WO2021115027A1 - 一种amt换挡过程控制方法 - Google Patents

一种amt换挡过程控制方法 Download PDF

Info

Publication number
WO2021115027A1
WO2021115027A1 PCT/CN2020/128899 CN2020128899W WO2021115027A1 WO 2021115027 A1 WO2021115027 A1 WO 2021115027A1 CN 2020128899 W CN2020128899 W CN 2020128899W WO 2021115027 A1 WO2021115027 A1 WO 2021115027A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
tcu
mcu
control
shift
Prior art date
Application number
PCT/CN2020/128899
Other languages
English (en)
French (fr)
Inventor
张瑞捷
胡宇辉
彭建鑫
刘贤强
徐梦天
胡宇涛
Original Assignee
北理慧动(常熟)车辆科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北理慧动(常熟)车辆科技有限公司 filed Critical 北理慧动(常熟)车辆科技有限公司
Publication of WO2021115027A1 publication Critical patent/WO2021115027A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/18Preventing unintentional or unsafe shift, e.g. preventing manual shift from highest gear to reverse gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the technical field of vehicle power system control specifically relates to an AMT (Automatic mechanical transmission) shift process control method compatible with pure electric and hybrid systems.
  • TCU control shift motors are generally used to drive shift actuators to control the shift process.
  • the traditional control method is to perform closed-loop tracking of shift displacement through PID control methods to output a reasonable PWM duty cycle.
  • the AMT gearbox has begun to adopt the shift mode without synchronizer, that is, it is changed to a combined sleeve form. Combined gear shifting is prone to top gear phenomenon, which leads to long gear shifting time and even gear shifting failure.
  • the present invention proposes an AMT shift process control method, and proposes a shift drive control logic with active control as the main and PI control as the auxiliary.
  • the PI control method can more effectively shorten the shift time; the “random torque control with limited threshold range” mode is proposed in the gear shift stage, which effectively avoids the phenomenon of top gear, and promotes the shortening of shift time and gear shifting. Reduction of impact.
  • the invention discloses an AMT shift process control system, which includes two independent control units, namely TCU and MCU.
  • the TCU is connected with a shift motor
  • the shift motor is installed on a shift actuator
  • the MCU is connected with a drive motor
  • the TCU constantly judges whether to update the target gear according to the collected signals including vehicle speed, accelerator pedal opening, and vehicle acceleration;
  • TCU sends torque unloading commands, free mode commands, speed control commands, random torque control commands, torque loading commands, and sending no control commands to the MCU.
  • the invention discloses an AMT gear shifting process control method, which includes:
  • the TCU continuously judges whether to update the target gear according to the collected signals including vehicle speed, accelerator pedal opening, and vehicle acceleration;
  • TCU sends a torque unloading instruction to MCU, and then determines whether the drive motor torque is lower than the free state torque threshold. If the judgement is no, then update the TCU again and send the torque unloading instruction to the MCU. step;
  • the TCU In the free mode or neutral shift step, when it is confirmed that the drive motor torque is lower than the free state torque threshold, the TCU sends a free mode command to the MCU, and at the same time the TCU performs active torque control on the shift motor; if the shift displacement does not enter the neutral threshold range, then Wait; when the shift displacement enters the neutral threshold range, the TCU performs torque brake control on the shift motor.
  • the TCU sends a speed regulation command to the MCU, and at the same time the TCU performs PI control on the shift motor to ensure that the displacement is in the neutral range. If the speed synchronization state is not reached, continue to update the TCU to the MCU Send speed control commands and PI control of the TCU to the shift motor.
  • the TCU sends a random torque control command that limits the threshold range to the MCU, and at the same time the TCU performs active torque control on the shift motor; if the shift displacement does not enter the target gear threshold range, wait; When the shift displacement enters the target gear threshold range, the TCU performs torque offset control on the shift motor.
  • the TCU sends a torque load command to the MCU, and then determines whether the drive motor torque is greater than the load torque threshold. If the judgment is no, the TCU is updated again to send a torque load command operation to the MCU; when the drive motor torque is confirmed When it is greater than the load torque threshold, the TCU sends a non-control command to the MCU, and the vehicle resumes normal driving.
