着強さは表1に示すとおりであった。
(2)ベースポリマー
 ベースポリマーとして、市販の二液室温硬化シリコーンポリマーを使用した。この二液室温硬化シリコーンポリマーのA液にはベースポリマー成分と白金系金属触媒が予め添加されており、B液にはベースポリマー成分と架橋成分が予め添加されている。
 アルミ板に対するベースポリマーの引張りせん断接着強さは表1に示すとおりであった。
Figure JPOXMLDOC01-appb-T000007
(3)シリコーンオイル
 回転粘度計による粘度が97mPa・sのジメチルポリシロキサン系シリコーンオイルを使用した。
(4)熱伝導性粒子
 熱伝導性粒子として表2に示すアルミナを使用した。
Figure JPOXMLDOC01-appb-T000008
(5)コンパウンドの作成
 一次混合工程で、前記接着性ポリマーとアルミナ粉Aをよく混合し、混合物1とした。
 次に二次混合工程で、混合物1にベースポリマーと、アルミナ粉B、アルミナ粉C、白金系触媒、架橋成分を加えてよく混合し、混合物2とした。
(6)熱伝導性組成物の成形
 前記混合物2をポリエステル(PET)フィルムに挟んで厚み2mmのシート状に圧延し、100℃で2時間硬化処理した。
 (比較例1)
 前記コンパウンドの作成工程で、すべての材料を同時に混合した以外は実施例1と同様に実施した。
 以上のようにして得られた熱伝導性組成物の条件と物性を表3-4及び図3-4にまとめて示す。図3-4は、走査型電子顕微鏡/エネルギー分散型X線分光法(SEM/EDX)の表面写真である。
 表4は、SEM/EDXを用いて比表面積が1m2/g以下の無機粒子(a)表面のSi及びAl質量濃度(mass%)を測定した結果である。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表3から明らかなとおり、実施例1の引張り強度および圧縮反発力は比較例1に比べて高かった。これは、無機粒子(a)表面の接着性ポリマーとの接着力が高いことに起因していると思われる。
 表4から明らかなとおり、実施例1のAlに対するSiの割合は比較例1に比べて高かった。これは、大粒子表面にポリマー成分が多く存在していることを示している。また、走査型電子顕微鏡/エネルギー分散型X線分光法(SEM/EDX)の画像データからも、比較例1(図4)は無機粒子(a)が露出しているのに対し、実施例1(図3)は無機粒子(a)表面をポリマー成分が被覆していることが確認できた。
 本発明の熱伝導性組成物は、LED、家電などの電子部品、光通信機器を含む情報通信モジュール、車載用途などの発熱部と放熱部との間の放熱体として有用である。さらに半導体を含む電子部品の放熱体として有用である。
11 熱伝導率測定装置
12 ポリイミドフィルム製センサ
13a,13b 熱伝導性組成物試料
14 センサ先端
15 印加電流用電極
16 抵抗値用電極(温度測定用電極)
21,22 アルミニウム合金板
23 ポリマー

Claims (13)

