WO2021114362A1 - 一种空穴传输材料及其制备方法与应用 - Google Patents

一种空穴传输材料及其制备方法与应用 Download PDF

Info

Publication number
WO2021114362A1
WO2021114362A1 PCT/CN2019/126793 CN2019126793W WO2021114362A1 WO 2021114362 A1 WO2021114362 A1 WO 2021114362A1 CN 2019126793 W CN2019126793 W CN 2019126793W WO 2021114362 A1 WO2021114362 A1 WO 2021114362A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole transport
benzothiophene
benzofuran
transport material
preparation
Prior art date
Application number
PCT/CN2019/126793
Other languages
English (en)
French (fr)
Inventor
孟鸿
施明
贺耀武
孙越
Original Assignee
北京大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学深圳研究生院 filed Critical 北京大学深圳研究生院
Publication of WO2021114362A1 publication Critical patent/WO2021114362A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom

Definitions

  • the invention relates to the technical field of semiconductor materials, in particular to a hole transport material and a preparation method and application thereof.
  • OLEDs Organic light emitting diodes
  • the organic semiconductor materials commonly used as the hole transport layer of OLEDs include poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT:PSS), poly(9,9-dioctylfluorene- CO-N-(4-butylphenyl) diphenylamine) (TFB), polyvinylcarbazole (PVK), poly(N,N'bis(4-butylphenyl)-N,N'-bis( Phenyl) benzidine) (poly-TPD), poly(9,9-dioctylfluorene-co-bis-N,N-phenyl-1,4-phenylenediamine) (PFB), 4,4' ,4”-Tris(carbazol-9-yl)
  • PEDOT:PSS has excellent hole mobility and excellent film-forming properties, and is the most commonly used as a void Hole transport material; however, PEDOT:PSS is weakly acidic, and contains PSS units that are easy to absorb water, which is easy to absorb water and become damp, which will have a serious impact on the hole transport layer, which is also an organic semiconductor material, and will eventually affect the luminous efficiency of OLED.
  • BTBT organic semiconductor materials have excellent device performance: high carrier mobility or high triplet energy levels; but as hole transport materials, they have poor solubility and easily cause fluorescence quenching The problem of extinction.
  • the purpose of the present invention is to provide a hole transport material and its preparation method and application, aiming to solve the problem of poor overall performance of organic semiconductor devices prepared with existing hole transport materials .
  • a hole transport material wherein the structure general formula of the hole transport material is
  • R 1 and R 2 are independently selected from one of substituted or unsubstituted aryl groups, diarylamino groups, and fused heterocyclic groups.
  • a method for preparing the hole transport material as described above which comprises the following steps:
  • R 1 R 2 , and it is When, according to reaction formula (1): Under an inert atmosphere, dissolve 2,7-dibromo[1]benzothiophene[3,2-b][1]benzofuran and R 1 -H in the first solvent, and add tris(dibenzylideneacetone) Dipalladium, tri-tert-butylphosphorus tetrafluoroborate and potassium tert-butoxide are heated for Buchwald-Hartwig aromatic amination reaction and purification treatment to obtain a light-emitting diode transmission layer material; wherein, R 3 and R 4 are independently selected from substituted or One of unsubstituted aryl and fused heterocyclic groups, Refers to a substituted or unsubstituted N-containing fused heterocyclic group whose attachment position is N;
  • the method for preparing the hole transport material wherein the method for preparing the 2,7-dibromo[1]benzothiophene[3,2-b][1]benzofuran comprises the following steps: [1] Benzothiophene [3,2-b] [1] benzofuran and liquid bromine were dissolved in the third solvent to form different solutions, and the liquid bromine solution was added dropwise to [1] benzothiophene [3, 2-b][1] benzofuran solution, followed by bromination reaction, after purification treatment, to obtain 2,7-dibromo[1]benzothiophene[3,2-b][1]benzofuran.
  • the method for preparing the hole transport material wherein the first solvent and the second solvent are independently selected from anhydrous toluene, 1,4-dioxane, and N,N-dimethylformamide And/or the third solvent is one or two of chloroform and dichloromethane.
  • the temperature of the bromination reaction is 25-35° C., and/or the time of the bromination reaction is 12-24 h.
  • the method for preparing the hole transport material wherein the 2,7-dibromo[1]benzothiophene[3,2-b][1]benzofuran,
  • the molar ratio of potassium carbonate, phase transfer catalyst, and tetrakis (triphenylphosphine) palladium is 1:2-2.5:4-6:2-3:0.01-0.05.
  • the temperature of the Buchwald-Hartwig arylamination reaction is 90-120°C, and/or the time of the Buchwald-Hartwig arylamination reaction is 12-24h.
  • the method for preparing the hole transport material wherein the temperature of the Suzuki reaction is 90-120° C., and/or the time of the Suzuki reaction is 12-24 h.
  • the present invention uses O to partially replace the S in the BTBT core to obtain [1]benzothiophene[3,2-b][1]benzofuran([1]benzothieno[3,2-b][1 ] benzofuran, BTBF) core structure, which combines the advantages of benzothiophene and benzofuran; and by modifying BTBF, a series of BTBF hole transport materials have been designed.
  • the hole transport material of the present invention has both high carrier mobility and high triplet energy level, and has very good stability, solubility and fluorescence, and is beneficial to improving the overall performance of the organic semiconductor device.
  • FIG. 1 is a schematic diagram of an OLED structure with a front-mounted structure provided in a specific embodiment of the present invention.
  • Figure 2 shows the ultraviolet absorption spectrum, the room temperature fluorescence spectrum and the low temperature (-78°C) phosphorescence spectrum of the hole transport material BTBF-DPA in toluene in Example 1 of the present invention.
  • FIG. 3 is a graph of the ultraviolet absorption spectrum and the fluorescence spectrum of a film with a thickness of 30 nm prepared by using BTBF-DPA in Example 1 of the present invention.
  • Figure 4 (a, b) are respectively the thermogravimetric analysis curve and differential scanning calorimetry curve diagram of BTBF-DPA in Example 1 of the present invention.
