WO2021118308A1 - 경화 후 열 성형이 가능한 코팅 조성물 및 이를 이용한 플라스틱 제품 - Google Patents

경화 후 열 성형이 가능한 코팅 조성물 및 이를 이용한 플라스틱 제품 Download PDF

Info

Publication number
WO2021118308A1
WO2021118308A1 PCT/KR2020/018198 KR2020018198W WO2021118308A1 WO 2021118308 A1 WO2021118308 A1 WO 2021118308A1 KR 2020018198 W KR2020018198 W KR 2020018198W WO 2021118308 A1 WO2021118308 A1 WO 2021118308A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating composition
thermoplastic polymer
acrylate
weight
polyfunctional
Prior art date
Application number
PCT/KR2020/018198
Other languages
English (en)
French (fr)
Inventor
유현석
최승석
신규순
남동진
김영모
임국희
오성연
임해량
박한빈
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to CN202080086055.2A priority Critical patent/CN114787294B/zh
Publication of WO2021118308A1 publication Critical patent/WO2021118308A1/ko
Priority to US17/837,177 priority patent/US20220298360A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1065Esters of polycondensation macromers of alcohol terminated (poly)urethanes, e.g. urethane(meth)acrylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/14Polyurethanes having carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a coating composition that can be thermoformed after curing and a plastic product using the same, and more particularly, to a coating composition for manufacturing a plastic product that can be used instead of glass in various industries such as architecture, electronic products, automobiles, etc. will be.
  • an object of the present invention is to provide a coating composition capable of maintaining the molding properties of plastic against heat even after curing, a coating film capable of thermoforming using the same, and a plastic product.
  • Another object of the present invention is to provide a coating composition capable of obtaining a plastic product having excellent hardness, durability and scratch properties, and a plastic product using the same.
  • the present invention provides a coating composition that can be thermoformed after curing including a polyfunctional acrylate-based oligomer, a thermoplastic polymer, and an organic solvent.
  • the present invention provides a thermally moldable coating film formed by curing the coating composition.
  • the present invention also provides a plastic product including a substrate and a coating film formed on the substrate and comprising a three-dimensional network structure formed by polymerization of a polyfunctional acrylate-based oligomer and a thermoplastic polymer.
  • the coating composition according to the present invention includes a thermoplastic polymer and maintains the molding properties of the plastic against heat, so that it can be thermoformed even after curing, and includes a polyfunctional acrylate oligomer to provide a plastic product with excellent hardness, durability and scratch properties can do.
  • FIG. 1 shows an actual plastic article produced using a coating composition according to the invention.
  • the coating composition according to the present invention includes a polyfunctional acrylate-based oligomer, a thermoplastic polymer, and an organic solvent.
  • the polyfunctional acrylate-based oligomer of the present invention forms a three-dimensional network structure after curing, and serves to improve hardness, durability and scratch resistance of the coating film.
  • the acrylate-based term means a term including both acrylate and methacrylate.
  • the polyfunctional acrylate-based oligomer may be used without limitation if it is a polyfunctional acrylate-based oligomer that can be cured using light or heat, but specifically, a polyfunctional urethane acrylate-based oligomer, a polyfunctional silicone acrylate-based oligomer, It may be at least one selected from the group consisting of a polyfunctional epoxy acrylate-based oligomer, a polyfunctional polyester acrylate-based oligomer, and a polyfunctional melamine acrylate-based oligomer. In particular, it is appropriate to use a polyfunctional urethane acrylate oligomer in that the hardness, adhesion and flexibility of the coating film can be secured.
  • the polyfunctional acrylate-based oligomer may have 2 to 30 polymerizable functional groups, and may be used regardless of the state of the solid or liquid.
  • the weight average molecular weight (Mw) of the polyfunctional acrylate-based oligomer is 500 to 30,000, specifically 1,000 to 20,000, and when the weight average molecular weight is less than 500, the curing rate is slow and the physical properties may be deteriorated, and the weight average molecular weight is 30,000 If it exceeds the compatibility, the use of initiators, additives, etc. may be limited.
  • the content of the polyfunctional acrylate-based oligomer is 0.1 to 90% by weight, specifically 10 to 80% by weight, based on 100% by weight of the total coating composition.
  • the content of the polyfunctional acrylate-based oligomer is less than 0.1% by weight, there is a problem in that a smooth network structure cannot be formed after curing and the physical properties after coating are deteriorated. It is difficult to control, and there is a problem of poor uniformity.
  • thermoplastic polymer of the present invention serves to impart a thermoplastic effect, and is mostly non-chemically mixed with the three-dimensional network structure formed from the polyfunctional acrylate-based oligomer after curing to impart moldability to the coating film.
  • the non-chemical mixing means a state in which the chemical reaction is minimized and the mixture is simply mixed.
  • the thermoplastic polymer does not substantially include a functional group or reactive moiety that can be cured in a state in which polymerization is already completed, does not participate in the curing reaction of the coating composition, and is simple in a three-dimensional network structure formed from the polyfunctional acrylate-based oligomer after curing. blended and exist. That is, since the thermoplastic polymer is not deformed by curing, it can be seen that the material before and after curing is the same, and even if it is assumed that there may be some deformation, the level of insignificant level that does not affect the moldability of the coating film can be
  • the substantially no curable functional group or reactive moiety means no curable functional group or reactive moiety, or includes only some terminal functional groups that may remain after polymerization is completed due to the nature of the polymerization reaction. Since the thermoplastic polymer does not include a curable functional group or reactive moiety or contains only a terminal end thereof, the thermoplastic polymer may be mixed without chemical bonding even after curing. Here, not chemically bonded means that 90% or more of the thermoplastic polymer except for all or some bonds derived from terminal functional groups are not chemically bonded.
  • thermoplastic polymer is mixed without chemical bonding in the three-dimensional network structure formed by polymerization of the polyfunctional acrylate-based oligomer after curing, the flexibility of the coating film can be increased, and properties advantageous for thermoforming will have
  • the coating film formed by curing the coating composition is thermoformable, it means that the thermoplastic polymer substantially does not contain a curable functional group or reactive moiety, and the thermoplastic polymer is considered to be the same material before and after curing.
  • thermoplastic polymer is not particularly limited, but specifically, it is selected from the group consisting of polymethyl methacrylate (PMMA), polystyrene, polyethylene, polycarbonate, and mixtures thereof. Can be used.
  • PMMA polymethyl methacrylate
  • polystyrene polystyrene
  • polyethylene polyethylene
  • polycarbonate polycarbonate
  • mixtures thereof can be used.
  • the content of the thermoplastic polymer is 0.1 to 90% by weight, specifically 10 to 70% by weight, based on 100% by weight of the total coating composition.
  • the content of the thermoplastic polymer is less than 0.1% by weight, it is not sufficiently distributed in the coating composition to impart thermoplastic properties, and when it exceeds 90% by weight, a three-dimensional network structure is not properly formed after curing, so a normal coating film is formed there is a problem with
  • the weight average molecular weight (Mw) of the thermoplastic polymer is 500 to 1,000,000, specifically, it is advantageous to use a low molecular weight of 10,000 to 50,000 to achieve excellent molding properties.
  • Mw weight average molecular weight
  • the number of terminal reactive groups may increase to increase the chemical bond with the three-dimensional network structure, and there is a problem of increased brittleness after curing. There is a problem of degradation. That is, when a thermoplastic polymer in an appropriate low molecular weight range is used, scratchability and moldability are excellent.
  • the polyfunctional acrylate-based oligomer and the thermoplastic polymer are mixed in a weight ratio of 1:9 to 9:1, specifically 7:3 to 3:7. After curing in the above range, the coating film has thermoforming properties and excellent scratch resistance. If it is out of the above range, molding is not possible due to insufficient flexibility of the coating film after curing, or physical properties such as adhesion and hardness are lowered, which is not appropriate.
  • the organic solvent of the present invention is not particularly limited as long as it is soluble and does not affect the reaction, and may be used without particular limitation.
  • lactate-based solvents such as ethyl lactate and normal butyl lactate; ketones such as acetone and methyl (isobutyl) ethyl ketone; glycols such as ethylene glycol; glycol ethers such as propylene glycol methyl ether; furans such as tetrahydrofuran; dimethylformamide; dimethylacetamide; N-methyl-2-pyrrolidone; Polar solvents such as hexane, cyclohexane, cyclohexanone, toluene, xylene, cresol, chloroform, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acronitrile, methylene chloride, octadecylamine, Aniline
  • the content of the organic solvent is 0.1 to 95% by weight, specifically 20 to 90% by weight, based on 100% by weight of the total coating composition.
  • the content of the organic solvent is less than 0.1% by weight, the viscosity of the coating composition increases and it is difficult to obtain a uniform coating film, and when it exceeds 90% by weight, it is difficult to control the coating thickness and the physical properties of the coating film after curing are reduced. there is a problem.
  • the coating composition of the present invention may further include an initiator and an additive, if necessary.
  • the initiator generates free radicals by irradiation or heat to induce polymerization through movement of free radicals, and specifically, chloroacetophenone, diethoxyacetophenone, 1-phenyl-2-hydroxy-2-methylpropane -1-one, 1-hydroxycyclohexylphenyl ketone, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, 2,4,6-trimethyl benzoyl diphenylphos Pinoxide, camphor quinone, 2,2'-azobis(2-methylbutyronitrile), dimethyl-2,2'-azobis(2-methyl butyrate), 3,3-dimethyl-4-methoxy- Benzophenone, p-methoxybenzophenone, 2,2-diethoxy acetophenone, 2,2-dimethoxy-1,2-diphenyl ethan-1-one, t-butylparoxy maleic
  • the additive may include additives commonly used in the coating composition, for example, BYK-307, BYJ-320, BYK-331, BYK-333, BYK-378, BYK of BYK as currently commercially available products. -3500, BYK-350, BYK-361N, BYK-388, BYK-399, BYK-055, BYK-063, BYK-071, BYK-085, BYK-390, BYK-014, BYK-020; TEGO Glide 410, TEGO Glide 411, TEGO Glide 415, TEGO Glide 420, TEGO Glide432, TEGO Glide 440, TEGO Glide 450, TEGO RAD2100, TEGO RAD2200N, TEGO RAD 2300 from EVONIK; 3M's FC-4430, FC-4432, FC-4434, etc. can be used.