  1.  ベースポリマーと接着性ポリマーと熱伝導性粒子を含む熱伝導性組成物であって、
     前記熱伝導性組成物の熱伝導率は0.3W/m・K以上であり、
     前記熱伝導性粒子は比表面積が1m2/g以下の無機粒子(a)を含み、
     前記無機粒子(a)は前記接着性ポリマーによって被覆されていることを特徴とする熱伝導性組成物。
  2.  前記ベースポリマー及び接着性ポリマーはシリコーンポリマーである請求項1に記載の熱伝導性組成物。
  3.  前記接着性ポリマーは、アルミ板との引張りせん断接着強さが50N/cm2以上ある請求項1又は2に記載の熱伝導性組成物。
  4.  前記接着性ポリマーは、メチル水素ポリシロキサンと、エポキシ基含有アルキルトリアルコキシシランと、環状ポリシロキサンオリゴマーを含む請求項1~3のいずれか1項に記載の熱伝導性組成物。
  5.  前記ベースポリマーは、付加硬化型シリコーンポリマーである請求項1~4のいずれか1項に記載の熱伝導性組成物。
  6.  前記熱伝導性組成物は、さらにシリコーンオイルを含む請求項1~5のいずれか1項に記載の熱伝導性組成物。
  7.  前記熱伝導性粒子は、金属酸化物、金属水酸化物、金属窒化物およびシリカから選ばれる少なくとも一つである請求項1~6のいずれか1項に記載の熱伝導性組成物。
  8.  前記熱伝導性組成物は、さらに比表面積が1m2/gを超える無機粒子(b)を含む請求項1~7のいずれか1項に記載の熱伝導性組成物。
  9.  前記無機粒子(b)は、シラン化合物、チタネート化合物、アルミネート化合物、もしくはその部分加水分解物により表面処理されている請求項8に記載の熱伝導性組成物。
  10.  前記熱伝導性組成物は、シート成形されている請求項1~9のいずれか1項に記載の熱伝導性組成物。
  11.  前記ベースポリマー100重量部に対し、接着性ポリマーは5~35重量部である請求項1~10のいずれか1項に記載の熱伝導性組成物。
  12.  請求項1~11のいずれか1項に記載の熱伝導性組成物の製造方法であって、
     接着性ポリマーと比表面積が1m2/g以下の無機粒子(a)を混合し、前記無機粒子(a)を前記接着性ポリマーによって被覆する一次混合工程と、
     ベースポリマーを加えて混合する二次混合工程と、
     硬化させる工程を含むことを特徴とする熱伝導性組成物の製造方法。
  13.  前記二次混合工程で、比表面積が1m2/gを超える無機粒子(b)を加える請求項12に記載の熱伝導性組成物の製造方法。
PCT/JP2020/045782 2019-12-18 2020-12-09 熱伝導性組成物及びその製造方法 WO2021124998A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20902815.8A EP3929242A4 (en) 2019-12-18 2020-12-09 THERMOCONDUCTIVE COMPOSITION AND METHOD FOR PRODUCTION
JP2021512467A JP6895596B1 (ja) 2019-12-18 2020-12-09 熱伝導性組成物及びその製造方法
US17/433,500 US20220145015A1 (en) 2019-12-18 2020-12-09 Thermally conductive composition and method for producing the same
CN202080020985.8A CN113574115B (zh) 2019-12-18 2020-12-09 导热性组合物及其制造方法
KR1020217026215A KR102660031B1 (ko) 2019-12-18 2020-12-09 열전도성 조성물 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-228349 2019-12-18
JP2019228349 2019-12-18

Publications (1)

Publication Number Publication Date
WO2021124998A1 true WO2021124998A1 (ja) 2021-06-24

Family

ID=76477462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045782 WO2021124998A1 (ja) 2019-12-18 2020-12-09 熱伝導性組成物及びその製造方法

Country Status (6)

Country Link
US (1) US20220145015A1 (ja)
EP (1) EP3929242A4 (ja)
JP (1) JP6895596B1 (ja)
KR (1) KR102660031B1 (ja)
CN (1) CN113574115B (ja)
WO (1) WO2021124998A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230086549A (ko) 2021-12-08 2023-06-15 주식회사 에스엠티 반습식법에 의하여 표면처리된 무기 필러를 함유하는 고열전도성 시트의 제조방법 및 이에 의하여 제조된 고열전도성 시트
KR20230140132A (ko) 2022-03-29 2023-10-06 주식회사 에스엠티 고인장강도를 갖는 고열전도성 방열시트 및 이의 제조방법
CN116606608B (zh) * 2023-05-23 2024-04-05 江西天永诚高分子材料有限公司 一种导热填料、包含其的双组份有机硅灌封胶及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274155A (ja) * 2005-03-30 2006-10-12 Dow Corning Toray Co Ltd 熱伝導性シリコーンゴム組成物
JP2013147600A (ja) 2012-01-23 2013-08-01 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーン組成物及びその硬化物
JP2014224189A (ja) 2013-05-16 2014-12-04 信越化学工業株式会社 リアクトル用熱伝導性シリコーン接着剤組成物及びリアクトル
WO2016190258A1 (ja) * 2015-05-28 2016-12-01 ポリマテック・ジャパン株式会社 熱伝導性シート
JP2019009237A (ja) 2017-06-22 2019-01-17 Ntn株式会社 リアクトル