  • Fig. 5 is a graph of the electrochemical voltammetric cycle test curve of BTBF-DPA in Example 1 of the present invention.
  • FIG. 6 is a schematic structural diagram of a green OLED with a front-mounted structure in Embodiment 5 of the present invention.
  • Example 7 is a diagram of the energy level structure of each functional layer material of the OLED prepared in Example 5 and Comparative Example 1 of the present invention.
  • FIG. 8a is a graph showing changes in current efficiency and energy efficiency with brightness of OLEDs prepared in Example 5 and Comparative Example 1 of the present invention.
  • FIG. 8b is a graph of the external quantum efficiency of the OLEDs prepared in Example 5 and Comparative Example 1 as a function of brightness.
  • Example 8c is a graph showing changes in current density and brightness of OLEDs prepared in Example 5 and Comparative Example 1 of the present invention as a function of applied voltage.
  • FIG. 8d is a comparison diagram of the fluorescence emission spectra of OLEDs prepared in Example 5 and Comparative Example 1 of the present invention.
  • the present invention provides a hole transport material.
  • the present invention will be described in further detail below. It should be understood that the specific embodiments described here are only used to explain the present invention, but not used to limit the present invention.
  • the embodiment of the present invention provides a hole transport material, the structure general formula of the hole transport material is
  • R 1 and R 2 are independently selected from one of substituted or unsubstituted aryl groups, diarylamino groups, and fused heterocyclic groups.
  • the BTBF core structure is obtained by partially replacing the S in the BTBT core with O, which combines the advantages of benzothiophene and benzofuran; and by modifying BTBF, a series of BTBF-like hollows are designed.
  • Hole transport material The hole transport material of the present invention has both high carrier mobility and high triplet energy level, and has very good stability, solubility and fluorescence, and is beneficial to improving the overall performance of the organic semiconductor device.
  • furan is one of the simplest aromatic heterocyclic compounds, and it has a very similar chemical structure and electronic properties to thiophene.
  • Furan derivatives have potential application prospects in the field of luminescence because of their unique properties. On the one hand, they have more quinone structure characteristics, which enables better delocalization of ⁇ electrons; on the other hand, they can reduce the oxidation potential and make HOMO The orbital energy level rises.
  • the BTBF core of this embodiment contains both benzofuran and benzothiophene structures.
  • the furan ring makes BTBF have more quinone structure characteristics, which makes the delocalization degree of ⁇ electrons stronger, and the oxygen atom reduces the oxidation potential.
  • the BTBF-type transport material of this embodiment has better fluorescence properties and can be used to prepare organic semiconductor light-emitting devices, such as OLEDs and organic light-emitting transistors (Organic light-emitting transistors). transistor, OLET). Furthermore, both benzothiophene and benzofuran have high stability and high triplet energy levels.
  • the BTBF-based hole transport material of this embodiment has less aromaticity and less ⁇ - ⁇ interaction between molecules, so the solubility is relatively large, and it is suitable for the solution method to prepare organic semiconductor devices.
  • furan is a biodegradable material with abundant sources and low cost, and can be prepared from biorenewable raw materials, which makes the BTBF hole transport material of this embodiment more suitable for large-scale applications.
  • the R 1 and R 2 may be independently selected from but not limited to It should be noted that the attachment positions of the substituents that do not indicate the attachment position in the above-listed substituents can be any position on the benzene ring, for example: The attachment position of can be any position from 1-4 on the benzene ring; The attachment position of can be any position from 1-5 on the benzene ring.
  • the hole transport material may be, but is not limited to
  • the embodiment of the present invention provides a method for preparing the hole transport material as described above, which includes the following steps:
  • R 1 R 2 , and it is When, according to reaction formula (1): Under an inert atmosphere, dissolve 2,7-dibromo[1]benzothiophene[3,2-b][1]benzofuran and R 1 -H in the first solvent, and add tris(dibenzylideneacetone) Dipalladium, tri-tert-butylphosphorus tetrafluoroborate and potassium tert-butoxide are heated for Buchwald-Hartwig aromatic amination reaction, purification treatment (specifically: extraction, drying, concentration, column chromatography separation) to obtain hole transport material
  • R 3 and R 4 are independently selected from one of substituted or unsubstituted aryl groups and fused heterocyclic groups, Refers to a substituted or unsubstituted N-containing fused heterocyclic group whose linking position is N;
  • the phase transfer catalyst may be a quaternary ammonium salt; the quaternary ammonium salt may be but not limited to benzyltriethylammonium chloride or trioctylmethylammonium chloride (Aliquat336).
  • R 3 and R 4 can be independently selected from but not limited to It should be noted that the attachment position of the substituents listed above can be any position on the benzene ring; please refer to the above description for details, which will not be repeated here.
  • the first solvent and the second solvent may be independently selected from but not limited to anhydrous toluene, 1,4-dioxane, and N,N-dimethylformamide. One or more.
  • the molar ratio of tri-tert-butyl phosphorus tetrafluoroborate and potassium tert-butoxide is 1:2-2.5:0.03-0.05:0.1-0.15:2-3.
  • the 2,7-dibromo[1]benzothiophene[3,2-b][1]benzofuran The molar ratio of potassium carbonate, phase transfer catalyst, and tetrakis (triphenylphosphine) palladium is 1:2-2.5:4-6:2-3:0.01-0.05.
  • the temperature of the Buchwald-Hartwig aromatic amination reaction is 90-120° C., and/or the time of the Buchwald-Hartwig aromatic amination reaction is 12-24 h.
  • the temperature of the Suzuki reaction is 90-120° C., and/or the time of the Suzuki reaction is 12-24 h.