  • the AMT (Automatic mechanical transmission) shifting process control method compatible with pure electric and hybrid systems of the present invention performs active torque control on the shifting motor during the shifting and shifting stages of the shifting process to realize the precise positioning of the shifting actuator
  • the assisted PI control algorithm ensures that the current gear is in neutral during the speed adjustment stage, and a random torque control method with a limited threshold range is designed for the drive motor in the gear shift stage to avoid the phenomenon of top teeth during the combined gear shifting process, thereby maximizing It shortens the shift time, improves the success rate of gear shift and the dynamics of the whole vehicle.
  • the AMT control system of the present invention not only has no clutch, but also has no synchronizer, which reduces the cost of the gearbox;
  • the motor control in the prior art gear shifting process adopts the torque mode.
  • the present invention adopts the alternate use of the torque mode and the rotational speed mode according to different stages during the shifting process, and in order to solve the problem of canceling the top gear of the synchronizer
  • the “random torque control” mode with limited threshold range is specially designed.
  • Figure 1 is a flow chart of the present invention
  • Figure 2 is a diagram of the minimal carrier architecture of the present invention.
  • the minimum carrier structure of the control method is shown in Figure 1, including two independent control units-TCU (AMT controller) and MCU (motor controller).
  • the TCU is connected to the shift motor through a wiring harness.
  • the shift motor is installed in the shift motor.
  • the MCU is connected to the drive motor through a wire harness, and data transmission and instruction transmission are carried out between the TCU and the MCU through the CAN bus.
  • the control method adopts the following steps:
  • Step 1 The driver drives the vehicle to drive normally by manipulating the accelerator pedal and the brake pedal;
  • Step 2 the TCU continuously judges whether to update the target gear according to the collected vehicle speed, accelerator pedal opening, vehicle acceleration and other signals;
  • Step 3 When the target gear is updated, the TCU sends a torque unloading command to the MCU, and then judges whether the drive motor torque is lower than the free state torque threshold, and if the judgement is no, the TCU is updated again to send a torque unloading command to the MCU;
  • Step 4 When it is confirmed that the drive motor torque is lower than the free state torque threshold, the TCU sends a free mode command to the MCU, and at the same time the TCU performs active torque control on the shift motor; if the shift displacement does not enter the neutral threshold range, wait; When the gear displacement enters the neutral gear threshold range, the TCU performs torque "brake” control on the shift motor;
  • Step 5 After the shift stage is completed, the TCU sends a speed control command to the MCU. At the same time, the TCU performs PI control on the shift motor to ensure that the displacement is in the neutral range. If the speed synchronization state is not reached, continue to update the TCU to send the speed control command to the MCU and PI control of TCU to shift motor;
  • Step 6 When the speed synchronization is confirmed, the TCU sends a random torque control command that limits the threshold range to the MCU, and at the same time the TCU performs active torque control on the shift motor; if the shift displacement does not enter the target gear threshold range, wait; When the gear displacement enters the target gear threshold range, the TCU performs torque "offset" control on the shift motor;
  • Step 7 After the gear-in phase is completed, the TCU sends a torque loading command to the MCU, and then determines whether the drive motor torque is greater than the loading torque threshold. If the judgment is no, the TCU is updated again to send a torque loading command to the MCU;
  • Step 8 When it is confirmed that the drive motor torque is greater than the load torque threshold, the TCU sends a non-control instruction to the MCU, and the vehicle resumes normal driving.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种AMT换挡过程控制系统及方法,包括两个独立的控制单元即TCU和MCU,TCU与换挡电机相连,换挡电机安装在换挡执行机构上,MCU与驱动电机相连,TCU和MCU之间通过CAN总线进行数据传输和指令传递;TCU根据采集到信号包括车速、加速踏板开度、车辆加速,不断判断是否更新目标挡位;TCU向MCU发送扭矩卸载指令、自由模式指令、调速指令、随机扭矩控制指令、扭矩加载指令、发送不控制指令。本发明在换挡过程的摘挡和挂挡阶段对换挡电机进行主动扭矩控制实现换挡执行机构的精确定位同时辅助PI控制算法提高挂挡成功率和整车动力性。