  • the additive may be further
  • the present invention provides a coating film that can be thermoformed.
  • the thermoformable coating film may be formed by curing the coating composition of the present invention, and specifically, the polyfunctional acrylate-based oligomer is polymerized to form a three-dimensional network structure, and the three-dimensional network structure is thermoplastic.
  • the polymer is not chemically bound and exists as a mixed form.
  • thermoplastic polymer does not contain a curable functional group or reactive moiety substantially, that is, it does not contain a curable functional group or reactive moiety or contains only the end thereof, so that the thermoplastic polymer is not chemically bonded to the three-dimensional network. It may exist in a mixed (blending) form, and due to such a structure, a thermally moldable coating film can be obtained.
  • not chemically bonded means that 90% or more of the thermoplastic polymer except for all or some bonds derived from terminal functional groups are not chemically bonded.
  • thermoplastic polymer since the thermoplastic polymer is not deformed by curing, it can be seen that the material before and after curing is the same, and even if it is assumed that there may be some deformation, the level of insignificant level that does not affect the moldability of the coating film can be Accordingly, the coating film formed by curing the coating composition containing the thermoplastic polymer can be thermoformed, and a plastic product including the thermoformable coating film can be obtained.
  • thermoplastic polymer Since the thermoplastic polymer is simply mixed in the three-dimensional network structure formed by polymerization of the polyfunctional acrylate-based oligomer, even after curing, due to the thermal behavior of the thermoplastic polymer, it is visible in a conventional coating film having a three-dimensional network structure. It can exhibit a difficult glass transition temperature (Tg).
  • the glass transition temperature (Tg) of the coating film is 80 to 170 ° C., specifically 110 to 160 ° C., and has excellent thermoformability in the range of the glass transition temperature (Tg). Due to the molding temperature limit of the substrate being formed, there may be restrictions on the usability.
  • the coating film may have a thickness of 1 to 100 ⁇ m after curing, specifically 3 to 50 ⁇ m, and more specifically 10 ⁇ m. If the thickness of the coating film is less than 1 ⁇ m, the formed coating film does not implement desired properties, and when it exceeds 100 ⁇ m, problems such as cracks during molding may occur.
  • the present invention provides a plastic product including a thermoformable coating film.
  • the plastic product specifically, a substrate; and a coating film formed on the substrate and including a three-dimensional network structure formed by polymerization of a polyfunctional acrylate-based oligomer and a thermoplastic polymer.
  • the substrate may be used without limitation as long as it is a known substrate, but specifically, polycarbonate (PC, Polycarbonate), polymethylmethacrylate (PMMA, Polymethylmethacrylate), polyethylene terephthalate (PET, Polyethylene terephthalate), polyimide (PI, polyimide) and mixtures thereof may be used.
  • the substrate may include, for example, a single substrate or a composite substrate.
  • thermoplastic polymer does not substantially include a functional group or reactive moiety that can be cured in a state in which polymerization is already completed, does not participate in the curing reaction of the coating composition for the production of a coating film, and is formed from the polyfunctional acrylate-based oligomer after curing
  • a simple blending exists in the three-dimensional network structure. That is, since the thermoplastic polymer is not deformed by curing, it can be seen that the material before and after curing is the same, and even if it is assumed that there may be some deformation, the level of insignificant level that does not affect the moldability of the coating film can be
  • the substantially no curable functional group or reactive moiety means no curable functional group or reactive moiety, or includes only some terminal functional groups that may remain after polymerization is completed due to the nature of the polymerization reaction. Since the thermoplastic polymer does not include a curable functional group or reactive moiety or contains only a terminal end thereof, the thermoplastic polymer may be mixed without chemical bonding even after curing. Here, not chemically bonded means that 90% or more of the thermoplastic polymer except for all or some bonds derived from terminal functional groups are not chemically bonded.
  • thermoplastic polymer may be mixed without chemical bonding in the three-dimensional network structure formed by polymerization of the polyfunctional acrylate-based oligomer after curing, it is possible to increase the flexibility of the coating film, and to heat molding. have advantageous properties.
  • the coating film formed by curing the coating composition is thermoformable, it means that the thermoplastic polymer substantially does not contain a curable functional group or reactive moiety, and the thermoplastic polymer is considered to be the same material before and after curing.
  • the glass transition temperature (Tg) of the coating film is 80 to 170 ° C. specifically, 110 to 160 ° C., and has excellent thermoformability in the range of the glass transition temperature (Tg). Due to the molding temperature limit of the substrate to be used, there may be restrictions on the usability.
  • the coating film includes a three-dimensional network structure, so that the surface hardness and scratch resistance are sufficiently secured, and at the same time, due to the properties of the thermoplastic polymer mixed without chemical bonding to the three-dimensional network structure, plastic caused by heat of molding characteristics can be maintained, so that free molding is possible, and furthermore, re-molding is possible.
  • the plastic product of the present invention has a rigid surface like glass and at the same time can maintain free molding characteristics, so the glass replacement cover and protective cover for the front or rear of the mobile phone, the interior of the car, the front of the furniture and home appliances Alternatively, it can be applied to a rear protective film, a protective gode, and the like, and can be used in various applications to replace glass in order to increase the degree of freedom in design.
  • the present invention may further include a method for manufacturing a plastic product including a thermoformable coating film.
  • the manufacturing method of the plastic product comprises the steps of applying a coating composition comprising a polyfunctional acrylate-based oligomer, a thermoplastic polymer and an organic solvent to a substrate, drying the applied composition to remove the solvent, and curing it to form a coating film and thermoforming the substrate on which the coating film is formed to manufacture a plastic product.
  • the coating composition may be cured by heating or exposure to light such as UV.
  • the thermoplastic polymer is simply mixed without chemical bonding to the three-dimensional network structure formed by polymerization of the polyfunctional acrylate-based oligomer to obtain a thermally moldable coating film, which is thermoformed to meet the purpose.
  • a plastic product can be obtained in the form of
  • Tg glass transition temperature
  • Pencil hardness Based on JIS 5600-5-4, it evaluated with 1000 g load. A pencil made by Mitsubishi was used, and it was judged as defective when two or more scratches occurred by performing 5 times per pencil hardness.
  • Thermoforming evaluation The molding process was performed using heat and pressure in a mold manufactured for molding. After thermoforming, a good product/defective product was judged based on the occurrence of cracks in the coating film, and a good product was judged when a crack did not occur in the coating film. At this time, the mold used and the molding temperature may be appropriately adjusted according to the sample to be molded.
  • a polyfunctional acrylate-based oligomer (6-functional urethane acrylate oligomer, Miwon Corporation) and 5 g of a thermoplastic polymer (PMMA, MW 16,000) were mixed with 10 g of propylene glycol methyl ether to prepare 20 g of a coating composition. Then, based on 100 parts by weight of the prepared coating composition, 3 parts by weight of Irgacure 184 (BASF) as an initiator and 1 part by weight of BYK-333 (BYK) as a slipping additive were further added to prepare a final coating composition.
  • BASF Irgacure 184
  • BYK BYK-333
  • the coating composition prepared in Preparation Example 1 was applied to a PC/PMMA substrate to a thickness of 10 ⁇ m. It was applied by a slit coating method, and then, after heat treatment at 85° C. in hot air conditions for 10 minutes , UV curing was performed using a UV lamp under 1000 mJ/cm 2 conditions to prepare a coating film.
  • the physical properties of the prepared coating film were measured by the evaluation method described above. Thereafter, the thermoforming evaluation was performed by manufacturing a plastic product by thermoforming at 140° C. under 0.2 kgf pressure, and the evaluation results are shown in Table 1 below.
  • Examples 2 to 10 were prepared in the same manner as in Example 1, except that the coating composition prepared in Preparation Examples 2 to 10 was used, and the manufactured plastic product was measured for physical properties in the same manner as in Example 1, The results are shown in Table 1 below. However, in the case of thermoforming evaluation, it was appropriately adjusted according to the samples of each Example at a temperature of 160° C. or less and a pressure of 1 kgf or less.
  • Example 2 Except for using the coating composition prepared in Comparative Preparation Examples 1 to 3, it was prepared in the same manner as in Example 1, and the results of measuring the physical properties of the prepared cured coating film and plastic product are shown in Table 1 below. However, in the case of thermoforming evaluation, it was appropriately adjusted according to the samples of each Example at a temperature of 160° C. or less and a pressure of 1 kgf or less.
  • Examples 1 to 10 have excellent friction resistance evaluation results, and have a glass transition temperature (Tg) of 110 to 160 ° C. can As in Comparative Examples 1 to 3, when the mixing ratio of the polyfunctional acrylate-based oligomer and the thermoplastic polymer is out of the range of the present invention, the coating film forms a hard three-dimensional network structure, and the hardness and scratch resistance properties are excellent, but Tg It can be seen that thermoforming is impossible due to lack of flexibility without showing a value (Comparative Examples 1 and 3), or there is a problem that adhesion and hardness are lowered, and thermoforming is impossible due to lowering of adhesion (Comparative Example 2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 다관능 아크릴레이트계 올리고머, 열가소성 폴리머 및 유기용매를 포함하는 경화 후 열 성형이 가능한 코팅 조성물에 관한 것으로, 본 발명의 코팅 조성물에 따르면 경도, 내구성 및 내스크래치성이 우수하면서, 열 성형이 가능한 코팅 도막을 제공할 수 있고, 건축, 전자제품, 자동차등 다양한 산업전반 제품에서 유리 대신 적용할 수 있는 플라스틱 제품을 제공할 수 있다.