  • the preparation method of the 2,7-dibromo[1]benzothiophene[3,2-b][1]benzofuran includes the step of adding [1]benzothiophene[3, 2-b] [1] Benzofuran and liquid bromine were dissolved in the third solvent to form different solutions, and the liquid bromine solution was added dropwise to [1] benzothiophene [3] at low temperature (-15-0°C) ,2-b][1]benzofuran solution, followed by bromination reaction, purification treatment (specifically: washing, drying, column chromatography separation) to obtain 2,7-dibromo[1]benzothiophene [3,2-b] [1] Benzofuran.
  • the third solvent may be, but not limited to, one or two of chloroform and dichloromethane.
  • the temperature of the bromination reaction is 25-35° C., and/or the time of the bromination reaction is 12-24 h.
  • the embodiment of the present invention also provides an application of the hole transport material as described above in the preparation of an organic semiconductor device.
  • using the hole transport material as described above to prepare an organic semiconductor device can effectively improve the stability and carrier mobility of the organic semiconductor device, and can ensure the electrical properties of the organic semiconductor device.
  • the hole transport material is used to prepare a hole transport layer of an organic semiconductor device.
  • the method for preparing the hole transport layer includes but is not limited to an evaporation method or a spin coating method.
  • the organic semiconductor device includes but is not limited to OLED, Quantum Dot Light Emitting Diodes (QLED), or organic solar cell.
  • QLED Quantum Dot Light Emitting Diodes
  • the organic semiconductor device is an OLED.
  • the OLED may have a front-mounted structure or a flip-chip structure, which includes an anode, a cathode, an organic light-emitting layer disposed between the anode and the cathode, and a void disposed between the anode and the organic light-emitting layer.
  • a hole transport layer wherein the material of the hole transport layer includes the hole transport material as described above. It should be noted that a hole injection layer may be provided between the anode and the hole transport layer; an electron blocking layer may be provided between the hole transport layer and the light-emitting layer; An electron transport layer and/or an electron injection layer may be provided between the cathodes.
  • FIG. 1 a schematic structural diagram of an OLED with a front-mounted structure is shown in FIG. 1.
  • the OLED device includes from bottom to top: an anode 100, a hole injection layer 200, a hole transport layer 300, an electron blocking layer 400, and a light emitting device.
  • reaction formula is:
  • reaction formula is:
  • the light-emitting edge can be calculated to obtain the triplet energy level of BTBF-DPA as 2.99eV (the calculation formula is: Among them, E-energy (kJ); h-Planck's constant (6.63*10 -34 J ⁇ s); c-speed of light; ⁇ -wavelength, the wavelength is taken from the wavelength value 414nm at the peak from the left of the phosphorescence spectrum curve) It can be seen that the hole transport material prepared in Example 1 has a high triplet energy level and can block excitons in the light-emitting layer.
  • thermogravimetric analysis curve is shown in Figure 4(a). It can be seen that the thermal decomposition temperature of BTBF-DPA is 425°C, and the differential scanning calorimetry analysis curve is shown in Figure 4(a). As shown in 4(b), it can be seen that the glass transition temperature of BTBF-DPA is 104°C, indicating that BTBF-DPA has a higher glass transition temperature and stable film morphology.
  • reaction formula is:
  • the 2,7-dibromo[1]benzothiophene[3,2-b][1]benzofuran (1.9g, 5mmol) prepared in step (1) of Example 1 was combined with benzene 1-naphthylamine (3.28g, 15mmol) dissolved in 100mL of toluene, add tris(dibenzylideneacetone)dipalladium (0.25mmol), tri-tert-butylphosphorus tetrafluoroborate (0.75mmol) and tert-butanol Potassium (1.68g, 15mmol), heated to 110°C for Buchwald-Hartwig aromatic amination reaction for 15h.
  • reaction formula is:
  • reaction formula is:
  • the 2,7-dibromo[1]benzothiophene[3,2-b][1]benzofuran (1.9g, 5mmol) prepared in step (1) of Example 1 was mixed with Azole (2.5g, 15mmol) was dissolved in 100mL of toluene, added tris(dibenzylideneacetone)dipalladium (0.25mmol), tri-tert-butylphosphorus tetrafluoroborate (0.75mmol) and potassium tert-butoxide (1.68g, 15mmol), heated to 110°C for Buchwald-Hartwig aromatic amination reaction for 16h.
  • a solution method was used to prepare a green OLED with a front-mounted structure: ITO glass (anode)
  • FIG. 7 The energy level structure of each functional layer material of the OLED of Example 5 and Comparative Example 1 is shown in FIG. 7.
  • the current efficiency and energy efficiency of the OLED prepared in Example 5 and Comparative Example 1 change with brightness as shown in Figure 8a. It can be seen that the current efficiency and energy efficiency of the OLED prepared in Example 5 at the same brightness are within the test brightness range. Both are higher than the OLED prepared in Comparative Example 1.
  • the external quantum efficiency (EQE) of the OLED prepared in Example 5 and Comparative Example 1 varies with brightness as shown in Figure 8b. It can be seen that within the test brightness range, the OLED prepared in Example 5 has the same brightness The external quantum efficiencies are higher than those of the OLED prepared in Comparative Example 1.
  • the present invention uses O to partially replace the S in the BTBT core to obtain the BTBF core structure, which combines the advantages of benzothiophene and benzofuran; and by modifying BTBF, a series of BTBF are designed Hole-like transport materials.
  • the hole transport material of the present invention has both high carrier mobility and high triplet energy level, and has very good stability, solubility and fluorescence, and is beneficial to improving the overall performance of the organic semiconductor device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开一种空穴传输材料及其制备方法与应用,所述空穴传输材料的结构通式为式(I),其中,R1、R2独立地选自取代或未取代的芳基、二芳胺基、稠杂环基中的一种。本发明采用O部分替代BTBT母核中的S获得了BTBF母核结构,其结合了苯并噻吩和苯并呋喃的优势;并通过对BTBF进行修饰,设计出了一系列BTBF类空穴传输材料。本发明的空穴传输材料兼有高载流子迁移率和高三线态能级,且具有非常好的稳定性、溶解性和荧光性,有利于提高有机半导体器件的整体性能。

