WO2021117655A1 - タイヤ - Google Patents
タイヤ Download PDFInfo
- Publication number
- WO2021117655A1 WO2021117655A1 PCT/JP2020/045393 JP2020045393W WO2021117655A1 WO 2021117655 A1 WO2021117655 A1 WO 2021117655A1 JP 2020045393 W JP2020045393 W JP 2020045393W WO 2021117655 A1 WO2021117655 A1 WO 2021117655A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tire
- sipe
- groove
- chamfered surface
- circumferential direction
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/0306—Patterns comprising block rows or discontinuous ribs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/12—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
- B60C11/1272—Width of the sipe
- B60C11/1281—Width of the sipe different within the same sipe, i.e. enlarged width portion at sipe bottom or along its length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/0304—Asymmetric patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/12—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
- B60C11/1236—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/12—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
- B60C11/1259—Depth of the sipe
- B60C11/1263—Depth of the sipe different within the same sipe
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/13—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
- B60C11/1376—Three dimensional block surfaces departing from the enveloping tread contour
- B60C11/1384—Three dimensional block surfaces departing from the enveloping tread contour with chamfered block corners
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0341—Circumferential grooves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0341—Circumferential grooves
- B60C2011/0348—Narrow grooves, i.e. having a width of less than 4 mm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0386—Continuous ribs
- B60C2011/0388—Continuous ribs provided at the equatorial plane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0386—Continuous ribs
- B60C2011/039—Continuous ribs provided at the shoulder portion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0386—Continuous ribs
- B60C2011/0393—Narrow ribs, i.e. having a rib width of less than 8 mm
Definitions
- the present invention relates to a tire having a tread pattern on the tread portion.
- noise performance a lug groove extending in the tire width direction is provided on the tread surface of the tire to ensure drainage.
- the groove volume of the lug groove is large, the pumping noise generated at the time of kicking becomes loud, and there is a problem that the performance of reducing tire noise (hereinafter referred to as noise performance) deteriorates.
- Patent Document 1 a groove having a width of 2 mm or more is not provided in the crown land portion and the middle land portion.
- An object of the present invention is to provide a tire that suppresses a decrease in wet performance while improving noise performance.
- the tread pattern is The main groove in the first circumferential direction and the main groove in the second circumferential direction, which extend in the tire circumferential direction and are arranged at intervals in the tire width direction, A plurality of first sipes extending in the tire width direction in the region of the first land portion between the first circumferential main groove and the second circumferential main groove, and arranged at intervals in the tire circumferential direction.
- the tread surface of the first land portion is a first chamfered surface inclined toward the main groove in the first circumferential direction.
- a plurality of first chamfered surfaces provided in the tire circumferential direction and opened without the first sipe reaching the groove wall of the first circumferential main groove.
- a plurality of tires extending in the tire width direction in the area of the second land portion located on the side opposite to the region of the first land portion with respect to the main groove in the second circumferential direction, and arranged at intervals in the tire circumferential direction.
- the second sipe and At the end of the second land portion in the tire width direction on the side of the main groove in the second circumferential direction, the tread surface of the second land portion is a second chamfered surface inclined toward the main groove in the second circumferential direction.
- a plurality of second chamfered surfaces are provided in the tire circumferential direction, and the second sipe is opened without reaching the groove wall of the second circumferential main groove.
- the tire circumferential length of the first chamfered surface and the second chamfered surface is longer than the tire width direction length.
- the length of the chamfered surface in the tire circumferential direction is preferably 5 to 50% of the interval at which the sipes opening in the chamfered surface are adjacent to each other in the tire circumferential direction.
- the ratio of the length of the chamfered surface in the tire width direction to the length in the tire circumferential direction is preferably more than 1 and 10 or less.
- first chamfered surface and the second chamfered surface have different tire circumferential lengths.
- the first chamfered surface and the second chamfered surface are arranged on one side in the tire width direction with respect to the tire center line.
- the tire circumferential length of the chamfered surface farther from the tire center line is longer than the tire circumferential length of the chamfered surface closer to the tire center line. Is preferable.
- the ranges in the tire circumferential direction where the first chamfered surface and the second chamfered surface are located do not overlap each other.
- the maximum depth of the chamfered surface is preferably deeper than the depth of the sipe opening in the chamfered surface.
- the chamfered surface is preferably a substantially triangular surface whose length in the tire width direction becomes shorter from one side in the tire circumferential direction to the other side.
- the sipe has a bottom-raising portion shallower than the maximum depth of the sipe at the open end of the sipe opened on the chamfered surface.
- the tread pattern is a wall surface of the land portion adjacent to the chamfered surface in the region of the land portion, and is a circumferential direction in which the chamfered surface is inclined from an opening end of a sipe opened in the chamfered surface. It is preferable that the wall surface of the land portion extending continuously from the wall surface of the sipe is further provided over the groove wall of the main groove, and the wall surface extends without being inclined in the tire radial direction.
- the tread pattern is a wall surface of the land portion adjacent to the chamfered surface in the region of the land portion, and is a circumferential direction in which the chamfered surface is inclined toward the open end of the sipe opened in the chamfered surface. Further, the wall surface of the land portion extending continuously from the wall surface of the sipe is further provided over the groove wall of the main groove, and the wall surface extends along the extending direction of the sipe opened in the chamfered surface. Is preferable.
- first sipe and the second sipe are inclined to the same side in the tire circumferential direction with respect to the tire width direction.
- the tread pattern includes a circumferential main groove extending in the tire circumferential direction in the region of the first land portion and a circumferential narrow groove having a groove width narrower than that of the first circumferential main groove and the second circumferential main groove. It is preferable that the first sipe is arranged in the region between the first circumferential main groove and the circumferential narrow groove and is connected to the circumferential fine groove.
- the tread pattern is a tire width direction end on the side of the circumferential groove in the region where the first sipe is arranged in the region of the first land portion divided in the tire width direction by the circumferential groove.
- the tread surface is a third chamfered surface inclined toward the circumferential groove, and a plurality of tread surfaces are provided in the tire circumferential direction, and the tread surface is connected to the peripheral groove of the first sipe. It is preferable to provide a plurality of third chamfered surfaces adjacent to each other in the tire circumferential direction.
- the tire circumferential length of the third chamfered surface is preferably shorter than the tire circumferential length of the first chamfered surface and the second chamfered surface.
- the maximum depth of the third chamfered surface is preferably shallower than the depth of the first sipe.
- the tread pattern does not have a lug groove extending in the tire width direction in the land area.
- the deterioration of the wet performance can be suppressed while improving the noise performance.
- the tire of the present invention is preferably a pneumatic tire, and the tire of the present embodiment is a pneumatic tire.
- a pneumatic tire is a tire in which the hollow area surrounded by the tire and the rim is filled with air.
- the tire of the present embodiment may be a tire in which the cavity region surrounded by the tire and the rim is filled with an inert gas such as nitrogen or another gas instead of air.
- the present embodiment includes various embodiments described later.
- FIG. 1 is a tire cross-sectional view showing an example of a profile cross section of a pneumatic tire (hereinafter, simply referred to as a tire) 10.
- the tire 10 is, for example, a passenger car tire. Passenger car tires are tires specified in Chapter A of JATMA YEAR BOOK 2012 (Japan Automobile Tire Association Standards).
- the tire 10 can be applied to the tires for light trucks specified in Chapter B and the tires for trucks and buses specified in Chapter C.
- the tire width direction is parallel to the tire rotation axis.
- the outside in the tire width direction is the side away from the tire center line CL (tire equatorial line) representing the tire equatorial plane in the tire width direction.
- the inside in the tire width direction is the side approaching the tire center line CL in the tire width direction.
- the tire circumferential direction is a direction in which the tire rotates about the rotation axis of the tire as the center of rotation.
- the tire radial direction is a direction orthogonal to the rotation axis of the tire.
- the outer side in the tire radial direction refers to the side away from the rotation axis.
- the inside in the tire radial direction refers to a side approaching the rotation axis.
- the tire 10 includes a tread portion 10T having a tread pattern, a pair of bead portions 10B, and a pair of side portions 10S provided on both sides of the tread portion 10T and connected to the pair of bead portions 10B and the tread portion 10T.
- the tire 10 has a carcass ply 12, a belt 14, and a bead core 16 as skeleton materials, and around these skeleton materials, a tread rubber member 18, a side rubber member 20, a bead filler rubber member 22, and so on. It mainly has a rim cushion rubber member 24 and an inner liner rubber member 26.
- the carcass ply 12 is made of a carcass ply material in which organic fibers are coated with rubber, which is wound around a pair of annular bead cores 16 to form a toroidal shape.
- the carcass ply 12 is wound around the bead core 16 and extends outward in the tire radial direction.
- a belt 14 composed of two belt materials 14a and 14b is provided on the outer side of the carcass ply 12 in the tire radial direction.
- the belt 14 is composed of a member in which rubber is coated on a steel cord arranged at a predetermined angle, for example, 20 to 30 degrees with respect to the tire circumferential direction, and the inner layer belt material 14a is the outer layer belt material.
- the width in the tire width direction is longer than that of 14b.
- the inclination directions of the steel cords of the two-layer belt members 14a and 14b are opposite to each other. Therefore, the belt materials 14a and 14b are interlaced layers, and suppress the expansion of the carcass
- a tread rubber member 18 is provided on the outer side of the belt 14 in the tire radial direction, and side rubber members 20 are connected to both ends of the tread rubber member 18 to form a side portion 10S.
- a rim cushion rubber member 24 is provided at the inner end of the side rubber member 20 in the tire radial direction and comes into contact with the rim on which the tire 10 is mounted.
- a bead filler rubber member 22 is provided.
- An inner liner rubber member 26 is provided on the inner surface of the tire 10 facing the air-filled tire cavity region surrounded by the tire 10 and the rim.
- a two-layer belt cover 30 coated with rubber of organic fibers is provided so as to cover the belt 14 from the outer side in the tire radial direction of the belt 14.
- FIG. 2 is a diagram showing a part of an example of the tread pattern of the tire 10 of FIG. 1 developed in a plane.
- the first outer main groove 21 first circumferential main groove
- the first inner main groove 23 second circumferential main groove
- a second inner main groove 25, and a second outer main groove 27 are provided.
- the first outer main groove 21 and the first inner main groove 23 are provided in the first half tread region on one side (left side in FIG. 2) in the tire width direction with the tire center line CL as a boundary, and are provided in the tire width direction. Are placed at intervals from each other.
- the second inner main groove 25 and the second outer main groove 27 are provided in the second half tread region on the other side (right side in FIG. 2) in the tire width direction, and are arranged so as to be spaced apart from each other in the tire width direction. ing.
- the main groove means a groove having a groove depth of, for example, 6.5 to 9.0 mm and a groove width of, for example, 5.0 to 15.0 mm.
- the number of main grooves provided in the tread pattern is four in the example shown in FIG. 2, but may be three, five, or the like. In the case of three, in the example shown in FIG. 2, one circumferential main groove passing through the tire center line CL is provided instead of the first inner main groove 23 and the second inner main groove 25.
- the tread pattern of the example shown in FIG. 2 further includes fine grooves 31 and 33 as two circumferential fine grooves extending in the tire circumferential direction.
- the narrow grooves 31 and 33 have a narrower groove width than the main grooves 21, 23, 25 and 27. It is preferable that the narrow grooves 31 and 33 have a shallower groove depth than the main grooves 21, 23, 25 and 27.
- the groove depths of the fine grooves 31 and 33 are, for example, 1.0 to 5.0 mm, and the groove widths of the fine grooves 31 and 33 are, for example, 0.8 to 3.0 mm.
- the narrow groove 31 is provided in the shoulder region 77 of the tread pattern on the outer side of the first outer main groove 21 in the tire width direction.
- the narrow groove 33 is provided in the first middle region (region of the first land portion) 71 between the first outer main groove 21 and the first inner main groove 23.
- the narrow groove 33 is located in the first middle region 71 on the side of the first inner main groove 23 with respect to the center of the first middle region 71 in the tire width direction.
- the circumferential groove is not provided in the second middle region 75 and the center region 73, which will be described later.
- the shoulder region 79 which will be described later, is not provided with the circumferential groove.
- the tread pattern of the example shown in FIG. 2 further includes a first middle sipe 51 (first sipe), a center sipe 53 (second sipe), and second middle sipe 55, 57.
- the first middle sipe 51, the center sipe 53, and the second middle sipe 55, 57 secure an edge component extending in the tire width direction, so that the force in the front-rear direction (direction in the contact patch parallel to the tire circumferential direction) is applied.
- the edge effect is improved.
- the sipe means a sipe having a sipe depth of, for example, 2.0 to 7.5 mm and a sipe width of, for example, 0.3 to 1.0 mm.
- a plurality of first middle sipes 51 are provided in the first middle region 71 at intervals in the tire circumferential direction, communicate with the first outer main groove 21, extend in the tire width direction, and close in the first middle region 71. doing.
- a plurality of center sipes 53 are provided in the center region (region of the second land portion) 73 between the first inner main groove 23 and the second inner main groove 25 at intervals in the tire circumferential direction, and the first inner main groove 53 is provided. It communicates with the groove 23, extends in the tire width direction, and is closed in the center region 73.
- a plurality of second middle sipes 55 are provided in the second middle region 75 between the second inner main groove 25 and the second outer main groove 27 at intervals in the tire circumferential direction, and communicate with the second inner main groove 25. , Extends in the tire width direction and is blocked in the second middle region 75.
- a plurality of second middle sipes 57 are provided in the second middle region 75 at intervals in the tire circumferential direction, communicate with the second outer main groove 27, extend the second middle region 75 in the tire width direction, and the second It is blocked in the second middle region 75 without reaching the inner main groove 25.
- only one of the second middle sipe 55 and the second middle sipe 57 may be provided in the second middle region 75.
- the example tread pattern shown in FIG. 2 further includes shoulder lug grooves 58, 59.
- a plurality of shoulder lug grooves 58 are provided in the shoulder region 77 on the outer side in the tire width direction of the first outer main groove 21 at intervals in the tire circumferential direction, and among the shoulder regions 77, the outer side of the narrow groove 31 on the outer side in the tire width direction.
- the narrow groove 31 and the main groove extend in the region 77A from the outside in the tire width direction toward the first outer main groove 21 in the tire width direction, intersect with the narrow groove 31, and do not reach the first outer main groove 21. It is occluded in the inner region 77B between 21.
- a plurality of shoulder lug grooves 59 are provided in the shoulder region 79 on the outer side in the tire width direction of the second outer main groove 27 at intervals in the tire circumferential direction, and the inside of the shoulder region 79 is directed from the outer side in the tire width direction toward the main groove 27. It extends in the tire width direction and is closed in the region 79 without reaching the main groove 27.
- the ground contact end E in the tire width direction is located in the areas 77B and 79.
- the ground contact ends are both ends of the ground contact surface in the tire width direction when the tire 10 is assembled to a regular rim, filled with a regular internal pressure, and grounded on a horizontal plane under the condition that 88% of the regular load is a load load.
- the regular rim means the "measurement rim” specified in JATMA, the "Design Rim” specified in TRA, or the "Measuring Rim” specified in ETRTO.
- the normal internal pressure means the "maximum air pressure” specified in JATMA, the maximum value of "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" specified in TRA, or "INFLATION PRESSURES" specified in ETRTO.
- the normal load means the "maximum load capacity" specified in JATMA, the maximum value of "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" specified in TRA, or "LOAD CAPACITY" specified in ETRTO.
- the shoulder lug grooves 58 and 59 include the closed ends 58a and 59a of the shoulder lug grooves 58 and 59, and the main groove side portions 58b and 59b located on the outer main grooves 21 and 27 side of the ground contact end E are tire widths. It extends at an angle with respect to the direction.
- the tread pattern of the example shown in FIG. 2 further has a first middle chamfered surface 81 (first chamfered surface), a center chamfered surface 83 (21st chamfered surface), and second middle chamfered surfaces 85 and 87. ing.