Description

경화 후 열 성형이 가능한 코팅 조성물 및 이를 이용한 플라스틱 제품
본 발명은 경화 후 열 성형이 가능한 코팅 조성물 및 이를 이용한 플라스틱 제품에 관한 것으로서, 더욱 상세하게는 건축, 전자제품, 자동차 등 다양한 산업 전반에서 유리 대신 사용할 수 있는 플라스틱 제품을 제조하기 위한 코팅 조성물에 관한 것이다.
최근 건축, 전자제품, 자동차 등의 다양한 산업전반 제품에 디자인의 자유도를 높이기 위한 노력들이 행해지고 있다. 이는, 다양한 제품을 사용하는 고객들의 편의성을 향상시키고, 나아가 동일 성능의 제품을 더욱 고부가가치의 제품으로 발전시키는 하나의 방법이기도 하다.
이와 같은 요구에 따라, 기존에 유리를 사용하여 단단한(rigid) 외관을 선호하던 제품들이, 현재는 유연하고 성형 가능한 외관을 위해, 유리를 플라스틱으로 교체하고, 플라스틱에 열 성형 공법을 적용시켜 제품을 제조하고 있다.
그러나, 플라스틱의 표면 경도 및 스크래치 특성은 기존 재료인 유리에 비해 매우 낮은 수준이기 때문에, 별도의 기술을 접목시켜 그 단점을 해결하고 있다. 상기 별도의 기술 중 가장 흔하게 행해지는 방법은 코팅 방법이며, 코팅 소재를 플라스틱 외관에 코팅함으로써, 표면 경도 및 스크래치 특성을 향상시킬 수 있다.
다만, 플라스틱 표면에 경도 및 스크래치 향상을 목적으로 도입된 대부분의 코팅재들은, 경화 후, 그 구조가 3차원 망상 구조로 변경되어, 플라스틱의 장점인 열에 대한 자유로운 성형 특성을 잃어버리게 만드는 문제점이 있다.
따라서, 본 발명의 목적은, 경화 후에도 열에 대한 플라스틱의 성형 특성을 유지할 수 있는 코팅 조성물, 이를 이용한 열 성형이 가능한 코팅 도막 및 플라스틱 제품을 제공하는 것이다.
본 발명의 다른 목적은 경도, 내구성 및 스크래치 특성이 우수한 플라스틱 제품을 얻을 수 있는 코팅 조성물 및 이를 이용한 플라스틱 제품을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 다관능 아크릴레이트계 올리고머, 열가소성 폴리머 및 유기용매를 포함하는 경화 후 열 성형이 가능한 코팅 조성물을 제공한다.
또한 본 발명은, 상기 코팅 조성물을 경화시켜 형성된, 열 성형이 가능한 코팅 도막을 제공한다.
또한 본 발명은, 기재 및 상기 기재 상에 형성되고, 다관능 아크릴레이트계 올리고머가 중합되어 형성된 3차원 망상 구조 및 열가소성 폴리머를 포함하는 코팅 도막을 포함하는 플라스틱 제품을 제공한다.
본 발명에 따른 코팅 조성물은 열가소성 폴리머를 포함하여 열에 대한 플라스틱의 성형 특성을 유지함으로써 경화 후에도 열 성형이 가능하고, 다관능 아크릴레이트계 올리고머를 포함하여 경도, 내구성 및 스크래치 특성이 우수한 플라스틱 제품을 제공할 수 있다.
도 1은 본 발명에 따른 코팅 조성물을 사용하여 제조한 실제 플라스틱 제품을 도시한 것이다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 발명에 따른 코팅 조성물은 다관능 아크릴레이트계 올리고머, 열가소성 폴리머 및 유기용매를 포함한다.
본 발명의 다관능 아크릴레이트계 올리고머는 경화 후 3차원 망상구조를 형성하여, 코팅 도막의 경도, 내구성 및 내스크래치성을 향상시키는 역할을 한다. 상기 아크릴레이트계 올리고머에서 아크릴레이트계는 아크릴레이트와 메타아크릴레이트를 모두 포함하는 용어를 의미한다.
상기 다관능 아크릴레이트계 올리고머는 광 또는 열을 이용하여 경화가 가능한 다관능 아크릴레이트계 올리고머일 경우 제한 없이 사용할 수 있으나, 구체적으로, 다관능 우레탄 아크릴레이트계 올리고머, 다관능 실리콘 아크릴레이트계 올리고머, 다관능 에폭시 아크릴레이트계 올리고머, 다관능 폴리에스테르 아크릴레이트계 올리고머 및 다관능 멜라민 아크릴레이트계 올리고머로부터 이루어진 군에서 선택되는 1종 이상일 수 있다. 특히, 다관능 우레탄 아크릴레이트계 올리고머를 사용하는 것이 코팅 도막의 경도, 밀착성 및 유연성을 확보할 수 있다는 점에서 적절하다.
상기 다관능 아크릴레이트계 올리고머는 중합성 관능기를 2 내지 30개 가질 수 있으며, 고체, 액체 등의 상태에 상관없이 사용할 수 있다.
상기 다관능 아크릴레이트계 올리고머의 중량평균 분자량(Mw)은 500 내지 30,000, 구체적으로는 1,000 내지 20,000이며, 중량평균 분자량이 500 미만인 경우 경화속도가 느려 물성이 저하될 수 있고, 중량평균 분자량이 30,000 초과인 경우 상용성이 떨어져 개시제, 첨가제 등의 사용이 제한될 수 있다.
상기 다관능 아크릴레이트계 올리고머의 함량은 전체 코팅 조성물 100 중량%에 대하여, 0.1 내지 90 중량%, 구체적으로는 10 내지 80 중량%이다. 상기 다관능 아크릴레이트계 올리고머의 함량이 0.1 중량% 미만인 경우, 경화 후 원활한 망상구조를 형성하지 못하여 코팅 후 물성이 저하되는 문제가 있으며, 90 중량% 초과인 경우, 점도 조절이 용이하지 못하여 코팅 두께를 조절하기 어렵고, 균일도가 떨어지는 문제가 있다.
본 발명의 열가소성 폴리머는 열가소성 효과를 부여하는 역할을 하며, 경화 후 상기 다관능 아크릴레이트계 올리고머로부터 형성된 3차원 망상구조와 대부분 비화학적으로 혼합되어 코팅 도막에 성형성을 부여한다.
상기 비화학적 혼합이란, 화학적인 반응이 최소화되어 단순 혼합되어 있는 상태를 의미한다. 상기 열가소성 폴리머는 이미 중합이 완료된 상태로 경화 가능한 작용기 또는 반응 잔기를 실질적으로 포함하지 않아, 코팅 조성물의 경화 반응에는 참여하지 않고, 경화 후에 상기 다관능 아크릴레이트계 올리고머로부터 형성된 3차원 망상구조에 단순 혼합(blending)되어 존재하게 된다. 즉, 상기 열가소성 폴리머는 경화에 의해 변형되지 않아 경화 전과, 경화 후가 동일한 물질인 것으로 볼 수 있으며, 설령 일부 변형이 있을 수 있다고 가정하더라도, 코팅 도막의 성형성에는 영향을 미치지 않는 정도의 미미한 수준일 수 있다.
상기 경화 가능한 작용기 또는 반응 잔기를 실질적으로 포함하지 않는다는 것은, 경화 가능한 작용기 또는 반응 잔기를 포함하지 않거나, 중합반응의 특성상 중합 완료 후 남아있을 수 있는 일부 말단 작용기만을 포함하는 것을 의미한다. 상기 열가소성 폴리머는 경화 가능한 작용기 또는 반응 잔기를 포함하지 않거나 말단에만 포함하고 있어, 경화 후에도 상기 열가소성 폴리머는 화학적으로 결합하지 않고 혼합되어 존재할 수 있다. 여기서, 화학적으로 결합하지 않는다는 것은 상기 열가소성 폴리머의 전부 또는, 말단 작용기로부터 유도된 일부 결합을 제외한 90% 이상이 화학적으로 결합하지 않는 것을 의미한다.
결론적으로, 경화 후 상기 다관능 아크릴레이트계 올리고머가 중합되어 형성된 3차원 망상구조에, 상기 열가소성 폴리머가 화학적으로 결합하지 않고 혼합되어 있기 때문에, 코팅 도막의 유연성을 높일 수 있고, 열 성형에 유리한 특성을 가지게 된다. 상기 코팅 조성물을 경화하여 형성된 코팅 도막이 열 성형 가능하다는 것은, 상기 열가소성 폴리머가 경화 가능한 작용기 또는 반응 잔기를 실질적으로 포함하지 않는다는 것을 의미하며, 상기 열가소성 폴리머는 경화 전과, 경화 후가 동일한 물질인 것으로 볼 수 있다.