Description

一种AMT换挡过程控制方法 技术领域
车辆动力系统控制技术领域,具体涉及一种兼容纯电动、混动系统的AMT(Automatic mechanical transmission)换挡过程控制方法。
背景技术
针对新能源汽车的AMT产品,目前普遍采用TCU控制换挡电机驱动换挡执行机构进行换挡过程控制,传统的控制方式是通过PID控制方法对换挡位移进行闭环跟踪从而输出合理的PWM占空比控制换挡电机,由于换挡执行机构本身存在迟滞响应,换挡全程控制时间较长;另外为进一步降低成本,AMT变速箱开始采用无同步器换挡方式,即改为结合套形式,而结合套换挡很容易出现顶齿现象,导致挂挡时间长甚至挂挡失败。
发明内容
1、本发明的目的
本发明为了解决挂挡时间长甚至挂挡失败的技术问题,而提出了一种AMT换挡过程控制方法,提出了主动控制为主,PI控制为辅的换挡驱动控制逻辑,相较于传统的PI控制方法,能够更加有效的缩短换挡时间;挂档阶段提出了“限定阈值范围的随机扭矩控制”模式,有效避免了顶齿现象的发生,侧面促进了换挡时间的缩短和挂档冲击的减小。
2、本发明所采用的技术方案
本发明公开了一种AMT换挡过程控制系统,包括两个独立的控制单元即TCU和MCU,TCU与换挡电机相连,换挡电机安装在换挡执行机构上,MCU与驱动电机相连,TCU和MCU之间通过CAN总线进行数据传输和指令传递;
TCU根据采集到信号包括车速、加速踏板开度、车辆加速,不断判断是否更新目标挡位;
TCU向MCU发送扭矩卸载指令、自由模式指令、调速指令、随机扭矩控制指令、扭矩加载指令、发送不控制指令。
本发明公开了一种AMT换挡过程控制方法,包括:
更新目标挡位步骤,在正常行驶过程中,TCU根据采集到信号包括车速、加速踏板开度、车辆加速,不断判断是否更新目标挡位;
发送扭矩卸载指令步骤,当目标挡位更新时,TCU向MCU发送扭矩卸载指令,然后判断驱动电机扭矩是否低于自由状态扭矩阈值,如果判断为否,则再次更新TCU向MCU发送扭矩卸载指令操作步骤;
自由模式或空挡切换步骤,当确认驱动电机扭矩低于自由状态扭矩阈值时,TCU向MCU发送自由模式指令,同时TCU对换挡电机进行主动扭矩控制;如果换挡位移没有进入空挡阈值范围,则等待;当换挡位移进入空挡阈值范围时,TCU对换挡电机进行扭矩刹车控制。
更进一步,还包括刹车控制后,摘挡阶段完成,TCU向MCU发送调速指令,同时TCU对换挡电机进行PI控制保证位移处于空挡范围,如果未达到转速同步状态,则继续更新TCU向MCU发送调速指令以及TCU对换挡电机的PI控制。
更进一步,PI控制直至确认转速同步时,TCU向MCU发送限定阈值范围的随机扭矩控制指令,同时TCU对换挡电机进行主动扭矩控制;如果换挡位移未进入目标挡位阈值范围,则等待;当换挡位移进入目标挡位阈值范围时,TCU对换挡电机进行扭矩抵消控制。
更进一步,挂挡阶段完成后,TCU向MCU发送扭矩加载指令,然后判断驱动电机扭矩是否大于加载扭矩阈值,如果判断为否,则再次更新TCU向MCU发送扭矩加载指令操作;当确认驱动电机扭矩大于加载扭矩阈值时,TCU向MCU发送不控制指令,车辆恢复正常行驶。
3、本发明所采用的有益效果