Description

一种空穴传输材料及其制备方法与应用 技术领域
本发明涉及半导体材料技术领域,尤其涉及一种空穴传输材料及其制备方法与应用。
背景技术
有机发光二极管(Organic light emitting diode,OLED)具有低生产成本且可大面积生产制造等优势,在柔性显示器件及照明领域具有广阔的应用前景。目前,常用作OLED的空穴传输层的有机半导体材料有聚(3,4-乙撑二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)、聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)(TFB)、聚乙烯咔唑(PVK)、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(poly-TPD)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)(PFB)、4,4’,4”-三(咔唑-9-基)三苯胺(TCTA)、4,4'-二(9-咔唑)联苯(CBP)、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺(TPD)、N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)、以及[1]苯并噻吩[3,2-b][1]苯并噻吩([1]benzothieno[3,2-b][1]benzothiophene,BTBT)类有机半导体材料(即以BTBT为母核的有机物)。其中,PEDOT:PSS具有优异的空穴迁移率和优秀的成膜性能,是最常被用作空穴传输材料;但是,PEDOT:PSS呈弱酸性,且其本身含有易吸水的PSS单元,容易吸水受潮,对同为有机半导体材料的空穴传输层产生严重影响,最终会影响OLED的发光效率、发光均匀性、发光寿命以及器件稳定性。BTBT类有机半导体材料具有优异的器件性能:高载流子迁移率或高三线态能级;但是其作为空穴传输材料存在溶解性差、易引起荧光淬灭的问题。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种空穴传输材料及其制备方法与应用,旨在解决以现有的空穴传输材料制备的有机半导体器件的整体性能不高的问题。
本发明的技术方案如下:
一种空穴传输材料,其中,所述空穴传输材料的结构通式为
Figure PCTCN2019126793-appb-000001
式中,R 1、R 2独立地选自取代或未取代的芳基、二芳胺基、稠杂环基中的一种。
一种如上所述的空穴传输材料的制备方法,其中,包括步骤:
R 1=R 2,且其为
Figure PCTCN2019126793-appb-000002
时,按照反应式(1):
Figure PCTCN2019126793-appb-000003
惰性气氛下,将2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃、R 1-H溶于第一溶剂,加入三(二亚苄基丙酮)二钯、四氟硼酸三叔丁基磷和叔丁醇钾,加热进行Buchwald-Hartwig芳胺化反应,纯化处理,得到发光二极管传输层材料;其中,R 3、R 4独立地选自取代或未取代的芳基、稠杂环基中的一种,
Figure PCTCN2019126793-appb-000004
指连接位为N的取代或未取代的含N稠杂环基;
或者,R 1=R 2,且其是取代或未取代的芳基或连接位为苯环上的C的稠杂环基时,按照反应式(2):
Figure PCTCN2019126793-appb-000005
惰性气氛下,将2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃、
Figure PCTCN2019126793-appb-000006
溶于第二溶剂,加入碳酸钾水溶液、相转移催化剂和四(三苯基膦)钯,加热进行Suzuki反应,纯化处理,得到空穴传输材料。
所述的空穴传输材料的制备方法,其中,所述2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃的制备方法包括步骤:将[1]苯并噻吩[3,2-b][1]苯并呋喃、液溴分别溶于第三溶剂中形成不同的溶液,将液溴溶液在低温下滴加到[1]苯并噻吩[3,2-b][1]苯并呋喃溶液中,接着进行溴代反应,经纯化处理,得到2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃。
所述的空穴传输材料的制备方法,其中,所述第一溶剂、所述第二溶剂独立地选自无水甲苯、1,4-二氧六环、N,N-二甲基甲酰胺中的一种或多种;和/或所述第三溶剂为氯仿、二氯甲烷中的一种或两种。
所述的空穴传输材料的制备方法,其中,所述溴代反应的温度为25-35℃,和/或所述溴代反应的时间为12-24h。
所述的空穴传输材料的制备方法,其中,所述2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃、R 1-H、三(二亚苄基丙酮)二钯、四氟硼酸三叔丁基磷、叔丁醇钾的摩尔比为1:2-2.5:0.03-0.05:0.1-0.15:2-3。
所述的空穴传输材料的制备方法,其中,所述2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃、
Figure PCTCN2019126793-appb-000007
碳酸钾、相转移催化剂、四(三苯基膦)钯的摩尔比为1:2-2.5:4-6:2-3:0.01-0.05。
所述的空穴传输材料的制备方法,其中,所述Buchwald-Hartwig芳胺化反应的温度为90-120℃,和/或所述Buchwald-Hartwig芳胺化反应的时间为12-24h。
所述的空穴传输材料的制备方法,其中,所述Suzuki反应的温度为90-120℃,和/或所述Suzuki反应的时间为12-24h。
一种如上所述的空穴传输材料在制备有机半导体器件的应用。
有益效果:本发明采用O部分替代BTBT母核中的S获得了[1]苯并噻吩[3,2-b][1]苯并呋喃([1]benzothieno[3,2-b][1]benzofuran,BTBF)母核结构,其结合了苯并噻吩和苯并呋喃的优势;并通过对BTBF进行修饰,设计出了一系列BTBF类空穴传输材料。本发明的空穴传输材料兼有高载流子迁移率和高三线态能级,且具有非常好的稳定性、溶解性和荧光性,有利于提高有机半导体器件的整体性能。
附图说明
图1为本发明具体实施方式中,提供的一种具有正装结构的OLED结构示意图。
图2为本发明实施例1中,空穴传输材料BTBF-DPA在甲苯中的紫外吸收光谱、室 温荧光光谱和低温(-78℃)磷光光谱图。
图3为本发明实施例1中,以BTBF-DPA制备成厚度为30nm的薄膜的紫外吸收光谱和荧光光谱图。
图4(a,b)分别为本发明实施例1中,BTBF-DPA的热重分析曲线和差示扫描量热分析曲线图。
图5为本发明实施例1中,BTBF-DPA的电化学伏安循环测试曲线图。
图6为本发明实施例5中,具有正装结构的绿光OLED的结构示意图。
图7为本发明实施例5与对比例1制得的OLED的各功能层材料的能级结构图。
图8a为本发明实施例5与对比例1制得的OLED的电流效率及能量效率随亮度的变化图。
图8b为本发明实施例5与对比例1制得的OLED的外量子效率随亮度的变化图。
图8c为本发明实施例5与对比例1制得的OLED的电流密度及亮度随外加电压的变化图。
图8d为本发明实施例5与对比例1制得的OLED的荧光发射光谱对比图。
具体实施方式