- first middle chamfered surface 81 one tread surface of the end portion in the tire width direction of the sipe 51 communicating with the first outer main groove 21 and the land portion adjacent to the tire circumferential direction faces the first outer main groove 21. It is a sloping surface.
- a plurality of first middle chamfered surfaces 81 are provided at intervals in the tire circumferential direction, and the first middle sipe 51 is opened without reaching the groove wall of the first outer main groove 21.
- center chamfered surface 83 one tread surface of the end portion in the tire width direction of the sipe 53 communicating with the first inner main groove 23 and the land portion adjacent to the tire circumferential direction is inclined toward the first inner main groove 23. It is a chamfered surface.
- a plurality of center chamfered surfaces 83 are provided at intervals in the tire circumferential direction, and the center sipes 53 are opened without reaching the groove wall of the first inner main groove 23.
- one tread surface of the end portion in the tire width direction of the sipe 55 communicating with the second inner main groove 25 and the land portion adjacent to the tire circumferential direction faces the second inner main groove 25. It is a sloping surface.
- a plurality of second middle chamfered surfaces 85 are provided at intervals in the tire circumferential direction, and the second middle sipe 55 is opened without reaching the groove wall of the second inner main groove 25.
- one tread surface of the end portion in the tire width direction of the sipe 57 communicating with the second outer main groove 27 and the land portion adjacent to the tire circumferential direction faces the second outer main groove 27. It is a sloping surface.
- a plurality of second middle chamfered surfaces 87 are provided at intervals in the tire circumferential direction, and the second middle sipe 57 is opened without reaching the groove wall of the second outer main groove 27.
- the length of the chamfered surfaces 81 and 83 in the tire circumferential direction is longer than the length in the tire width direction.
- the groove volume is larger than that in the case where the lug groove is provided instead of the sipes 51 and 53. It is small and has excellent noise performance.
- the chamfered surfaces 81 and 83 are provided in the adjacent first middle region 71 and the center region 73, the edge component in contact with the road surface is compared with the case where the chamfered surfaces 81 and 83 are not provided. Many, and a larger edge effect can be obtained.
- the sipes 51 and 53 instead of the lug groove, it is possible to obtain the effect of suppressing the deterioration of the steering stability performance (wet performance) on the wet road surface due to the deterioration of the drainage property.
- an edge component that exerts an effect on the force in the front-rear direction (tire circumferential direction) is secured, so that the chamfered surface is provided.
- the above-mentioned effect of suppressing the deterioration of wet performance is increasing. That is, in the present embodiment, as compared with the case where the lug groove is provided instead of the sipes 51 and 53, the noise performance is improved and the deterioration of the wet performance is suppressed.
- the groove volume increases as compared with the case where the chamfered surfaces 81 and 83 are not provided, but the amount of increase is For example, it is smaller than the case where a notch (a lateral groove having a relatively short length in the extending direction) is provided, and the influence on the noise performance is small.
- the tire circumferential length of the chamfered surfaces 81 and 83 is 5 to 50% of the interval at which the sipes 51 and 53 opened in the chamfered surfaces 81 and 83 are adjacent to each other in the tire circumferential direction. Is preferable. If the length of the chamfered surfaces 81 and 83 in the tire circumferential direction exceeds this ratio, the noise performance may deteriorate due to the increase in the groove volume, and the rigidity of the land portion decreases, which adversely affects the wet performance. May affect. Further, when the tire circumferential lengths of the chamfered surfaces 81 and 83 become shorter than this ratio, the effect of improving the wet performance becomes small.
- the length of at least one of the chamfered surfaces 85 and 87 in the tire circumferential direction is preferably the length of the above ratio.
- the ratio of the tire circumferential length to the tire width direction length of each of the chamfered surfaces 81 and 83 is preferably more than 1 and preferably 10 or less, and is 1.5 or more and 8 or less. Is more preferable.
- at least one of the above ratios of the chamfered surfaces 85 and 87 is preferably within the above range.
- the first middle chamfered surface 81 and the center chamfered surface 83 have different tire circumferential lengths.
- the chamfered surface having the longer tire circumferential length has the effect of improving the wet performance by the edge component that exerts an effect on the lateral force, and the tire circumferential length.
- the chamfered surface having the shorter length can obtain the effect of improving the noise performance by reducing the groove volume.
- the tire circumferential length of the chamfered surface having the longest tire circumferential length is the tire circumference of the chamfered surface having the shortest tire circumferential length.
- the length is preferably 1.2 to 3 times, more preferably 1.5 to 2 times the directional length.
- the length of the chamfered surface 81 farther from the tire center line CL in the tire circumferential direction is the chamfered surface closer to the tire center line CL. It is preferably longer than the tire circumferential length of 83.
- the noise performance is improved as described above by exerting the effect of improving the noise performance in the region near the tire center line CL and exerting the effect of improving the wet performance in the region far from the tire center line CL. At the same time, the effect of suppressing the deterioration of wet performance can be effectively obtained.
- the length of the chamfered surface 87 farther from the tire center line CL in the tire circumferential direction is the chamfered surface 85 closer to the tire center line CL. It is preferable that the length is longer than the tire circumferential length.
- the ranges in the tire circumferential direction in which the first middle chamfered surface 81 and the center chamfered surface 83 are located are not different from each other.
- the ranges in the tire circumferential direction in which the second middle chamfered surfaces 85 and 87 are located are not different from each other.
- the ranges in the tire circumferential direction in which the chamfered surfaces 81, 83, 85, and 87 are located are not different from each other.
- the maximum depth of the chamfered surfaces 81, 83, 85, 87 is the depth (maximum depth) of the sipes 51, 53, 55, 57 opened in the chamfered surfaces 81, 83, 85, 87. ) Deeper is preferable. Since the chamfered surfaces 81, 83, 85, and 87 are inclined toward the main grooves 21, 23, 25, 27, the depth thereof is maximized in the groove walls of the main grooves 21, 23, 25, 27.
- FIG. 3 shows the maximum depth D81 of the chamfered surface 81.
- FIG. 3 is a view showing a cross section of a region between the first outer main groove 21 and the narrow groove 33.
- the maximum depth of the chamfered surfaces 81, 83, 85, 87 is deeper than the depth of the sipes 51, 53, 55, 57, so that the sipes 51, 53, 55, 57 are shown in FIG.
- the chamfered surfaces 81, 83, 85, 87 are opened and closed within the chamfered surfaces 81, 83, 85, 87 without reaching the groove walls of the main grooves 21, 23, 25, 27. That is, the sipes 51, 53, 55, 57 are not connected (directly opened) to the main grooves 21, 23, 25, 27, but are opened to the chamfered surfaces 81, 83, 85, 87 as described above. It communicates with the main grooves 21, 23, 25, and 27.
- the land portion is compared with the case where the sipes 51, 53, 55, 57 are connected to the main grooves 21, 23, 25, 27. It is suppressed that the rigidity of the land portion is lowered and the land portion is deformed too much, and an appropriate rigidity of the land portion can be obtained. Such a form contributes to the improvement of wet performance.
- the maximum depths of the chamfered surfaces 81 and 83 are equal to each other. Further, it is preferable that the maximum depths of the chamfered surfaces 85 and 87 are equal to each other. Further, it is preferable that the maximum depths of the chamfered surfaces 81, 83, 85 and 87 are equal to each other.
- the center chamfer surface 83 is relative to the center sipe 53. It is preferably the same side as the side in the circumferential direction of the tire (the second side in FIG. 2). Further, according to one embodiment, on the side in the tire circumferential direction (second side in FIG. 2) where the second middle chamfer surface 85 is located with respect to the second middle sipe 55, the second middle chamfer surface 87 is the second. It is preferably the side opposite to the tire circumferential direction side (first side in FIG. 2) located with respect to the middle sipe 57.
- the chamfered surfaces 81 and 83 are substantially triangular surfaces whose length in the tire width direction becomes shorter from one side in the tire circumferential direction to the other side. It is preferable to have. As a result, the influence of the chamfered surfaces 81 and 83 on the noise performance can be minimized.
- at least one of the chamfered surfaces 85 and 87 is preferably a substantially triangular surface. The apex of the substantially triangular triangle is located in the groove wall of the main groove, in the ground contact surface of the land portion in contact with the groove wall, and at the boundary between the ground contact surface and the groove wall.
- the sipes 51 and 53 are opened in the chamfered surfaces 81 and 83 having the maximum length in the tire width direction (the portion forming one apex of a substantially triangular triangle in FIG. 4). It is preferable to have. Further, the sipes 55 and 57 are preferably opened in the chamfered surfaces 85 and 87 where the length in the tire width direction is maximized.
- the sipe 51, 53 is a bottom raising portion shallower than the maximum depth of the sipe 51, 53 at the opening end portion of the sipe 51, 53 opened on the chamfered surfaces 81, 83 (main groove side communication portion described later). It is preferable to have. As a result, since the sipes 51 and 53 are not connected to the main grooves 21 and 23, the above-mentioned effect of obtaining an appropriate rigidity of the land portion is increased. Further, the sipes 55 and 57 have a bottom raising portion (main groove side communication portion described later) shallower than the maximum depth of the sipes 55 and 57 at the opening end portion of the sipes 55 and 57 opened on the chamfered surfaces 85 and 87. Is preferable.
- the tread pattern is in the first middle region 71 and the center region 73, as shown in FIG. 4, the wall surfaces 82, 84 of the land portion adjacent to the chamfered surfaces 81, 83.
- the wall surfaces 82, 84 of the land portion adjacent to the chamfered surfaces 81, 83.
- the walls 82 and 84 are further provided.
- the wall surfaces 82 and 84 preferably extend without being inclined in the tire radial direction.
- the groove volume is reduced as compared with the case where the wall surfaces 82 and 84 are inclined surfaces in the tire radial direction, which contributes to the improvement of noise performance.
- the wall surfaces 82 and 84 are inclined surfaces in the tire radial direction, the effect of cutting the water film is improved, which contributes to the improvement of wet performance.
- the tread pattern is the wall surface of the land portion adjacent to the chamfered surfaces 85 and 87 in the second middle region 75, and the open end of the sipes 55 and 57 opened in the chamfered surfaces 85 and 87. Therefore, it is preferable to further provide a wall surface extending continuously from the wall surface of the sipe 55, 57 over the groove wall of the main grooves 25, 27 in which the chamfered surfaces 85, 87 are inclined.
- the wall surfaces 82 and 84 preferably extend along the extending direction of the sipes 51 and 53 opened in the chamfered surfaces 81 and 83. Further, the wall surfaces 86 and 88 connected to the chamfered surfaces 85 and 87 preferably extend along the extending direction of the sipes 55 and 57 opened in the chamfered surfaces 85 and 87.
- the wall surface extends away from the chamfered surfaces 81, 83, 85, 87 (so that the inclination angle with respect to the tire width direction increases) with respect to the extending direction of the sipes 51, 53, 55, 57. Then, the edge component that exerts an effect on the lateral force is reduced, and the effect of suppressing the deterioration of the wet performance may be reduced.
- the inclination angle of the sipes 51 and 53 with respect to the tire width direction is preferably 45 degrees or less. Since the edge components that exert an effect on the lateral force are secured by the chamfered surfaces 81 and 83, the edge effect on the force in the front-rear direction can be enhanced by reducing the inclination angle of the sipes 51 and 53.
- the inclination angle is preferably 10 to 35 degrees. Further, the inclination angle of the sipes 55 and 57 with respect to the tire width direction is preferably 45 degrees or less.
- the tread pattern is formed in the tire width direction of the region 71A in which the first middle sipe 51 is arranged among the first middle regions 71 divided in the tire width direction by the narrow grooves 33.
- a chamfered surface 89 (third chamfered surface) whose tread surface is inclined toward the groove 33 is further provided.
- a plurality of chamfered surfaces 89 are provided in the tire circumferential direction, and are surfaces adjacent to the connection end portion of the first middle sipe 51 with the narrow groove 33 in the tire circumferential direction.
- the maximum depth of the chamfered surface 89 is preferably shallower than the depth of the first middle sipe 51. That is, it is preferable that the first middle sipe 51 is connected (directly opened) to the narrow groove 33.
- the tire circumferential length of the chamfered surface 89 is preferably shorter than the tire circumferential length of the chamfered surfaces 81 and 83, and is shorter than the tire circumferential length of the chamfered surfaces 85 and 87. preferable.
- the chamfered surface 81 and the chamfered surface 89 are located on opposite sides (second side and first side in FIG. 2) in the tire circumferential direction with the first middle sipe 51 as a boundary. Is preferable.
- the tread pattern is oriented so that the second half-tread region is located on the outside of the vehicle (“OUT” side shown in FIG. 2) with respect to the first half-tread region.
- the first half tread region in which the chamfered surfaces 81 and 83 are arranged is arranged inside the vehicle. By doing so, the noise performance can be effectively improved. Further, since the second half tread region has a smaller groove area ratio than the first half tread region, the noise performance is improved by arranging the second half tread region on the outside of the vehicle.
- the number of intervals G2 in which the second middle sipes 55 and 57 are adjacent to each other in the tire circumferential direction (hereinafter referred to as the interval G2 between the second middle sipe 55 and 57) is such that the first middle sipe 51 is adjacent to the tire circumferential direction. It is preferably larger than the number of matching intervals G1 (hereinafter referred to as the interval G1 of the first middle sipe 51).
- the distance between the sipes adjacent to each other in the tire circumferential direction is the position where the line that smoothly extends the sipes along the shape of the sipes extending on the tread surface intersects the groove wall of the main groove through which the sipes communicate (hereinafter, communicated).
- the distance between the tires also called the position) adjacent to each other in the tire circumferential direction. Two adjacent communication positions may be located in the same main groove or may be located in different main grooves. Therefore, the distance between the second middle sipes having the same communication position in the tire circumferential direction in the region is not included in the "distance in which the sipes are adjacent to each other in the tire circumferential direction".
- the sipes 51, 55, 57 are provided in the first middle region 71 and the second middle region 75, a lug groove is provided instead of the sipes 51, 55, 57.
- the groove volume is small and the noise performance is improved.
- the narrow groove 33 is provided in the first middle region 71, the decrease in drainage property due to the provision of the sipe 51 instead of the lug groove is compensated for, and the decrease in wet performance is suppressed. Will be done.
- the number of the intervals G2 of the second middle sipe 55 and 57 is larger than the number of the intervals G1 of the first middle sipe 51, so that the second middle region 75
- the rigidity of the land part is reduced and it is easily deformed, and it has high followability to the road surface. Therefore, in the second middle region 75, the adhesion friction with the road surface is large, and the above-mentioned effect of suppressing the deterioration of the wet performance is increased. That is, in this embodiment, as compared with the case where the lug groove is provided instead of the sipes 51, 55, 57, the noise performance is improved and the deterioration of the wet performance is suppressed.
- the two middle regions 71 and 75 have different forms from each other, and as described above, by exerting different functions with respect to the wet performance, an effect of suppressing a decrease in the wet performance can be obtained.
- the tread pattern is asymmetrical with respect to the tire center line CL.
- the second middle region 75 if the number of intervals G2 of the second middle sipe 55 and 57 is equal to the number of intervals G1 of the first middle sipe 51 or less than the number of intervals G1 of the first middle sipe 51, the second middle region 75 The rigidity is too high and the land part is hard to be deformed, and the followability to the road surface is not good. Therefore, the force for gripping the road surface becomes insufficient due to the change in the force received from the road surface.
- the tread pattern is provided in the first middle region 71 and is a lug groove that communicates with or connects with at least one of the first outer main groove 21 and the first inner main groove 23 and extends in the tire width direction.
- a lug groove provided in the second middle region 75 that communicates with or connects to at least one of the second outer main groove 27 and the second inner main groove 25 and extends in the tire width direction. ..