本发明的兼容纯电动、混动系统的AMT(Automatic mechanical transmission)换挡过程控制方法,在换挡过程的摘挡和挂挡阶段对换挡电机进行主动扭矩控制实现换挡执行机构的精确定位同时辅助PI控制算法在调速阶段保证当前挡位处于空挡,并且配合挂挡阶段针对驱动电机设计了限定阈值范围的随机扭矩控制方法,避免结合套挂挡过程中出现顶齿现象,从而最大程度上缩短换挡时间,提高挂挡成功率和整车动力性。
(1)本发明的AMT控制系统不光无离合器,同时也无同步器,降低了变速箱的成本;
(2)现有技术的换挡过程中电机的控制均采用扭矩模式,本发明在换挡过程中根据不同的阶段采用了扭矩模式和转速模式的交替使用,而为了解决取消同步器的顶齿的问题,专门设计了限定阈值范围的随机扭矩控制”模式。
附图说明
图1为本发明流程图;
图2为本发明最小载体架构图。
具体实施方式
下面结合本发明实例中的附图,对本发明实例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域技术人员在没有做创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
下面将结合附图对本发明实例作进一步地详细描述。
实施例1
该控制方法最小载体架构如图1所示,包括两个独立的控制单元——TCU(AMT控制器)和MCU(电机控制器),TCU通过线束与换挡电机相连,换挡电机安装在换挡执行机构上,MCU通过线束与驱动电机相连,TCU和MCU之间通过CAN总线进行数据传输和指令传递。
控制方法采用如下步骤:
步骤1、驾驶员通过操纵加速踏板和制动踏板驱动车辆正常行驶;
步骤2、在正常行驶过程中,TCU根据采集到的车速、加速踏板开度、车辆加速度等信号不断判断是否更新目标挡位;
步骤3、当目标挡位更新时,TCU向MCU发送扭矩卸载指令,然后判断驱动电机扭矩是否低于自由状态扭矩阈值,如果判断为否,则再次更新TCU向MCU发送扭矩卸载指令操作;
步骤4、当确认驱动电机扭矩低于自由状态扭矩阈值时,TCU向MCU发送自由模式指令,同时TCU对换挡电机进行主动扭矩控制;如果换挡位移没有进入空挡阈值范围,则等待;当换挡位移进入空挡阈值范围时,TCU对换挡电机进行扭矩“刹车”控制;
步骤5、摘挡阶段完成后,TCU向MCU发送调速指令,同时TCU对换挡电 机进行PI控制保证位移处于空挡范围,如果未达到转速同步状态,则继续更新TCU向MCU发送调速指令以及TCU对换挡电机的PI控制;
步骤6、当确认转速同步时,TCU向MCU发送限定阈值范围的随机扭矩控制指令,同时TCU对换挡电机进行主动扭矩控制;如果换挡位移未进入目标挡位阈值范围,则等待;当换挡位移进入目标挡位阈值范围时,TCU对换挡电机进行扭矩“抵消”控制;
步骤7、挂挡阶段完成后,TCU向MCU发送扭矩加载指令,然后判断驱动电机扭矩是否大于加载扭矩阈值,如果判断为否,则再次更新TCU向MCU发送扭矩加载指令操作;
步骤8、当确认驱动电机扭矩大于加载扭矩阈值时,TCU向MCU发送不控制指令,车辆恢复正常行驶。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (8)