상기 열가소성 폴리머의 종류는 특별히 제한되지는 않으나, 구체적으로, 폴리메틸메타크릴레이트(PMMA), 폴리스티렌(Polystyrene), 폴리에틸렌(Polyethylene), 폴리카보네이트(polycarbonate) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 사용할 수 있다.
상기 열가소성 폴리머의 함량은 전체 코팅 조성물 100 중량%에 대하여, 0.1 내지 90 중량%, 구체적으로는 10 내지 70 중량%이다. 상기 열가소성 폴리머의 함량이 0.1 중량% 미만일 경우, 코팅 조성물 내에 충분히 분포되지 못하여 열가소성 특성을 부여하지 못하고, 90 중량% 초과인 경우, 경화 후 3차원 망상구조가 제대로 형성되지 못하므로 정상적인 코팅 도막을 형성하는 데 문제가 있다.
상기 열가소성 폴리머의 중량평균 분자량(Mw)은 500 내지 1,000,000, 구체적으로는 10,000 내지 50,000인 저분자량을 사용하는 것이 우수한 성형 특성을 달성함에 유리하다. 상기 중량평균 분자량(Mw)이 500 미만인 경우, 말단 반응기의 수가 증가하여 상기 3차원 망상구조와의 화합결합이 증가할 수 있고, 경화 후 취성이 높아지는 문제가 있으며, 1,000,000 초과인 경우, 스크래치 특성이 저하되는 문제점이 있다. 즉, 적절한 저분자량 범위의 열가소성 폴리머를 사용하면, 스크래치성 및 성형성이 우수하다.
상기 다관능 아크릴레이트계 올리고머와 열가소성 폴리머는 1:9 내지 9:1, 구체적으로는 7:3 내지 3:7의 중량비로 혼합된다. 상기 범위에서 경화 후 코팅 도막이 열 성형 특성을 가짐과 동시에 내스크래치 특성이 우수하다. 상기 범위를 벗어나는 경우 경화 후 코팅 도막의 유연성이 부족하여 성형이 되지 않거나, 부착력, 경도 등의 물성이 저하되어 적절하지 않다.
본 발명의 유기용매는 용해성이 있고, 반응에 영향을 미치지 않는 유기용매라면 특별히 제한되지 않고 사용할 수 있으며, 구체적으로, 에틸락테이트, 노말부틸락테이트 등의 락테이트계; 아세톤, 메틸(아이소부틸)에틸케톤 등의 케톤계; 에틸렌글리콜 등의 글리콜계; 프로필렌 글리콜 메틸 에테르 등의 글리콜 에테르계; 테트라하이드로퓨란 등의 퓨란계; 디메틸포름아미드; 디메틸아세트아미드; N-메틸-2-피롤리돈; 등의 극성용매 또는 헥산, 사이클로헥산, 사이클로헥사논, 톨루엔, 자일렌, 크레졸, 클로로포름, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크로니트릴, 메틸렌클로라이드, 옥타데실아민, 아닐린, 디메틸설폭사이드 등을 사용할 수 있다.
상기 유기용매의 함량은 전체 코팅 조성물 100 중량%에 대하여, 0.1 내지 95 중량%, 구체적으로는 20 내지 90 중량%이다. 상기 유기용매의 함량이 0.1 중량% 미만인 경우, 코팅 조성물의 점도가 높아져 균일한 도막을 얻기 어려운 문제가 있고, 90 중량%를 초과하는 경우, 코팅 두께 조절이 어렵고 경화 후 코팅 도막의 물성이 저하되는 문제가 있다.
본 발명의 코팅 조성물은 필요에 따라, 개시제 및 첨가제를 더욱 포함할 수 있다. 상기 개시제는 광 조사 또는 열에 의해 프리 라디칼을 발생시켜 프리 라디칼의 이동을 통해 중합을 유도하는 것으로서, 구체적으로, 클로로아세토페논, 디에톡시아세토페논, 1-페닐-2-히드록시-2-메틸프로판-1-온, 1-히드록시사이클로헥실페닐케톤, 2-메틸-1-(4-메틸티오페닐)-2-모르폴리노프로판-1-온, 2,4,6-트리메틸 벤조일 디페닐포스핀옥사이드, 캠퍼 퀴논, 2,2'-아조비스(2-메틸부티로니트릴), 디메틸-2,2'-아조비스(2-메틸 부틸레이트), 3,3-디메틸-4-메톡시-벤조페논, p-메톡시벤조페논, 2,2-디에톡시 아세토페논, 2,2-디메톡시-1,2-디페닐 에탄-1-온, t-부틸파옥시 말레인산, t-부틸하이드로퍼옥사이드, 2,4-디클로로벤조일퍼옥사이드, 1,1-디(t-부틸퍼옥시)-3,3,5-트리메틸시클로헥산, N-부틸-4,4'-디(t-부틸퍼옥시)발레레이트 및 이들의 혼합물 등을 사용할 수 있다. 상기 개시제는 전체 코팅 조성물 100 중량부 기준, 0.01 내지 10 중량부, 구체적으로는 0.5 내지 7 중량부 더 포함될 수 있다.
상기 첨가제는 코팅 조성물에 일반적으로 사용되는 첨가제를 포함할 수 있으며, 예를 들면, 현재 시판되고 있는 상품으로 BYK사의 BYK-307, BYJ-320, BYK-331, BYK-333, BYK-378, BYK-3500, BYK-350, BYK-361N, BYK-388, BYK-399, BYK-055, BYK-063, BYK-071, BYK-085, BYK-390, BYK-014, BYK-020; EVONIK사의 TEGO Glide 410, TEGO Glide 411, TEGO Glide 415, TEGO Glide 420, TEGO Glide432, TEGO Glide 440, TEGO Glide 450, TEGO RAD2100, TEGO RAD2200N, TEGO RAD 2300; 3M사의 FC-4430, FC-4432, FC-4434 등을 사용할 수 있다. 상기 첨가제는 전체 코팅 조성물 100 중량부 기준, 0.01 내지 10 중량부, 구체적으로는 0.1 내지 5 중량부 더 포함될 수 있다.
다른 구현예에 따르면, 본 발명은 열 성형이 가능한 코팅 도막을 제공한다. 상기 열 성형이 가능한 코팅 도막은, 본 발명의 코팅 조성물을 경화시켜 형성될 수 있으며, 구체적으로, 상기 다관능 아크릴레이트계 올리고머가 중합되어 3차원 망상구조를 형성하고, 상기 3차원 망상구조에 열가소성 폴리머가 화학적으로 결합되지 않고 혼합되어 있는 형태로서 존재한다.
상기 열가소성 폴리머는 경화 가능한 작용기 또는 반응 잔기를 실질적으로 포함하지 않아, 즉, 경화 가능한 작용기 또는 반응 잔기를 포함하지 않거나 말단에만 포함하고 있어, 상기 열가소성 폴리머가 화학적으로 결합되지 않고, 3차원 망상구조에 혼합(blending)된 형태로 존재할 수 있으며, 이와 같은 구조로 인해, 열 성형이 가능한 코팅 도막을 얻을 수 있다. 여기서, 화학적으로 결합하지 않는다는 것은 상기 열가소성 폴리머의 전부 또는, 말단 작용기로부터 유도된 일부 결합을 제외한 90% 이상이 화학적으로 결합하지 않는 것을 의미한다.
즉, 상기 열가소성 폴리머는 경화에 의해 변형되지 않아 경화 전과, 경화 후가 동일한 물질인 것으로 볼 수 있으며, 설령 일부 변형이 있을 수 있다고 가정하더라도, 코팅 도막의 성형성에는 영향을 미치지 않는 정도의 미미한 수준일 수 있다. 따라서, 상기 열가소성 폴리머를 포함하는 코팅 조성물을 경화하여 형성된 코팅 도막은 열 성형이 가능하며, 상기 열성형이 가능한 코팅 도막을 포함하는 플라스틱 제품을 얻을 수 있다.
상기 다관능 아크릴레이트계 올리고머가 중합되어 형성된 3차원 망상구조에 열가소성 폴리머가 단순히 혼합되어 존재하는 상태이므로, 경화 후에도, 열가소성 폴리머의 열적 거동에 의해, 종래의 3차원 망상구조를 가진 코팅 도막에서는 보이기 어려운 유리전이온도(Tg)를 나타낼 수 있다. 상기 코팅 도막의 유리전이온도(Tg)는 80 내지 170℃, 구체적으로는 110 내지 160℃이며, 상기 유리전이온도(Tg)의 범위에서 열 성형성이 우수하며, 상기 범위를 벗어나는 경우, 코팅 도막이 형성되는 기재의 성형 온도 한계로 인해 활용성에 제한이 생길 수 있다.