- the center region 73 is provided, and is not provided with a lug groove that communicates with or connects with at least one of the first inner main groove 23 and the second inner main groove 25 and extends in the tire width direction.
- the lug groove is a groove having a component extending in the tire width direction, and means a groove having a groove width of 1.5 mm or more.
- the second middle sipe communicates with the second inner main groove 25 communicating with the second inner main groove 25 and the second inner main groove 25 of the second middle sipe 55, as shown in FIG. It is preferable to include a second middle sipe 57 having a communication position with the second outer main groove 27 at a position in the tire circumferential direction different from the position.
- the sipe communicating with the second inner main groove 25 and the sipe communicating with the second outer main groove 27 are mixed in the second middle region 75, so that the land of the second middle region 75
- the balance of rigidity in the tire width direction of the portion is improved, and the land portion can easily follow various changes in the force received from the road surface.
- the ratio of the numbers of the second middle sipe 55 and the second middle sipe 57 to the total number of the second middle sipe is preferably 20 to 80%, and preferably 30 to 70%.
- the second middle sipe 57 is arranged one by one between the second middle sipe 55 adjacent to each other in the tire circumferential direction. As a result, the balance of rigidity in the tire width direction of the land portion of the second middle region 75 becomes particularly good.
- the above ratio is preferably 50% each.
- the communication position of the second middle sipe 57 with the second outer main groove 27 is the length from the communication position of one side (the first side in FIG. 2) of the above two communication positions. It is preferably in the range of 50 to 97% of L1, and more preferably in the range of 70 to 95%. As a result, the effect of reducing tire noise is increased.
- the communication position on one side refers to the communication position with the second inner main groove 25 of the second middle sipe 55 having a closed end within the range in the tire circumferential direction between the two communication positions.
- the direction connecting both ends of the second middle sipe 55 in the extending direction and the direction connecting both ends of the second middle sipe 57 in the extending direction are one of the tire width directions. It is preferable that the direction from one side end to the other side end is inclined to the same side in the tire circumferential direction with respect to the tire width direction. As a result, it is possible to suppress the concentration of the portion where the rigidity of the land portion is reduced in the second middle region 75. In the example shown in FIG. 2, these two directions are inclined to the first side (upper side in FIG. 2) in the tire circumferential direction with respect to the tire width direction.
- first middle sipe 51 and the second middle sipe 55, 57 also have the above-mentioned relationship inclined to the same side in the tire circumferential direction, and the first middle sipe 51 and the center sipe It is more preferable that the relationship between the 53 and the second middle sipe 55 and 57 is inclined to the same side in the tire circumferential direction.
- the length of the interval G2 of the second middle sipe 55, 57 differs between the intervals adjacent to each other in the tire circumferential direction.
- FIG. 2 shows a plurality of intervals G2 having different lengths.
- the first middle sipe 51 is preferably connected to the narrow groove 33. As a result, the drainage property in the first middle region 71 is increased.
- the sipe depth D51c of the narrow groove side connecting portion 51c of the first middle sipe 51 connected to the fine groove 33 is the groove depth of the fine groove 33.
- the sipe depth D51b of the intermediate portion 51b of the first middle sipe 51 which is shallower than the D33 and is located between the first outer main groove 21 with which the first middle sipe 51 communicates and the narrow groove side connecting portion 51c, is the narrow groove 33. It is deeper than the groove depth D33.
- the narrow groove side connecting portion 51c has a raised bottom portion, it is possible to suppress a decrease in rigidity at the connection position of the first middle sipe 51 with the fine groove 33.
- FIG. 3 is a diagram showing a cross section of a part of the first middle region 71 in the tire width direction along the extending direction of the first middle sipe 51.
- the illustration of the third chamfered surface, which will be described later, is omitted.
- the sipe depth D51a of the main groove side communication portion 51a of the first middle sipe 51 communicating with the first outer main groove 21 is the groove depth D33 of the narrow groove 33. It is preferably shallower than. As described above, since the main groove side communication portion 51a has a raised bottom portion, it is possible to suppress a decrease in rigidity at the communication position of the first middle sipe 51 with the first outer main groove 21.
- the sipe depth D51c of the narrow groove side connecting portion 51c and the sipe depth D51a of the main groove side communicating portion 51a are preferably 20 to 50%, preferably 30 to 40% of the sipe depth D51b of the intermediate portion 51b. Is more preferable.
- the first middle sipe 51 extends in a curved shape so as to bulge roundly on one side in the tire circumferential direction on the tread surface.
- the first middle sipe 51 extends so as to form an arc shape bulging toward the first side in the tire circumferential direction on the tread surface.
- the radius of curvature of the arc shape of the first middle sipe 51 is preferably 50 to 150 mm.
- the second middle sipe 55, 57 and the center sipe 53 preferably extend linearly on the tread surface.
- the length of the first middle sipe 51 in the extending direction is longer than the length of the second middle sipe 55 and 57 in the extending direction. Since the number of the first middle sipe 51 is less than the sum of the numbers of the second middle sipe 55 and 57, such a form improves the rigidity balance between the first middle region 71 and the second middle region 75. Contribute to. Further, this makes it easy to adjust the magnitude of the rigidity of the first middle region 71 to a magnitude between the magnitude of the rigidity of the second middle region 75 and the magnitude of the rigidity of the center region 73.
- the length of the first middle sipe 51 in the extending direction is preferably longer than the length of the center sipe 53 in the extending direction (for example, 115 to 125% of the length of the center sipe 53 in the extending direction).
- the second middle sipe 55, 57 extends linearly, and the inclination angle with respect to the tire width direction in the direction connecting both ends of the second middle sipe 55, 57 in the extending direction is in the tire circumferential direction. It is preferable that the second middle sipe 55 and 57 are different from each other.
- the number of intervals G2 between the second middle sipe 55 and 57 is preferably larger than the number of intervals G3 where the center sipe 53 is adjacent to each other in the tire circumferential direction (hereinafter referred to as the interval G3 of the center sipe 53). .. That is, the number of intervals G3 of the center sipe 53 is preferably smaller than the number of intervals G2 of the second middle sipe 55 and 57. Since the center region 73 has the longest contact length in the tire circumferential direction in the tread portion, it is preferable to secure a contact area with the road surface according to the above embodiment.
- the length of the second middle sipe 55, 57 in the tire width direction is 20 to 50% of the length of the second middle region 75 in the tire width direction.
- the length is preferably 30 to 40%
- the length of the center sipe 53 in the tire width direction is preferably 40 to 70% of the length of the center region 73 in the tire width direction. More preferably, it is 50 to 60%.
- the second middle sipe 55 preferably overlaps each of the plurality of extension lines S. Then, the second middle sipe 57 extends in a direction along the extension line S between two extension lines S adjacent to each other in the tire circumferential direction among the plurality of extension lines S.
- FIG. 5 is a diagram illustrating an extension line S, and two extension lines S are represented by broken lines.
- the extension line S smoothly extends each of the plurality of shoulder lug grooves 59 from the closing ends 59a of each of the plurality of shoulder lug grooves 59 along the inclination direction of the main groove side portion 59b to close the plurality of center sipes 53.
- the main groove side portion 59b is a portion of the shoulder lug groove 59 on the side of the main groove 27 including the closed end 59a.
- the extension line S is a straight line. Smooth extension means that at the closed ends 59a and 53a of the shoulder lug groove 59, the smaller angle between the inclination direction of the shoulder lug groove 59 with respect to the tire width direction and the extension direction of the extension line S is 10. It means that it is less than or equal to the degree, preferably less than or equal to 5 degrees.
- the smaller angle of the angle formed by the inclination direction of the center sipe 53 and the inclination direction of the extension line S at the closed end 53a of the center sipe 53 is preferably 10 degrees or less, more preferably 5 degrees or less, and further. Preferably, these two directions are aligned.
- the fact that the second middle sipe 55 overlaps with the extension line S means that the second middle sipe 55 is in contact with or intersects the extension line S, and also has a shoulder in a direction orthogonal to the extension line S from the extension line S. It also includes a form in which the lug groove 59 is in contact with or intersects a region separated by a length of twice (preferably the same size) the groove width of the main groove side portion 59b of the lug groove 59.
- the inclination angle of the second middle sipe 57 with respect to the extension line S in the extending direction is within 10 degrees, preferably 5 degrees or less, more preferably. Means that it is 0 degrees.
- the shoulder lug groove 59, the second middle sipe 55, and the center sipe 53 are positioned so as to overlap the extension line S inclined in the tire width direction in this way, the shoulder lug groove 59 and the second middle chamfered surface
- the 87 and the second middle chamfered surface 85 are easily dispersed in the tire circumferential direction and contribute to the improvement of noise performance.
- the second middle chamfered surface 87 is arranged closer to the shoulder lug groove 59 than the second middle chamfered surface 85. Therefore, the second middle chamfered surface 87 is arranged so as to extend along the extension line S between two extension lines S adjacent to each other in the tire circumferential direction so as not to overlap with the extension line S. This is because the shoulder lug groove 59 has a large groove volume and generates a large pumping sound, and therefore it is desirable that the second middle chamfered surface 87 and the shoulder lug groove 59 are separated from each other in the tire circumferential direction.
- all of the shoulder lug groove 59 and the center sipe 53 form the extending direction end of any extension line S of the plurality of extension lines S, and all of the second middle sipe 55 extend. It is preferable that all of the second middle sipes 57 extend between any of the two extension lines S adjacent to each other in the tire circumferential direction, which overlap with any of the lines S.
- the effect that the second middle chamfered surface 85, the second middle chamfered surface 87, and the shoulder lug groove 59 are dispersedly arranged at different positions in the tire circumferential direction can be obtained over the entire circumference of the tire circumferential direction, and noise is obtained. The effect of improving performance increases.
- the range of the second middle chamfered surface 85 along the tire circumferential direction does not overlap with the range of the shoulder lug groove 59 along the tire circumferential direction.
- the fact that the second middle chamfered surface 85 and the shoulder lug groove 59 are arranged at different positions in the tire circumferential direction contributes to the improvement of noise performance.
- the ranges of the extension lines S adjacent to each other in the tire circumferential direction do not overlap.
- the effect of arranging the second middle chamfered surface 85, the second middle chamfered surface 87, and the shoulder lug groove 59 in a dispersed manner in the tire circumferential direction is preferably 10 to 30 degrees.
- the inclination angles of the center sipe 53, the second middle sipe 55, and the second middle sipe 57 with respect to the tire width direction are substantially equal. Approximately equal means that the difference between the lug grooves of the inclination angle is within a maximum of 10 degrees, preferably within a maximum of 5 degrees.
- the first middle sipe 51 is located outside in the tire width direction along the inclination direction of the center sipe 53 with respect to the tire width direction from the communication position with the first inner main groove 23 of the center sipe 53 (in FIG. 2). It is preferable that it overlaps with a virtual straight line (second extension line) (not shown) extending to the inside of the vehicle.
- second extension line a virtual straight line extending to the inside of the vehicle.
- shoulder lug groove 58 is in contact with or intersects a region separated by a length of twice (preferably the same size) the groove width of the main groove side portion 58b of the shoulder lug groove 58 in the direction orthogonal to the line.
- the region 71B between the narrow groove 33 and the first inner main groove 23 is provided with a lug groove and a sipe communicating with or connected to the fine groove 33 or the first inner main groove 23.
- the ribs are not formed and continuous ribs are formed in the tire circumferential direction.
- the region 77B of the shoulder region 77 is not provided with a lug groove or a sipe communicating with or connected to the narrow groove 31 or the main groove 21, and ribs continuous in the tire circumferential direction are formed.
- the tire width direction length (width) of the region 77B is wider than the width of the region 71B.
- the narrow groove 31 is preferably wider than the fine groove 33.
- the tread pattern of this embodiment is not limited to the tread pattern of the example shown in FIG.
- the prototype tire has a size of 235 / 60R18, and is based on the tread pattern shown in FIG. 2 and the cross-sectional profile shown in FIGS. 1 and 3, except for the specifications shown in Table 1 and the following.
- the shape shown in FIG. 4 was used as the keynote.
- Table 1 shows the form of each tire tread pattern and its evaluation results.
- the shape of the chamfered surface was substantially triangular as shown in FIG.
- the wall surface adjacent to the chamfered surface is a surface that extends without inclining in the tire radial direction and extends along the extending direction of the sipe.
- the maximum depth of the chamfered surface 81, 83, 85, 87 is the main groove 21, 23, 25 in which the chamfered surface 81, 83, 85, 87 is inclined toward the chamfered surface 81, 83, 85, 87.
- the depth of the chamfered surface 89 is 50% of the sipe depth of the bottom raising portion (thin groove connecting portion) of the first middle sipe.
- the "ratio of aspect length of the chamfered surface” means the ratio of the chamfered surface to the length in the tire width direction to the length in the tire circumferential direction.
- the lengths in the tire width direction were made equal between the chamfered surfaces 81, 83, 85, and 87. Further, in Comparative Example 3, the ratio was set to 1: 3 on all of the chamfered surfaces 81, 83, 85, and 87.
- Ratio of the vertical length of the chamfered surface means the ratio of the length of the chamfered surfaces 81, 83, 85, 87 in the tire circumferential direction to the distance between the sipes opening in the chamfered surface adjacent to each other in the tire circumferential direction.
- “Difference in vertical length between chamfered surfaces” means whether or not there is a difference in tire circumferential length between chamfered surfaces 81, 83, 85, 87.
- the tire circumferential length of the chamfered surfaces 83 and 85 was set to 2/3 times the tire circumferential length of the chamfered surfaces 81 and 87.
- the "ratio of the vertical and horizontal lengths of the chamfered surface” and the “ratio of the vertical length of the chamfered surface” in the table are shown as representatives of the values related to the chamfered surfaces 81 and 87.
- “Overlapping of chamfered surfaces in the circumferential direction” means overlapping of the chamfered surfaces 81, 83, 85, 87 in the tire circumferential direction.
- the center region 73 is displaced from the first middle region 71 in the tire circumferential direction, so that the range of the chamfered surface 83 in the tire circumferential direction is located.
- the "number of sipe intervals of regions 71 and 75" is the number of intervals G1 of the first middle sipe 51 of the first middle region 71 and the number of intervals G2 of the second middle sipe 55 and 57 of the second middle region 75.
- "71 ⁇ 75” means that the number of intervals G2 is larger than the number of intervals G1.
- the sipe interval of the second middle sipe 55, 57 is set to be twice as long as the interval of the example of "71 ⁇ 75".
- the second middle sipe and the first middle sipe 51 were set to the same number.
- Comparative Example 1 the sipes 51, 53, 55, 57 of Comparative Example 2 were replaced with lug grooves.
- wet performance A test course on an asphalt road surface sprinkled at a depth of less than 1 mm is run at a speed of 40 to 100 km / hour, and a test driver performs a sensory evaluation of steerability during lane changes and cornering, and stability when going straight. It was.
- the wet performance is displayed as an index with Comparative Example 1 as 100, which is similar to a conventional tire, and the larger the index, the better the wet performance.
- the permissible range of tires of size 235 / 60R18 is that the noise performance index is 103 or more and the wet performance index is 98 or more. It was evaluated that it could be suppressed.
- Example 1 From the comparison between Example 1 and Example 2, it can be seen that the noise performance is improved when the ratio of the chamfered surface to the tire width direction length to the tire circumferential length exceeds 1 and is 10 or less. From the comparison between Example 2 and Example 3, it can be seen that the noise performance is improved by the difference in the tire circumferential length between the chamfered surfaces 81, 83, 85, and 87. From the comparison between Example 3 and Example 4, it can be seen that the noise performance is improved because the chamfered surfaces 81, 83, 85, and 87 do not overlap each other in the tire circumferential direction.