本发明提供一种空穴传输材料,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明实施例提供一种空穴传输材料,所述空穴传输材料的结构通式为
Figure PCTCN2019126793-appb-000008
式中,R 1、R 2独立地选自取代或未取代的芳基、二芳胺基、稠杂环基中的一种。
本实施例中,采用O部分替代BTBT母核中的S获得了BTBF母核结构,其结合了苯并噻吩和苯并呋喃的优势;并通过对BTBF进行修饰,设计出了一系列BTBF类空 穴传输材料。本发明的空穴传输材料兼有高载流子迁移率和高三线态能级,且具有非常好的稳定性、溶解性和荧光性,有利于提高有机半导体器件的整体性能。
具体地,呋喃是最简单的芳杂环化合物之一,其与噻吩具有十分相似的化学结构和电子性质。呋喃衍生物因其独特的性质而在发光领域具有潜在的应用前景,其一方面具有更多的醌式结构特征,使得π电子能更好地离域;另一方面可以降低氧化电位,使得HOMO轨道能级升高。本实施例的BTBF母核同时含有苯并呋喃和苯并噻吩结构,其中的呋喃环使得BTBF具有更多的醌式结构特征,使得π电子离域程度更强,而氧原子降低了氧化电位,使得HOMO轨道能级升高,有利于空穴的注入和传输;噻吩环含有相对重的硫原子,由于重原子产生旋轨偶合作用发生内转换,所以易导致荧光淬灭;而呋喃半导体则不存在旋轨偶合作用导致荧光淬灭的问题;因此,本实施例的BTBF类传输材料具有更加出色的荧光性质,可以用于制备有机半导体发光器件,例如:OLED和有机发光晶体管(Organic light-emitting transistor,OLET)。进一步,苯并噻吩和苯并呋喃都具高的稳定性和高的三线态能级,同时由于BTBF结构通式的平面性和刚性,通过结构的修饰,其具备高的稳定性和高的三线态能级的同时,还具有高的空穴迁移率的特点。更进一步,本实施例的BTBF类空穴传输材料具有较小的芳香性,分子间π-π相互作用较小,所以溶解度相对较大,可适用于溶液法制备有机半导体器件。此外,呋喃是生物可降解材料,来源丰富,成本低廉,可通过生物可再生原料进行制备,这使得本实施例的BTBF类空穴传输材料更适合大规模应用。
在一种实施方式中,所述R 1、R 2可独立地选自但不限于
Figure PCTCN2019126793-appb-000009
Figure PCTCN2019126793-appb-000010
Figure PCTCN2019126793-appb-000011
Figure PCTCN2019126793-appb-000012
需要说明的是,上述列举的取代基中未标示连接位的取代基的连接位可为苯环上任一位置,例如:
Figure PCTCN2019126793-appb-000013
的连接位可为苯环上1-4的任一位置;
Figure PCTCN2019126793-appb-000014
的连接位可为苯环上1-5的任一位置。
进一步在一种实施方式中,所述空穴传输材料可为但不限于
Figure PCTCN2019126793-appb-000015
Figure PCTCN2019126793-appb-000016
Figure PCTCN2019126793-appb-000017
Figure PCTCN2019126793-appb-000018
Figure PCTCN2019126793-appb-000019
本发明实施例提供一种如上所述的空穴传输材料的制备方法,其中,包括步骤:
R 1=R 2,且其为
Figure PCTCN2019126793-appb-000020
时,按照反应式(1):
Figure PCTCN2019126793-appb-000021
惰性气氛下,将2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃、R 1-H溶于第一溶剂,加入三(二亚苄基丙酮)二钯、四氟硼酸三叔丁基磷和叔丁醇钾,加热进行Buchwald-Hartwig芳胺化反应,纯化处理(具体包括:萃取、干燥、浓缩、柱层析分离),得到空穴传输材料;其中,R 3、R 4独立地选自取代或未取代的芳基、稠杂环基中的一种,
Figure PCTCN2019126793-appb-000022
指连接位为N的取代或未取代的含N稠杂环基;
或者,R 1=R 2,且其是取代或未取代的芳基或连接位为苯环上的C的稠杂环基时,按照反应式(2):
Figure PCTCN2019126793-appb-000023
惰性气氛下,将2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃、
Figure PCTCN2019126793-appb-000024
溶于第二溶剂,加入碳酸钾水溶液、相转移催化剂和四(三苯基膦)钯,加热进行Suzuki反应,纯化处理(具体包括:沉淀、过滤、洗涤、升华),得到空穴传输材料;其中,所述相转移催化剂可为季铵盐;所述季铵盐可为但不限于苄基三乙基氯化铵或三辛基甲基氯化铵(Aliquat336)。
在一种实施方式中,R 3、R 4可独立地选自但不限于
Figure PCTCN2019126793-appb-000025
Figure PCTCN2019126793-appb-000026
需要说明的是,上述列举的取代基的连接位可为苯环上任一位置;详见上述描述,在此不再赘述。
在一种实施方式中,所述第一溶剂、所述第二溶剂可独立地选自但不限于无水甲苯、1,4-二氧六环、N,N-二甲基甲酰胺中的一种或多种。
在一种实施方式中,所述2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃、R 1-H、三(二亚苄基丙酮)二钯、四氟硼酸三叔丁基磷、叔丁醇钾的摩尔比为1:2-2.5:0.03-0.05:0.1-0.15:2-3。
在一种实施方式中,所述2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃、
Figure PCTCN2019126793-appb-000027
碳酸钾、相转移催化剂、四(三苯基膦)钯的摩尔比为1:2-2.5:4-6:2-3:0.01-0.05。
在一种实施方式中,所述Buchwald-Hartwig芳胺化反应的温度为90-120℃,和/或所述Buchwald-Hartwig芳胺化反应的时间为12-24h。
在一种实施方式中,所述Suzuki反应的温度为90-120℃,和/或所述Suzuki反应的时间为12-24h。
在一种实施方式中,所述2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃的制备方法包括步骤:将[1]苯并噻吩[3,2-b][1]苯并呋喃、液溴分别溶于第三溶剂中形成不同的溶液,将液溴溶液在低温(-15-0℃)下滴加到[1]苯并噻吩[3,2-b][1]苯并呋喃溶液中,接着进行溴代反应,经纯化处理(具体包括:洗涤、干燥、柱层析分离),得到2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃。
进一步在一种实施方式中,所述第三溶剂可为但不限于氯仿、二氯甲烷中的一种或两种。
在一种实施方式中,所述溴代反应的温度为25-35℃,和/或所述溴代反应的时间为12-24h。
本发明实施例还提供一种如上所述的空穴传输材料在制备有机半导体器件的应用。本实施例中,采用如上所述的空穴传输材料制备有机半导体器件,可有效提高有机半导体器件的稳定性和载流子迁移率,并能确保有机半导体器件的电学性质。
在一种实施方式中,采用所述空穴传输材料制备有机半导体器件的空穴传输层。
进一步在一种实施方式中,所述空穴传输层的制备方式包括但不限于蒸镀法或旋涂法。