  1. 一种AMT换挡过程控制系统,其特征在于:包括两个独立的控制单元即TCU和MCU,TCU与换挡电机相连,换挡电机安装在换挡执行机构上,MCU与驱动电机相连,TCU和MCU之间通过CAN总线进行数据传输和指令传递;
    TCU根据采集到信号包括车速、加速踏板开度、车辆加速,不断判断是否更新目标挡位;TCU向MCU发送扭矩卸载指令、自由模式指令、调速指令、随机扭矩控制指令、扭矩加载指令、发送不控制指令;
    其中发送扭矩卸载指令,当目标挡位更新时,TCU向MCU发送扭矩卸载指令,然后判断驱动电机扭矩是否低于自由状态扭矩阈值,如果判断为否,则再次更新TCU向MCU发送扭矩卸载指令操作步骤;
    其中自由模式或空挡切换,当确认驱动电机扭矩低于自由状态扭矩阈值时,TCU向MCU发送自由模式指令,同时TCU对换挡电机进行主动扭矩控制;如果换挡位移没有进入空挡阈值范围,则等待;当换挡位移进入空挡阈值范围时,TCU对换挡电机进行扭矩刹车控制。
  2. 根据权利要求1所述的AMT换挡过程控制系统,其特征在于:还包括刹车控制后,摘挡阶段完成,TCU向MCU发送调速指令,同时TCU对换挡电机进行PI控制保证位移处于空挡范围,如果未达到转速同步状态,则继续更新TCU向MCU发送调速指令以及TCU对换挡电机的PI控制。
  3. 根据权利要求2所述的AMT换挡过程控制系统,其特征在于:
    PI控制直至确认转速同步时,TCU向MCU发送限定阈值范围的随机扭矩控制指令,同时TCU对换挡电机进行主动扭矩控制;如果换挡位移未进入目标挡位阈值范围,则等待;当换挡位移进入目标挡位阈值范围时,TCU对换挡电机进行扭矩抵消控制。
  4. 根据权利要求1所述的AMT换挡过程控制系统,其特征在于:
    挂挡阶段完成后,TCU向MCU发送扭矩加载指令,然后判断驱动电机扭矩是否大于加载扭矩阈值,如果判断为否,则再次更新TCU向MCU发送扭矩加载指令操作;当确认驱动电机扭矩大于加载扭矩阈值时,TCU向MCU发送不控制指令,车辆恢复正常行驶。
  5. 一种AMT换挡过程控制方法,其特征在于包括:
    更新目标挡位步骤,在正常行驶过程中,TCU根据采集到信号包括车速、加 速踏板开度、车辆加速,不断判断是否更新目标挡位;
    发送扭矩卸载指令步骤,当目标挡位更新时,TCU向MCU发送扭矩卸载指令,然后判断驱动电机扭矩是否低于自由状态扭矩阈值,如果判断为否,则再次更新TCU向MCU发送扭矩卸载指令操作步骤;
    自由模式或空挡切换步骤,当确认驱动电机扭矩低于自由状态扭矩阈值时,TCU向MCU发送自由模式指令,同时TCU对换挡电机进行主动扭矩控制;如果换挡位移没有进入空挡阈值范围,则等待;当换挡位移进入空挡阈值范围时,TCU对换挡电机进行扭矩刹车控制。
  6. 根据权利要求5所述的AMT换挡过程控制方法,其特征在于:
    还包括刹车控制后,摘挡阶段完成,TCU向MCU发送调速指令,同时TCU对换挡电机进行PI控制保证位移处于空挡范围,如果未达到转速同步状态,则继续更新TCU向MCU发送调速指令以及TCU对换挡电机的PI控制。
  7. 根据权利要求6所述的AMT换挡过程控制方法,其特征在于:
    PI控制直至确认转速同步时,TCU向MCU发送限定阈值范围的随机扭矩控制指令,同时TCU对换挡电机进行主动扭矩控制;如果换挡位移未进入目标挡位阈值范围,则等待;当换挡位移进入目标挡位阈值范围时,TCU对换挡电机进行扭矩抵消控制。
  8. 根据权利要求1所述的AMT换挡过程控制方法,其特征在于:
    挂挡阶段完成后,TCU向MCU发送扭矩加载指令,然后判断驱动电机扭矩是否大于加载扭矩阈值,如果判断为否,则再次更新TCU向MCU发送扭矩加载指令操作;当确认驱动电机扭矩大于加载扭矩阈值时,TCU向MCU发送不控制指令,车辆恢复正常行驶。
PCT/CN2020/128899 2019-12-09 2020-11-16 一种amt换挡过程控制方法 WO2021115027A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911250612.5 2019-12-09
CN201911250612.5A CN110949142B (zh) 2019-12-09 2019-12-09 一种amt换挡过程控制方法