- Example 4 From the comparison between Example 4 and Example 5, it can be seen that the wet performance is improved when the number of intervals of the second middle sipe is larger than the number of intervals of the first middle sipe. From the comparison between Example 5 and Example 6, the noise performance and the wet performance are improved by mounting the tires on the vehicle so that the second half tread region is arranged on the outside of the vehicle with respect to the first half tread region. You can see that.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
タイヤのトレッドパターンは、第1周方向主溝と第2周方向主溝との間の第1陸部の領域内の複数の第1のサイプと、第1周方向主溝の側の第1陸部のタイヤ幅方向端部において、第1陸部のトレッド表面が第1周方向主溝に向かって傾斜し、第1のサイプが開口した複数の第1の面取り面と、第2周方向主溝に対して第1陸部の領域と反対側に位置する第2陸部の領域内の複数の第2のサイプと、第2周方向主溝の側の第2陸部のタイヤ幅方向端部において、第2陸部のトレッド表面が第2周方向主溝に向かって傾斜し、第2のサイプが開口した複数の第2の面取り面と、を備える。第1の面取り面及び第2の面取り面のタイヤ周方向長さはタイヤ幅方向長さよりも長い。
Description
本発明は、トレッド部にトレッドパターンを備えるタイヤに関する。
タイヤのウェット性能を向上させるために、タイヤのトレッド面に、タイヤ周方向に延びる主溝のほかに、タイヤ幅方向に延びるラグ溝を設けて排水性を確保することが知られている。ところが、ラグ溝の溝体積が大きいと、蹴り出し時に発生するポンピング音が大きくなり、タイヤ騒音を低減する性能(以降、騒音性能という)が悪化するという問題がある。
従来、タイヤのトレッド部において、クラウン陸部およびミドル陸部に、幅2mm以上の溝が設けられていないことが知られている(特許文献1)。
主溝及びラグ溝を設けたトレッド面のクラウン陸部およびミドル陸部において、騒音性能を悪化させないために、幅2mm以上の溝を省略すると、溝体積が低減されることで、騒音性能は改善されるが、溝体積の減少によって排水性を確保できず、ウェット性能が低下してしまう。
本発明は、騒音性能を向上させつつ、ウェット性能の低下を抑えたタイヤを提供することを目的とする。
本発明の一態様は、トレッド部にトレッドパターンを備えるタイヤである。
前記トレッドパターンは、
タイヤ周方向に延び、タイヤ幅方向に間隔をあけて配置された第1周方向主溝及び第2周方向主溝と、
前記第1周方向主溝と前記第2周方向主溝との間の第1陸部の領域内をタイヤ幅方向に延び、タイヤ周方向に間隔をあけて配置された複数の第1のサイプと、
前記第1周方向主溝の側の前記第1陸部のタイヤ幅方向端部において、前記第1陸部のトレッド表面が前記第1周方向主溝に向かって傾斜した第1の面取り面であって、タイヤ周方向に複数設けられ、前記第1のサイプが前記第1周方向主溝の溝壁に達することなく開口した複数の第1の面取り面と、
前記第2周方向主溝に対して前記第1陸部の領域と反対側に位置する第2陸部の領域内をタイヤ幅方向に延び、タイヤ周方向に間隔をあけて配置された複数の第2のサイプと、
前記第2周方向主溝の側の前記第2陸部のタイヤ幅方向端部において、前記第2陸部のトレッド表面が前記第2周方向主溝に向かって傾斜した第2の面取り面であって、タイヤ周方向に複数設けられ、前記第2のサイプが前記第2周方向主溝の溝壁に達することなく開口した複数の第2の面取り面と、を備え、
前記第1の面取り面及び前記第2の面取り面のタイヤ周方向長さはタイヤ幅方向長さよりも長い、ことを特徴とする。
前記トレッドパターンは、
タイヤ周方向に延び、タイヤ幅方向に間隔をあけて配置された第1周方向主溝及び第2周方向主溝と、
前記第1周方向主溝と前記第2周方向主溝との間の第1陸部の領域内をタイヤ幅方向に延び、タイヤ周方向に間隔をあけて配置された複数の第1のサイプと、
前記第1周方向主溝の側の前記第1陸部のタイヤ幅方向端部において、前記第1陸部のトレッド表面が前記第1周方向主溝に向かって傾斜した第1の面取り面であって、タイヤ周方向に複数設けられ、前記第1のサイプが前記第1周方向主溝の溝壁に達することなく開口した複数の第1の面取り面と、
前記第2周方向主溝に対して前記第1陸部の領域と反対側に位置する第2陸部の領域内をタイヤ幅方向に延び、タイヤ周方向に間隔をあけて配置された複数の第2のサイプと、
前記第2周方向主溝の側の前記第2陸部のタイヤ幅方向端部において、前記第2陸部のトレッド表面が前記第2周方向主溝に向かって傾斜した第2の面取り面であって、タイヤ周方向に複数設けられ、前記第2のサイプが前記第2周方向主溝の溝壁に達することなく開口した複数の第2の面取り面と、を備え、
前記第1の面取り面及び前記第2の面取り面のタイヤ周方向長さはタイヤ幅方向長さよりも長い、ことを特徴とする。
前記面取り面のタイヤ周方向長さは、当該面取り面に開口する前記サイプがタイヤ周方向に隣り合う間隔の5~50%の長さであることが好ましい。
前記面取り面のタイヤ幅方向長さに対するタイヤ周方向長さの比は、1を超え、10以下であることが好ましい。
前記第1の面取り面及び前記第2の面取り面のタイヤ周方向長さは互いに異なることが好ましい。
前記第1の面取り面及び前記第2の面取り面は、タイヤセンターラインに対しタイヤ幅方向の一方の側に配置され、
前記第1の面取り面及び前記第2の面取り面のうち、タイヤセンターラインから遠い方の面取り面のタイヤ周方向長さは、タイヤセンターラインに近い方の面取り面のタイヤ周方向長さより長いことが好ましい。
前記第1の面取り面及び前記第2の面取り面のうち、タイヤセンターラインから遠い方の面取り面のタイヤ周方向長さは、タイヤセンターラインに近い方の面取り面のタイヤ周方向長さより長いことが好ましい。
前記第1の面取り面及び前記第2の面取り面が位置するタイヤ周方向の範囲は互いに重なっていないことが好ましい。
前記面取り面の最大深さは、当該面取り面に開口する前記サイプの深さより深いことが好ましい。
前記面取り面は、タイヤ周方向の一方の側から他方の側に進むにつれてタイヤ幅方向の長さが短くなる略三角形状の面であることが好ましい。
前記サイプは、前記面取り面に開口した当該サイプの開口端部において当該サイプの最大深さより浅い底上げ部を有していることが好ましい。
前記トレッドパターンは、前記陸部の領域に、前記面取り面に隣接する当該陸部の壁面であって、当該面取り面に開口したサイプの開口端部から、当該面取り面が向かって傾斜する周方向主溝の溝壁にかけて、当該サイプの壁面から連続して延びる前記陸部の壁面をさらに備え、前記壁面はタイヤ径方向に対し傾斜することなく延在していることが好ましい。
前記トレッドパターンは、前記陸部の領域に、前記面取り面に隣接する当該陸部の壁面であって、当該面取り面に開口したサイプの開口端部から、当該面取り面が向かって傾斜する周方向主溝の溝壁にかけて、当該サイプの壁面から連続して延びる前記陸部の壁面をさらに備え、前記壁面は、当該面取り面に開口した前記サイプの延在方向に沿って延在していることが好ましい。
前記第1のサイプ及び前記第2のサイプは、タイヤ幅方向に対しタイヤ周方向の同じ側に傾斜していることが好ましい。
前記トレッドパターンは、前記第1陸部の領域内をタイヤ周方向に延び、前記第1周方向主溝及び前記第2周方向主溝よりも溝幅が狭い周方向細溝を備え、
前記第1のサイプは、前記第1周方向主溝と前記周方向細溝との間の領域内に配置され、前記周方向細溝と接続されていることが好ましい。
前記第1のサイプは、前記第1周方向主溝と前記周方向細溝との間の領域内に配置され、前記周方向細溝と接続されていることが好ましい。
前記トレッドパターンは、前記周方向細溝によりタイヤ幅方向に二分された前記第1陸部の領域のうち前記第1のサイプが配置された領域の前記周方向細溝の側のタイヤ幅方向端部において、トレッド表面が前記周方向細溝に向かって傾斜した第3の面取り面であって、タイヤ周方向に複数設けられ、前記第1のサイプの前記周方向細溝との接続端部とタイヤ周方向に隣接する複数の第3の面取り面を備えることが好ましい。
前記第3の面取り面のタイヤ周方向長さは、前記第1の面取り面及び前記第2の面取り面のタイヤ周方向長さよりも短いことが好ましい。
前記第3の面取り面の最大深さは、前記第1のサイプの深さよりも浅いことが好ましい。
前記トレッドパターンは、前記陸部の領域内をタイヤ幅方向に延びるラグ溝を備えていないことが好ましい。
上記態様のタイヤによれば、騒音性能を向上させつつ、ウェット性能の低下を抑えられる。
(タイヤの全体説明)
以下、本実施形態のタイヤについて説明する。本発明のタイヤは、空気入りタイヤであることが好ましく、本実施形態のタイヤは、空気入りタイヤである。空気入りタイヤは、タイヤとリムで囲まれる空洞領域に空気が充填されるタイヤである。なお、本実施形態のタイアは、タイヤとリムで囲まれる空洞領域に、空気の代わりに、窒素等の不活性ガス、あるいはその他の気体が充填されるタイアであってもよい。本実施形態には、後述する種々の実施形態が含まれる。
以下、本実施形態のタイヤについて説明する。本発明のタイヤは、空気入りタイヤであることが好ましく、本実施形態のタイヤは、空気入りタイヤである。空気入りタイヤは、タイヤとリムで囲まれる空洞領域に空気が充填されるタイヤである。なお、本実施形態のタイアは、タイヤとリムで囲まれる空洞領域に、空気の代わりに、窒素等の不活性ガス、あるいはその他の気体が充填されるタイアであってもよい。本実施形態には、後述する種々の実施形態が含まれる。
図1は、空気入りタイヤ(以降、単にタイヤという)10のプロファイル断面の一例を示すタイヤ断面図である。
タイヤ10は、例えば乗用車用タイヤである。乗用車用タイヤは、JATMA YEAR BOOK 2012(日本自動車タイヤ協会規格)のA章に定められるタイヤをいう。この他、B章に定められる小型トラック用タイヤおよびC章に定められるトラック及びバス用タイヤに、タイヤ10を適用することもできる。
タイヤ10は、例えば乗用車用タイヤである。乗用車用タイヤは、JATMA YEAR BOOK 2012(日本自動車タイヤ協会規格)のA章に定められるタイヤをいう。この他、B章に定められる小型トラック用タイヤおよびC章に定められるトラック及びバス用タイヤに、タイヤ10を適用することもできる。
タイヤ幅方向は、タイヤの回転軸と平行な方向である。タイヤ幅方向外側は、タイヤ幅方向において、タイヤ赤道面を表すタイヤセンターラインCL(タイヤ赤道線)から離れる側である。また、タイヤ幅方向内側は、タイヤ幅方向において、タイヤセンターラインCLに近づく側である。タイヤ周方向は、タイヤの回転軸を回転の中心として回転する方向である。タイヤ径方向は、タイヤの回転軸に直交する方向である。タイヤ径方向外側は、前記回転軸から離れる側をいう。また、タイヤ径方向内側は、前記回転軸に近づく側をいう。
(タイヤ構造)
タイヤ10は、トレッドパターンを有するトレッド部10Tと、一対のビード部10Bと、トレッド部10Tの両側に設けられ、一対のビード部10Bとトレッド部10Tに接続される一対のサイド部10Sと、を備える。
タイヤ10は、骨格材として、カーカスプライ12と、ベルト14と、ビードコア16とを有し、これらの骨格材の周りに、トレッドゴム部材18と、サイドゴム部材20と、ビードフィラーゴム部材22と、リムクッションゴム部材24と、インナーライナーゴム部材26と、を主に有する。
タイヤ10は、トレッドパターンを有するトレッド部10Tと、一対のビード部10Bと、トレッド部10Tの両側に設けられ、一対のビード部10Bとトレッド部10Tに接続される一対のサイド部10Sと、を備える。
タイヤ10は、骨格材として、カーカスプライ12と、ベルト14と、ビードコア16とを有し、これらの骨格材の周りに、トレッドゴム部材18と、サイドゴム部材20と、ビードフィラーゴム部材22と、リムクッションゴム部材24と、インナーライナーゴム部材26と、を主に有する。
カーカスプライ12は、一対の円環状のビードコア16の間を巻きまわしてトロイダル形状を成した、有機繊維をゴムで被覆したカーカスプライ材で構成されている。カーカスプライ12は、ビードコア16の周りに巻きまわされてタイヤ径方向外側に延びている。カーカスプライ12のタイヤ径方向外側に2枚のベルト材14a,14bで構成されるベルト14が設けられている。ベルト14は、タイヤ周方向に対して、所定の角度、例えば20~30度傾斜して配されたスチールコードにゴムを被覆した部材で構成され、内側層のベルト材14aが外側層のベルト材14bに比べてタイヤ幅方向の幅が長い。2層のベルト材14a,14bのスチールコードの傾斜方向は互いに逆方向である。このため、ベルト材14a,14bは、交錯層となっており、充填された空気圧によるカーカスプライ12の膨張を抑制する。
ベルト14のタイヤ径方向外側には、トレッドゴム部材18が設けられ、トレッドゴム部材18の両端部には、サイドゴム部材20が接続されてサイド部10Sを形成している。サイドゴム部材20のタイヤ径方向内側の端には、リムクッションゴム部材24が設けられ、タイヤ10を装着するリムと接触する。ビードコア16のタイヤ径方向外側には、ビードコア16の周りに巻きまわす前のカーカスプライ12の部分と、ビードコア16の周りに巻きまわしたカーカスプライ12の巻きまわした部分との間に挟まれるようにビードフィラーゴム部材22が設けられている。タイヤ10とリムとで囲まれる空気を充填するタイヤ空洞領域に面するタイヤ10の内表面には、インナーライナーゴム部材26が設けられている。
この他に、ベルト材14bとトレッドゴム部材18との間には、ベルト14のタイヤ径方向外側からベルト14を覆う、有機繊維をゴムで被覆した2層のベルトカバー30を備える。
この他に、ベルト材14bとトレッドゴム部材18との間には、ベルト14のタイヤ径方向外側からベルト14を覆う、有機繊維をゴムで被覆した2層のベルトカバー30を備える。
(トレッドパターン)
図2は、図1のタイヤ10のトレッドパターンの一例を平面に展開したものの一部を示す図である。
図2は、図1のタイヤ10のトレッドパターンの一例を平面に展開したものの一部を示す図である。
図2に示す例のトレッドパターンは、タイヤ周方向に延びる周方向主溝として、第1外側主溝21(第1周方向主溝)、第1内側主溝23(第2周方向主溝)、第2内側主溝25、及び第2外側主溝27を備えている。
第1外側主溝21及び第1内側主溝23は、タイヤセンターラインCLを境としたタイヤ幅方向の一方の側(図2の左側)の第1の半トレッド領域に設けられ、タイヤ幅方向に互いに間隔をあけて配置されている。
第2内側主溝25及び第2外側主溝27は、タイヤ幅方向の他方の側(図2の右側)の第2の半トレッド領域に設けられ、タイヤ幅方向に互いに間隔をあけて配置されている。
第1外側主溝21及び第1内側主溝23は、タイヤセンターラインCLを境としたタイヤ幅方向の一方の側(図2の左側)の第1の半トレッド領域に設けられ、タイヤ幅方向に互いに間隔をあけて配置されている。
第2内側主溝25及び第2外側主溝27は、タイヤ幅方向の他方の側(図2の右側)の第2の半トレッド領域に設けられ、タイヤ幅方向に互いに間隔をあけて配置されている。
本明細書において、主溝は、溝深さが、例えば6.5~9.0mmであり、溝幅が、例えば5.0~15.0mmである溝を意味する。
トレッドパターンに設けられる主溝の数は、図2に示す例において4本であるが、3本であってもよく、5本等であってもよい。3本である場合、図2に示す例において、第1内側主溝23及び第2内側主溝25の代わりに、タイヤセンターラインCLを通る1本の周方向主溝が設けられる。
トレッドパターンに設けられる主溝の数は、図2に示す例において4本であるが、3本であってもよく、5本等であってもよい。3本である場合、図2に示す例において、第1内側主溝23及び第2内側主溝25の代わりに、タイヤセンターラインCLを通る1本の周方向主溝が設けられる。