상기 코팅 도막은 경화 후 두께가 1 내지 100 ㎛, 구체적으로는 3 내지 50 ㎛, 더욱 구체적으로는 10 ㎛일 수 있다. 상기 코팅 도막의 두께가 1 ㎛ 미만이면, 형성된 코팅 도막이 원하는 물성을 구현하지 못하며, 100 ㎛를 초과하면, 성형 시 크랙 등의 문제가 발생할 수 있다.
또 다른 구현예에 따르면, 본 발명은 열 성형이 가능한 코팅 도막을 포함하는 플라스틱 제품을 제공한다. 상기 플라스틱 제품은, 구체적으로, 기재; 및 상기 기재 상에 형성되고, 다관능 아크릴레이트계 올리고머가 중합되어 형성된 3차원 망상 구조 및 열가소성 폴리머를 포함하는 코팅 도막을 포함한다.
상기 기재는 공지된 기재라면 제한 없이 사용할 수 있으나, 구체적으로, 폴리카보네이트(PC, Polycarbonate), 폴리메틸메타아크릴레이트(PMMA, Polymethylmethacrylate), 폴리에틸렌테레프탈레이트(PET, Polyethylene terephthalate), 폴리이미드(PI, polyimide) 및 이들의 혼합물 등을 포함하는 기재를 사용할 수 있다. 상기 기재는 예를 들면, 단일 기재 또는 복합 기재 등을 포함할 수 있다.
상기 열가소성 폴리머는 이미 중합이 완료된 상태로 경화 가능한 작용기 또는 반응 잔기를 실질적으로 포함하지 않아, 코팅 도막의 제조를 위한 코팅 조성물의 경화 반응에는 참여하지 않고, 경화 후에 상기 다관능 아크릴레이트계 올리고머로부터 형성된 3차원 망상구조에 단순 혼합(blending)되어 존재하게 된다. 즉, 상기 열가소성 폴리머는 경화에 의해 변형되지 않아 경화 전과, 경화 후가 동일한 물질인 것으로 볼 수 있으며, 설령 일부 변형이 있을 수 있다고 가정하더라도, 코팅 도막의 성형성에는 영향을 미치지 않는 정도의 미미한 수준일 수 있다.
상기 경화 가능한 작용기 또는 반응 잔기를 실질적으로 포함하지 않는다는 것은, 경화 가능한 작용기 또는 반응 잔기를 포함하지 않거나, 중합반응의 특성상 중합 완료 후 남아있을 수 있는 일부 말단 작용기만을 포함하는 것을 의미한다. 상기 열가소성 폴리머는 경화 가능한 작용기 또는 반응 잔기를 포함하지 않거나 말단에만 포함하고 있어, 경화 후에도 상기 열가소성 폴리머는 화학적으로 결합하지 않고 혼합되어 존재할 수 있다. 여기서, 화학적으로 결합하지 않는다는 것은 상기 열가소성 폴리머의 전부 또는, 말단 작용기로부터 유도된 일부 결합을 제외한 90% 이상이 화학적으로 결합하지 않는 것을 의미한다.
뿐만 아니라, 경화 후 상기 다관능 아크릴레이트계 올리고머가 중합되어 형성된 3차원 망상구조에, 상기 열가소성 폴리머가 화학적으로 결합하지 않고 혼합되어 있을 수 있기 때문에, 코팅 도막의 유연성을 높일 수 있고, 열 성형에 유리한 특성을 가지게 된다. 상기 코팅 조성물을 경화하여 형성된 코팅 도막이 열 성형 가능하다는 것은, 상기 열가소성 폴리머가 경화 가능한 작용기 또는 반응 잔기를 실질적으로 포함하지 않는다는 것을 의미하며, 상기 열가소성 폴리머는 경화 전과, 경화 후가 동일한 물질인 것으로 볼 수 있다.
상기 코팅 도막의 유리전이온도(Tg)는 80 내지 170℃ 구체적으로는 110 내지 160℃이며, 상기 유리전이온도(Tg)의 범위에서 열 성형성이 우수하며, 상기 범위를 벗어나는 경우, 코팅 도막이 형성되는 기재의 성형 온도 한계로 인해 활용성에 제한이 생길 수 있다.
상기 플라스틱 제품은, 코팅 도막이 3차원 망상구조를 포함하여 표면 경도 및 내스크래치성이 충분히 확보됨과 동시에, 상기 3차원 망상구조에 화학적으로 결합하지 않고 혼합되어 있는 열가소성 폴리머의 특성으로 인해, 열에 의한 플라스틱의 성형 특성을 유지할 수 있어, 자유로운 성형이 가능하고, 더 나아가 재성형도 가능하다.
또한, 일반적인 플라스틱 제품보다 굴곡강도가 우수하여, 플라스틱 제품에 곡선을 줄 수 있고, 경화된 후 코팅 표면의 단단한(hard) 특성으로 인해, 고경도, 고내구성 및 고스크래치 특성을 가질 수 있다.
따라서, 본 발명의 플라스틱 제품은 표면이 유리와 같이 단단한(rigid) 동시에, 자유로운 성형특성을 그대로 유지할 수 있으므로, 핸드폰 전면 또는 후면의 유리대체용 커버 및 보호커버, 자동차 내장재, 가구 및 가전제품의 전면 또는 후면 보호필름, 보호 고들 등에 적용시킬 수 있으며, 디자인의 자유도를 높이기 위해 유리를 대체하고자 하는 여러 응용분야에 활용될 수 있다.
본 발명은 열 성형이 가능한 코팅 도막을 포함하는 플라스틱 제품을 제조하는 방법을 더욱 포함할 수 있다. 상기 플라스틱 제품의 제조 방법은 기재에 다관능 아크릴레이트계 올리고머, 열가소성 폴리머 및 유기용매를 포함하는 코팅 조성물을 도포하는 단계, 상기 도포된 조성물을 건조시켜 용매를 제거하고, 경화시켜 코팅 도막을 형성하는 단계 및 상기 코팅 도막이 형성된 기재를 열 성형하여 플라스틱 제품을 제조하는 단계를 포함한다.
상기 코팅 조성물은 가열하거나, UV 등과 같은 광에 노출시킴으로써 경화시킬 수 있다. 상기 코팅 조성물이 경화되면, 다관능 아크릴레이트계 올리고머가 중합되어 형성된 3차원 망상구조에 열가소성 폴리머가 화학적으로 결합하지 않고 단순 혼합됨으로써 열 성형이 가능한 코팅 도막이 얻어지며, 이를 열 성형하여 목적에 부합하는 형태의 플라스틱 제품을 얻을 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하나, 본 발명이 하기 실시예에 의하여 한정되는 것은 아니다.
[평가 방법]
- 유리전이온도(Tg) 측정: DSC(Differential Scanning Calorimeter)를 이용하여 측정하였다. DSC 측정용 팬에 시료를 6mg 투입 후 DSC에 로딩하여 25℃에서 250℃까지 분당 10℃의 속도로 승온하여 열분석 그래프를 얻었다. 이 그래프의 기울기 변화를 관찰하여 Tg를 측정하였다.
- 연필 경도: JIS 5600-5-4에 의거하여 1000g 하중으로 평가하였다. 연필은 미쯔비시 제품을 사용하고, 한 연필 경도당 5회 실시하여 2개 이상 스크래치가 발생하면 불량으로 판정하였다.
- 접착력 평가: JIS K5600-5-6에 의거하여 1mm 간격으로, 컷터날로 긁어서 격자무늬로 100개의 흠집을 내고, 점착테이프를 그 위에 붙였다가 90° 방향으로 떼어내어 코팅 도막 표면이 점착테이프에 붙어서 떨어지는지를 육안으로 확인하였다. 표기는 100개 중 떨어지지 않은 개수로 표기하였다(예: 떨어지지 않은 개수/100으로 표기, 100개가 떨어지지 않으면 100/100으로 표기함).
- 내마찰 평가: JIS 5600-5-4에 의거하여 1,000g 하중으로 평가하였다. 스틸울을 사용하여 스크래치가 발생하는 횟수를 확인하였다.
- 내지문 평가: 접촉각 측정기를 사용하여 코팅 전, 후 증류수의 접촉각을 측정하였다. 접촉각 측정기는 KRUSS社의 DSA100 장비를 사용하였고, 코팅면 위에 초순수 증류수(Deionized Water)를 3ml 떨어뜨린 후 형성된 물방울의 좌, 우 내측 각도를 각각 측정하여 평균값으로 계산하였다.
- 열 성형 평가: 성형용으로 제작된 금형에서 열과 압력을 이용하여 성형공정을 진행하였다. 열 성형 후 코팅 도막의 크랙 발생 여부로 양품/불량 판단을 하였으며, 코팅 도막의 크랙이 발생하지 않을 때를 양품으로 판정하였다. 이 때 사용되는 금형 및 성형 온도는 성형될 시료에 따라 적절히 조절될 수 있다.
[제조예 1] 코팅 조성물 제조