在一种实施方式中,所述有机半导体器件包括但不限于OLED、量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED)或有机太阳能电池。
更进一步在一种实施方式中,所述有机半导体器件为OLED。所述OLED可具有正装结构或倒装结构,其包括阳极、阴极,设置在所述阳极与所述阴极之间的有机发光层,以及设置在所述阳极与所述有机发光层之间的空穴传输层,其中,所述空穴传输层的材料包括如上所述的空穴传输材料。需要说明的是,所述阳极与所述空穴传输层之间可设置有空穴注入层;所述空穴传输层与所述发光层之间可设置有电子阻挡层;所述发光层与阴极之间可设置有电子传输层和/或电子注入层。例如,一种具有正装结构的OLED的结构示意图如图1所示,所述OLED器件自下而上依次包括:阳极100、空穴注入层200、空穴传输层300、电子阻挡层400、发光层500、、电子传输层600、电子注入层700、以及阴极800,其中,所述空穴传输层300的材料为如上所述空穴传输材料。
下面通过具体实施例对本发明进行详细说明。
实施例1 N 2,N 2,N 7,N 7-四苯基[1]苯并噻吩[3,2-b][1]苯并呋喃-2,7-二胺(BTBF-DPA)的制备
(1)2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃的制备
反应式为:
Figure PCTCN2019126793-appb-000028
将液溴(9.6g,60mmol)溶于100mL氯仿中形成液溴的氯仿溶液;将[1]苯并噻吩[3,2-b][1]苯并呋喃(4.48g,20mmol)溶解于250mL氯仿中,冰浴下滴加入液溴的氯仿溶液,回复至室温进行溴代反应12h。加入饱和的硫代硫酸钠水溶液还原过量的液溴,用饱和碳酸氢钠水溶液和水洗涤后干燥,用石油醚作为洗脱剂柱层析得到得2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃,产率为87%。
(2)N 2,N 2,N 7,N 7-四苯基[1]苯并噻吩[3,2-b][1]苯并呋喃-2,7-二胺的制备
反应式为:
Figure PCTCN2019126793-appb-000029
在惰性气氛下,将第(1)步制备的2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃(1.9g,5mmol)与二苯胺(2.63g,15mmol)溶解于100mL甲苯中,加入三(二亚苄基丙酮)二钯(0.25mmol)、四氟硼酸三叔丁基磷(0.75mmol)和叔丁醇钾(1.68g,15mmol),加热至110℃进行Buchwald-Hartwig芳胺化反应12h。待反应体系冷却至室温,用饱和食盐水和水洗涤后,用无水硫酸钠干燥,浓缩后用体积比为3:1的石油醚和二氯甲烷柱层析,得到N 2,N 2,N 7,N 7-四苯基[1]苯并噻吩[3,2-b][1]苯并呋喃-2,7-二胺(简称为BTBF-DPA),产率为78%。
对BTBF-DPA的结构进行检测,测得数据包括: 1H NMR(500MHz,DMSO)δ7.84(d,J=8.6Hz,1H),7.77(d,J=8.5Hz,1H),7.65(d,J=1.9Hz,1H),7.35–7.27(m,9H),7.13(dd,J=8.6,2.0Hz,1H),7.09–7.03(m,11H),7.01(dd,J=8.5,1.9Hz,1H). 13C NMR(500MHz,CDCl 3)δ159.79,153.06,148.02,147.88,145.61,145.36,143.10,129.53,129.47,124.55,124.42,123.25,123.10,122.41,120.73,120.61,119.82,119.75,119.39,119.17,117.59,108.43。HRMS测试:理论计算值为559.1799,实际测定值为59.1855,可知获得的BTBF-DPA为目标化合物。
(3)对BTBF-DPA进行光谱测试,测得BTBF-DPA在甲苯中的紫外可见吸收光谱、室温下的荧光光谱和低温(-78℃)磷光光谱如图2所示,由磷光光谱的左边发光边缘可计算得到BTBF-DPA的三线态能级为2.99eV(计算公式为:
Figure PCTCN2019126793-appb-000030
其中,E-能量(kJ);h-普朗克常数(6.63*10 -34J·s);c-光速;λ-波长,波长取自磷光光谱曲线的左边起峰处的波长值414nm),可知实施例1制备的空穴传输材料具有很高的三线态能级,可以阻挡发光层的激子。
(4)对BTBF-DPA制成厚度为30nm的薄膜进行光谱测试,测得薄膜的紫外吸收光谱和荧光光谱如图3所示,可知薄膜的紫外吸收曲线和荧光发射曲线在长波长处均有拖尾峰,反映出该薄膜具有很强的分子间的堆积作用,导致发光红移,而这种堆积作用,有利于载流子的传输。
(5)对BTBF-DPA进行热稳定性测试,其热重分析曲线如图4(a)所示,可知 BTBF-DPA的热分解温度为425℃,其差示扫描量热分析曲线图如图4(b)所示,可知BTBF-DPA玻璃态转化温度为104℃,表明BTBF-DPA具有较高的玻璃态转化温度和稳定的薄膜形貌。
(6)对BTBF-DPA进行电化学测试,其电化学伏安循环测试曲线如图5所示,可知BTBF-DPA的HOMO能级为5.02eV,LUMO能级为1.99eV,表明BTBF-DPA的能级可用作空穴传输材料。
实施例2 N 2,N 7-二苯基-N 2,N 7-二(1-萘基)[1]苯并噻吩[3,2-b][1]苯并呋喃-2,7-二胺的制备
反应式为:
Figure PCTCN2019126793-appb-000031
在惰性气氛下,将实施例1中第(1)步制备的2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃(1.9g,5mmol)与苯基-1-萘胺(3.28g,15mmol)溶于100mL甲苯中,加入三(二亚苄基丙酮)二钯(0.25mmol)、四氟硼酸三叔丁基磷(0.75mmol)和叔丁醇钾(1.68g,15mmol),加热至110℃进行Buchwald-Hartwig芳胺化反应15h。待反应体系冷却至室温,用饱和食盐水和水洗涤后,用无水硫酸钠干燥,浓缩后用体积比为3:1的石油醚和二氯甲烷柱层析,得到N 2,N 7-二苯基-N 2,N 7-二(1-萘基)[1]苯并噻吩[3,2-b][1]苯并呋喃-2,7-二胺,产率为64%。
实施例3 2,7-二(3,5-二苯氨基)苯基-1-基[1]苯并噻吩[3,2-b][1]苯并呋喃的制备
反应式为:
Figure PCTCN2019126793-appb-000032
在惰性气氛下,将实施例1中第(1)步制备的2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃(1.9g,5mmol)与3,5-二苯氨基苯-1-基硼酸频哪醇酯(8.07g,15mmol)溶解于50mL甲苯中,加入碳酸钾水溶液(10mL,2M)、苄基三乙基氯化铵(10mmol)和四(三苯基膦)钯(0.1mmol),加热至110℃进行Suzuki反应24h。待反应体系冷却至室温,将反应后的混合物缓慢滴加至100mL甲醇中,过滤后,用盐酸和水洗涤固体, 经高真空升华,得到2,7-二(3,5-二苯氨基)苯基-1-基[1]苯并噻吩[3,2-b][1]苯并呋喃,产率为53%。
实施例4 2,7-二(9H-咔唑基)[1]苯并噻吩[3,2-b][1]苯并呋喃-2,7-二胺的制备
反应式为:
Figure PCTCN2019126793-appb-000033