図2に示す例のトレッドパターンは、さらに、タイヤ周方向に延びる2本の周方向細溝として、細溝31,33を備えている。細溝31,33は、主溝21,23,25,27よりも溝幅が狭い。細溝31,33は、主溝21,23,25,27よりも溝深さが浅いことが好ましい。細溝31,33の溝深さは、例えば1.0~5.0mmであり、細溝31,33の溝幅は、例えば0.8~3.0mmである。
細溝31は、第1外側主溝21のタイヤ幅方向外側のトレッドパターンのショルダー領域77に設けられている。
細溝33は、第1外側主溝21と第1内側主溝23の間の第1のミドル領域(第1陸部の領域)71に設けられている。細溝33は、第1のミドル領域71内に、第1のミドル領域71のタイヤ幅方向の中心よりも第1内側主溝23側に位置している。
一実施形態によれば、周方向細溝は、後述する第2のミドル領域75及びセンター領域73に設けられていないことが好ましい。図2に示す例のトレッドパターンでは、後述するショルダー領域79にも、周方向細溝は設けられていない。
細溝31は、第1外側主溝21のタイヤ幅方向外側のトレッドパターンのショルダー領域77に設けられている。
細溝33は、第1外側主溝21と第1内側主溝23の間の第1のミドル領域(第1陸部の領域)71に設けられている。細溝33は、第1のミドル領域71内に、第1のミドル領域71のタイヤ幅方向の中心よりも第1内側主溝23側に位置している。
一実施形態によれば、周方向細溝は、後述する第2のミドル領域75及びセンター領域73に設けられていないことが好ましい。図2に示す例のトレッドパターンでは、後述するショルダー領域79にも、周方向細溝は設けられていない。
図2に示す例のトレッドパターンは、さらに、第1ミドルサイプ51(第1のサイプ)、センターサイプ53(第2のサイプ)、及び第2ミドルサイプ55,57を備えている。第1ミドルサイプ51、センターサイプ53、及び第2ミドルサイプ55,57により、タイヤ幅方向に延びるエッジ成分が確保されることで、前後方向(タイヤ周方向と平行な接地面内における方向)の力に対するエッジ効果が向上する。本明細書において、サイプとは、サイプ深さが、例えば2.0~7.5mmであり、サイプ幅が、例えば0.3~1.0mmのものをいう。
第1ミドルサイプ51は、第1のミドル領域71にタイヤ周方向に間隔をあけて複数設けられ、第1外側主溝21と連通し、タイヤ幅方向に延びて第1のミドル領域71内で閉塞している。
センターサイプ53は、第1内側主溝23と第2内側主溝25との間のセンター領域(第2陸部の領域)73にタイヤ周方向に間隔をあけて複数設けられ、第1内側主溝23と連通し、タイヤ幅方向に延びてセンター領域73内で閉塞している。
第2ミドルサイプ55は、第2内側主溝25及び第2外側主溝27の間の第2のミドル領域75にタイヤ周方向に間隔をあけて複数設けられ、第2内側主溝25と連通し、タイヤ幅方向に延びて前記第2のミドル領域75内で閉塞している。
第2ミドルサイプ57は、第2のミドル領域75にタイヤ周方向に間隔をあけて複数設けられ、第2外側主溝27と連通し、第2のミドル領域75をタイヤ幅方向に延びて第2内側主溝25に到達することなく、第2のミドル領域75内で閉塞している。
一実施形態によれば、第2のミドル領域75には、第2ミドルサイプ55及び第2ミドルサイプ57のうち一方のみが設けられていてもよい。
図2に示す例のトレッドパターンは、さらに、ショルダーラグ溝58,59を備えている。
ショルダーラグ溝58は、第1外側主溝21のタイヤ幅方向外側のショルダー領域77にタイヤ周方向に間隔をあけて複数設けられ、ショルダー領域77のうち、細溝31のタイヤ幅方向外側の外側領域77A内を、タイヤ幅方向外側から第1外側主溝21に向かってタイヤ幅方向に延び、細溝31と交差し、第1外側主溝21に到達することなく、細溝31と主溝21の間の内側領域77B内で閉塞している。
ショルダーラグ溝59は、第2外側主溝27のタイヤ幅方向外側のショルダー領域79にタイヤ周方向に間隔をあけて複数設けられ、ショルダー領域79内を、タイヤ幅方向外側から主溝27に向かってタイヤ幅方向に延びて主溝27に到達することなく、領域79内で閉塞している。
ショルダーラグ溝58は、第1外側主溝21のタイヤ幅方向外側のショルダー領域77にタイヤ周方向に間隔をあけて複数設けられ、ショルダー領域77のうち、細溝31のタイヤ幅方向外側の外側領域77A内を、タイヤ幅方向外側から第1外側主溝21に向かってタイヤ幅方向に延び、細溝31と交差し、第1外側主溝21に到達することなく、細溝31と主溝21の間の内側領域77B内で閉塞している。
ショルダーラグ溝59は、第2外側主溝27のタイヤ幅方向外側のショルダー領域79にタイヤ周方向に間隔をあけて複数設けられ、ショルダー領域79内を、タイヤ幅方向外側から主溝27に向かってタイヤ幅方向に延びて主溝27に到達することなく、領域79内で閉塞している。
なお、領域77B,79内には、タイヤ幅方向の接地端Eが位置している。接地端とは、タイヤ10を正規リムに組み付け、正規内圧を充填し、正規荷重の88%を負荷荷重とした条件において水平面に接地させたときの接地面のタイヤ幅方向の両端である。正規リムとは、JATMAに規定される「測定リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。正規内圧とは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいう。正規荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。
ショルダーラグ溝58,59は、ショルダーラグ溝58,59の閉塞端58a,59aを含み、かつ、接地端Eの外側主溝21,27側に位置する主溝側部分58b,59bは、タイヤ幅方向に対して傾斜して延びている。
図2に示す例のトレッドパターンは、さらに、第1ミドル面取り面81(第1の面取り面)、センター面取り面83(第21の面取り面)、及び第2ミドル面取り面85,87を有している。
第1ミドル面取り面81は、第1外側主溝21に連通するサイプ51のタイヤ幅方向端部とタイヤ周方向に隣接する陸部の部分の一方のトレッド表面が第1外側主溝21に向かって傾斜した面である。第1ミドル面取り面81は、タイヤ周方向に間隔をあけて複数設けられ、第1ミドルサイプ51が第1外側主溝21の溝壁に達することなく開口している。
センター面取り面83は、第1内側主溝23に連通するサイプ53のタイヤ幅方向端部とタイヤ周方向に隣接する陸部の部分の一方のトレッド表面が第1内側主溝23に向かって傾斜した面である。センター面取り面83は、タイヤ周方向に間隔をあけて複数設けられ、センターサイプ53が第1内側主溝23の溝壁に達することなく開口している。
第2ミドル面取り面85は、第2内側主溝25に連通するサイプ55のタイヤ幅方向端部とタイヤ周方向に隣接する陸部の部分の一方のトレッド表面が第2内側主溝25に向かって傾斜した面である。第2ミドル面取り面85は、タイヤ周方向に間隔をあけて複数設けられ、第2ミドルサイプ55が第2内側主溝25の溝壁に達することなく開口している。
第2ミドル面取り面87は、第2外側主溝27に連通するサイプ57のタイヤ幅方向端部とタイヤ周方向に隣接する陸部の部分の一方のトレッド表面が第2外側主溝27に向かって傾斜した面である。第2ミドル面取り面87は、タイヤ周方向に間隔をあけて複数設けられ、第2ミドルサイプ57が第2外側主溝27の溝壁に達することなく開口している。
本実施形態において、面取り面81,83のタイヤ周方向長さはタイヤ幅方向長さよりも長い。本実施形態では、隣り合う第1のミドル領域71及びセンター領域73に、サイプ51,53が設けられていることにより、サイプ51,53の代わりにラグ溝を設けた場合と比べ、溝体積が小さく、騒音性能に優れる。一方で、隣り合う第1のミドル領域71及びセンター領域73に、面取り面81,83が設けられていることで、面取り面81,83が設けられていない場合と比べ、路面と接触するエッジ成分が多く、より大きいエッジ効果が得られる。このため、ラグ溝の代わりにサイプ51,53を設けたことによって排水性が低下することに伴うウェット路面における操縦安定性能(ウェット性能)の低下を抑制する効果が得られる。加えて、本実施形態では、上述したように、サイプ51,53が設けられていることで、前後方向(タイヤ周方向)の力に対し効果を発揮するエッジ成分が確保されるので、面取り面81,83のタイヤ周方向長さをタイヤ幅方向長さよりも長くすることで、前後方向の力に対して効果を発揮するエッジ成分を確保しつつ、横力に対して効果を発揮するエッジ成分も確保でき、路面から受ける種々の方向の力に対してウェット性能を向上させる効果が得られる。このため、ウェット性能の低下を抑制する上記効果が増している。すなわち、本実施形態では、サイプ51,53の代わりにラグ溝を設けた場合と比べ、騒音性能が向上しつつ、ウェット性能の低下が抑制されている。なお、本実施形態では、第1のミドル領域71及びセンター領域73に、面取り面81,83を設けた分、面取り面81,83を設けない場合と比べ溝体積が増えるが、その増加量は、例えば切り欠き(延在方向の長さが比較的短い横方向溝)を設けた場合と比べ小さく、騒音性能に及ぼす影響は小さい。一実施形態によれば、面取り面81,83に加え、面取り面85,87の少なくとも1つのタイヤ周方向長さがタイヤ幅方向長さよりも長いことが好ましい。
一実施形態によれば、面取り面81,83のタイヤ周方向長さは、当該面取り面81,83に開口するサイプ51,53それぞれがタイヤ周方向に隣り合う間隔の5~50%の長さであることが好ましい。面取り面81,83のタイヤ周方向長さがこの割合を超えて長くなると、溝体積が増えることで騒音性能が悪化する場合があり、また、陸部の剛性が低下し、ウェット性能に悪影響を及ぼす場合がある。また、面取り面81,83のタイヤ周方向長さがこの割合を超えて短くなると、ウェット性能を向上させる効果が小さくなる。面取り面81,83に加え、面取り面85,87の少なくとも1つのタイヤ周方向長さも、上記割合の長さであることが好ましい。
一実施形態によれば、面取り面81,83それぞれのタイヤ幅方向長さに対するタイヤ周方向長さの比は、1を超え、10以下であることが好ましく、1.5以上、8以下であることがより好ましい。面取り面81,83に加え、面取り面85,87の少なくとも1つの上記比も、上記範囲内であることが好ましい。
一実施形態によれば、第1ミドル面取り面81及びセンター面取り面83のタイヤ周方向長さは互いに異なることが好ましい。この実施形態では、面取り面81,83のうち、タイヤ周方向長さが長い方の面取り面によって、横力に対して効果を発揮するエッジ成分によりウェット性能を向上させる効果と、タイヤ周方向長さが短い方の面取り面によって、溝体積の低減により騒音性能を向上させる効果とを得ることができる。また、一実施形態によれば、第2ミドル面取り面85,87のタイヤ周方向長さは互いに異なることが好ましい。これらの実施形態において、タイヤ周方向長さが異なる面取り面の間で、タイヤ周方向長さが最も長い面取り面のタイヤ周方向長さは、タイヤ周方向長さが最も短い面取り面のタイヤ周方向長さの1.2~3倍であることが好ましく、1.5~2倍であることがより好ましい。
一実施形態によれば、第1ミドル面取り面81及びセンター面取り面83のうち、タイヤセンターラインCLから遠い方の面取り面81のタイヤ周方向長さは、タイヤセンターラインCLに近い方の面取り面83のタイヤ周方向長さより長いことが好ましい。この実施形態では、タイヤセンターラインCL付近の領域において騒音性能を向上させる効果を発揮させ、タイヤセンターラインCLから遠い領域においてウェット性能を向上させる効果を発揮させることで、上述した、騒音性能が向上しつつ、ウェット性能の低下を抑制する効果を効果的に得ることができる。また、一実施形態によれば、第2ミドル面取り面87,85のうち、タイヤセンターラインCLから遠い方の面取り面87のタイヤ周方向長さは、タイヤセンターラインCLに近い方の面取り面85のタイヤ周方向長さより長いことが好ましい。
一実施形態によれば、第1ミドル面取り面81及びセンター面取り面83が位置するタイヤ周方向の範囲は互いに異なっていないことが好ましい。このように面取り面81,83がタイヤ周方向に分散して配置されることで、面取り面それぞれが騒音性能に与える影響を分散させることができる。また、一実施形態によれば、第2ミドル面取り面85,87が位置するタイヤ周方向の範囲は互いに異なっていないことが好ましい。さらに、一実施形態によれば、面取り面81,83,85,87が位置するタイヤ周方向の範囲は互いに異なっていないことが好ましい。
一実施形態によれば、面取り面81,83,85,87の最大深さは、当該面取り面81,83,85,87に開口するサイプ51,53,55,57の深さ(最大深さ)より深いことが好ましい。面取り面81,83,85,87は主溝21,23,25,27に向かって傾斜しているので、主溝21,23,25,27の溝壁において、その深さは最大になる。図3に、面取り面81の最大深さD81を示す。図3は、第1外側主溝21と細溝33との間の領域の断面を示す図である。このように、面取り面81,83,85,87の最大深さが、サイプ51,53,55,57の深さより深いことで、サイプ51,53,55,57は、図4に示されるように、主溝21,23,25,27の溝壁に達することなく、面取り面81,83,85,87に開口し、面取り面81,83,85,87内で閉塞する。すなわち、サイプ51,53,55,57は、主溝21,23,25,27に接続(直接開口)していないが、面取り面81,83,85,87に、上記したように開口することで、主溝21,23,25,27に連通している。図4には、面取り面81,83,85,87のうち代表して面取り面81,83の形態が示される。このように、サイプ51,53,55,57が主溝21,23,25,27に接続していないことにより、主溝21,23,25,27に接続している場合と比べ、陸部の剛性が低下して陸部が変形しすぎることが抑制され、陸部の適度な剛性が得られる。このような形態は、ウェット性能の向上に寄与する。
一実施形態によれば、面取り面81,83の最大深さは互いに等しいことが好ましい。また、面取り面85,87の最大深さは互いに等しいことが好ましい。さらに、面取り面81,83,85,87の最大深さは互いに等しいことが好ましい。
一実施形態によれば、第1ミドル面取り面81が第1ミドルサイプ51に対して位置するタイヤ周方向の側(図2において第2の側)は、センター面取り面83がセンターサイプ53に対して位置するタイヤ周方向の側と同じ側(図2において第2の側)であることが好ましい。また、一実施形態によれば、第2ミドル面取り面85が第2ミドルサイプ55に対して位置するタイヤ周方向の側(図2において第2の側)は、第2ミドル面取り面87が第2ミドルサイプ57に対して位置するタイヤ周方向の側(図2において第1の側)と反対側であることが好ましい。
一実施形態によれば、面取り面81,83は、図4に示すように、タイヤ周方向の一方の側から他方の側に進むにつれてタイヤ幅方向の長さが短くなる略三角形状の面であることが好ましい。これにより、面取り面81,83が騒音性能に与える影響を可能な限り小さくすることができる。面取り面81,83に加え、面取り面85,87の少なくとも1つも、上記略三角形状の面であることが好ましい。略三角形状の三角形の頂点は、主溝の溝壁内、当該溝壁と接する陸部の接地面内、及び当該接地面と当該溝壁との境界に位置する。
一実施形態によれば、サイプ51,53は、タイヤ幅方向の長さが最大となる面取り面81,83の部分(図4において略三角形状の三角形の一頂点をなす部分)に開口していることが好ましい。また、サイプ55,57は、タイヤ幅方向の長さが最大となる面取り面85,87の部分に開口していることが好ましい。
一実施形態によれば、サイプ51,53は、面取り面81,83に開口したサイプ51,53の開口端部においてサイプ51,53の最大深さより浅い底上げ部(後述する主溝側連通部)を有していることが好ましい。これにより、サイプ51,53が主溝21,23に接続していないことによって陸部の適度な剛性を得る上記効果が増す。また、サイプ55,57は、面取り面85,87に開口したサイプ55,57の開口端部においてサイプ55,57の最大深さより浅い底上げ部(後述する主溝側連通部)を有していることが好ましい。
