WO2021114910A1 - Procédé de transfert de décapage pour nanoréseau d'oxyde métallique de grande surface - Google Patents

Procédé de transfert de décapage pour nanoréseau d'oxyde métallique de grande surface Download PDF

Info

Publication number
WO2021114910A1
WO2021114910A1 PCT/CN2020/123985 CN2020123985W WO2021114910A1 WO 2021114910 A1 WO2021114910 A1 WO 2021114910A1 CN 2020123985 W CN2020123985 W CN 2020123985W WO 2021114910 A1 WO2021114910 A1 WO 2021114910A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
nanoarray
substrate
array
base material
Prior art date
Application number
PCT/CN2020/123985
Other languages
English (en)
Chinese (zh)
Inventor
杨庭强
梁维源
范涛健
张家宜
康建龙
曾永宏
孟思
张斌
Original Assignee
深圳瀚光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳瀚光科技有限公司 filed Critical 深圳瀚光科技有限公司
Publication of WO2021114910A1 publication Critical patent/WO2021114910A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0014Array or network of similar nanostructural elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention claims the priority of the prior application of the application number 201911288794.5 filed on December 12, 2019 under the title of "A Method for Exfoliating and Transferring Large Area Metal Oxide Nanoarrays", and the content of the foregoing prior application is introduced by way of introduction. Incorporated into this text.
  • the invention relates to a stripping transfer method of a large-area metal oxide nano-array, belonging to the field of manufacturing nano-photoelectric devices.
  • Nanostructures such as metal oxide nanorods and nanosheets are arranged vertically, uniformly, and orderly on the base material to form metal oxide nanoarrays. They exhibit excellent performance in various fields such as solar cells, gas sensors, and photocatalysis. .
  • the preparation process of metal oxide nanoarrays on various substrate materials has been quite mature, but the lift-off transfer process of large-area metal oxide nanoarrays still needs to be developed and improved.
  • the simple and rapid stripping transfer of large-area metal oxide nanoarrays is beneficial to simplify the manufacturing process of optoelectronic devices and improve the integration and stability of the devices.
  • the present invention aims to provide a loose operating environment that can make the metal oxide nanoarray (such as the above-mentioned ZnO nanorod array) spontaneously separate from the base material, thereby achieving simple and rapid peeling And the method of transferring metal oxide nano-arrays.
  • the method of the present invention can realize that the metal oxide nano array prepared by the hydrothermal method is separated from the base material in a large area after annealing, so that the large area metal oxide nano array is simply and quickly transferred to the target substrate. No organic resin encapsulation was used in the transfer process, and no other equipment was used.
  • the exfoliation transfer method of the present invention is simpler than any reported method, and can transfer the metal oxide nanoarray to any target substrate, even a curved substrate, so that it is more suitable for large-scale and low-cost manufacturing of nanodevices.
  • the area of the metal oxide nanoarray that can be peeled and transferred is as high as 1 cm 2 .
  • the present invention provides a method for exfoliating and transferring a large-area metal oxide nanoarray, the method including the following steps:
  • the metal oxide nanoarray is peeled off into an organic binder or sol, and a target substrate is selected to pick up the separated metal oxide nanoarray and attach it to the surface of the target substrate.
  • Heat treatment is performed at a temperature of ⁇ 500° C. in an air atmosphere to remove residual organic matter, so as to realize the transfer of the metal oxide nano-array.
  • the hydrothermal precursor solution is prepared by mixing a nitrate solution of the corresponding metal of the metal oxide with an amine solution; wherein the amine solution includes but is not limited to cyclohexamethylenetetramine (HMTA) solution and Urea solution; wherein the substrate material includes but not limited to glass substrate and Si substrate, preferably FTO glass substrate or Si substrate; wherein the organic binder includes but not limited to Triton and terpineol, the sol is The metal oxide corresponds to a metal acetate sol.