다관능 아크릴레이트계 올리고머(6관능기 우레탄아크릴레이트 올리고머, 미원상사) 5g과 열가소성 폴리머(PMMA, MW 16,000) 5g을 프로필렌 글리콜 메틸 에테르 10g에 혼합하여, 코팅 조성물 20g을 제조하였다. 이 후 제조된 코팅 조성물 100 중량부 기준, 개시제로 Irgacure 184(BASF사) 3 중량부, 슬립성 첨가제로 BYK-333(BYK사) 1 중량부를 더 첨가하여 최종적인 코팅 조성물을 제조하였다.
[제조예 2] 코팅 조성물 제조
다관능 아크릴레이트계 올리고머(6관능기 우레탄아크릴레이트 올리고머, 미원상사) 6g과 열가소성 폴리머(PMMA) 4g을 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 제조하였다.
[제조예 3] 코팅 조성물 제조
다관능 아크릴레이트계 올리고머(6관능기 우레탄아크릴레이트 올리고머, 미원상사) 7g과 열가소성 폴리머(PMMA) 3g을 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 제조하였다.
[제조예 4] 코팅 조성물 제조
다관능 아크릴레이트계 올리고머(6관능기 우레탄아크릴레이트 올리고머, 미원상사) 8g과 열가소성 폴리머(PMMA) 2g을 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 제조하였다.
[제조예 5] 코팅 조성물 제조
다관능 아크릴레이트계 올리고머(6관능기 우레탄아크릴레이트 올리고머, 미원상사) 9g과 열가소성 폴리머(PMMA) 1g을 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 제조하였다.
[제조예 6] 코팅 조성물 제조
다관능 아크릴레이트계 올리고머(6관능기 우레탄아크릴레이트 올리고머, 미원상사) 4g과 열가소성 폴리머(PMMA) 6g을 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 제조하였다.
[제조예 7] 코팅 조성물 제조
다관능 아크릴레이트계 올리고머(6관능기 우레탄아크릴레이트 올리고머, 미원상사) 3g과 열가소성 폴리머(PMMA) 7g을 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 제조하였다.
[제조예 8] 코팅 조성물 제조
다관능 아크릴레이트계 올리고머(6관능기 우레탄 아크릴레이트 올리고머, 미원상사) 2g과 열가소성 폴리머(PMMA) 8g을 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 제조하였다
[제조예 9] 코팅 조성물 제조
다관능 아크릴레이트계 올리고머(6관능기 우레탄 아크릴레이트 올리고머, 미원상사) 1g과 열가소성 폴리머(PMMA) 9g을 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 제조하였다
[제조예 10] 코팅 조성물 제조
다관능 아크릴레이트계 올리고머(6관능기 실리콘 아크릴레이트 올리고머, KELLON) 5g과 열가소성 폴리머(PMMA) 5g을 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 제조하였다
[비교 제조예 1] 코팅 조성물 제조
다관능 아크릴레이트계 올리고머(6관능기 우레탄아크릴레이트 올리고머, 미원상사) 9.5g과 열 가소성 폴리머(PMMA) 0.5g 사용한 것을 제외하고는, 상기 제조예 1과 동일하게 제조하였다.
[비교 제조예 2] 코팅 조성물 제조
다관능 아크릴레이트계 올리고머(6관능기 우레탄아크릴레이트 올리고머, 미원상사) 0.5g과 열 가소성 폴리머(PMMA) 9.5g 사용한 것을 제외하고는, 상기 제조예 1과 동일하게 제조하였다
[비교 제조예 3] 코팅 조성물 제조
다관능 아크릴레이트계 올리고머(6관능기 우레탄아크릴레이트 올리고머, 미원상사) 10g을 사용하고, 열가소성 폴리머를 사용하지 않는 것을 제외하고는, 상기 제조예 1과 동일하게 제조하였다.
[실시예 1] 플라스틱 제품 제조
제조예 1에서 제조된 코팅 조성물을 PC/PMMA 기재에 10㎛ 두께로 도포하였다. 슬릿 코팅(Slit coating) 방법으로 도포하였고, 이 후 85℃열풍조건에서 10분간 열처리 후, UV 램프를 이용하여 1000mJ/cm 2 조건에서 UV 경화를 진행하여 코팅 도막을 제조하였다. 제조된 코팅 도막의 물성은 상기 기재된 평가 방법에 의해 측정하였다. 이 후, 140℃ 0.2kgf 압력 조건에서 열 성형하여 플라스틱 제품을 제조함으로써 상기 열 성형 평가를 진행하였으며, 평가 결과는 하기 표 1에 나타내었다.
[실시예 2 내지 10] 플라스틱 제품 제조
제조예 2 내지 10에서 제조한 코팅 조성물을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 실시예 2 내지 10을 제조하였으며, 제조된 플라스틱 제품은 실시예 1과 동일한 방법으로 물성을 측정하였고, 그 결과를 하기 표 1에 나타내었다. 다만, 열 성형 평가의 경우 160℃이하의 온도와 1 kgf 이하의 압력 조건에서 각 실시예의 시료에 따라 적절히 조절하였다.
[비교예 1 내지 3] 플라스틱 제품 제조
상기 비교 제조예 1 내지 3에서 제조된 코팅 조성물을 사용한 것을 제외하고는, 실시예 1과 동일하게 제조하였으며, 제조된 경화 도막 및 플라스틱 제품의 물성을 측정한 결과를 하기 표 1에 나타내었다. 다만, 열 성형 평가의 경우 160℃이하의 온도와 1 kgf 이하의 압력 조건에서 각 실시예의 시료에 따라 적절히 조절하였다.
올리고머
(g)
폴리머
(g)
접착력
(떨어지지 않은 개수/전체)
경도 내마찰
(횟수)
접촉각(°) 열 성형
(양품수/전체)
Tg
(℃)
실시예1 5 5 100/100 3H 500 110 5/5 137
실시예2 6 4 100/100 3H 700 110 5/5 140
실시예3 7 3 100/100 3H 800 110 4/5 146
실시예4 8 2 100/100 3H 800 110 3/5 152
실시예5 9 1 100/100 3H 900 110 3/5 156
실시예6 4 6 100/100 3H 400 110 4/5 135
실시예7 3 7 100/100 3H 200 110 4/5 134
실시예8 2 8 100/100 2H 100 110 5/5 131
실시예9 1 9 100/100 2H 50 110 5/5 130
실시예10 5 5 100/100 2H 500 110 4/5 141
비교예1 9.5 0.5 100/100 3H 1000 110 1/5 보이지않음
비교예2 0.5 9.5 50/100 HB 0 110 평가불가 130
비교예3 10 0 100/100 3H 1000 110 0/5 보이지않음
상기 표 1을 참고하면, 실시예 1 내지 10은 내마찰 평가 결과가 우수하며, 유리전이온도(Tg)가 110 내지 160℃의 값을 가지므로, 내마찰 특성을 보이는 동시에 열 성형성도 우수한 것을 알 수 있다. 비교예 1 내지 3과 같이, 다관능 아크릴레이트계 올리고머와 열가소성 폴리머의 혼합비가 본 발명의 범위를 벗어나는 경우, 코팅 도막이 단단한 3차원 망상구조를 형성하게 되어, 경도 및 내스크래치 특성은 우수하나, Tg 값을 보이지 않고 유연성이 부족하여 열 성형이 불가능하거나(비교예 1,3), 부착력 및 경도가 저하되는 문제점이 있고, 부착력 저하로 인해 열 성형이 불가능함을 알 수 있다(비교예 2).