在惰性气氛下,将实施例1中第(1)步制备的2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃(1.9g,5mmol)与咔唑(2.5g,15mmol)溶于100mL甲苯中,加入三(二亚苄基丙酮)二钯(0.25mmol)、四氟硼酸三叔丁基磷(0.75mmol)和叔丁醇钾(1.68g,15mmol),加热至110℃进行Buchwald-Hartwig芳胺化反应16h。待反应体系冷却至室温,用饱和食盐水和水洗涤后,用无水硫酸钠干燥,浓缩后用体积比为3:1的石油醚和二氯甲烷柱层析,得到2,7-二(9H-咔唑基)[1]苯并噻吩[3,2-b][1]苯并呋喃-2,7-二胺,产率为78%。
实施例5
基于实施例1制得的BTBF-DPA采用溶液法制备具有正装结构的绿光OLED:ITO玻璃(阳极)|HATCN(空穴注入层,5nm)|BTBF-DPA(空穴传输层,20nm)|Spiro-3-BFP(电子阻挡层,15nm)|DMIC-Cz:DMIC-TRz:GD(质量比为10:10:1,有机发光层,15nm)|ANT-BIZ(电子传输层,20nm)|Liq(电子注入层,1nm)|Al(阳极,100nm),其结构如图6所示,其中,该OLED的各功能层材料的名称缩写对应的结构为:
Figure PCTCN2019126793-appb-000034
Figure PCTCN2019126793-appb-000035
对比例1
基于现有空穴传输材料NPB采用溶液法制备另一具有正装结构的OLED:与实施例5制得的绿光OLED不同之处在于,采用现有空穴传输材料:
Figure PCTCN2019126793-appb-000036
替换BTBF-DPA。
实施例5与对比例1的OLED的各功能层材料的能级结构如图7所示。实施例5与对比例1制得的OLED的电流效率及能量效率随亮度的变化如图8a所示,可知:测试亮度范围内,实施例5制备的OLED在相同亮度下的电流效率及能量效率均高于对比例1制得的OLED。
实施例5与对比例1制得的OLED的外量子效率(External Quantum Efficiency,EQE)随亮度的变化如图8b所示,可知:在测试亮度范围内,实施例5制得的OLED在相同亮度下的外量子效率均高于对比例1制得的OLED。
实施例5与对比例1制备的OLED的电流密度及亮度随外加电压的变化如图8c所示,可知:测试电压范围内,相对于对比例1制备的OLED,实施例5制备的OLED在相同电压下的的电流密度及亮度均较高。
实施例5与对比例1制备的OLED的荧光发射光谱如图8d所示,可知,两个实施 例制备的OLED发光器件的发光强度相差不大。由上述可知,基于实施例1制得的空穴传输材料BTBF-DPA制备的OLED的性能优于基于NPB制得的OLED。
综上所述,本发明采用O部分替代BTBT母核中的S获得了BTBF母核结构,其结合了苯并噻吩和苯并呋喃的优势;并通过对BTBF进行修饰,设计出了一系列BTBF类空穴传输材料。本发明的空穴传输材料兼有高载流子迁移率和高三线态能级,且具有非常好的稳定性、溶解性和荧光性,有利于提高有机半导体器件的整体性能。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种空穴传输材料,其特征在于,所述空穴传输材料的结构通式为
    Figure PCTCN2019126793-appb-100001
    式中,R 1、R 2独立地选自取代或未取代的芳基、二芳胺基、稠杂环基中的一种。
  2. 一种如权利要求1所述的空穴传输材料的制备方法,其特征在于,包括步骤:
    R 1=R 2,且其为
    Figure PCTCN2019126793-appb-100002
    时,按照反应式(1):
    Figure PCTCN2019126793-appb-100003
    惰性气氛下,将2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃、R 1-H溶于第一溶剂,加入三(二亚苄基丙酮)二钯、四氟硼酸三叔丁基磷和叔丁醇钾,加热进行Buchwald-Hartwig芳胺化反应,纯化处理,得到空穴传输材料;其中,R 3、R 4独立地选自取代或未取代的芳基、稠杂环基中的一种,
    Figure PCTCN2019126793-appb-100004
    指连接位为N的取代或未取代的含N稠杂环基;
    或者,R 1=R 2,且其是取代或未取代的芳基或连接位为苯环上的C的稠杂环基时,按照反应式(2):
    Figure PCTCN2019126793-appb-100005
    惰性气氛下,将2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃、
    Figure PCTCN2019126793-appb-100006
    溶于第二溶剂,加入碳酸钾水溶液、相转移催化剂和四(三苯基膦)钯,加热进行Suzuki反应,纯化处理,得到空穴传输材料。
  3. 根据权利要求2所的制备方法,其特征在于,所述2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃的制备方法包括步骤:将[1]苯并噻吩[3,2-b][1]苯并呋喃、液溴分别溶于第三溶剂中形成不同的溶液,将液溴溶液在低温下滴加到[1]苯并噻吩[3,2-b][1]苯并呋喃溶液中,接着进行溴代反应,经纯化处理,得到2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃。
  4. 根据权利要求3所述的的制备方法,其特征在于,所述第一溶剂、所述第二溶剂独立地选自无水甲苯、1,4-二氧六环、N,N-二甲基甲酰胺中的一种或多种;和/或所述第三溶剂为氯仿、二氯甲烷中的一种或两种。
  5. 根据权利要求3所述的的制备方法,其特征在于,所述溴代反应的温度为25-35℃,和/或所述溴代反应的时间为12-24h。
  6. 根据权利要求2所述的制备方法,其特征在于,所述2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃、R 1-H、三(二亚苄基丙酮)二钯、四氟硼酸三叔丁基磷、叔丁醇钾的摩尔比为1:2-2.5:0.03-0.05:0.1-0.15:2-3。
  7. 根据权利要求2所述的制备方法,其特征在于,所述2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃、
    Figure PCTCN2019126793-appb-100007
    碳酸钾、相转移催化剂、四(三苯基膦)钯的摩尔比为1:2-2.5:4-6:2-3:0.01-0.05。
  8. 根据权利要求2所述的制备方法,其特征在于,所述Buchwald-Hartwig芳胺化反应的温度为90-120℃,和/或所述Buchwald-Hartwig芳胺化反应的时间为12-24h。
  9. 根据权利要求2所述的制备方法,其特征在于,所述Suzuki反应的温度为90-120℃,和/或所述Suzuki反应的时间为12-24h。
  10. 一种如权利要求1所述的空穴传输材料在制备有机半导体器件的应用。
PCT/CN2019/126793 2019-12-11 2019-12-20 一种空穴传输材料及其制备方法与应用 WO2021114362A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911265955.9A CN110981889A (zh) 2019-12-11 2019-12-11 一种空穴传输材料及其制备方法与应用
CN201911265955.9 2019-12-11