  • HMTA cyclohexamethylenetetramine
  • the feature of the present invention is that the metal oxide nanoarray prepared by the hydrothermal method can be spontaneously separated from the substrate material in a large area, and can be easily peeled off into the organic binder or sol after heat treatment, and the target substrate is used for fishing to achieve a large area. Metal oxide nano-arrays are easily and quickly transferred.
  • the advantage of the patent of the present invention is that the present invention can realize the spontaneous separation of the large-area metal oxide nanoarray from the substrate material without the aid of organic resin and special equipment, so that it can be applied to any target substrate. Even transfer on curved substrates. This method is simpler than previously reported methods, making it more suitable for the preparation of large-scale, low-cost nanodevices.
  • FIG. 1 shows the XRD pattern of the ZnO seed layer prepared on the surface of the common glass substrate of Example 1.
  • Example 2 shows the XRD pattern of the ZnO nanorod array grown on the surface of the common glass substrate of Example 1.
  • Fig. 3 shows a photograph of the ZnO nanorod array of Example 1 being peeled off from a common glass substrate.
  • FIG. 4 shows the FESEM image of the ZnO nanorod array transferred to the surface of the curved ceramic tube of Example 1.
  • a layer of ZnO film was prepared by spin coating and annealing on the surface of a common glass substrate with an area of 4 cm 2 and annealed 5 times (Figure 1 shows the XRD pattern of the ZnO film).
  • the ordinary glass substrate spin-coated with the ZnO film was immersed in the hydrothermal precursor solution and kept at 90°C for 4 hours. After the hydrothermal reaction solution is naturally cooled to room temperature, the ordinary glass substrate is taken out, washed with deionized water, and dried.
  • the ordinary glass substrate on which the ZnO nanorod array was grown was annealed at 400°C for 30 minutes. After the temperature dropped to room temperature, it was found that the area of the ZnO nanorod array separated from the ordinary glass substrate increased significantly, up to 1cm 2 ( Figure 3) Shown).
  • the separated ZnO nanorod array is peeled from the glass substrate into the Triton adhesive.
  • the ZnO nanorod array can be bent freely in the Triton adhesive and exhibits good flexibility.
  • a curved ceramic tube is used to retrieve the ZnO nanorod array, and the ZnO nanorod array is spontaneously attached to the curved ceramic tube.
  • the curved ceramic tube is heat-treated at 400°C to realize the transfer of the large-area ZnO nanorod array to the curved ceramic tube.
  • the FESEM image showed that the structure of the ZnO nanorod array transferred to the curved ceramic tube was not damaged.
  • a layer of CuO film was prepared by spin coating-annealing method on the surface of FTO glass substrate with an area of 4 cm 2 by spin coating and annealing 5 times. Prepare 0.2 mol/L Cu(NO 3 ) 2 and 80 ml of HMTA aqueous solution, and mix these two solutions to obtain a hydrothermal precursor solution.
  • the FTO glass substrate spin-coated with CuO film was immersed in the hydrothermal precursor solution and kept at 90°C for 4 hours. After the hydrothermal reaction solution is naturally cooled to room temperature, the FTO glass substrate is taken out, washed with deionized water, and dried.
  • Figures 5 and 6 are the XRD patterns and FESEM images of the CuO nanoarray, respectively.
  • the FTO glass substrate on which the CuO nano-array is grown is annealed at 400° C. for 30 minutes. After the temperature drops to room temperature, it is found that the area of the CuO nano-array separated from the FTO glass substrate is significantly increased, up to 1 cm 2 .
  • the separated CuO nanoarray is peeled from the FTO glass substrate into the terpineol binder, and the CuO nanoarray can be bent freely in the terpineol binder, showing good flexibility.