Publications (1)

Publication Number Publication Date
WO2021115027A1 true WO2021115027A1 (zh) 2021-06-17

Family

ID=69980435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128899 WO2021115027A1 (zh) 2019-12-09 2020-11-16 一种amt换挡过程控制方法

Country Status (2)

Country Link
CN (1) CN110949142B (zh)
WO (1) WO2021115027A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113442926A (zh) * 2021-08-12 2021-09-28 安徽江淮汽车集团股份有限公司 智能辅助换挡方法
CN113609710A (zh) * 2021-09-09 2021-11-05 安徽江淮汽车集团股份有限公司 动力仿真方法、动力底盘仿真系统及车身域测试系统
CN113757358A (zh) * 2021-08-05 2021-12-07 东风汽车集团股份有限公司 车辆及其双离合自动变速箱的换挡控制方法、装置和系统
CN114165581A (zh) * 2021-11-04 2022-03-11 潍柴动力股份有限公司 一种amt变速箱的换挡方法、装置、存储介质及终端
CN114165580A (zh) * 2021-11-04 2022-03-11 潍柴动力股份有限公司 一种amt变速箱的换挡方法、装置、存储介质及终端
CN114633634A (zh) * 2022-02-24 2022-06-17 一汽解放汽车有限公司 电机摘档控制方法、装置、计算机设备和存储介质
CN114704638A (zh) * 2022-04-14 2022-07-05 一汽解放汽车有限公司 一种车辆控制方法、装置、设备及介质
CN114857255A (zh) * 2022-05-09 2022-08-05 潍柴动力股份有限公司 Amt电机控制方法、装置、电子设备、程序及车辆
CN116001590A (zh) * 2022-12-30 2023-04-25 中联重科股份有限公司 多电驱桥车辆的动力控制方法及系统
CN116146701A (zh) * 2023-02-23 2023-05-23 一汽解放汽车有限公司 一种车辆控制方法、装置、电子设备及存储介质
CN116201890A (zh) * 2023-05-05 2023-06-02 聊城大学 一种多挡amt纯电动城市客车自适应换挡规律设计方法
CN117404464A (zh) * 2023-12-13 2024-01-16 质子汽车科技有限公司 一种新能源车换挡控制方法和电子设备
CN117553116A (zh) * 2023-11-14 2024-02-13 山东雷驰新能源汽车有限公司 一种新能源汽车amt变速箱静态挂挡失败后修正方法
CN117681683A (zh) * 2024-02-02 2024-03-12 潍柴动力股份有限公司 一种动力总成的换挡控制方法、装置及车辆
CN116146701B (zh) * 2023-02-23 2024-05-28 一汽解放汽车有限公司 一种车辆控制方法、装置、电子设备及存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110949142B (zh) * 2019-12-09 2021-10-22 北理慧动(常熟)车辆科技有限公司 一种amt换挡过程控制方法
CN113531109B (zh) * 2020-04-14 2023-03-31 宇通客车股份有限公司 一种主动同步式换挡控制方法、系统及汽车
CN114165584B (zh) * 2021-11-05 2023-07-18 潍柴动力股份有限公司 一种amt变速箱、amt变速箱的换挡控制方法、装置及介质
CN114483945B (zh) * 2022-02-17 2023-06-09 一汽解放汽车有限公司 一种纯电车辆的amt动态换挡控制方法
CN114607762A (zh) * 2022-03-03 2022-06-10 一汽解放汽车有限公司 车辆换挡控制方法、装置、计算机设备和存储介质
CN114559943B (zh) * 2022-04-15 2024-04-26 安徽华菱汽车有限公司 车辆及其amt副箱行车掉档恢复控制方法、系统和装置
CN115009281A (zh) * 2022-07-08 2022-09-06 质子汽车科技有限公司 一种换挡控制方法及装置、变速箱控制器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104442822A (zh) * 2014-12-05 2015-03-25 合肥工业大学 一种电动汽车用电机-变速器集成驱动系统的自动换挡控制系统及其方法
CN105972199A (zh) * 2016-07-13 2016-09-28 北京理工华创电动车技术有限公司 一种无离合器amt控制系统和方法
CN106114493A (zh) * 2016-07-28 2016-11-16 长春孔辉汽车科技股份有限公司 一种电动汽车amt换挡过程控制方法
CN107606129A (zh) * 2017-08-17 2018-01-19 济宁中科先进技术研究院有限公司 电动车两挡变速箱自动换挡控制方法及其控制系统
DE102017124970A1 (de) * 2016-10-28 2018-05-03 Ford Global Technologies, Llc Verfahren und steuerung zum betreiben eines getriebes im leerlauf
CN108327703A (zh) * 2018-01-31 2018-07-27 上海交通大学 电驱动两挡机械式自动变速器控制系统及控制方法
CN108980332A (zh) * 2017-06-01 2018-12-11 上海众联能创新能源科技股份有限公司 纯电动客车的两挡机械式自动变速箱控制方法
CN110949142A (zh) * 2019-12-09 2020-04-03 北理慧动(常熟)车辆科技有限公司 一种amt换挡过程控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100747303B1 (ko) * 2005-11-11 2007-08-07 현대자동차주식회사 하이브리드 차량의 페일 세이프티 제어 시스템
