CN114887614A - 一种高光学性能的ZnO柔性薄膜的制备方法 - Google Patents

一种高光学性能的ZnO柔性薄膜的制备方法 Download PDF

Info

Publication number
CN114887614A
CN114887614A CN202210530642.7A CN202210530642A CN114887614A CN 114887614 A CN114887614 A CN 114887614A CN 202210530642 A CN202210530642 A CN 202210530642A CN 114887614 A CN114887614 A CN 114887614A
Authority
CN
China
Prior art keywords
powder
zno
zinc acetate
flexible film
optical performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210530642.7A
Other languages
English (en)
Inventor
厉志豪
曾祥华
夏炜炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202210530642.7A priority Critical patent/CN114887614A/zh
Publication of CN114887614A publication Critical patent/CN114887614A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本案涉及一种高光学性能的ZnO柔性薄膜的制备方法,包括如下步骤:以乙酸锌粉末溶于乙醇和乙醇胺的混合溶液中配制前驱液;以乙酸锌粉末、六亚甲基四胺粉末、二水合柠檬酸三钠粉末溶解于去离子水中配制生长液;将丙酮清洗后的碳布浸没在所述前驱液中,之后在真空环境中,200℃煅烧2h得到种子层;将种子层置于所述生长液中,并在95~100℃恒温条件下生长3h,得到最终产品。本发明合成了具有高光电响应、卓越稳定性的纯ZnO纳米薄膜,原材料无毒、便宜、制备工艺简单、效率高、制备所得产物量大,适合工业化生产;样品具有较大的比表面积,在可见光下具备良好的光电响应性能且光照后光电流持续上升,在工业应用中具有广阔的前景。

Description

一种高光学性能的ZnO柔性薄膜的制备方法
技术领域
本发明涉及光电功能材料技术领域,具体涉及一种高光学性能的ZnO柔性薄膜的制备方法。
背景技术
近年来,纳米氧化锌材料因其无毒、高效、来源广泛等特定引起了人们的广泛关注。纳米氧化锌具有较高的催化特性,是一种重要的半导体光催化剂,氧化锌薄膜兼具可见光透过性和电传导性,传统的氧化锌薄膜光电学性能较弱,因此,通常需要掺杂其它金属离子,但这么做无疑又增加了成本,制备过程也较为繁琐,不利于大规模生产。
发明内容
针对现有技术中的不足之处,本发明过两步法在碳纤维布上生长出富含更多氧空位的ZnO纳米薄膜,具有更强的光电化学性能,制备方法简单。
为实现上述目的,本发明提供如下技术方案:
一种高光学性能的ZnO柔性薄膜的制备方法,包括如下步骤:
S1:配制前驱液
称取乙酸锌粉末溶于乙醇和乙醇胺的混合溶液中;置于密闭的烧杯中在60℃水浴锅中恒温加热并磁力搅拌3h,将烧杯取出冷却到室温;
S2:配制生长液
称取乙酸锌粉末、六亚甲基四胺粉末、二水合柠檬酸三钠粉末溶解于去离子水中至完全溶解;
S3:将丙酮清洗后的碳布浸没在所述前驱液中10s后提拉出,之后在真空环境中,200℃煅烧2h得到种子层;
S4:将种子层置于所述生长液中,并在95~100℃恒温条件下生长3h,得到最终产品。
进一步地,所述S1中乙酸锌粉末、乙醇和乙醇胺的质量体积比为1g:5ml:1ml。
进一步地,所述S2中乙酸锌粉末、六亚甲基四胺粉末、二水合柠檬酸三钠和去离子水的质量体积比为2g:1.2~1.3g:0.1g:100ml。
本案通过两步法在柔性碳布衬底上合成了超薄ZnO纳米片薄膜,由第一步种子层的退火气氛不同来改变最终ZnO样品的氧空位浓度;第二步水热生长2h后,观察到高达286.5uA/cm2的光伏特性。与传统的空气种子层退火策略相比,光电流显著增强,可达4.37倍。相较于在相同条件下(0V偏压和0.1M Na2SO4浓度)纯ZnO水热生长以及含ZnO的复合异质结,本案的光电流值较为显著。因行程更多的氧空位,相应地具有更强的光电化学性能,光电流、载流子浓度、活性催化面积、光吸收都有明显的提高,电化学阻抗降低,促进了电荷载流子的迁移。
本发明的有益效果是:本发明合成了具有高光电响应、卓越稳定性的纯ZnO纳米薄膜,原材料无毒、便宜、制备工艺简单、合成温度低、制备效率高、制备所得产物量大,适合工业化生产;样品具有较大的比表面积,在可见光下具备良好的光电响应性能且光照后光电流持续上升,在工业应用中具有广阔的前景。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中实施例1和2得到的种子层以及最终样品(a、A-ZnO-2h;b、V-ZnO-2h;c、ASL-2h;d、VSL-2h)的形貌图。
图2为本发明中实施例1和2得到的最终样品的PL光谱图。
图3为本发明中实施例1和2得到的最终样品的光电流图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
1、制备前驱液
称取乙酸锌粉末6g溶于30ml乙醇和6ml乙醇胺的混合溶液中;置于密闭的烧杯中在60℃水浴锅中恒温加热并磁力搅拌3h;将烧杯取出冷却到室温。
2、制备生长液
分别称取乙酸锌粉末2g、六亚甲基四胺粉末1.26g、二水合柠檬酸三钠粉末0.1g,然后全部溶解到100ml去离子水中,搅拌至完全溶解。
3、制备ZnO柔性薄膜
将碳布裁成合适尺寸,分别用丙酮、酒精、去离子水先后在超声波清洗机中清洗10min,然后将清洗好的碳布放在60℃恒温干燥箱中烘干,把烘干好的碳布浸没在前驱液中10s并提拉出;将覆有前驱液的碳布置于真空条件下200℃管式炉中煅烧2h得到种子层,记为ASL-2h;煅烧完成后,将种子层收集并置于预先准备好的生长液中,并在98℃恒温条件下生长3h得到最终样品,记为A-ZnO-2h。
实施例2:
同实施例1,区别在于步骤3中将覆有前驱液的碳布置于空气条件下200℃管式炉中煅烧2h得到种子层,记为VSL-2h。相同条件下煅烧得到最终样品,记为V-ZnO-2h。
性能测试:
图1为本发明中不同气氛退火得到的种子层以及最终样品(a、A-ZnO-2h;b、V-ZnO-2h;c、ASL-2h;d、VSL-2h),可以看到两种种子层形貌差异不大,最终样品的形貌差异也不明显,可见其光电性能的差异不是由形貌引起。
图2为本发明中所得的两种最终样品的PL光谱。在370nm处的发光峰由直接带激发引起的发光峰,二者发光强度差异不大,而在580nm处的光致发光峰主要由氧空位所引起的发光峰,可以看到V-ZnO-2h在此处有更强的发光峰,表明其富含更多的氧空位,可以确定其光电性能的差异主要由氧空位浓度的不同所造成。
图3为本发明中所得的两种最终样品的光电流图,可以看到V-ZnO-2h具有更大的光电流,可见富含氧空位的ZnO样品具有更好的光电化学性能。
综上,在真空条件下退火制得的种子层制备得到的最终样品具有更好的光电化学性能。这可能是因为,光伏性能的巨大差异主要是由于种子与生长层界面Zn:O比值不同导致晶体平面失配。本研究打破了长期以来认为ZnO种子层和生长层之间的晶格失配越小越好这一观点。从上述实验步骤、数据和图表分析可以看出,本发明通过简单的制备步骤在碳布衬底上自组装纯的ZnO纳米薄膜,该纳米薄膜在可见光下具备良好的光电响应性能且性能稳定,适于工业应用。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (3)