  • a curved ceramic tube is used to pick up the CuO nano-array, and the CuO nano-array is spontaneously attached to the curved ceramic tube. Finally, the curved ceramic tube is heat-treated at 400°C to realize the transfer of the large-area CuO nano-array to the curved ceramic tube.
  • a layer of NiO film was prepared by spin coating-annealing method on the surface of Si substrate with an area of 4 cm 2 by spin coating and annealing 3 times. Prepare 0.15 mol/L Ni(NO 3 ) 2 and 90 ml of HMTA aqueous solution, and mix these two solutions to obtain a hydrothermal precursor solution.
  • the Si substrate spin-coated with NiO film was immersed in the hydrothermal precursor solution and kept at 90°C for 4 hours. After the hydrothermal reaction solution is naturally cooled to room temperature, the Si substrate is taken out, washed with deionized water, and dried.
  • NiO nanoarray By visually observing the dried Si substrate, it was found that part of the NiO nanoarray was separated from the Si substrate.
  • the phase and morphology of the NiO nanoarray can be known through XRD patterns and FESEM images.
  • the Si substrate on which the NiO nanoarray was grown was annealed at 500°C for 10 minutes. After the temperature dropped to room temperature, it was found that the area of the NiO nanoarray separated from the Si substrate increased significantly, reaching 1cm 2 .
  • the separated NiO nano-array is peeled from the Si substrate into the nickel acetate sol.
  • the NiO nano-array can be bent freely in the nickel acetate sol and exhibits good flexibility. Then, the NiO nano-array is picked up by the flexible polytetrafluoroethylene substrate with interdigital electrodes, and the NiO nano-array is spontaneously attached to the flexible polytetrafluoroethylene substrate.
  • the PTFE flexible substrate is heat-treated at 350°C to realize the transfer of the large-area NiO nano-array to the PTFE flexible substrate.
  • the FESEM image showed that the structure of the NiO nanoarray transferred to the flexible PTFE substrate was not damaged.
  • the spin coating-annealing method was used to spin-coat and anneal 3 times on the surface of a Si substrate with an area of 4 cm 2 to prepare a Co 3 O 4 film.
  • the Si substrate spin-coated with the Co 3 O 4 film was immersed in the hydrothermal precursor solution and kept at 95° C. for 6 hours. After the hydrothermal reaction solution is naturally cooled to room temperature, the Si substrate is taken out, washed with deionized water, and dried.
  • phase and morphology of the Co 3 O 4 nano-array can be known through XRD patterns and FESEM images.
  • the Si substrate on which the Co 3 O 4 nano-array was grown was annealed at 500° C. for 10 minutes. After the temperature dropped to room temperature, it was found that the area of the Co 3 O 4 nano-array separated from the Si substrate was significantly increased, reaching 1 cm 2 .
  • the separated Co 3 O 4 nano-array is peeled from the Si substrate into the cobalt acetate sol.
  • the Co 3 O 4 nano-array can be bent freely in the cobalt acetate sol and exhibits good flexibility.
  • a flexible polytetrafluoroethylene substrate with interdigital electrodes is used to harvest the Co 3 O 4 nano-array, and the Co 3 O 4 nano-array is spontaneously attached to the flexible polytetrafluoroethylene substrate.
  • the flexible polytetrafluoroethylene substrate is heat-treated at 300°C to realize the transfer of the large-area Co 3 O 4 nano-array to the flexible polytetrafluoroethylene substrate.
  • the FESEM image showed that the structure of the Co 3 O 4 nano-array transferred to the flexible polytetrafluoroethylene substrate was not damaged.
  • the beneficial effect of the present invention is that the present invention can realize the simple and rapid peeling and transfer of metal oxide nano-arrays with an area of 1 cm 2 without the aid of organic resins and special instruments and equipment, and can be transferred to curved substrates and flexible substrates. on.
  • This method is simpler than previously reported methods, making it more suitable for the preparation of large-scale, low-cost nanodevices, and is conducive to expanding the assembly form of nanodevices.