JP5001566B2 (ja) * 2006-03-23 2012-08-15 三菱ふそうトラック・バス株式会社 電気自動車の制御装置
CN202806745U (zh) * 2012-06-14 2013-03-20 北京理工大学 一种混合动力车辆的分布式控制系统
JP6173875B2 (ja) * 2013-10-24 2017-08-02 日立オートモティブシステムズ株式会社 自動変速機のレンジ切換装置
KR20160065617A (ko) * 2014-12-01 2016-06-09 현대자동차주식회사 하이브리드 차량의 출발단 구현 실패를 방지하는 변속 제어방법
CN105179682B (zh) * 2015-08-25 2017-08-25 重庆长安汽车股份有限公司 一种两挡变速车辆的换挡控制方法及系统
CN106246902B (zh) * 2016-08-09 2018-05-11 王大方 短途纯电动汽车无离合器无同步器amt换挡控制方法
CN110525233B (zh) * 2019-09-04 2022-12-02 武汉理工通宇新源动力有限公司 一种带过渡环节的车用驱动电机换挡调速优化系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104442822A (zh) * 2014-12-05 2015-03-25 合肥工业大学 一种电动汽车用电机-变速器集成驱动系统的自动换挡控制系统及其方法
CN105972199A (zh) * 2016-07-13 2016-09-28 北京理工华创电动车技术有限公司 一种无离合器amt控制系统和方法
CN106114493A (zh) * 2016-07-28 2016-11-16 长春孔辉汽车科技股份有限公司 一种电动汽车amt换挡过程控制方法
DE102017124970A1 (de) * 2016-10-28 2018-05-03 Ford Global Technologies, Llc Verfahren und steuerung zum betreiben eines getriebes im leerlauf
CN108980332A (zh) * 2017-06-01 2018-12-11 上海众联能创新能源科技股份有限公司 纯电动客车的两挡机械式自动变速箱控制方法
CN107606129A (zh) * 2017-08-17 2018-01-19 济宁中科先进技术研究院有限公司 电动车两挡变速箱自动换挡控制方法及其控制系统
CN108327703A (zh) * 2018-01-31 2018-07-27 上海交通大学 电驱动两挡机械式自动变速器控制系统及控制方法
CN110949142A (zh) * 2019-12-09 2020-04-03 北理慧动(常熟)车辆科技有限公司 一种amt换挡过程控制方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113757358A (zh) * 2021-08-05 2021-12-07 东风汽车集团股份有限公司 车辆及其双离合自动变速箱的换挡控制方法、装置和系统
CN113442926A (zh) * 2021-08-12 2021-09-28 安徽江淮汽车集团股份有限公司 智能辅助换挡方法
CN113609710B (zh) * 2021-09-09 2024-02-27 安徽江淮汽车集团股份有限公司 动力仿真方法、动力底盘仿真系统及车身域测试系统
CN113609710A (zh) * 2021-09-09 2021-11-05 安徽江淮汽车集团股份有限公司 动力仿真方法、动力底盘仿真系统及车身域测试系统
CN114165581A (zh) * 2021-11-04 2022-03-11 潍柴动力股份有限公司 一种amt变速箱的换挡方法、装置、存储介质及终端
CN114165580A (zh) * 2021-11-04 2022-03-11 潍柴动力股份有限公司 一种amt变速箱的换挡方法、装置、存储介质及终端
CN114633634A (zh) * 2022-02-24 2022-06-17 一汽解放汽车有限公司 电机摘档控制方法、装置、计算机设备和存储介质
CN114633634B (zh) * 2022-02-24 2023-08-18 一汽解放汽车有限公司 电机摘档控制方法、装置、计算机设备和存储介质
CN114704638B (zh) * 2022-04-14 2023-08-22 一汽解放汽车有限公司 一种车辆控制方法、装置、设备及介质
CN114704638A (zh) * 2022-04-14 2022-07-05 一汽解放汽车有限公司 一种车辆控制方法、装置、设备及介质
CN114857255B (zh) * 2022-05-09 2024-05-17 潍柴动力股份有限公司 Amt电机控制方法、装置、电子设备、程序及车辆
CN114857255A (zh) * 2022-05-09 2022-08-05 潍柴动力股份有限公司 Amt电机控制方法、装置、电子设备、程序及车辆
CN116001590A (zh) * 2022-12-30 2023-04-25 中联重科股份有限公司 多电驱桥车辆的动力控制方法及系统
CN116146701A (zh) * 2023-02-23 2023-05-23 一汽解放汽车有限公司 一种车辆控制方法、装置、电子设备及存储介质
CN116146701B (zh) * 2023-02-23 2024-05-28 一汽解放汽车有限公司 一种车辆控制方法、装置、电子设备及存储介质
CN116201890A (zh) * 2023-05-05 2023-06-02 聊城大学 一种多挡amt纯电动城市客车自适应换挡规律设计方法
CN117553116A (zh) * 2023-11-14 2024-02-13 山东雷驰新能源汽车有限公司 一种新能源汽车amt变速箱静态挂挡失败后修正方法
CN117404464A (zh) * 2023-12-13 2024-01-16 质子汽车科技有限公司 一种新能源车换挡控制方法和电子设备
CN117404464B (zh) * 2023-12-13 2024-04-09 质子汽车科技有限公司 一种新能源车换挡控制方法和电子设备
CN117681683A (zh) * 2024-02-02 2024-03-12 潍柴动力股份有限公司 一种动力总成的换挡控制方法、装置及车辆