Claims (15)

  1. 다관능 아크릴레이트계 올리고머;
    열가소성 폴리머; 및
    유기용매를 포함하는 경화 후 열 성형이 가능한 코팅 조성물.
  2. 제1항에 있어서, 상기 다관능 아크릴레이트계 올리고머는 다관능 우레탄 아크릴레이트계 올리고머, 다관능 실리콘 아크릴레이트계 올리고머, 다관능 에폭시 아크릴레이트계 올리고머, 다관능 폴리에스테르 아크릴레이트계 올리고머 및 다관능 멜라민 아크릴레이트계 올리고머로 이루어진 군으로부터 선택되는 1종 이상인 것인, 코팅 조성물.
  3. 제1항에 있어서, 상기 열가소성 폴리머는 폴리메틸메타크릴레이트, 폴리스티렌, 폴리에틸렌, 폴리카보네이트 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것인, 코팅 조성물.
  4. 제1항에 있어서, 상기 열가소성 폴리머는 경화 가능한 작용기 또는 반응 잔기를 실질적으로 포함하지 않는 것인, 코팅 조성물.
  5. 제1항에 있어서, 상기 다관능 아크릴레이트계 올리고머의 함량은 전체 코팅 조성물 100 중량%에 대하여, 0.1 내지 90 중량%, 열가소성 폴리머의 함량은 전체 코팅 조성물 100 중량%에 대하여, 0.1 내지 90 중량%, 유기용매의 함량은 전체 코팅 조성물 100 중량%에 대하여, 0.1 내지 95 중량%인 것인, 코팅 조성물.
  6. 제1항에 있어서, 상기 다관능 아크릴레이트계 올리고머와 열가소성 폴리머는 1:9 내지 9:1의 중량비로 혼합되는 것인, 코팅 조성물.
  7. 제1항에 있어서, 상기 코팅 조성물은 전체 코팅 조성물 100 중량부 기준, 0.01 내지 10 중량부의 개시제를 더욱 포함하는 것인, 코팅 조성물.
  8. 제1항 내지 제7항 중 어느 한 항에 따른 코팅 조성물을 경화시켜 형성된, 열 성형이 가능한 코팅 도막.
  9. 제8항에 있어서, 상기 코팅 도막의 유리전이온도는 80 내지 170℃인 것인, 코팅 도막.
  10. 제8항에 있어서, 상기 코팅 도막은 다관능 아크릴레이트계 올리고머가 중합되어 형성된 3차원 망상구조에, 상기 열가소성 폴리머가 화학적으로 결합하지 않고 혼합되어 있는 것인, 코팅 도막.
  11. 기재; 및
    상기 기재 상에 형성되고, 다관능 아크릴레이트계 올리고머가 중합되어 형성된 3차원 망상 구조 및 열가소성 폴리머를 포함하는 코팅 도막; 을 포함하는 플라스틱 제품.
  12. 제11항에 있어서, 상기 열가소성 폴리머는 경화 가능한 작용기 또는 반응 잔기를 실질적으로 포함하지 않는 것인, 플라스틱 제품.
  13. 제11항에 있어서, 상기 다관능 아크릴레이트계 올리고머가 중합되어 형성된 3차원 망상구조에, 상기 열가소성 폴리머가 화학적으로 결합하지 않고 혼합되어 있는 것인, 플라스틱 제품.
  14. 제11항에 있어서, 상기 기재는 폴리카보네이트, 폴리메틸메타아크릴레이트, 폴리에틸렌테레프탈레이트, 폴리이미드 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것인, 플라스틱 제품.
  15. 제11항에 있어서, 상기 코팅 도막의 유리전이온도는 80 내지 170℃인 것인, 플라스틱 제품.
PCT/KR2020/018198 2019-12-13 2020-12-11 경화 후 열 성형이 가능한 코팅 조성물 및 이를 이용한 플라스틱 제품 WO2021118308A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080086055.2A CN114787294B (zh) 2019-12-13 2020-12-11 可实现固化后热成型的涂层组合物以及使用所述涂层组合物的塑料产品
US17/837,177 US20220298360A1 (en) 2019-12-13 2022-06-10 Coating composition capable of being cured and then thermoformed, and plastic product using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190166999A KR20210075659A (ko) 2019-12-13 2019-12-13 경화 후 열 성형이 가능한 코팅 조성물 및 이를 이용한 플라스틱 제품
KR10-2019-0166999 2019-12-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/837,177 Continuation US20220298360A1 (en) 2019-12-13 2022-06-10 Coating composition capable of being cured and then thermoformed, and plastic product using same