Abstract

La présente invention concerne un procédé de transfert de décapage pour un nanoréseau d'oxyde métallique de grande surface comprenant les étapes consistant à : (1) sélectionner un matériau de substrat ayant un taux de désadaptation de constante de maille cristalline supérieur à 5 % et une différence de coefficient de dilatation thermique supérieure à 5*10 -6K par rapport à l'oxyde métallique ; (2) pré-préparer un film de couche de germe d'oxyde métallique sur la surface du matériau de substrat, la température de recuit étant régulée à 200-500 °C ; (3) immerger dans la solution de précurseur hydrothermique le matériau de substrat ayant le film de couche de germe d'oxyde métallique préparé sur sa surface pour effectuer une réaction hydrothermique pour faire croître une couche de nanoréseau d'oxyde métallique sur la surface ; (4) réaliser un traitement thermique sur le nanoréseau d'oxyde métallique préparé à 200-500 °C pour obtenir une séparation du matériau de substrat ; et (5) décaper le nanoréseau d'oxyde métallique dans un liant organique ou un sol, sélectionner un substrat cible, retirer le nanoréseau d'oxyde métallique séparé et fixer celui-ci à la surface du substrat cible, puis réaliser un traitement thermique à 200-500 °C dans une atmosphère d'air pour éliminer les matières organiques résiduelles, de manière à réaliser le transfert du nanoréseau d'oxyde métallique.
PCT/CN2020/123985 2019-12-12 2020-10-27 Procédé de transfert de décapage pour nanoréseau d'oxyde métallique de grande surface WO2021114910A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911288794.5A CN111056527A (zh) 2019-12-12 2019-12-12 一种大面积金属氧化物纳米阵列的剥离转移方法
CN201911288794.5 2019-12-12

Publications (1)

Publication Number Publication Date
WO2021114910A1 true WO2021114910A1 (fr) 2021-06-17

Family

ID=70301571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123985 WO2021114910A1 (fr) 2019-12-12 2020-10-27 Procédé de transfert de décapage pour nanoréseau d'oxyde métallique de grande surface

Country Status (2)

Country Link
CN (1) CN111056527A (fr)
WO (1) WO2021114910A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111056527A (zh) * 2019-12-12 2020-04-24 深圳瀚光科技有限公司 一种大面积金属氧化物纳米阵列的剥离转移方法
CN114369252A (zh) * 2020-10-14 2022-04-19 中国科学院福建物质结构研究所 一种基于自牺牲金属氧化物薄膜模板制备金属-有机框架薄膜的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217391A (ja) * 2001-01-23 2002-08-02 Seiko Epson Corp 積層体の製造方法及び半導体装置
CN101319370A (zh) * 2008-06-24 2008-12-10 济南大学 一种控制氧化锌纳米棒/纳米管阵列取向和形貌特征的方法
CN105070352A (zh) * 2015-07-22 2015-11-18 西安交通大学 一种柔性超平透明导电薄膜及其制备方法
CN107611004A (zh) * 2017-08-14 2018-01-19 南京大学 一种制备自支撑GaN衬底材料的方法
CN108122870A (zh) * 2017-12-26 2018-06-05 中国人民解放军国防科技大学 散热结构及其制备方法和散热装置
CN108374200A (zh) * 2018-02-11 2018-08-07 绍兴文理学院 一种纳米线状有机单晶晶畴的制备方法
CN111056527A (zh) * 2019-12-12 2020-04-24 深圳瀚光科技有限公司 一种大面积金属氧化物纳米阵列的剥离转移方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2436398B (en) * 2006-03-23 2011-08-24 Univ Bath Growth method using nanostructure compliant layers and HVPE for producing high quality compound semiconductor materials
CN100454490C (zh) * 2006-09-30 2009-01-21 中国科学院合肥物质科学研究院 自剥离氮化镓衬底材料的制备方法
CN108517555B (zh) * 2017-12-29 2020-08-04 西安电子科技大学 基于范德华外延获得大面积高质量柔性自支撑单晶氧化物薄膜的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217391A (ja) * 2001-01-23 2002-08-02 Seiko Epson Corp 積層体の製造方法及び半導体装置
CN101319370A (zh) * 2008-06-24 2008-12-10 济南大学 一种控制氧化锌纳米棒/纳米管阵列取向和形貌特征的方法
CN105070352A (zh) * 2015-07-22 2015-11-18 西安交通大学 一种柔性超平透明导电薄膜及其制备方法
CN107611004A (zh) * 2017-08-14 2018-01-19 南京大学 一种制备自支撑GaN衬底材料的方法
CN108122870A (zh) * 2017-12-26 2018-06-05 中国人民解放军国防科技大学 散热结构及其制备方法和散热装置
CN108374200A (zh) * 2018-02-11 2018-08-07 绍兴文理学院 一种纳米线状有机单晶晶畴的制备方法
CN111056527A (zh) * 2019-12-12 2020-04-24 深圳瀚光科技有限公司 一种大面积金属氧化物纳米阵列的剥离转移方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG TINGQIANG, LIU YUELI, JIN WEI, HAN YIYANG, YANG SHUANG, CHEN WEN: "Investigation on the Transformation of Absorbed Oxygen at ZnO {101̅0} Surface Based on a Novel Thermal Pulse Method and Density Functional Theory Simulation", ACS SENSORS, vol. 2, no. 7, 28 July 2017 (2017-07-28), pages 1051 - 1059, XP055820319, ISSN: 2379-3694, DOI: 10.1021/acssensors.7b00363 *

Also Published As

Publication number Publication date
CN111056527A (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
WO2021114910A1 (fr) Procédé de transfert de décapage pour nanoréseau d'oxyde métallique de grande surface
US20200402796A1 (en) Epitaxial lift-off process of graphene-based gallium nitride
CN108517555B (zh) 基于范德华外延获得大面积高质量柔性自支撑单晶氧化物薄膜的方法
CN111137847B (zh) 一种屈曲微纳结构可调控的柔性功能氧化物薄膜制备方法
CN110467177B (zh) 复合石墨烯架构及其制备方法与应用
CN110690312A (zh) 生长在石墨烯基板上GaN纳米柱阵列的无损伤转移工艺获得柔性紫外探测器及方法
CN102104079A (zh) 一维ZnO/ZnS核壳结构纳米阵列以及单晶ZnS纳米管阵列的制备方法
Zhao et al. Nucleation and growth of ZnO nanorods on the ZnO-coated seed surface by solution chemical method
CN114203848A (zh) 一种柔性硒化锑太阳电池及其制备方法
CN105070664A (zh) 光电子器件ZnO/ZnS异质结纳米阵列膜制备方法
CN114180562B (zh) 一种石墨烯转移方法
CN108766630B (zh) 一种基于金属纳米线的柔性传感器、及其制备方法
CN110963484A (zh) 基于掺杂层辅助的大面积高质量石墨烯无损转移方法
CN210805800U (zh) 生长在石墨烯基板上GaN纳米柱阵列的柔性紫外探测器
CN111446363B (zh) 一种自支撑的三维自组装磁电复合薄膜结构及其制备方法
Wang et al. Growth behaviour of straight crystalline copper sulphide nanowires
WO2024066206A1 (fr) Procédé de préparation et utilisation d'une homojonction bidimensionnelle de sulfure de tungstène à double couche
CN109896543B (zh) 一种远程外延生长可转移钛酸钡单晶薄膜的方法
CN110224035A (zh) 一种异质结、其制备方法和应用
KR101548704B1 (ko) 실리콘 나노와이어 어레이, 리튬 이온전지용 음극 및 이의 제조방법
CN100435279C (zh) 一种大面积自支撑宽禁带半导体材料的制作方法
CN114887614A (zh) 一种高光学性能的ZnO柔性薄膜的制备方法
CN110620183B (zh) 一种钙钛矿钝化层的制备方法
KR101352648B1 (ko) Cis 또는 cigs 박막의 제조방법
CN210467888U (zh) 一种氮化硼封装的二维有机-无机异质结

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898247

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/12/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20898247

Country of ref document: EP

Kind code of ref document: A1