Also Published As

Publication number Publication date
CN110949142B (zh) 2021-10-22
CN110949142A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
WO2021115027A1 (zh) 一种amt换挡过程控制方法
JP5137239B2 (ja) ハイブリッド車両のアイドリングストップモードの制御方法
JP5018971B2 (ja) 動力伝達装置
CN110562238B (zh) 混合动力汽车发动机自动启动控制方法
US20070056784A1 (en) Engine starting control device for a hybrid vehicle
JP6769456B2 (ja) ハイブリッド車両の制御装置
KR20170042386A (ko) 듀얼클러치식 하이브리드차량의 변속 제어방법 및 그 제어시스템
JP2008221879A (ja) 車両の制御装置
JPWO2013118255A1 (ja) ハイブリッド車の変速制御装置および変速制御方法
EP2736785B1 (en) Method and controller for an electrically variable transmission
JP2008546599A (ja) 並列ハイブリッド推進動力装置の第1動力源および第2動力源の連結および連結解除を制御するための方法
JP2010520428A (ja) モータ乗物の駆動系を制御するための方法
JP5310115B2 (ja) 電動車両の制御装置
JP3454172B2 (ja) ハイブリッド車両の制御方法
US9988041B2 (en) System and method for controlling a vehicle powertrain
CN109552311B (zh) 基于多模制动器的混合动力汽车的换挡控制方法
CN112622871B (zh) 一种混合动力系统换挡控制方法
CN109849889A (zh) 功率分流式混合动力车辆混合动力驱动模式切换控制方法
CN107303807A (zh) 新能源汽车混合动力系统后驱电机离合器控制策略
CN111486230B (zh) 一种车辆、动力系统及换挡动力不中断的换挡方法
US20170335954A1 (en) Method for Operating a Vehicle Drive Train
CN110191831B (zh) 用于构建混合动力传动系的致动器处的扭矩设定点的方法
KR100980966B1 (ko) 하이브리드 차량의 변속 방법
WO2022252183A1 (zh) 混合动力系统的换挡控制方法及混合动力系统
CN110997381A (zh) 控制由混合动力车辆的热力发动机和非热力原动机触发蠕行行驶的时刻

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899762

Country of ref document: EP

Kind code of ref document: A1