一実施形態によれば、トレッドパターンは、第1のミドル領域71、及びセンター領域73に、図4に示すように、面取り面81,83に隣接する当該陸部の壁面82,84であって、面取り面81,83に開口したサイプ51,53の開口端部から、面取り面81,83が向かって傾斜する主溝21,23の溝壁にかけて、サイプ51,53の壁面から連続して延びる壁面82,84をさらに備える。壁面82,84は、タイヤ径方向に対し傾斜することなく延在していることが好ましい。これにより、壁面82,84がタイヤ径方向に対し傾斜した面である場合と比べ溝体積が低減され、騒音性能の向上に寄与する。また、壁面82,84がタイヤ径方向に対し傾斜した面である場合と比べ、水膜を切る効果が向上し、ウェット性能の向上に寄与する。同様の理由から、トレッドパターンは、第2のミドル領域75に、面取り面85,87に隣接する当該陸部の壁面であって、面取り面85,87に開口したサイプ55,57の開口端部から、面取り面85,87が向かって傾斜する主溝25,27の溝壁にかけて、サイプ55,57の壁面から連続して延びる壁面をさらに備えることが好ましい。
一実施形態によれば、壁面82,84は、当該面取り面81,83に開口したサイプ51,53の延在方向に沿って延在していることが好ましい。また、面取り面85,87と接続される壁面86,88は、当該面取り面85,87に開口したサイプ55,57の延在方向に沿って延在していることが好ましい。壁面が、サイプ51,53,55,57の延在方向に対して、面取り面81,83,85,87から離れるように(タイヤ幅方向に対する傾斜角度が大きくなるように)延在していると、横力に対して効果を発揮するエッジ成分が減り、ウェット性能の低下を抑制する効果が低減される場合がある。
一実施形態によれば、サイプ51,53のタイヤ幅方向に対する傾斜角度は45度以下であることが好ましい。横力に対し効果を発揮するエッジ成分は面取り面81,83によって確保されるため、サイプ51,53の傾斜角度を小さくすることで、前後方向の力に対するエッジ効果を高めることができる。上記傾斜角度は、好ましくは10~35度である。また、サイプ55,57のタイヤ幅方向に対する傾斜角度は45度以下であることが好ましい。
一実施形態によれば、トレッドパターンは、細溝33によりタイヤ幅方向に二分された第1のミドル領域71のうち第1ミドルサイプ51が配置された領域71Aの細溝33の側のタイヤ幅方向端部において、トレッド表面が細溝33に向かって傾斜した面取り面89(第3の面取り面)をさらに備える。面取り面89は、タイヤ周方向に複数設けられ、第1ミドルサイプ51の細溝33との接続端部とタイヤ周方向に隣接する面である。一実施形態によれば、面取り面89の最大深さは、第1ミドルサイプ51の深さよりも浅いことが好ましい。すなわち、第1ミドルサイプ51は、細溝33に接続(直接開口)することが好ましい。
一実施形態によれば、面取り面89のタイヤ周方向長さは、面取り面81,83のタイヤ周方向長さよりも短いことが好ましく、面取り面85,87のタイヤ周方向長さよりも短いことが好ましい。
一実施形態によれば、面取り面81と面取り面89は、第1ミドルサイプ51を境としてタイヤ周方向の互いに反対側(図2において第2の側と第1の側)に位置していることが好ましい。
一実施形態によれば、トレッドパターンは、第2の半トレッド領域が第1の半トレッド領域に対し車両外側(図2に示す「OUT」側)に配置されるよう車両装着の向きが指定されていることが好ましい。上述したように、隣り合う第1のミドル領域71及びセンター領域73において、騒音性能を向上させる効果が得られるため、面取り面81,83が配置された第1の半トレッド領域が車両内側に配置されることで、騒音性能を効果的に向上させることができる。また、第2の半トレッド領域は、第1の半トレッド領域と比べ溝面積比が小さいため、車両外側に配置されることで、騒音性能が向上する。
(ミドルサイプの間隔数)
一実施形態によれば、第2ミドルサイプ55,57がタイヤ周方向に隣り合う間隔G2(以降、第2ミドルサイプ55,57の間隔G2という)の数は、第1ミドルサイプ51がタイヤ周方向に隣り合う間隔G1(以降、第1ミドルサイプ51の間隔G1という)の数より多いことが好ましい。サイプがタイヤ周方向に隣り合う間隔とは、トレッド表面において延びるサイプの形状に沿って当該サイプを滑らかに延長した線が、当該サイプが連通する主溝の溝壁と交差する位置(以降、連通位置ともいう)のタイヤ周方向に隣り合う間隔をいう。隣り合う2つの連通位置は、同じ主溝に位置する場合もあれば、互いに異なる主溝に位置する場合もある。したがって、当該領域内で同じタイヤ周方向位置に連通位置を有する第2ミドルサイプ同士の間の間隔は、「サイプがタイヤ周方向に隣り合う間隔」に含まれない。
一実施形態によれば、第2ミドルサイプ55,57がタイヤ周方向に隣り合う間隔G2(以降、第2ミドルサイプ55,57の間隔G2という)の数は、第1ミドルサイプ51がタイヤ周方向に隣り合う間隔G1(以降、第1ミドルサイプ51の間隔G1という)の数より多いことが好ましい。サイプがタイヤ周方向に隣り合う間隔とは、トレッド表面において延びるサイプの形状に沿って当該サイプを滑らかに延長した線が、当該サイプが連通する主溝の溝壁と交差する位置(以降、連通位置ともいう)のタイヤ周方向に隣り合う間隔をいう。隣り合う2つの連通位置は、同じ主溝に位置する場合もあれば、互いに異なる主溝に位置する場合もある。したがって、当該領域内で同じタイヤ周方向位置に連通位置を有する第2ミドルサイプ同士の間の間隔は、「サイプがタイヤ周方向に隣り合う間隔」に含まれない。
この実施形態では、第1のミドル領域71及び第2のミドル領域75に、サイプ51,55,57が設けられていることにより、サイプ51,55,57の代わりにラグ溝を設けた場合と比べ、溝体積が小さく、騒音性能が向上している。一方で、第1のミドル領域71には、細溝33が設けられていることで、上記ラグ溝の代わりにサイプ51を設けたことによる排水性の低下が補填され、ウェット性能の低下が抑制される。加えて、第2のミドル領域75では、上記したように、第2ミドルサイプ55,57の間隔G2の数が、第1ミドルサイプ51の間隔G1の数より多いことで、第2のミドル領域75の陸部の剛性が低下し変形しやすく、路面に対する追従性が高い。このため、第2のミドル領域75では、路面との間の凝着摩擦が大きく、ウェット性能の低下を抑制する上記効果が増している。すなわち、この実施形態では、サイプ51,55,57の代わりにラグ溝を設けた場合と比べ、騒音性能が向上しつつ、ウェット性能の低下が抑制されている。この実施形態では、2つのミドル領域71,75の間で互いに形態が異なり、上述したように、ウェット性能に関して異なる機能を発揮することによって、ウェット性能の低下を抑制する効果が得られる。このように、この実施形態において、トレッドパターンは、タイヤセンターラインCLに対し左右非対称である。
ここで、第2ミドルサイプ55,57の間隔G2の数が、第1ミドルサイプ51の間隔G1の数と等しい、あるいは、第1ミドルサイプ51の間隔G1の数より少ないと、第2のミドル領域75の剛性が高すぎて陸部が変形し難く、路面に対する追従性が良好でない。このため、路面から受ける力の変化によって路面をグリップする力が不十分となる。
一実施形態によれば、トレッドパターンは、第1のミドル領域71に設けられ、第1外側主溝21及び第1内側主溝23の少なくとも一方と連通又は接続し、タイヤ幅方向に延びるラグ溝、及び、第2のミドル領域75に設けられ、第2外側主溝27及び第2内側主溝25の少なくとも一方と連通又は接続し、タイヤ幅方向に延びるラグ溝、を備えていないことが好ましい。これにより、溝体積が低減され、騒音性能が向上する。さらに一実施形態によれば、センター領域73に設けられ、第1内側主溝23及び第2内側主溝25の少なくとも一方と連通又は接続し、タイヤ幅方向に延びるラグ溝を備えていないことが好ましい。ラグ溝とは、タイヤ幅方向に延びる成分を有する溝であり、溝幅が1.5mm以上である溝をいう。
一実施形態によれば、第2ミドルサイプは、図2に示す例のように、第2内側主溝25と連通する第2ミドルサイプ55と、第2ミドルサイプ55の第2内側主溝25との連通位置と異なるタイヤ周方向位置に第2外側主溝27との連通位置を有する第2ミドルサイプ57と、を含むことが好ましい。このように、第2のミドル領域75に、第2内側主溝25と連通するサイプと、第2外側主溝27と連通するサイプが混在していることで、第2のミドル領域75の陸部のタイヤ幅方向の剛性のバランスが良好になり、路面から受ける力の種々の変化に陸部が追従しやすい。
第2ミドルサイプ55及び第2ミドルサイプ57それぞれの数が、第2ミドルサイプの総数に占める割合は、20~80%であることが好ましく、30~70%であることが好ましい。
第2ミドルサイプ55及び第2ミドルサイプ57それぞれの数が、第2ミドルサイプの総数に占める割合は、20~80%であることが好ましく、30~70%であることが好ましい。
この実施形態において、さらに一実施形態によれば、第2ミドルサイプ57は、タイヤ周方向に隣り合う第2ミドルサイプ55の間に1本ずつ配置されていることが好ましい。これにより、第2のミドル領域75の陸部のタイヤ幅方向の剛性のバランスが特に良好になる。上記した割合は、50%ずつであることが好ましい。
一実施形態によれば、タイヤ周方向に隣り合う2つの第2ミドルサイプ55それぞれが第2内側主溝25に連通する2つの連通位置の間のタイヤ周方向に沿った長さをL1としたとき、図2に示すように、第2ミドルサイプ57の第2外側主溝27との連通位置は、上記2つの連通位置のうち一方の側(図2において第1の側)の連通位置から長さL1の50~97%の範囲内にあることが好ましく、70~95%の範囲内にあることがより好ましい。これにより、タイヤ騒音を低減する効果は大きくなる。なお、一方の側の連通位置とは、2つの連通位置の間のタイヤ周方向の範囲内に閉塞端を有する第2ミドルサイプ55の第2内側主溝25との連通位置をいう。
これらの実施形態において、さらに一実施形態によれば、第2ミドルサイプ55の延在方向の両端を結ぶ方向と、第2ミドルサイプ57の延在方向の両端を結ぶ方向とは、タイヤ幅方向の一方の側の端から他方の側の端に向かう方向が、タイヤ幅方向に対しタイヤ周方向の同じ側に傾斜していることが好ましい。これにより、第2のミドル領域75において陸部の剛性が低下した箇所の集中を抑えることができる。図2示す例において、これら2つの方向は、タイヤ幅方向に対し、タイヤ周方向の第1の側(図2の上側)に傾斜している。さらに一実施形態によれば、第1ミドルサイプ51及び第2ミドルサイプ55,57の間でも、タイヤ周方向の同じ側に傾斜した上記関係を有していることが好ましく、第1ミドルサイプ51、センターサイプ53、及び第2ミドルサイプ55,57の間でも、タイヤ周方向の同じ側に傾斜した上記関係を有していることがより好ましい。
一実施形態によれば、第2ミドルサイプ55,57の間隔G2の長さは、タイヤ周方向に隣り合う当該間隔の間で異なることが好ましい。図2には、長さが互いに異なる複数の間隔G2が示されている。これにより、パターンノイズの周波数を分散させる効果が得られ、騒音性能の向上に寄与する。
一実施形態によれば、第1ミドルサイプ51は、細溝33と接続していることが好ましい。これにより、第1のミドル領域71での排水性が増す。
この実施形態において、さらに一実施形態によれば、図3に示すように、細溝33と接続する第1ミドルサイプ51の細溝側接続部51cのサイプ深さD51cは、細溝33の溝深さD33より浅く、第1ミドルサイプ51が連通する第1外側主溝21と細溝側接続部51cとの間に位置する第1ミドルサイプ51の中間部51bのサイプ深さD51bは、細溝33の溝深さD33よりも深い。このように、細溝側接続部51cが底上げされた底部を有していることで、第1ミドルサイプ51の細溝33との接続位置における剛性の低下を抑制できる。また、第1ミドルサイプ51の中間部51bが細溝33よりも深いことで、第1ミドルサイプ51の吸水性が向上し、ウェット性能の向上に寄与する。図3は、第1ミドルサイプ51の延在方向に沿った第1のミドル領域71のタイヤ幅方向の一部の領域の断面を示す図である。図3において、後述する第3面取り面の図示は省略されている。
これら2つの実施形態において、さらに一実施形態によれば、第1外側主溝21と連通する第1ミドルサイプ51の主溝側連通部51aのサイプ深さD51aは、細溝33の溝深さD33よりも浅いことが好ましい。このように、主溝側連通部51aが底上げされた底部を有していることで、第1ミドルサイプ51の第1外側主溝21との連通位置における剛性の低下を抑制できる。
細溝側接続部51cのサイプ深さD51c、主溝側連通部51aのサイプ深さD51aは、中間部51bのサイプ深さD51bの20~50%であることが好ましく、30~40%であることがより好ましい。
細溝側接続部51cのサイプ深さD51c、主溝側連通部51aのサイプ深さD51aは、中間部51bのサイプ深さD51bの20~50%であることが好ましく、30~40%であることがより好ましい。
第1外側主溝21の溝深さD21、中間部51bのサイプ深さD51b、細溝側接続部51c及び主溝側連通部51aのサイプ深さD51c,D51a、及び細溝33の溝深さD33は、この順に小さくなることが好ましい。すなわち、D21<D51b<D33<D51c,D51aであることが好ましい。D51cとD51aは互いに異なっていてもよいが、等しいことが好ましい。
一実施形態によれば、第1ミドルサイプ51は、トレッド表面において、タイヤ周方向の一方の側に丸く膨らむよう曲線状に延びていることが好ましい。これにより、横力を受けたときに、第1のミドル領域71において、第1ミドルサイプ51のタイヤ周方向の両側の部分がタイヤ幅方向に互いに位置ずれする動きが抑制され、ウェット性能の向上に寄与する。第1ミドルサイプ51は、図2に示す例において、トレッド表面においてタイヤ周方向の第1の側に膨らむ円弧形状をなすよう延びている。第1ミドルサイプ51の円弧形状の曲率半径は、50~150mmであることが好ましい。
一方、第2ミドルサイプ55,57及びセンターサイプ53は、トレッド表面において、直線状に延びていることが好ましい。
一方、第2ミドルサイプ55,57及びセンターサイプ53は、トレッド表面において、直線状に延びていることが好ましい。
この場合、さらに一実施形態によれば、第1ミドルサイプ51の延在方向長さは、第2ミドルサイプ55,57の延在方向長さよりも長いことが好ましい。第1ミドルサイプ51の数は、第2ミドルサイプ55,57の数の合計より少ないので、このような形態は、第1のミドル領域71と第2のミドル領域75の剛性のバランスを良好にすることに寄与する。また、これにより、第1のミドル領域71の剛性の大きさを、第2のミドル領域75の剛性の大きさと、センター領域73の剛性の大きさとの間の大きさに調整しやすくなる。なお、第1ミドルサイプ51の延在方向長さは、センターサイプ53の延在方向長さよりも長い(センターサイプ53の延在方向の長さの例えば115~125%の長さ)ことが好ましい。
一実施形態によれば、第2ミドルサイプ55,57は、直線状に延びており、第2ミドルサイプ55,57の延在方向の両端を結ぶ方向のタイヤ幅方向に対する傾斜角度は、タイヤ周方向に隣り合う第2ミドルサイプ55,57の間で異なっていることが好ましい。
一実施形態によれば、第2ミドルサイプ55,57の間隔G2の数は、センターサイプ53がタイヤ周方向に隣り合う間隔G3(以降、センターサイプ53の間隔G3という)の数より多いことが好ましい。すなわち、センターサイプ53の間隔G3の数は、第2ミドルサイプ55,57の間隔G2の数より少ないことが好ましい。センター領域73はトレッド部においてタイヤ周方向の接地長が最も長いため、上記形態によって路面との接地面積を確保することが好ましい。
この場合、さらに一実施形態によれば、第2ミドルサイプ55,57のタイヤ幅方向の長さは、第2のミドル領域75のタイヤ幅方向の長さの20~50%の長さであることが好ましく、30~40%であることがより好ましく、センターサイプ53のタイヤ幅方向の長さは、センター領域73のタイヤ幅方向の長さの40~70%の長さであることが好ましく、50~60%であることがより好ましい。これにより、第2のミドル領域75及びセンター領域73における剛性が低下しすぎるのを抑制できる。
(延長線)