Publications (1)

Publication Number Publication Date
WO2021118308A1 true WO2021118308A1 (ko) 2021-06-17

Family

ID=76330217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018198 WO2021118308A1 (ko) 2019-12-13 2020-12-11 경화 후 열 성형이 가능한 코팅 조성물 및 이를 이용한 플라스틱 제품

Country Status (5)

Country Link
US (1) US20220298360A1 (ko)
KR (1) KR20210075659A (ko)
CN (1) CN114787294B (ko)
TW (1) TW202122515A (ko)
WO (1) WO2021118308A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001519844A (ja) * 1997-04-08 2001-10-23 デー エス エム エヌ.ヴェー. 硬化後に高い伸びおよび高い強靱性を有する放射線硬化性結合剤組成物
KR20140074505A (ko) * 2012-12-10 2014-06-18 건설화학공업주식회사 고신율 자외선 경화형 코팅제 조성물
KR20160019443A (ko) * 2013-06-14 2016-02-19 코베스트로 도이칠란트 아게 눈부심방지, 마이크로구조화 및 특수 코팅된 필름
KR20170041809A (ko) * 2014-08-07 2017-04-17 사빅 글로벌 테크놀러지스 비.브이. 열성형 어플리케이션용 도전성 다층 시트
JP2017218591A (ja) * 2011-08-01 2017-12-14 サン ケミカル コーポレイション 高伸縮のエネルギー硬化性インク、及び熱転写ラベルへの応用における使用方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199377B (zh) * 2011-03-23 2014-08-13 长兴(广州)精细涂料有限公司 紫外线固化型处理剂
CN103709473B (zh) * 2013-12-30 2016-04-20 上海锦湖日丽塑料有限公司 一种户外专用树脂组合物及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001519844A (ja) * 1997-04-08 2001-10-23 デー エス エム エヌ.ヴェー. 硬化後に高い伸びおよび高い強靱性を有する放射線硬化性結合剤組成物
JP2017218591A (ja) * 2011-08-01 2017-12-14 サン ケミカル コーポレイション 高伸縮のエネルギー硬化性インク、及び熱転写ラベルへの応用における使用方法
KR20140074505A (ko) * 2012-12-10 2014-06-18 건설화학공업주식회사 고신율 자외선 경화형 코팅제 조성물
KR20160019443A (ko) * 2013-06-14 2016-02-19 코베스트로 도이칠란트 아게 눈부심방지, 마이크로구조화 및 특수 코팅된 필름
KR20170041809A (ko) * 2014-08-07 2017-04-17 사빅 글로벌 테크놀러지스 비.브이. 열성형 어플리케이션용 도전성 다층 시트

Also Published As

Publication number Publication date
US20220298360A1 (en) 2022-09-22
KR20210075659A (ko) 2021-06-23
CN114787294A (zh) 2022-07-22
TW202122515A (zh) 2021-06-16
CN114787294B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
EP3835377A1 (en) Hard-coat composition, laminate film, and curable film
WO2011149297A2 (ko) 용융 가공용 수지 혼합물, 펠렛 및 이를 이용한 수지 성형품의 제조 방법
WO2012050401A2 (ko) 용융 가공용 수지 혼합물
WO2019093731A1 (ko) 광경화성 조성물 및 이의 경화물을 포함하는 코팅층
WO2018124517A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하여 제조되는 성형품
WO2012086901A1 (ko) 아크릴계 수지 조성물 및 이를 이용한 성형품
WO2021118308A1 (ko) 경화 후 열 성형이 가능한 코팅 조성물 및 이를 이용한 플라스틱 제품
WO2011065678A2 (ko) 친환경 폴리아미드 수지 조성물 및 이를 이용한 성형품
WO2022131014A1 (ja) 樹脂組成物、平板状成形体、多層体、成形品および成形品の製造方法
WO2019112183A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
US20220195265A1 (en) Thermoplastic polymer structure and methods for making the same
KR20200028816A (ko) 활성 에너지선 경화형 수지조성물, 경화물 및 적층체
JP7318410B2 (ja) 貼り合わせ用粘着シート、多層体および多層体の製造方法
WO2018044008A1 (ko) 하드코팅용 조성물, 이를 이용한 데코시트 및 데코시트의 제조방법
CN114729173B (zh) 树脂组合物、平板状成型体、多层体和防反射膜
CN116917125A (zh) 叠层体及其制造方法
WO2019112239A1 (ko) 열가소성 수지 조성물
WO2023249207A1 (ko) 바이오 물질을 포함하는 하우징 및 이를 포함하는 전자장치
WO2017030286A1 (ko) 바닥재용 표면처리 조성물 및 바닥재
WO2018105987A1 (ko) 열가소성 수지 조성물
EP4317226A1 (en) Surface-modified layer, surface-modified sheet, multilayer material, surface-modified member, painted article, method for producing surface-modified member, and method for producing painted article
CN116829356A (zh) 叠层体及其制造方法
WO2024019491A1 (ko) 열가소성 수지 조성물 및 이로부터 제조되는 성형품
JP2023088417A (ja) 樹脂組成物、平板状成形体、多層体、および、成形品
JPH04146949A (ja) ポリアセタール系樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900296

Country of ref document: EP

Kind code of ref document: A1