Publications (1)

Publication Number Publication Date
WO2021114362A1 true WO2021114362A1 (zh) 2021-06-17

Family

ID=70092382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126793 WO2021114362A1 (zh) 2019-12-11 2019-12-20 一种空穴传输材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN110981889A (zh)
WO (1) WO2021114362A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113527285A (zh) * 2021-07-15 2021-10-22 中国林业科学研究院林产化学工业研究所 一种D-A-π-A-D型荧光化合物及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114068824B (zh) * 2020-07-29 2024-04-26 江苏三月科技股份有限公司 一种具有多空穴传输通道材料的有机电致发光器件
CN114075217B (zh) * 2020-08-13 2023-06-23 上海和辉光电股份有限公司 一种化合物及包含其的oled器件
CN114031631B (zh) * 2020-12-16 2023-04-25 广东聚华印刷显示技术有限公司 有机化合物、组合物、电致发光二极管和显示器件
CN113024579B (zh) * 2021-03-03 2022-10-14 北京大学深圳研究生院 类苯并噻吩并[3,2-b]苯并噻吩的空穴传输材料及其制备方法和应用
CN115490703B (zh) * 2021-06-17 2024-05-31 广东阿格蕾雅光电材料有限公司 Btbf的合成方法
CN115490702B (zh) * 2021-06-17 2024-06-14 广东阿格蕾雅光电材料有限公司 Btbf芳胺衍生物的合成方法
CN114437115B (zh) * 2021-12-28 2023-09-05 北京大学深圳研究生院 一种空穴传输材料及其制备方法与oled器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105732658A (zh) * 2014-12-31 2016-07-06 三星显示有限公司 化合物、包括其的有机发光装置和平板显示设备
KR20160122974A (ko) * 2015-04-15 2016-10-25 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기발광소자
US10439149B2 (en) * 2016-08-19 2019-10-08 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10328627A1 (de) * 2003-06-26 2005-02-17 Covion Organic Semiconductors Gmbh Neue Materialien für die Elektrolumineszenz
JP5252482B2 (ja) * 2008-03-31 2013-07-31 国立大学法人広島大学 発光素子
KR102380126B1 (ko) * 2016-01-18 2022-03-29 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기발광소자
CN110734451B (zh) * 2018-07-18 2022-07-22 北京大学深圳研究生院 一种半导体材料及其制备方法、有机发光二极管
CN110734453A (zh) * 2018-07-18 2020-01-31 北京大学深圳研究生院 一种胺类衍生物及其制备方法、有机发光二极管

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105732658A (zh) * 2014-12-31 2016-07-06 三星显示有限公司 化合物、包括其的有机发光装置和平板显示设备
KR20160122974A (ko) * 2015-04-15 2016-10-25 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기발광소자
US10439149B2 (en) * 2016-08-19 2019-10-08 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113527285A (zh) * 2021-07-15 2021-10-22 中国林业科学研究院林产化学工业研究所 一种D-A-π-A-D型荧光化合物及其制备方法
CN113527285B (zh) * 2021-07-15 2023-09-05 中国林业科学研究院林产化学工业研究所 一种D-A-π-A-D型荧光化合物及其制备方法

Also Published As

Publication number Publication date
CN110981889A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2021114362A1 (zh) 一种空穴传输材料及其制备方法与应用
KR20220047661A (ko) 질소 함유 화합물, 이를 포함하는 전자 소자 및 전자 장치
Wang et al. A solution-processable deep red molecular emitter for non-doped organic red-light-emitting diodes
CN109679072B (zh) 聚合物、显示面板以及显示装置
KR20150065184A (ko) 벤조티오펜계 유도체 및 유기 전계 발광 분야에서의 그의 응용
CN108530454A (zh) 一种稠合多环化合物及其制备方法和用途
CN114341130A (zh) 杂环化合物、包括其的有机发光元件、用于有机发光元件的有机材料层的组成物及制造有机发光元件的方法
Qiu et al. Improving the electroluminescence performance of donor–acceptor molecules by fine-tuning the torsion angle and distance between donor and acceptor moieties
CN107814916B (zh) 一种聚合物、发光材料及器件、显示装置
Li et al. Solution-processable, high luminance deep-blue organic light emitting devices based on novel naphthalene bridged bis-triphenylamine derivatives
Li et al. Two bipolar blue-emitting fluorescent materials based on 1, 3, 5-triazine and peripheral pyrene for organic light-emitting diodes
CN106432251A (zh) 六臂星状有机发光材料及其有机电致发光器件
Zhang et al. Bipolar fluorene-cored derivatives containing carbazole-benzothiazole hybrids as non-doped emitters for deep-blue electroluminescence
CN108218891B (zh) 一类电致发光化合物及其制备方法和应用
CN113024579A (zh) 类苯并噻吩并[3,2-b]苯并噻吩的空穴传输材料及其制备方法和应用
Cao et al. Bipolar fluorophores based on intramolecular charge-transfer moieties of sulfone for nondoped deep blue solution-processed organic light-emitting diodes
CN113816977B (zh) 一种有机化合物及其应用
TW201934594A (zh) 聚合物、包含其的覆蓋組成物與使用其的有機發光裝置
WO2022217791A1 (zh) 一种组合物及包含其的电子元件和电子装置
CN112679732B (zh) 一类发光聚合物及其无金属催化剂聚合方法与应用
CN111606853B (zh) 一种芳胺类化合物、有机发光器件及显示装置
CN111423450B (zh) 化合物、显示面板以及显示装置
JP7094600B2 (ja) 重合体、これを含むコーティング組成物およびこれを用いた有機発光素子
CN109134418B (zh) 一类二苯并吡喃七元稠环单元及其衍生物和制备方法与应用
CN106675551B (zh) 可采用环境友好溶剂加工的以萘并茚芴单元为核的双极性小分子发光材料及其制法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955519

Country of ref document: EP

Kind code of ref document: A1