一実施形態によれば、図5に示す例のように、第2ミドルサイプ55は、複数の延長線Sのそれぞれに重なっていることが好ましい。そして、第2ミドルサイプ57は、複数の延長線Sのうちタイヤ周方向に隣り合う2本の延長線Sの間を、延長線Sに沿った方向に延びている。図5は、延長線Sを説明する図であり、代表して2本の延長線Sを破線で示している。
延長線Sは、複数のショルダーラグ溝59それぞれの閉塞端59aから、複数のショルダーラグ溝59それぞれを、主溝側部分59bの傾斜方向に沿って滑らかに延長して複数のセンターサイプ53の閉塞端53aのそれぞれに向かって延びる仮想線である。主溝側部分59bは、ショルダーラグ溝59のうち、閉塞端59aを含む主溝27の側の部分である。延長線Sは、直線である。滑らかに延長するとは、ショルダーラグ溝59の閉塞端59a,53aにおいて、タイヤ幅方向に対するショルダーラグ溝59の傾斜方向と、延長線Sの延在方向とのなす角のうち小さい方の角が10度以下、好ましくは5度以下であることを意味する。センターサイプ53の閉塞端53aにおける、センターサイプ53の傾斜方向と、延長線Sの傾斜方向とがなす角のうち小さい方の角は好ましくは10度以下、より好ましくは5度以下であり、さらに好ましくは、これらの2つの方向は一致している。
第2ミドルサイプ55が延長線Sと重なるとは、第2ミドルサイプ55が、延長線Sと接している、あるいは交差している形態のほか、延長線Sから当該延長線Sと直交する方向にショルダーラグ溝59の主溝側部分59bの溝幅の2倍(好ましくは等倍)の長さ離れた領域と接している、あるいは交差している形態も含む。また、第2ミドルサイプ57が延長線Sに沿った方向に延びるとは、第2ミドルサイプ57の延在方向の延長線Sに対する傾斜角が10度以内であること、好ましくは5度以下、より好ましくは0度であることであることを意味する。
一実施形態によれば、図5に示す例のように、第2ミドルサイプ55は、複数の延長線Sのそれぞれに重なっていることが好ましい。そして、第2ミドルサイプ57は、複数の延長線Sのうちタイヤ周方向に隣り合う2本の延長線Sの間を、延長線Sに沿った方向に延びている。図5は、延長線Sを説明する図であり、代表して2本の延長線Sを破線で示している。
延長線Sは、複数のショルダーラグ溝59それぞれの閉塞端59aから、複数のショルダーラグ溝59それぞれを、主溝側部分59bの傾斜方向に沿って滑らかに延長して複数のセンターサイプ53の閉塞端53aのそれぞれに向かって延びる仮想線である。主溝側部分59bは、ショルダーラグ溝59のうち、閉塞端59aを含む主溝27の側の部分である。延長線Sは、直線である。滑らかに延長するとは、ショルダーラグ溝59の閉塞端59a,53aにおいて、タイヤ幅方向に対するショルダーラグ溝59の傾斜方向と、延長線Sの延在方向とのなす角のうち小さい方の角が10度以下、好ましくは5度以下であることを意味する。センターサイプ53の閉塞端53aにおける、センターサイプ53の傾斜方向と、延長線Sの傾斜方向とがなす角のうち小さい方の角は好ましくは10度以下、より好ましくは5度以下であり、さらに好ましくは、これらの2つの方向は一致している。
第2ミドルサイプ55が延長線Sと重なるとは、第2ミドルサイプ55が、延長線Sと接している、あるいは交差している形態のほか、延長線Sから当該延長線Sと直交する方向にショルダーラグ溝59の主溝側部分59bの溝幅の2倍(好ましくは等倍)の長さ離れた領域と接している、あるいは交差している形態も含む。また、第2ミドルサイプ57が延長線Sに沿った方向に延びるとは、第2ミドルサイプ57の延在方向の延長線Sに対する傾斜角が10度以内であること、好ましくは5度以下、より好ましくは0度であることであることを意味する。
このようにタイヤ幅方向に対し傾斜した延長線Sと重なるように、ショルダーラグ溝59、第2ミドルサイプ55、及びセンターサイプ53が位置していることで、ショルダーラグ溝59、第2ミドル面取り面87、及び第2ミドル面取り面85は、タイヤ周方向に分散して配置されやすく、騒音性能の向上に寄与する。
一方、第2ミドル面取り面87は、第2ミドル面取り面85と比べ、ショルダーラグ溝59に接近して配置されている。このため、タイヤ周方向に隣り合う2本の延長線Sの間を延長線Sに沿って延びるよう、第2ミドル面取り面87を配置することで、延長線Sと重ならないようにしている。ショルダーラグ溝59は溝体積が大きく、大きなポンピング音を発生するため、第2ミドル面取り面87とショルダーラグ溝59はタイヤ周方向に離れていることが望ましいためである。
一方、第2ミドル面取り面87は、第2ミドル面取り面85と比べ、ショルダーラグ溝59に接近して配置されている。このため、タイヤ周方向に隣り合う2本の延長線Sの間を延長線Sに沿って延びるよう、第2ミドル面取り面87を配置することで、延長線Sと重ならないようにしている。ショルダーラグ溝59は溝体積が大きく、大きなポンピング音を発生するため、第2ミドル面取り面87とショルダーラグ溝59はタイヤ周方向に離れていることが望ましいためである。
一実施形態によれば、ショルダーラグ溝59及びセンターサイプ53のすべてが、複数の延長線Sのうちのいずれかの延長線Sの延在方向の端をなし、第2ミドルサイプ55のすべてが延長線Sのいずれかと重なっており、第2ミドルサイプ57のすべてが、タイヤ周方向に隣り合う2本の延長線Sの間のうちいずれかの間を延びていることが好ましい。これにより、第2ミドル面取り面85、第2ミドル面取り面87、及びショルダーラグ溝59が互いにタイヤ周方向の異なる位置に分散して配置される効果がタイヤ周方向の全周にわたり得られ、騒音性能の向上効果が増す。
また、一実施形態によれば、タイヤ周方向に沿った第2ミドル面取り面85の範囲は、タイヤ周方向に沿ったショルダーラグ溝59の範囲と重なっていないことが好ましい。このように、第2ミドル面取り面85、及びショルダーラグ溝59がタイヤ周方向の互いに異なる位置に配置されていることは、騒音性能の向上に寄与する。
一実施形態によれば、タイヤ周方向に隣り合う延長線Sのタイヤ周方向の範囲は、重なっていないことが好ましい。タイヤ周方向に沿った2本の延長線Sの範囲が重なっていると、第2ミドル面取り面85、第2ミドル面取り面87、及びショルダーラグ溝59をタイヤ周方向に分散して配置する効果が得られ難い。このため、延長線Sのタイヤ幅方向に対する傾斜角の大きさは、10~30度であることが好ましい。
また、一実施形態によれば、センターサイプ53、第2ミドルサイプ55、及び第2ミドルサイプ57のタイヤ幅方向に対する傾斜角は、略等しいことが好ましい。略等しいとは、上記傾斜角のラグ溝間での相違が最大10度、好ましくは最大5度以内であることをいう。
一実施形態によれば、第1ミドルサイプ51は、センターサイプ53の第1内側主溝23との連通位置から、センターサイプ53のタイヤ幅方向に対する傾斜方向に沿ってタイヤ幅方向外側(図2において車両装着内側)に延長した図示しない仮想の直線(第2の延長線)と重なっていることが好ましい。第1ミドルサイプ51が第2の延長線と重なるとは、第1ミドルサイプ51が、第2の延長線と接している、あるいは交差している形態のほか、第2の延長線から第2の延長線と直交する方向にショルダーラグ溝58の主溝側部分58bの溝幅の2倍(好ましくは等倍)の長さ離れた領域と接している、あるいは交差している形態も含む。
図2に示す例のトレッドパターンでは、細溝33と第1内側主溝23との間の領域71Bには、細溝33または第1内側主溝23に連通又は接続したラグ溝及びサイプは設けられておらず、タイヤ周方向に連続したリブが形成されている。また、ショルダー領域77の領域77Bには、細溝31または主溝21に連通又は接続したラグ溝及びサイプは設けられておらず、タイヤ周方向に連続したリブが形成されている。このように車両内側に配置されるトレッドパターンの領域には、2本の細溝31,33によってタイヤ周方向に延びるエッジ成分が多く作られており、また、2本のリブの剛性が確保されていることで、旋回時に内輪による操縦安定性が増す。好ましくは、領域77Bのタイヤ幅方向長さ(幅)は、領域71Bの幅よりも広い。細溝31は、細溝33よりも溝幅が広いことが好ましい。
本実施形態のトレッドパターンは、図2に示す例のトレッドパターンに制限されない。
(比較例、実施例)
本実施形態のタイヤの効果を調べるために、タイヤのトレッドパターンを種々変更し、ウェット性能及び騒音性能を調べた。試作したタイヤは、サイズが235/60R18であり、表1及び下記に示した仕様を除いて、図2に示すトレッドパターン及び図1,3に示す断面プロファイルを基調とし、面取り面及び壁面に関しては図4に示す形態を基調とした。
本実施形態のタイヤの効果を調べるために、タイヤのトレッドパターンを種々変更し、ウェット性能及び騒音性能を調べた。試作したタイヤは、サイズが235/60R18であり、表1及び下記に示した仕様を除いて、図2に示すトレッドパターン及び図1,3に示す断面プロファイルを基調とし、面取り面及び壁面に関しては図4に示す形態を基調とした。
表1に、各タイヤのトレッドパターンに関する形態とその評価結果を示す。
面取り面を設けた比較例、実施例において、面取り面の形状は、図4に示すように略三角形状とした。面取り面に隣接する上記壁面は、タイヤ径方向に傾斜することなく延び、サイプの延在方向に沿って延びる面とした。
また、面取り面を設けた比較例、実施例では、面取り面81,83,85,87の最大深さは、面取り面81,83,85,87が向かって傾斜する主溝21,23,25,27の溝深さの70%の深さとし、かつ、面取り面81,83,85,87に開口するサイプ51,53,55,57の最大深さより深い深さとした。一方、面取り面89の最大深さは、第1ミドルサイプの底上げ部(細溝接続部)のサイプ深さの50%の深さとした。
また、面取り面を設けた比較例、実施例では、面取り面81,83,85,87の最大深さは、面取り面81,83,85,87が向かって傾斜する主溝21,23,25,27の溝深さの70%の深さとし、かつ、面取り面81,83,85,87に開口するサイプ51,53,55,57の最大深さより深い深さとした。一方、面取り面89の最大深さは、第1ミドルサイプの底上げ部(細溝接続部)のサイプ深さの50%の深さとした。
表1中、「面取り面の縦横長さ比」は、面取り面のタイヤ幅方向長さに対するタイヤ周方向長さに対する比を意味する。比較例3及び実施例では、面取り面81,83,85,87の間でタイヤ幅方向長さを等しい長さにした。また、比較例3では、面取り面81,83,85,87の全てにおいて当該比を1:3とした。
「面取り面の縦長さの割合」は、面取り面81,83,85,87のタイヤ周方向長さの、面取り面に開口するサイプがタイヤ周方向に隣り合う間隔に対する割合を意味する。
「面取り面の間での縦長さの相違」は、面取り面81,83,85,87の間でのタイヤ周方向長さの相違の有無を意味する。「有り」の実施例では、面取り面83,85のタイヤ周方向長さを、面取り面81,87のタイヤ周方向長さの2/3倍とした。なお、「有り」の実施例に関して、表中の「面取り面の縦横長さ比」と「面取り面の縦長さの割合」は、面取り面81,87に関する値を代表して示す。
「面取り面の周方向の重なり」は、面取り面81,83,85,87が位置するタイヤ周方向の範囲の互いの重なりを意味する。「有り」の実施例及び比較例では、実施例4において、センター領域73を第1のミドル領域71に対しタイヤ周方向に位置ずらしを行うことで、面取り面83の位置するタイヤ周方向の範囲を、面取り面81,85の位置するタイヤ周方向の範囲と重ならせた。
「領域71,75のサイプ間隔数」は、第1のミドル領域71の第1ミドルサイプ51の間隔G1の数と、第2のミドル領域75の第2ミドルサイプ55,57の間隔G2の数との大小関係を示し、「71=75」は、間隔G1と間隔G2が同数であることを意味し、「71<75」は、間隔G2の数が間隔G1の数より多いことを意味する。「71=75」の実施例及び比較例では、「71<75」の実施例において、第2ミドルサイプ55,57のサイプ間隔を「71<75」の実施例の当該間隔の2倍の長さとし、第2ミドルサイプと第1ミドルサイプ51を同数とした。
比較例1は、比較例2のサイプ51,53,55,57をラグ溝に置き換えたものを採用した。
これら試験タイヤについて、下記の要領で、騒音性能、ウェット性能を評価し、その結果を表1及び表2に示した。各評価は、試験タイヤをリムサイズ18×7.5Jのホイールに組み付けて排気量2400ccの前輪駆動車に装着し、空気圧を230kPaとした条件にて行った。
騒音性能
各試験タイヤを、欧州騒音規制条件(ECE R117)に準拠して車外での通過騒音を計測した。評価結果は、計測値の逆数を用い、比較例1を100とする指数で示した。この指数が大きいほど、騒音性能が優れていることを意味する。
各試験タイヤを、欧州騒音規制条件(ECE R117)に準拠して車外での通過騒音を計測した。評価結果は、計測値の逆数を用い、比較例1を100とする指数で示した。この指数が大きいほど、騒音性能が優れていることを意味する。
ウェット性能
水深1mm未満で散水したアスファルト路面のテストコースを、速度40~100km/時で走行し、テストドライバーがレーンチェンジ時及びコーナリング時における操舵性、並びに直進時における安定性についての官能評価を行った。ウェット性能は、従来のタイヤに見立てた比較例1を100とする指数で表示され、指数が大きいほどウェット性能に優れていることを示している。
水深1mm未満で散水したアスファルト路面のテストコースを、速度40~100km/時で走行し、テストドライバーがレーンチェンジ時及びコーナリング時における操舵性、並びに直進時における安定性についての官能評価を行った。ウェット性能は、従来のタイヤに見立てた比較例1を100とする指数で表示され、指数が大きいほどウェット性能に優れていることを示している。
235/60R18のサイズのタイヤの許容範囲は、騒音性能の指数が103以上、かつ、ウェット性能の指数が98以上であり、これを満たす場合を、騒音性能が向上しつつ、ウェット性能の低下を抑制できたと評価した。
比較例1と実施例1の比較から、第1のサイプ及び第2のサイプを備え、当該サイプに開口する面取り面のタイヤ周方向長さがタイヤ幅方向長さより長いことで、騒音性能が向上しつつ、ウェット性能の低下を抑制できることがわかる。
比較例3と実施例1の比較から、面取り面のタイヤ周方向長さがタイヤ幅方向長さより長いことで、ウェット性能が向上することがわかる。
比較例3と実施例1の比較から、面取り面のタイヤ周方向長さがタイヤ幅方向長さより長いことで、ウェット性能が向上することがわかる。
実施例1と実施例2の比較から、面取り面のタイヤ幅方向長さに対するタイヤ周方向長さに対する比が1を超え、10以下であることで、騒音性能が向上することがわかる。
実施例2と実施例3の比較から、面取り面81,83,85,87の間でのタイヤ周方向長さの相違により、騒音性能が向上することがわかる。
実施例3と実施例4の比較から、面取り面81,83,85,87が位置するタイヤ周方向の範囲の互いの重なりがないことで、騒音性能が向上することがわかる。
実施例4と実施例5の比較から、第2ミドルサイプの間隔数が第1ミドルサイプの間隔数より多いことで、ウェット性能が向上することがわかる。
実施例5と実施例6の比較から、第2の半トレッド領域が第1の半トレッド領域に対し車両外側に配置されるようタイヤを車両に装着することで、騒音性能及びウェット性能が向上することがわかる。
実施例2と実施例3の比較から、面取り面81,83,85,87の間でのタイヤ周方向長さの相違により、騒音性能が向上することがわかる。
実施例3と実施例4の比較から、面取り面81,83,85,87が位置するタイヤ周方向の範囲の互いの重なりがないことで、騒音性能が向上することがわかる。
実施例4と実施例5の比較から、第2ミドルサイプの間隔数が第1ミドルサイプの間隔数より多いことで、ウェット性能が向上することがわかる。
実施例5と実施例6の比較から、第2の半トレッド領域が第1の半トレッド領域に対し車両外側に配置されるようタイヤを車両に装着することで、騒音性能及びウェット性能が向上することがわかる。
以上、本発明のタイヤについて詳細に説明したが、本発明のタイヤは上記実施形態あるいは実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
10 タイヤ
10T トレッド部
10S サイド部
10B ビード部
12 カーカスプライ
14 ベルト
16 ビードコア
18 トレッドゴム部材
20 サイドゴム部材