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6043292B2 (ja) * 2011-10-04 2016-12-14 株式会社カネカ 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JP5854363B2 (ja) * 2013-12-11 2016-02-09 富士高分子工業株式会社 蓄熱性組成物
CN103804942B (zh) * 2014-02-12 2016-03-09 厦门凯纳石墨烯技术股份有限公司 含有石墨烯的绝缘散热组合物及其制备和应用
EP3372630B1 (en) * 2015-11-05 2020-09-16 Momentive Performance Materials Japan LLC Method for producing thermally-conductive polysiloxane composition
US11254849B2 (en) * 2015-11-05 2022-02-22 Momentive Performance Materials Japan Llc Method for producing a thermally conductive polysiloxane composition
CN109890900B (zh) * 2016-10-31 2022-01-14 陶氏东丽株式会社 单组分可固化型导热硅脂组合物和电子/电气组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274155A (ja) * 2005-03-30 2006-10-12 Dow Corning Toray Co Ltd 熱伝導性シリコーンゴム組成物
JP2013147600A (ja) 2012-01-23 2013-08-01 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーン組成物及びその硬化物
JP2014224189A (ja) 2013-05-16 2014-12-04 信越化学工業株式会社 リアクトル用熱伝導性シリコーン接着剤組成物及びリアクトル
WO2016190258A1 (ja) * 2015-05-28 2016-12-01 ポリマテック・ジャパン株式会社 熱伝導性シート
JP2019009237A (ja) 2017-06-22 2019-01-17 Ntn株式会社 リアクトル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3929242A4

Also Published As

Publication number Publication date
CN113574115A (zh) 2021-10-29
EP3929242A1 (en) 2021-12-29
KR20210114507A (ko) 2021-09-23
JP6895596B1 (ja) 2021-06-30
JPWO2021124998A1 (ja) 2021-12-23
KR102660031B1 (ko) 2024-04-22
CN113574115B (zh) 2022-10-28
US20220145015A1 (en) 2022-05-12
EP3929242A4 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
WO2021124998A1 (ja) 熱伝導性組成物及びその製造方法
WO2020137086A1 (ja) 熱伝導組成物及びこれを用いた熱伝導性シート
US20100140538A1 (en) Silicone elastomer composition and silicone elastomer
JPWO2019098290A1 (ja) 二段階硬化型熱伝導性シリコーン組成物及びその製造方法
JP2007119588A (ja) 熱伝導性シリコーンゴム組成物
JP2010120979A (ja) 熱伝導性シリコーンゲル硬化物
TWI698519B (zh) 導熱性片及其製造方法
JP2021046562A (ja) 熱伝導性シート
JPWO2020137086A1 (ja) 熱伝導組成物及びこれを用いた熱伝導性シート
JP2022060339A (ja) 熱伝導性シリコーン組成物
JP2023168633A (ja) 熱伝導性シリコーン組成物および該組成物を使用するギャップフィラーの製造方法
JPWO2020261647A1 (ja) 耐熱性熱伝導性組成物及び耐熱性熱伝導性シート
JP2021095569A (ja) 熱伝導性組成物、熱伝導性シート及びその製造方法
JP6705067B1 (ja) 熱伝導性シート及びその製造方法
TWI757112B (zh) 熱傳導性組成物及其製造方法
JP6932872B1 (ja) 熱伝導性シリコーンゲル組成物
WO2023188491A1 (ja) 熱伝導性シリコーン組成物、熱伝導性シリコーンシート及びその製造方法
JP7499414B2 (ja) 熱伝導性組成物、熱伝導性シート及びその製造方法
WO2022004086A1 (ja) シリコーンゲル組成物及びシリコーンゲルシート
WO2023135857A1 (ja) 熱伝導性組成物及びこれを用いた熱伝導性シートとその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021512467

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217026215

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 20902815

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020902815

Country of ref document: EP

Effective date: 20210919

NENP Non-entry into the national phase

Ref country code: DE