1.一种高光学性能的ZnO柔性薄膜的制备方法,其特征在于,包括如下步骤:
S1:配制前驱液
称取乙酸锌粉末溶于乙醇和乙醇胺的混合溶液中;置于密闭的烧杯中在60℃水浴锅中恒温加热并磁力搅拌3h,将烧杯取出冷却到室温;
S2:配制生长液
称取乙酸锌粉末、六亚甲基四胺粉末、二水合柠檬酸三钠粉末溶解于去离子水中至完全溶解;
S3:将丙酮清洗后的碳布浸没在所述前驱液中10s后提拉出,之后在真空环境中,200℃煅烧2h得到种子层;
S4:将种子层置于所述生长液中,并在95~100℃恒温条件下生长3h,得到最终产品。
2.如权利要求1所述的高光学性能的ZnO柔性薄膜的制备方法,其特征在于,所述S1中乙酸锌粉末、乙醇和乙醇胺的质量体积比为1g:5ml:1ml。
3.如权利要求1所述的高光学性能的ZnO柔性薄膜的制备方法,其特征在于,所述S2中乙酸锌粉末、六亚甲基四胺粉末、二水合柠檬酸三钠和去离子水的质量体积比为2g:1.2~1.3g:0.1g:100ml。
CN202210530642.7A 2022-05-16 2022-05-16 一种高光学性能的ZnO柔性薄膜的制备方法 Pending CN114887614A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210530642.7A CN114887614A (zh) 2022-05-16 2022-05-16 一种高光学性能的ZnO柔性薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210530642.7A CN114887614A (zh) 2022-05-16 2022-05-16 一种高光学性能的ZnO柔性薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN114887614A true CN114887614A (zh) 2022-08-12