22 ビードフィラーゴム部材
24 リムクッションゴム部材
26 インナーライナーゴム部材
21 第1外側主溝(第1周方向主溝)
23 第1内側主溝(第2周方向主溝)
25 第2内側主溝
27 第2外側主溝
31,33 細溝
51 第1のサイプ(第1ミドルサイプ)
51a 主溝側連通部
51b 中間部
51c 細溝側接続部
53 第2のサイプ(センターサイプ)
55,57 第2ミドルサイプ
58,59 ショルダーラグ溝
58a,59a 閉塞端
58b,59b 主溝側部分
51a 閉塞端
71 第1のミドル領域(第1陸部の領域)
71A,71B 第1のミドル領域内の領域
73 センター領域(第2陸部の領域)
75 第2のミドル領域
77,79 ショルダー領域
77A 外側領域
77B 内側領域
81 第1の面取り面(第1ミドル面取り面)
83 第2の面取り面(センター面取り面)
85 面取り面(第2ミドル面取り面)
87 面取り面(第2ミドル面取り面)
89 第3の面取り面
82,84 壁面
10T トレッド部
10S サイド部
10B ビード部
12 カーカスプライ
14 ベルト
16 ビードコア
18 トレッドゴム部材
20 サイドゴム部材
22 ビードフィラーゴム部材
24 リムクッションゴム部材
26 インナーライナーゴム部材
21 第1外側主溝(第1周方向主溝)
23 第1内側主溝(第2周方向主溝)
25 第2内側主溝
27 第2外側主溝
31,33 細溝
51 第1のサイプ(第1ミドルサイプ)
51a 主溝側連通部
51b 中間部
51c 細溝側接続部
53 第2のサイプ(センターサイプ)
55,57 第2ミドルサイプ
58,59 ショルダーラグ溝
58a,59a 閉塞端
58b,59b 主溝側部分
51a 閉塞端
71 第1のミドル領域(第1陸部の領域)
71A,71B 第1のミドル領域内の領域
73 センター領域(第2陸部の領域)
75 第2のミドル領域
77,79 ショルダー領域
77A 外側領域
77B 内側領域
81 第1の面取り面(第1ミドル面取り面)
83 第2の面取り面(センター面取り面)
85 面取り面(第2ミドル面取り面)
87 面取り面(第2ミドル面取り面)
89 第3の面取り面
82,84 壁面
Claims (17)
- トレッド部にトレッドパターンを備えるタイヤであって、
前記トレッドパターンは、
タイヤ周方向に延び、タイヤ幅方向に間隔をあけて配置された第1周方向主溝及び第2周方向主溝と、
前記第1周方向主溝と前記第2周方向主溝との間の第1陸部の領域内をタイヤ幅方向に延び、タイヤ周方向に間隔をあけて配置された複数の第1のサイプと、
前記第1周方向主溝の側の前記第1陸部のタイヤ幅方向端部において、前記第1陸部のトレッド表面が前記第1周方向主溝に向かって傾斜した第1の面取り面であって、タイヤ周方向に複数設けられ、前記第1のサイプが前記第1周方向主溝の溝壁に達することなく開口した複数の第1の面取り面と、
前記第2周方向主溝に対して前記第1陸部の領域と反対側に位置する第2陸部の領域内をタイヤ幅方向に延び、タイヤ周方向に間隔をあけて配置された複数の第2のサイプと、
前記第2周方向主溝の側の前記第2陸部のタイヤ幅方向端部において、前記第2陸部のトレッド表面が前記第2周方向主溝に向かって傾斜した第2の面取り面であって、タイヤ周方向に複数設けられ、前記第2のサイプが前記第2周方向主溝の溝壁に達することなく開口した複数の第2の面取り面と、を備え、
前記第1の面取り面及び前記第2の面取り面のタイヤ周方向長さはタイヤ幅方向長さよりも長い、ことを特徴とするタイヤ。 - 前記面取り面のタイヤ周方向長さは、当該面取り面に開口する前記サイプがタイヤ周方向に隣り合う間隔の5~50%の長さである、請求項1に記載のタイヤ。
- 前記面取り面のタイヤ幅方向長さに対するタイヤ周方向長さの比は、1を超え、10以下である、請求項1又は2に記載のタイヤ。
- 前記第1の面取り面及び前記第2の面取り面のタイヤ周方向長さは互いに異なる、請求項1から3のいずれか1項に記載のタイヤ。
- 前記第1の面取り面及び前記第2の面取り面は、タイヤセンターラインに対しタイヤ幅方向の一方の側に配置され、
前記第1の面取り面及び前記第2の面取り面のうち、タイヤセンターラインから遠い方の面取り面のタイヤ周方向長さは、タイヤセンターラインに近い方の面取り面のタイヤ周方向長さより長い、請求項4に記載のタイヤ。 - 前記第1の面取り面及び前記第2の面取り面が位置するタイヤ周方向の範囲は互いに重なっていない、請求項4又は5に記載のタイヤ。
- 前記面取り面の最大深さは、当該面取り面に開口する前記サイプの深さより深い、請求項1から6のいずれか1項に記載のタイヤ。
- 前記面取り面は、タイヤ周方向の一方の側から他方の側に進むにつれてタイヤ幅方向の長さが短くなる略三角形状の面である、請求項1から7のいずれか1項に記載のタイヤ。
- 前記サイプは、前記面取り面に開口した当該サイプの開口端部において当該サイプの最大深さより浅い底上げ部を有している、請求項1から8のいずれか1項に記載のタイヤ。
- 前記トレッドパターンは、前記陸部の領域に、前記面取り面に隣接する当該陸部の壁面であって、当該面取り面に開口したサイプの開口端部から、当該面取り面が向かって傾斜する周方向主溝の溝壁にかけて、当該サイプの壁面から連続して延びる前記陸部の壁面をさらに備え、前記壁面はタイヤ径方向に対し傾斜することなく延在している、請求項1から9のいずれか1項に記載のタイヤ。
- 前記トレッドパターンは、前記陸部の領域に、前記面取り面に隣接する当該陸部の壁面であって、当該面取り面に開口したサイプの開口端部から、当該面取り面が向かって傾斜する周方向主溝の溝壁にかけて、当該サイプの壁面から連続して延びる前記陸部の壁面をさらに備え、前記壁面は、当該面取り面に開口した前記サイプの延在方向に沿って延在している、請求項1から10のいずれか1項に記載のタイヤ。
- 前記第1のサイプ及び前記第2のサイプは、タイヤ幅方向に対しタイヤ周方向の同じ側に傾斜している、請求項1から11のいずれか1項に記載のタイヤ。
- 前記トレッドパターンは、前記第1陸部の領域内をタイヤ周方向に延び、前記第1周方向主溝及び前記第2周方向主溝よりも溝幅が狭い周方向細溝を備え、
前記第1のサイプは、前記第1周方向主溝と前記周方向細溝との間の領域内に配置され、前記周方向細溝と接続されている、請求項1から12のいずれか1項に記載のタイヤ。 - 前記トレッドパターンは、前記周方向細溝によりタイヤ幅方向に二分された前記第1陸部の領域のうち前記第1のサイプが配置された領域の前記周方向細溝の側のタイヤ幅方向端部において、トレッド表面が前記周方向細溝に向かって傾斜した第3の面取り面であって、タイヤ周方向に複数設けられ、前記第1のサイプの前記周方向細溝との接続端部とタイヤ周方向に隣接する複数の第3の面取り面を備える、請求項13に記載のタイヤ。
- 前記第3の面取り面のタイヤ周方向長さは、前記第1の面取り面及び前記第2の面取り面のタイヤ周方向長さよりも短い、請求項14に記載のタイヤ。
- 前記第3の面取り面の最大深さは、前記第1のサイプの深さよりも浅い、請求項14又は15に記載のタイヤ。
- 前記トレッドパターンは、前記陸部の領域内をタイヤ幅方向に延びるラグ溝を備えていない、請求項1から16のいずれか1項に記載のタイヤ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080084139.2A CN114829163B (zh) | 2019-12-13 | 2020-12-07 | 轮胎 |
JP2020568486A JPWO2021117655A1 (ja) | 2019-12-13 | 2020-12-07 | |
DE112020005271.0T DE112020005271T5 (de) | 2019-12-13 | 2020-12-07 | Reifen |
US17/757,039 US20230020227A1 (en) | 2019-12-13 | 2020-12-07 | Tire |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019225701 | 2019-12-13 | ||
JP2019-225701 | 2019-12-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021117655A1 true WO2021117655A1 (ja) | 2021-06-17 |
Family
ID=76330347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/045393 WO2021117655A1 (ja) | 2019-12-13 | 2020-12-07 | タイヤ |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230020227A1 (ja) |
JP (1) | JPWO2021117655A1 (ja) |
CN (1) | CN114829163B (ja) |
DE (1) | DE112020005271T5 (ja) |
WO (1) | WO2021117655A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003170709A (ja) * | 2001-12-07 | 2003-06-17 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2009061985A (ja) * | 2007-09-07 | 2009-03-26 | Bridgestone Corp | 空気入りタイヤ |
JP2014073706A (ja) * | 2012-10-02 | 2014-04-24 | Sumitomo Rubber Ind Ltd | 空気入りタイヤ |
JP2017132317A (ja) * | 2016-01-26 | 2017-08-03 | 住友ゴム工業株式会社 | タイヤ |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4331345B2 (ja) * | 1999-09-08 | 2009-09-16 | 株式会社ブリヂストン | 方向性パターンを有する空気入りタイヤ |
JP5333510B2 (ja) * | 2011-04-27 | 2013-11-06 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP4905599B1 (ja) * | 2011-04-27 | 2012-03-28 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP5796655B1 (ja) * | 2014-03-28 | 2015-10-21 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP2015189349A (ja) * | 2014-03-28 | 2015-11-02 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP2017024542A (ja) * | 2015-07-22 | 2017-02-02 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP6790496B2 (ja) | 2016-06-24 | 2020-11-25 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP7069995B2 (ja) * | 2018-04-10 | 2022-05-18 | 住友ゴム工業株式会社 | タイヤ |
-
2020
- 2020-12-07 WO PCT/JP2020/045393 patent/WO2021117655A1/ja active Application Filing
- 2020-12-07 DE DE112020005271.0T patent/DE112020005271T5/de active Granted
- 2020-12-07 US US17/757,039 patent/US20230020227A1/en active Pending
- 2020-12-07 JP JP2020568486A patent/JPWO2021117655A1/ja active Pending
- 2020-12-07 CN CN202080084139.2A patent/CN114829163B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003170709A (ja) * | 2001-12-07 | 2003-06-17 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2009061985A (ja) * | 2007-09-07 | 2009-03-26 | Bridgestone Corp | 空気入りタイヤ |
JP2014073706A (ja) * | 2012-10-02 | 2014-04-24 | Sumitomo Rubber Ind Ltd | 空気入りタイヤ |
JP2017132317A (ja) * | 2016-01-26 | 2017-08-03 | 住友ゴム工業株式会社 | タイヤ |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021117655A1 (ja) | 2021-06-17 |
CN114829163B (zh) | 2024-02-09 |
DE112020005271T5 (de) | 2022-07-28 |
CN114829163A (zh) | 2022-07-29 |
US20230020227A1 (en) | 2023-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6375851B2 (ja) | 空気入りタイヤ | |
JP6375850B2 (ja) | 空気入りタイヤ | |
JP6930241B2 (ja) | 空気入りタイヤ | |
KR20110116977A (ko) | 공기 타이어 | |
WO2015190206A1 (ja) | 空気入りタイヤ | |
US11724550B2 (en) | Pneumatic tire | |
JP6446979B2 (ja) | 空気入りタイヤ | |
JP6421652B2 (ja) | 空気入りタイヤ | |
JP7339550B2 (ja) | 空気入りタイヤ | |
WO2021117653A1 (ja) | タイヤ | |
WO2019203067A1 (ja) | 空気入りタイヤ | |
JP6446980B2 (ja) | 空気入りタイヤ | |
JPWO2020013152A1 (ja) | 空気入りタイヤ | |
WO2021117655A1 (ja) | タイヤ | |
WO2021117659A1 (ja) | タイヤ | |
JP7035550B2 (ja) | 空気入りタイヤ | |
WO2020129549A1 (ja) | 空気入りタイヤ | |
WO2020170466A1 (ja) | 空気入りタイヤ | |
WO2019203066A1 (ja) | 空気入りタイヤ | |
WO2019069800A1 (ja) | 空気入りタイヤ | |
JP7230809B2 (ja) | 空気入りタイヤ | |
JP6881509B2 (ja) | 空気入りタイヤ | |
JP6919666B2 (ja) | 空気入りタイヤ | |
WO2020250924A1 (ja) | タイヤ | |
WO2020171233A1 (ja) | 空気入りタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020568486 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20899149 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20899149 Country of ref document: EP Kind code of ref document: A1 |