Family

ID=82723347

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210530642.7A Pending CN114887614A (zh) 2022-05-16 2022-05-16 一种高光学性能的ZnO柔性薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN114887614A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115818975A (zh) * 2022-12-05 2023-03-21 沈阳工业大学 一种极性可调式高透光ZnO薄膜的液相制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531034A (zh) * 2011-12-16 2012-07-04 天津大学 氧化锌纳米片状阵列的制备方法
CN102964066A (zh) * 2011-11-17 2013-03-13 天津法莫西医药科技有限公司 一种空心玻璃微珠表面生长氧化锌纳米阵列的无模板制备方法
CN103241959A (zh) * 2013-05-02 2013-08-14 中山大学 一种Na掺杂ZnO纳米棒阵列的制备方法
CN105336500A (zh) * 2015-10-16 2016-02-17 景德镇陶瓷学院 一种ZnO纳米棒薄膜原位改性处理方法及其获得的改性薄膜
KR20170035721A (ko) * 2015-09-23 2017-03-31 금오공과대학교 산학협력단 코어-쉘 타입의 판상형 나노입자 및 이의 제조방법
CN108893728A (zh) * 2018-09-06 2018-11-27 黑龙江省科学院高技术研究院 具有高比表面积的超薄ZnO纳米片阵列的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102964066A (zh) * 2011-11-17 2013-03-13 天津法莫西医药科技有限公司 一种空心玻璃微珠表面生长氧化锌纳米阵列的无模板制备方法
CN102531034A (zh) * 2011-12-16 2012-07-04 天津大学 氧化锌纳米片状阵列的制备方法
CN103241959A (zh) * 2013-05-02 2013-08-14 中山大学 一种Na掺杂ZnO纳米棒阵列的制备方法
KR20170035721A (ko) * 2015-09-23 2017-03-31 금오공과대학교 산학협력단 코어-쉘 타입의 판상형 나노입자 및 이의 제조방법
CN105336500A (zh) * 2015-10-16 2016-02-17 景德镇陶瓷学院 一种ZnO纳米棒薄膜原位改性处理方法及其获得的改性薄膜
CN108893728A (zh) * 2018-09-06 2018-11-27 黑龙江省科学院高技术研究院 具有高比表面积的超薄ZnO纳米片阵列的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘辉: "水溶液法ZnO薄膜的生长和形貌控制", 《万方数据硕士电子期刊工程科技I辑》, 15 September 2009 (2009-09-15), pages 19 - 21 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115818975A (zh) * 2022-12-05 2023-03-21 沈阳工业大学 一种极性可调式高透光ZnO薄膜的液相制备方法
CN115818975B (zh) * 2022-12-05 2024-04-12 沈阳工业大学 一种极性可调式高透光ZnO薄膜的液相制备方法

Similar Documents

Publication Publication Date Title
Lu et al. Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate
Kenanakis et al. Growth of c-axis oriented ZnO nanowires from aqueous solution: the decisive role of a seed layer for controlling the wires’ diameter
US5112410A (en) Cadmium zinc sulfide by solution growth
CN101774629B (zh) p型和n型氧化亚铜薄膜的水热法可控制备
CN105070664B (zh) 光电子器件ZnO/ZnS异质结纳米阵列膜制备方法
Tang et al. In situ preparation of CuInS 2 films on a flexible copper foil and their application in thin film solar cells
CN104264131A (zh) 一种在ZnO纳米线阵列上生长的纤维状ZnO纳米线及其制备方法
CN114887614A (zh) 一种高光学性能的ZnO柔性薄膜的制备方法
CN100424233C (zh) 一种多晶氧化锌薄膜材料的制备方法
CN102509648B (zh) 一种Ga掺杂ZnO纳米材料的制备方法
CN100582012C (zh) 一种高度c轴取向的纳米多孔氧化锌薄膜及其制备方法
CN101847583B (zh) 一种球状CdS半导体薄膜的制备方法
CN105236472A (zh) 一种SnO2纳米线阵列的制备方法
Chandran et al. A comparative study of physical and optical properties of CdZnS and CdNiS nanocrystalline films deposited by chemical bath method
Zhang et al. Ultraviolet emission of ZnO nano-polycrystalline films by modified successive ionic layer adsorption and reaction technique
CN111755256B (zh) 一种三维ZnO/CuO纳米异质分级结构光电极的制备方法
CN112850780B (zh) 磷掺杂β-Ga2O3微米线的制备方法
CN109943821B (zh) 立方尖晶石结构CuGa2O4薄膜的制备方法及相应的结构
CN110331388B (zh) 一种基于水热法快速生长ZnO纳米多孔薄膜的方法
CN107369729B (zh) 一种纳米有序互穿全氧化物异质结薄膜太阳电池及其制备方法
KR101352648B1 (ko) Cis 또는 cigs 박막의 제조방법
CN109607596B (zh) 一种基于氧化镓/氧化亚铜结构的纳米复合材料及其制备方法
CN112578001B (zh) 一种基于Zn掺杂硫化亚锡的气敏材料及其制备方法和在检测甲醇中的应用
CN204857740U (zh) 光电子器件ZnO/ZnS异质结纳米阵列膜
Ding et al. Synthesis and Photoelectric Characterization Study of ZnO Nanorods Arrays/CuAlO2 Nanofibers Film Heterojunction on Ni Substrate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination