WO2021112040A1 - 回転電機のステータおよび回転電機 - Google Patents

回転電機のステータおよび回転電機 Download PDF

Info

Publication number
WO2021112040A1
WO2021112040A1 PCT/JP2020/044519 JP2020044519W WO2021112040A1 WO 2021112040 A1 WO2021112040 A1 WO 2021112040A1 JP 2020044519 W JP2020044519 W JP 2020044519W WO 2021112040 A1 WO2021112040 A1 WO 2021112040A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
slot
winding
electric machine
stator
Prior art date
Application number
PCT/JP2020/044519
Other languages
English (en)
French (fr)
Inventor
慎理 松川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202080075743.9A priority Critical patent/CN114731080A/zh
Priority to JP2021562635A priority patent/JP7292418B2/ja
Priority to US17/638,948 priority patent/US12009714B2/en
Publication of WO2021112040A1 publication Critical patent/WO2021112040A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • H02K3/345Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • H02K3/487Slot-closing devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present application relates to a stator of a rotary electric machine and a rotary electric machine.
  • Fractional slot winding has the problem that the number of split coils is large and the winding insertion process into the slot becomes complicated because coils forming different phases are wound in the same slot by lap winding. It was.
  • the present application has been made to solve the above-mentioned problems, and it is possible to reduce the number of split coils, reduce the manufacturing cost of the split coils, and simplify the winding insertion process into the slot.
  • the purpose is to obtain a stator of a rotary electric machine and a rotary electric machine.
  • the stator of a rotary electric machine disclosed in the present application is It is a stator of a rotary electric machine,
  • the winding of the stator has a plurality of split coils and
  • the split coil has a pair of in-slot storage portions that are housed in different slots among a plurality of slots formed between adjacent teeth of the stator.
  • the split coil has a large split coil in which a pair of the slot storage portions are independently housed in the slot, and a pair of the slot storage portions are stored in the slot together with the slot storage portions of the other split coils.
  • the rotary electric machine disclosed in the present application includes the above-mentioned stator and a rotor arranged so that the outer peripheral surface faces the inner peripheral surface of the stator.
  • the number of split coils can be reduced, the manufacturing cost of the split coil can be reduced, and the winding insertion process into the slot can be simplified.
  • a stator and a rotating electric machine can be obtained.
  • FIG. 1 It is a schematic front view of the cross section on one side of the rotary electric machine according to the first embodiment. It is a schematic front view of the cross section on one side of the rotary electric machine according to the first embodiment. It is a schematic front view of the cross section on one side of the rotary electric machine according to the first embodiment. It is a developed sectional view of the winding of a fractional slot winding of a comparative example. It is a detailed sectional view of one slot according to Embodiment 1. FIG. It is a developed sectional view of the winding of a fractional slot winding by Embodiment 1. FIG. It is a developed sectional view of the winding of a fractional slot winding by Embodiment 2. FIG.
  • FIG. 5 is a developed sectional view of a winding of a fractional slot winding according to a fourth embodiment. It is a developed sectional view of the winding of a fractional slot winding of a comparative example.
  • FIG. 5 is a developed sectional view of a winding of a fractional slot winding according to a fifth embodiment. It is a developed sectional view of the winding of a fractional slot winding of a comparative example.
  • FIG. 5 is a developed sectional view of a winding of a fractional slot winding according to a sixth embodiment.
  • FIG. 5 is a developed sectional view of a winding of a fractional slot winding according to a seventh embodiment. It is a developed sectional view of the winding of a fractional slot winding of a comparative example.
  • FIG. 5 is a developed sectional view of a winding of a fractional slot winding according to the eighth embodiment. It is a developed sectional view of the winding of a fractional slot winding of a comparative example.
  • 9 is a developed sectional view of a winding of a fractional slot winding according to a ninth embodiment.
  • FIG. 5 is a developed sectional view of a winding of a fractional slot winding according to a tenth embodiment. It is sectional drawing of the slot of the stator into which the two-layer coil of the rotary electric machine according to Embodiment 11 is inserted. It is sectional drawing of the slot of the stator into which the single layer coil of the rotary electric machine according to Embodiment 11 is inserted.
  • FIG. 5 is a cross-sectional view of a slot of a stator into which a single-layer coil of a rotary electric machine according to a twelfth embodiment is inserted.
  • FIG. 5 is a cross-sectional view of a slot of a stator into which a single-layer coil of a rotary electric machine according to a thirteenth embodiment is inserted.
  • FIG. 5 is a developed sectional view of a winding of a fractional slot winding according to a fourteenth embodiment.
  • the stator of the rotary electric machine and the rotary electric machine according to the first embodiment will be described with reference to the drawings.
  • the terms “axial direction”, “diameter direction”, and “circumferential direction” simply refer to the “axial direction”, “diameter direction”, and “circumferential direction” of the stator.
  • the split coil is a coil of the smallest unit constituting the winding of the stator of the rotary electric machine, and means a coil having a pair of in-slot storage portions housed in different slots.
  • the single-layer coil and the large split coil refer to a split coil in which only the slot storage portion of one split coil is independently housed in the same slot.
  • the two-layer coil and the subdivided coil refer to the respective divided coils in which the storage portions in the slots of the two divided coils are overlapped in the radial direction and are housed together in the same slot.
  • FIGS. 4 and 6 to 9 and 13 to 25 are represented by using a developed cross-sectional view in which the windings of the cylindrical stator of the rotary electric machine are cut open and arranged in a straight line. Further, in the hatching of the coils shown in each figure, it is assumed that the diagonal line from the upper left to the lower right indicates the U phase, the diagonal line from the upper right to the lower left indicates the V phase, and the horizontal line indicates each divided coil of the W phase.
  • FIG. 1 is a schematic front view of a cross section of the rotary electric machine 100A according to the first embodiment.
  • the rotary electric machine 100A includes a housing 11A including a bottomed cylindrical frame 12A and a bracket 13 that closes an opening of the frame 12A, a stator 14A fitted inside the cylindrical portion of the frame 12A, and a bottom portion of the frame 12A.
  • the upper side) and the central portion of the bracket 13 are rotatably supported around the axis Q of the rotating shaft 16 via a bearing 15, and the outer peripheral surface is arranged so as to face the inner peripheral surface of the stator 14A. It is provided with the rotor 17A.
  • the rotary electric machine 100A is a cage-type induction rotary electric machine including a rotor 17A composed of a cage-type conductor and an iron core as a rotor.
  • the rotary electric machine 100A includes a winding type induction rotary electric machine having a winding on the rotor, a surface magnet type rotary electric machine in which a permanent magnet is arranged on the surface of the rotor, and an embedded magnet type rotary electric machine in which a permanent magnet is embedded inside the rotor.
  • It may be in any form of an electric machine or a synchronous reluctance type rotary electric machine having a rotor having a reluctance torque to provide a salient pole in the inductance in a shape such as forming an arc-shaped groove in a laminated electromagnetic steel plate.
  • FIG. 2 is a schematic front view of a cross section of the rotary electric machine 100B on one side.
  • the rotary electric machine 100B is another example of the rotary electric machine 100A.
  • the housing 11B is composed of a frame 12B having a cylindrical shape instead of a bottomed cylinder, and two brackets 13 for closing the openings at both ends in the axial direction thereof.
  • the rotor 17B shows an example of being used for a synchronous reluctance type rotary electric machine among the above-mentioned rotors.
  • FIG. 3 is a schematic front view of a cross section of the rotary electric machine 100C.
  • the rotary electric machine 100C is another example of the rotary electric machine 100A.
  • the rotary electric machine 100C is an outer rotor type rotary electric machine.
  • the rotor 17C is a surface magnet type rotor.
  • the stator 14C is fixed to the bracket 13C in an outer fitting state.
  • the rotor 17C has a bottomed cylindrical frame 12C and a permanent magnet Mg arranged inside the frame 12C so as to face the radial outer side of the stator 14C.
  • the rotor 17C is rotatably supported around a rotating shaft 16 via a bearing 15.
  • FIG. 4 is a developed cross-sectional view of the winding 20 of the fractional slot winding of the comparative example.
  • FIG. 4 is a cross-sectional view of a winding 20 assembled in a cylindrical shape on a stator, cut vertically at a portion housed in each slot, and cut open in the axial direction.
  • the upper side of the figure is the inside of the stator, and the lower side of the figure is the outside of the stator (back yoke side).
  • Each of # 1 to # 36 represents the slot S number. In the actual cross section, slots S of # 1 and # 36 are adjacent to each other to form an annular shape.
  • each slot S a storage portion 21in (upper port coil) in the inner slot and a storage portion 21out (lower mouth coil) in the outer slot are inserted.
  • the inner slot inner storage portion 21in side is arranged on the gap surface side facing the rotor, and the outer slot inner storage portion 21out side is arranged on the bottom of the slot S, that is, on the back yoke portion side of the stator.
  • the winding 20 is a fractional slot winding in which the dividing coils of each phase are wound in the same order as slots # 1 to # 6, # 2 to # 7, # 3 to # 8 ...
  • the coil pitch (the number of teeth straddling) of all the split coils is 5 pitches (hereinafter, also referred to as number + pitch), and each phase is composed of 12 split coils, 36 split coils in total. There is.
  • the direction of energization of the winding 20 is indicated by " ⁇ " and "x".
  • the energizing direction of " ⁇ " is the direction from the back side to the front side of the paper surface in the direction perpendicular to the paper surface, and the energizing direction of "x" is, on the contrary, the direction away from the front side to the back side of the paper surface.
  • FIG. 5 is a detailed cross-sectional view of one slot S. Slots S are formed between adjacent teeth (not shown) of the stator. In slot S of # 1, a U-phase + (+ indicates the inside in the radial direction) split coil is housed as the inner slot storage portion 21in, and the V-phase-(-is) as the outer slot inner storage portion 21out. , Shows the outside in the radial direction) is housed.
  • a wedge 26 for holding the slot storage portion of the split coil so as not to come out from the iron core and an inner slot storage portion 21in.
  • a separator 27 for ensuring interphase insulation between the outer slot and the storage portion 21out in the outer slot is inserted.
  • the slot cell 25, the wedge 26, and the separator 27 are not shown in the developed cross-sectional views after FIG.
  • the storage portion in the slot of each split coil is inserted so as to be overlapped on the outside and inside of the slot S.
  • the winding 20 is in the form of a two-layer lap winding in which two split coils are always inserted in each slot S, and a storage portion in one slot is inserted, and 36 split coils are inserted in the slot S. There are 72 storage units. When assembling the winding 20, the split coils are inserted into the slots S in order. Therefore, if the number of split coils to be assembled is large, the work required for inserting the split coils becomes long.
  • the five split coils immediately after the start of inserting the split coils are raised coils (outside).
  • the inner slot storage is inserted in front of the slot storage
  • the outer slot storage is inserted later
  • the previously inserted inner slot storage is temporarily released to the outside of the slot. Since the work of inserting the storage part in the outer slot and then reinserting the storage part in the inner slot) is required, the productivity of the winding 20 is poor, and the automatic winding insertion by the coil inserter is not possible. It is possible and it is necessary to manufacture the winding 20 by manually inserting the split coil.
  • FIG. 6 is a developed cross-sectional view of the winding 20A of the fractional slot winding according to the first embodiment.
  • the winding 20A is a fractional slot winding in which the number of slots q for each pole and each phase is the same as that of the winding 20 of FIG.
  • the inner slot storage portion 21in of one split coil and the outer slot storage portion 21out of the other split coil corresponding to the inner slot storage portion 21in are inserted.
  • the winding 20A is in the form of a two-layer lap winding.
  • the inner slot storage portion 21in and the outer slot storage portion 21out of one split coil are connected and wound by a coil end portion 23, and each coil end portion is on the axial end surface of the iron core of the stator. It is piled up in.
  • the inner slot inner storage portion 21in and the outer slot inner storage portion 21out of these slots S form different phases
  • the inner slot inner storage portion 21in and the outer slot A separator 27 is required between the inner accommodating portion 21out and the inner accommodating portion 21out in the same manner as the winding 20 shown in FIG. 4 for interphase insulation.
  • FIG. 4 and FIG. 6 are compared with respect to the remaining slots, in FIG. 4, the phases of the inner slot inner storage portion 21in and the outer slot inner storage portion 21out that enter the same slot are equal, and the inner slot inner storage portion 21in and the outer slot The energizing direction of the inner storage portion 21out is also the same. Therefore, the inner slot inner storage portion 21in and the outer slot inner storage portion 21out are combined into one, and the division coil is inserted into the division coil (for example, slot # 24 in FIG. 6) in which the number of turns of each division coil is doubled.
  • the slot storage portion 21A and the slot storage portion 21B inserted into the slot # 29 can be connected by a concentric coil end portion 22 to form a wound single-layer concentric coil).
  • the coil end portion 22 of the concentric winding is shown in a U shape so as to protrude upward for convenience of the developed cross-sectional view, but it does not actually protrude inward, and the coil end portion 22 protrudes in the axial direction. It is formed. Therefore, the winding 20A is a concentric lap winding in which the lap winding coil and the concentric winding coil coexist in one iron core. In the example of FIG. 6, there are 12 split coils for double-layer lap winding and 12 split coils for single-layer concentric winding, for a total of 24 split coils for concentric lap winding. Therefore, the number of split coils can be reduced by 33.3% compared to the winding 20.
  • the coil end portion 22 of the single-layer concentric split coil is indicated by a double wire, not representing two physical conductors, but the coil end portion 22 is double-layered. This is to show that the coil end portion 23 of the winding split coil has twice the number of strands.
  • the winding 20A shown in FIG. 6 can reduce the number of divided coils by 12 or 33.3% as compared with the winding 20 shown in FIG.
  • the length is equivalent to 1 minute, and the length of the coil end in the circumferential direction can be shortened by 13% compared to the coil end of double-layer lap winding. It is possible to improve the characteristics of the rotating electric machine by reducing the leakage reactance at the end and to reduce the weight by reducing the amount of copper.
  • the reason why the number of strands constituting each large division coil 20L is divided into two is that the number of wires constituting each large division coil 20L is divided into small parts. This is because there are twice as many wires as constituting the coil 20S. Therefore, the symmetry of comparison in practice is the number of wires constituting each coil end portion ⁇ the length of the coil end portion.
  • the number of split coils used for the stator is reduced, the manufacturing cost of the split coils is reduced, and the winding insertion step into the slot is simplified. it can.
  • the total length of the wires constituting the coil end portion can be shortened, as a result, the height of the coil end portion can be lowered, and a rotary electric machine having a short shaft length can be provided.
  • FIG. 7 is a developed cross-sectional view of the winding 220A of the fractional slot winding.
  • the direction of the coil, the overlapping direction of the lap winding, and the position of the coil inside the slot are different, the generated rotating magnetic field is exactly the same as that of the winding 20A of FIG. It works.
  • FIG. 8 is a developed cross-sectional view of the winding 320A of the fractional slot winding.
  • the combination of the in-slot storage portions 21 is the same as in FIG. 7.
  • the W-phase coil (including the coil inserted into the slot S of # 3 and the slot S of # 7 in FIG. 8) is first included. , 8 coils represented by horizontal line hatching) are all inserted into slot S. At this time, all the subdivided coils 20S of the W-phase coil are inserted on the outer side in the radial direction (lower side in FIG. 8, the same applies hereinafter). Next, the coil end is subjected to interphase insulation VW between the V phase and the W phase. Unlike the example of FIG.
  • the coil end can be collectively used for interphase insulation, and the dielectric strength and productivity are improved.
  • all the V-phase coils (eight coils represented by diagonal hatches from the upper right to the lower left, including the coils inserted in slot S of # 36 and slot S of # 4 in FIG. 8) are all. Put it in slot S.
  • the W-phase subdivision coil 20S is radially inside (upper side in FIG. 8).
  • the V-phase subdivision coil 20S is arranged on the outer side in the radial direction. Therefore, the interphase insulation UV between the U phase and the V phase is applied in the same manner as the interphase insulation VW between the V phase and the W phase.
  • U-phase coils (eight coils represented by hatching with diagonal lines from the upper left to the lower right, including the coils inserted into slot S of # 6 and slot S of # 10 in FIG. 8) are inserted. Put everything in slot S. All the U-phase subdivided coils 20S are arranged inside the slot S in the radial direction.
  • the pair of in-slot storage portions of the W-phase subdivided coil 20S which is the first phase, are arranged radially outside in the slots S (for example, # 8 and # 11), and are of the U-phase, which is the second phase.
  • the storage portions in the pair of sub-slots of the subdivision coil 20S are all arranged radially inside the slots S (for example, # 2 and # 5), and are in the pair of slots of the V-phase subdivision coil 20S which is the third phase. All of the storage portions in one slot are arranged radially outside the slot S (for example, # 5), and the storage portions in the other slot are arranged radially inside the slot S (for example, # 8). Have been placed.
  • the coil ends of the U-phase, V-phase, and W-phase coils can be arranged in the radial direction in the order of U-phase, V-phase, and W-phase from the inside to the outside. Therefore, the coil end portions of the divided coils are formed so as to be arranged at the same height in the circumferential direction (the length protruding from the iron core in the axial direction) for each phase.
  • each split coil constituting the winding 320A can be inserted into the slot S in order from the lowest height layer for each phase, and the lap winding is eliminated and the single-layer concentric winding and the two-layer concentric winding coexist.
  • the winding 320A can be automatically wound by the inserter, and the productivity of the winding process can be greatly improved.
  • the coil end portions of each phase have the same height in the axial direction and are lined up in a row in the circumferential direction, the interphase insulation VW and UV of the coil end portion can be easily inserted, and the productivity of the winding 320A is improved. To do.
  • the axial length of the coil end portion can be shortened, so that the axial length of the rotary electric machine is shortened. It is possible to reduce the size and weight of the rotary electric machine.
  • the length of the coil end portion in the circumferential direction is increased. It is equivalent to 132 pitches, and the coil end can be shortened by 26.7% compared to the winding 20 of the double-layer lap winding shown in FIG. 4 and 15.4% compared to the winding 20A of the concentric lap winding shown in FIG. It is possible to improve the efficiency of the rotating electric machine by reducing the copper loss, improve the characteristics of the rotating electric machine by reducing the leakage reactance at the coil end, and reduce the weight of the rotating electric machine by reducing the amount of copper.
  • FIG. 9 is a developed sectional view of the winding 420A of the fractional slot winding according to the fourth embodiment.
  • the insertion order of the inner storage portion 21 is reversed.
  • FIG. 10 is a developed cross-sectional view of the winding 520 of the fractional slot winding of the comparative example.
  • FIG. 11 is a developed cross-sectional view of the winding 520A of the fractional slot winding according to the fifth embodiment. Similar to FIG. 10, it shows a developed cross-sectional view in which winding 520A of a cylindrical stator is cut open and arranged in a straight line.
  • the double-wire coil end portion drawn on the upper side of the figure represents the coil end portion of the single-layer concentric winding split coil (number of turns 2n), and the single-wire coil end portion drawn on the lower side is two. It represents the coil end portion of the layer concentric winding split coil (number of turns n) (same in the following figure).
  • the coil 20S is composed of four, and the four-pitch two-layer winding subdivided coil 20S is composed of four, for a total of 16 divided coils.
  • the number of split coils can be reduced by 33.3% from 24 to 16, and the circumferential length of the coil end can be reduced by 8.3% from 96 to 88.
  • productivity can be improved by reducing the number of split coils
  • weight can be reduced by reducing the amount of copper
  • efficiency can be improved by reducing copper loss. It should be noted that the same effect as that of the present embodiment can be obtained even in a form in which the number of poles and the number of slots are multiplied by an integer, such as 12 poles and 48 slots and 18 poles and 72 slots.
  • FIG. 12 is a developed cross-sectional view of the winding 620 of the fractional slot winding of the comparative example.
  • FIG. 13 is a developed cross-sectional view of the winding 620A of the fractional slot winding according to the sixth embodiment. Similar to FIG. 12, it shows a developed cross-sectional view in which winding 620A of a cylindrical stator is cut open and arranged in a straight line.
  • the number of split coils can be reduced from 18 to 12 by 33.3%.
  • productivity can be improved by reducing the number of split coils
  • weight can be reduced by reducing the amount of copper
  • efficiency can be improved by reducing copper loss. It should be noted that the same effect as that of the present embodiment can be obtained even in a form in which the number of poles and the number of slots are multiplied by an integer, such as 8-pole 36 slots and 12-pole 54 slots.
  • FIG. 14 is a developed cross-sectional view of the winding 720 of the fractional slot winding of the comparative example.
  • FIG. 15 is a developed cross-sectional view of the winding 720A of the fractional slot winding according to the seventh embodiment. Similar to FIG. 14, it shows a developed cross-sectional view in which the winding 720A of the cylindrical stator is cut open and arranged in a straight line.
  • the number of split coils can be reduced by 36.7% from 30 to 19, and the circumferential length of the coil end can be reduced by 5.3% from 150 to 142.
  • productivity can be improved by reducing the number of split coils
  • weight can be reduced by reducing the amount of copper
  • efficiency can be improved by reducing copper loss. It should be noted that the same effect as that of the present embodiment can be obtained even in a form in which the number of poles and the number of slots are multiplied by an integer, such as 12 poles and 60 slots and 18 poles and 90 slots.
  • FIG. 16 is a developed cross-sectional view of the winding 820 of the fractional slot winding of the comparative example.
  • FIG. 17 is a developed cross-sectional view of the winding 820A of the fractional slot winding according to the eighth embodiment. Similar to FIG. 16, it shows a developed cross-sectional view in which winding 820A of a cylindrical stator is cut open and arranged in a straight line.
  • the single-layer concentric winding large split coil 20L is composed of eight, and the seven-pitch double-layer concentric winding small split coil 20S is eight, for a total of 25 split coils.
  • the number of split coils can be reduced by 16.7% from 30 to 25, and the circumferential length of the coil end can be reduced by 16.3% from 294 to 246.
  • productivity can be improved by reducing the number of split coils
  • weight can be reduced by reducing the amount of copper
  • efficiency can be improved by reducing copper loss. It should be noted that the same effect as that of the present embodiment can be obtained even in a form in which the number of poles and the number of slots are multiplied by an integer, such as 12 poles and 84 slots and 18 poles and 126 slots.
  • FIG. 18 is a developed cross-sectional view of the winding 920 of the fractional slot winding of the comparative example.
  • FIG. 19 is a developed cross-sectional view of the winding 920A of the fractional slot winding according to the ninth embodiment. Similar to FIG. 18, it shows a developed cross-sectional view in which windings 920A of a cylindrical stator are cut open and arranged in a straight line.
  • the split coil 20S is composed of 6 split coils, for a total of 18 split coils.
  • the number of split coils can be reduced by 40% from 30 to 18, and the circumferential length of the coil end can be reduced by 5.7% from 210 to 198.
  • Productivity can be improved by reducing the number, weight reduction can be achieved by reducing the amount of copper, and efficiency can be improved by reducing copper loss. It should be noted that the same effect as that of the present embodiment can be obtained even in a form in which the number of poles and the number of slots are multiplied by an integer, such as 8-pole 60 slots and 12-pole 90 slots.
  • FIG. 20 is a developed cross-sectional view of the winding 1020 of the fractional slot winding of the comparative example.
  • FIG. 21 is a developed cross-sectional view of the winding 1020A of the fractional slot winding according to the tenth embodiment. Similar to FIG. 20, it shows a developed cross-sectional view in which windings 1020A of a cylindrical stator are cut open and arranged in a straight line.
  • the number of split coils can be reduced from 48 to 30 by 37.5%, productivity is improved by reducing the number of split coils, weight is reduced by reducing the amount of copper, and efficiency is reduced by reducing copper loss. You can improve.
  • FIG. 22 is a cross-sectional view of the slot S of the stator into which the two-layer split coil (small split coil) of the rotary electric machine according to the eleventh embodiment is inserted.
  • FIG. 23 is a cross-sectional view of the slot S of the stator into which the single-layer split coil (large split coil) of the rotary electric machine according to the eleventh embodiment is inserted.
  • the winding of the large split coil 20L is wound with 48 turns, and the turns ratio is It was 1: 2. Since the separator 27 is not required in the slot storage portion 21 of the large split coil 20L, the space factor (ratio of the winding area to the slot area where the winding can be wound excluding the cross-sectional area of the insulating material) is large. It was low.
  • the diameter of the large division coil 20L is larger than that of the wire W1 of the small division coil 20S by utilizing the margin portion for the absence of the separator 27.
  • the resistance value of the large split coil 20L can be lowered to reduce copper loss and improve the efficiency of the rotary electric machine.
  • FIG. 24 is a cross-sectional view of the slot S of the stator into which the single-layer split coil of the rotary electric machine according to the twelfth embodiment is inserted.
  • the separator 27 is not required in the first to tenth embodiments, and a winding is added to the vacant space for winding.
  • the subdivision coil 20S each of the two-layer coils has 24 turns of winding.
  • the large split coil 20L single layer coil
  • the large split coil 20L single layer coil
  • FIG. 25 is a cross-sectional view of the slot S of the stator into which the single-layer coil of the rotary electric machine according to the thirteenth embodiment is inserted.
  • the separator 27 is not required in the first to tenth embodiments, and the open space is used to form a wire larger than the diameter of the wire of the small split coil 20S as the wire of the large split coil 20L. use.
  • the number of turns of the large division coil 20L is reduced by 2 turns as compared with the cases of the first to tenth embodiments, and the resistance value of the large division coil 20L is lowered to reduce the copper loss and improve the efficiency. In this way, the number of turns may be increased in consideration of the wire diameter and the space factor, or the number of turns may be reduced and the wire diameter may be increased in consideration of the required characteristics.
  • FIG. 26 is a developed cross-sectional view of the slot S of the stator into which the pole number conversion (double winding) coil of the rotary electric machine according to the 14th embodiment is inserted.
  • the slot S of the stator is provided with at least two independent windings 1420A and 1420B having different numbers of poles, and at least one of them is provided with the windings of the first to tenth embodiments. Will be done.
  • the rotating electric machine By energizing at least one of the two independent windings 1420A and 1420B, the rotating electric machine rotates, and the rotation speed is inversely proportional to the number of poles of the energized winding ( ⁇ electricity of the current energizing the winding).
  • the rotor rotates at an angular frequency / (number of winding poles / 2)).
  • the rotation speed of the motor can be changed by switching the windings to be energized.
  • an 8-pole winding having the configuration of the third embodiment is provided on the radial inside of the slot, and a 4-pole winding (2-1 concentric winding, commonly used conventional technique) is provided on the radial outside of the slot.
  • This is an example of winding.
  • the 8-pole winding When the 8-pole winding is energized, the rotary electric machine can be rotated at about half the rotation speed when the 4-pole winding is energized. Therefore, by switching the winding to be energized, it is possible to switch the rotation speed between high-speed rotation (4-pole winding) and low-speed rotation (8-pole winding) with the same electric angular frequency current.
  • 100A, 100B, 100C rotary electric machine 11A, 11B housing, 12A, 12B, 12C frame, 13, 13C bracket, 14A, 14C stator, 15 bearing, 16 rotation shaft, 17A, 17B, 17C rotor, 20, 20A, 220A, 320A, 420A, 520, 520A, 620, 620A, 720, 720A, 820, 820A, 920, 920A, 1020, 1020A, 1420A, 1420B winding, 21,21A, 21B slot storage, 21in inner slot storage , 21out outer slot storage, 22,23 coil end, 25 slot cell, 26 wedge, 27 separator, UV, VW interphase insulation, Mg permanent magnet, W1, W2 wire, S slot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

ステータ(14A)の巻線は、複数の分割コイルを有し、分割コイルは、ステータの隣り合うティースの間に形成させた複数のスロット(S)の内、異なるスロット(S)にそれぞれ収納される一対のスロット内収納部(21)を有し、ステータ(14A)と共に利用するロータの極数をP、回転電機に印加する交流電源の相数をM(Mは3以上の整数)、スロット(S)の数をSnとするとき、q=Sn/(P×M)で表される毎極毎相スロット数qが既約分数となり、分割コイルは、一対のスロット内収納部(21)が、それぞれ単独でスロット(S)に収納される大分割コイル(20L)と、一対のスロット内収納部(21)が、それぞれ他の分割コイルのスロット内収納部(21)と共にスロット(S)に収納される小分割コイル(20S)の2種類が存在する。

Description

回転電機のステータおよび回転電機
 本願は、回転電機のステータおよび回転電機に関するものである。
 回転電機のロータの極数をP、交流電源の相数をM、ステータの巻線を挿入するスロット数をSnとしたとき、毎極毎相スロット数qは、q=Sn/(P×M)で表され、qを整数とするスロット数Snを選ぶことが一般的である。しかしながら、qが既約分数となるスロット数Snを選択する分数スロット巻というコイルの巻線方法が知られている。分数スロット巻は、トルクリップルの低減のため、或いは、極数変換(二重巻線)モータなどに採用されている。
特開2016-005409号公報
 分数スロット巻は、同一のスロット内に、異なる相を形成するコイルが重ね巻で巻線されるため、分割コイルの数が多く、スロット内への巻線挿入工程が複雑になるという課題があった。
 本願は、上記のような課題を解決するためになされたものであり、分割コイルの数を削減して、分割コイルの製造コストを低減するとともに、スロット内への巻線挿入工程を簡略化できる回転電機のステータおよび回転電機を得ることを目的とする。
 本願に開示される回転電機のステータは、
回転電機のステータであって、
前記ステータの巻線は、複数の分割コイルを有し、
前記分割コイルは、前記ステータの隣り合うティースの間に形成させた複数のスロットの内、異なるスロットにそれぞれ収納される一対のスロット内収納部を有し、
前記ステータと共に利用するロータの極数をP、前記回転電機に印加する交流電源の相数をM(Mは3以上の整数)、前記スロットの数をSnとするとき、q=Sn/(P×M)で表される毎極毎相スロット数qが既約分数となり、
前記分割コイルは、一対の前記スロット内収納部が、それぞれ単独で前記スロットに収納される大分割コイルと、一対の前記スロット内収納部が、それぞれ他の分割コイルのスロット内収納部と共に前記スロットに収納される小分割コイルの2種類が存在するものである。
 また、本願に開示される回転電機は、上述のステータと、外周面を前記ステータの内周面に対向するように配設されたロータとを備えるものである。
 本願に開示される回転電機のステータおよび回転電機によれば、分割コイルの数を削減して、分割コイルの製造コストを低減するとともに、スロット内への巻線挿入工程を簡略化できる回転電機のステータおよび回転電機を得ることができる。
実施の形態1による回転電機の片側断面正面模式図である。 実施の形態1による回転電機の片側断面正面模式図である。 実施の形態1による回転電機の片側断面正面模式図である。 比較例の分数スロット巻の巻線の展開断面図である。 実施の形態1による1つのスロットの詳細断面図である。 実施の形態1による分数スロット巻の巻線の展開断面図である。 実施の形態2による分数スロット巻の巻線の展開断面図である。 実施の形態3による分数スロット巻の巻線の展開断面図である。 実施の形態4による分数スロット巻の巻線の展開断面図である。 比較例の分数スロット巻の巻線の展開断面図である。 実施の形態5による分数スロット巻の巻線の展開断面図である。 比較例の分数スロット巻の巻線の展開断面図である。 実施の形態6による分数スロット巻の巻線の展開断面図である。 比較例の分数スロット巻の巻線の展開断面図である。 実施の形態7による分数スロット巻の巻線の展開断面図である。 比較例の分数スロット巻の巻線の展開断面図である。 実施の形態8による分数スロット巻の巻線の展開断面図である。 比較例の分数スロット巻の巻線の展開断面図である。 実施の形態9による分数スロット巻の巻線の展開断面図である。 比較例の分数スロット巻の巻線の展開断面図である。 実施の形態10による分数スロット巻の巻線の展開断面図である。 実施の形態11による回転電機の二層コイルが挿入されるステータのスロットの断面図である。 実施の形態11による回転電機の単層コイルが挿入されるステータのスロットの断面図である。 実施の形態12による回転電機の単層コイルが挿入されるステータのスロットの断面図である。 実施の形態13による回転電機の単層コイルが挿入されるステータのスロットの断面図である。 実施の形態14による分数スロット巻の巻線の展開断面図である。
実施の形態1.
 以下、実施の形態1による回転電機のステータおよび回転電機を図を用いて説明する。以下の説明において、単に「軸方向」、「径方向」、「周方向」というときは、ステータの「軸方向」、「径方向」、「周方向」をいうものとする。また、分割コイルとは、回転電機のステータの巻線を構成する最小単位のコイルであって、異なるスロット内に収納される一対のスロット内収納部を有するコイルをいう。また、単層コイル、大分割コイルとは、同一スロット内に、1つの分割コイルのスロット内収納部だけが単独で収納されている分割コイルをいう。また、二層コイル、小分割コイルとは、同一スロット内に、2つの分割コイルのスロット内収納部が、径方向に重なって共に収納されている、それぞれの分割コイルをいう。
 なお、図4と図6から図9、図13から図25の図面は、回転電機の円筒状のステータの巻線を切り開いて直線状に並べた展開断面図を用いて表す。また、各図に示すコイルのハッチングにおいて、左上から右下への斜線がU相、右上から左下への斜線がV相、横線がW相の各分割コイルを示すものとする。
 図1は、実施の形態1による回転電機100Aの片側断面正面模式図である。
回転電機100Aは、有底円筒状のフレーム12Aおよびフレーム12Aの開口部を閉塞するブラケット13からなるハウジング11Aと、フレーム12Aの円筒部の内側に嵌合されたステータ14Aと、フレーム12Aの底部(図1では、上側)およびブラケット13の中央部にベアリング15を介して回転軸16の軸心Q周りに回転可能に支持され、外周面を、ステータ14Aの内周面に対向するように配設されたロータ17Aとを備える。
 回転電機100Aは、ロータとして、かご型導体と鉄心によって構成されるロータ17Aを備えるかご型誘導回転電機である。なお、回転電機100Aとしては、ロータに巻線を設けた巻線型誘導回転電機、ロータの表面に永久磁石が配置された表面磁石型回転電機、ロータの内部に永久磁石を埋め込んだ埋め込み磁石型回転電機、或いは、積層された電磁鋼板に円弧状の溝を形成するなどの形状でインダクタンスに突極性を設け、リラクタンストルクにより回転するロータを有するシンクロナスリラクタンス型回転電機のいずれの形態でもよい。
 図2は、回転電機100Bの片側断面正面模式図である。
回転電機100Bは、回転電機100Aの他の例である。ハウジング11Bは、有底円筒状でなく円筒状のフレーム12Bと、その軸方向の両端の開口部を閉塞する2枚のブラケット13による構成としている。また、ロータ17Bは、上述のロータのうちのシンクロナスリラクタンス型回転電機に用いる例を示している。
 図3は、回転電機100Cの片側断面正面模式図である。
回転電機100Cは、回転電機100Aの他の例である。
回転電機100Cは、アウターロータ型回転電機である。またロータ17Cは、表面磁石型のロータである。
 ステータ14Cは、ブラケット13Cに外嵌状態に固着されている。ロータ17Cは、有底円筒状のフレーム12Cと、フレーム12Cの内側でステータ14Cの径方向外側に対向するように配設された永久磁石Mgとを有する。ロータ17Cは、ベアリング15を介して回転軸16周りに回転可能に支持されている。
 図4は、比較例の分数スロット巻の巻線20の展開断面図である。図4は、円筒状にステータに組み付けた巻線20を、各スロットに収納された部分で軸方向に垂直に切断し、軸方向に切り開いて展開した断面図である。図の上側がステータの内側となり、図の下側が、ステータの外側(バックヨーク側)である。#1~#36は、それぞれ、スロットSの番号を表している。実際の断面において、#1と#36のスロットSが隣り合って円環状をなしている。
 各々のスロットSには、内側スロット内収納部21in(上口コイル)と、外側スロット内収納部21out(下口コイル)とが挿入されている。内側スロット内収納部21in側が、ロータに対向するギャップ面側に配置され、外側スロット内収納部21out側が、スロットSの底、すなわち、ステータのバックヨーク部側に配置されている。
 この例では、回転電機のロータの極数P=8、印加する交流電源の相数M=3、ステータの巻線を挿入するスロット数Sn=36である。したがって、毎極毎相スロット数qは、q=Sn/(P×M)=36/(8×3)=1+1/2、すなわち既約分数3/2となり、巻線20は、毎極毎相スロット数qが整数でない、分数スロット巻である。また、巻線20は、各相の分割コイルが、スロット#1~#6、#2~#7、#3~#8・・・と順次巻回された全節巻の分数スロット巻であり、全ての分割コイルのコイルピッチ(跨ぐティースの数)が5ピッチ(以下同様に、数字+ピッチとして表記する)で、各相12個の分割コイル、全部で36個の分割コイルで構成されている。
 図4において、図を分かり易くするためU相の8極のうち1/4、すなわち2極分である#1~#6、#2~#7、#6~#11の3個の分割コイルのみ、コイルエンド部23の重ね巻の接続状態を斜線で表しており、残りのコイルエンド部については、図示を省略している。
 なお、巻線20への通電の向きを「・」、「×」で示している。「・」の通電方向は、紙面に垂直方向において紙面奥側から手前側に近づく方向であり、「×」の通電方向は、反対に、紙面手前側から奥側に遠ざかる方向である。
 図5は、1つのスロットSの詳細断面図である。スロットSは、ステータの図示しない隣り合うティースの間に形成されている。#1のスロットSには、内側スロット内収納部21inとしてU相+(+は、径方向内側を示す)の分割コイルが収納されており、外側スロット内収納部21outとしてV相-(-は、径方向外側を示す)の分割コイルが収納されている。
 また、ステータの鉄心と巻線20とを絶縁するためのスロットセル25と、分割コイルのスロット内収納部が、鉄心から外に出ないように押さえるためのウエッジ26と、内側スロット内収納部21inと外側スロット内収納部21outの相間絶縁を確保するためのセパレータ27が挿入されている。スロットセル25、ウエッジ26、セパレータ27については、図6以降の展開断面図には図示しない。
 各分割コイルのスロット内収納部は、スロットSの外側、内側に重ねて挿入されている。巻線20は、各スロットSに必ず2つの分割コイルの、それぞれ片方のスロット内収納部が挿入された二層重ね巻の形態であり、分割コイルが36個、スロットSに挿入されるスロット内収納部が72個存在する。この巻線20の組み立て時は、スロットSに順番に分割コイルを挿入していくため、組み立てる分割コイルの数が多いと、分割コイルの挿入に必要な作業が長くなる。
 また、U相、V相、W相の各相の分割コイルを交互にスロットSに挿入していく必要があるので、分割コイルの挿入開始直後の5個の分割コイルについては、上げコイル(外側スロット内収納部の前に内側スロット内収納部を挿入してしまうスロットにおいて、外側スロット内収納部を後から挿入する際に、先に挿入済みの内側スロット内収納部を一旦スロットの外に逃がしておき、外側スロット内収納部を挿入してから内側スロット内収納部を再度挿入する方法)の作業が必要なことから、巻線20の生産性が悪く、コイルインサータによる自動巻線挿入が不可能で、手作業による分割コイルの挿入によって巻線20を製造する必要がある。
 図6は、実施の形態1による分数スロット巻の巻線20Aの展開断面図である。図6は、円筒状にステータに組み付けた巻線20Aを、各スロットSに収納された部分で軸方向に垂直に切断し、軸方向に切り開いて展開した断面図である(以下同種の図において同じ)。
巻線20Aは、3相8極36スロットで、P=8、M=3、Sn=36であるため、毎極毎相スロット数qは、q=Sn/(P×M)=1+1/2となる。巻線20Aは、毎極毎相スロット数qが、図4の巻線20と同じ分数スロット巻である。
 ここで、図6のスロット#1、#4、#7、#10、#13、#16、#19、#22、#25、#28、#31、#34の各スロットには、図4と同様、1つの分割コイルの内側スロット内収納部21inと、この内側スロット内収納部21inに対応する他の分割コイルの外側スロット内収納部21outとが挿入されている。これらのスロットについては、巻線20Aは、二層重ね巻の巻線形態である。1つの分割コイルの内側スロット内収納部21inと外側スロット内収納部21outとは、コイルエンド部23で接続して巻回されており、それぞれのコイルエンド部は、ステータの鉄心の軸方向端面上で積み重なっている。
 また、これらのスロットS(例えば、図6のスロット#19)の内側スロット内収納部21inと外側スロット内収納部21outとは、別の相を構成するため、内側スロット内収納部21inと外側スロット内収納部21outとの間には、相間絶縁のため、図4で示した巻線20と同様にセパレータ27が必要である。
 一方、残りのスロットについて図4と図6を比較すると、図4において、同じスロットに入る内側スロット内収納部21inと外側スロット内収納部21outの相が等しく、内側スロット内収納部21inと外側スロット内収納部21outの通電方向も等しい。そこで、内側スロット内収納部21inと外側スロット内収納部21outとを1つに纏め、それぞれの分割コイルの巻数をその他の2倍とした分割コイル(例えば、図6のスロット#24に挿入されたスロット内収納部21Aとスロット#29に挿入されたスロット内収納部21Bとを同心巻のコイルエンド部22で接続し巻回された単層同心巻コイル)にすることができる。
 同心巻のコイルエンド部22は、展開断面図の便宜上、上側に飛び出すようにコの字に図示しているが、実際には内側に飛び出しているわけではなく、軸方向にコイルエンド部22が形成されている。したがって、巻線20Aは、1つの鉄心内で重ね巻コイルと同心巻コイルが併存する同心重ね巻となる。図6の例では、二層重ね巻の分割コイルが12個、単層同心巻きの分割コイルが12個、合計24個の分割コイルの同心重ね巻となる。したがって巻線20に比較して、分割コイルの数を12個33.3%削減できる。
 なお、単層同心巻の分割コイルのコイルエンド部22を2重線で表示しているのは、物理的な2本の導体を表しているのではなく、コイルエンド部22が、二層重ね巻の分割コイルのコイルエンド部23に対して2倍の素線数を有することを示すためである。このように、図6に示す巻線20Aは、図4に示す巻線20に比べて、分割コイルの数を12個、33.3%削減できる。
 図4を用いて説明した二層重ね巻の巻線20の場合、5ピッチ(2つの内側スロット内収納部21inが、5つのティースを跨いで2つのスロットS内に収納される。外側スロット内収納部21outについても同じ。)の分割コイルが36個存在するため、コイルエンド部23が、5×36=180ピッチ分に相当する長さとなる。一方、図6の同心重ね巻の場合、5ピッチの大分割コイル20Lが12個、3ピッチの小分割コイル20Sが12個存在する。ピッチの大きい12個の大分割コイル20Lと、大分割コイル20Lに比べてピッチの小さい12個の小分割コイル20Sとで構成されるため、コイルエンド部が5×12×2+3×12=156ピッチ分に相当する長さとなり、二層重ね巻のコイルエンド部に比べ、13%コイルエンド部の周方向の長さを短くすることができ、一次銅損の低減による回転電機の効率向上、コイルエンド部の漏れリアクタンスの減少による回転電機の特性向上、銅量の削減による軽量化が可能となる。なお、大分割コイル20Lのコイルエンド部の長さの計算式(5×12×2)において、2倍しているのは、それぞれの大分割コイル20Lを構成する素線の数が、小分割コイル20Sを構成する素線の数の2倍存在するからである。したがって、実施に比較の対称となるのは、それぞれのコイルエンド部を構成する素線の数×コイルエンド部の長さとなる。
 実施の形態1による回転電機のステータおよび回転電機によれば、ステータに使用する分割コイルの数を削減して、分割コイルの製造コストを低減するとともに、スロット内への巻線挿入工程を簡略化できる。
 また、コイルエンド部を構成する素線の総延長を短くできるので、結果として、コイルエンド部の高さを低くでき、軸長の短い回転電機を提供できる。
 なお、図6の例は、毎極毎相スロット数q=1.5=1+1/2の例であるが、q=1+1/3、1+2/3、2+1/3、2+1/2、2+2/3など、分母が2もしくは3の任意の分数スロット巻で同様の効果が得られる。
実施の形態2.
 以下、実施の形態2による回転電機を図を用いて、実施の形態1と異なる部分を中心に説明する。
図7は、分数スロット巻の巻線220Aの展開断面図である。
巻線220Aは、実施の形態1で説明した巻線20、20Aと同じ3相8極36スロット、毎極毎相スロット数q=1+1/2の分数スロット巻であり、図6の巻線20Aとは、コイルの向き、重ね巻の重なり方向、スロット内部のコイル位置とが異なるが、発生する回転磁界が図6の巻線20Aと全く同じであるため、図6の回転電機と全く同様の効果を奏する。
実施の形態3.
 以下、実施の形態3による回転電機を図を用いて、実施の形態1と異なる部分を中心に説明する。
図8は、分数スロット巻の巻線320Aの展開断面図である。
巻線320Aは、これまでに説明した巻線20、20A、220Aと同じ3相8極36スロット、毎極毎相スロット数q=1+1/2の分数スロット巻で、各スロットSに収納されるスロット内収納部21の組み合わせは、図7と同様である。
 一方、スロットS内におけるスロット内収納部の内側と外側の配置を変更し、例えば、まずW相コイル(図8における#3のスロットSと#7のスロットSに挿入されるコイルをはじめとする、横線のハッチングで表される8個のコイル)を全てスロットSに入れる。このとき、W相コイルの小分割コイル20Sは、すべて径方向外側(図8における下側、以下同じ)に挿入されている。次に、コイルエンドに、V相-W相間の相間絶縁VWを施す。図7の例と異なり、重ね巻と同心巻が混在していないためコイルエンドで一括の相間絶縁とすることができ、絶縁強度、生産性が向上する。次に、V相コイル(図8における#36のスロットSと#4のスロットSに挿入されるコイルをはじめとする、右上から左下への斜線のハッチングで表される8個のコイル)を全てスロットSに入れる。このとき、すでにW相の小分割コイル20Sが入っているスロットS(例えば#8)に入るV相の小分割コイル20Sについては、W相の小分割コイル20Sの径方向内側(図8における上側、以下同じ)に配置され、W相の小分割コイル20Sが挿入されていないスロットS(例えば#5)では、V相の小分割コイル20Sが、径方向外側に配置される。そこで、V相-W相間の相間絶縁VWと同様に、U相-V相間の相間絶縁UVを施す。次に、U相コイル(図8における#6のスロットSと#10のスロットSに挿入されるコイルをはじめとする、左上から右下への斜線のハッチングで表される8個のコイル)を全てスロットSに入れる。U相の小分割コイル20Sは、全てスロットSの径方向内側に配置される。すなわち、第一相であるW相の小分割コイル20Sの一対のスロット内収納部は、スロットS(例えば#8と#11)内の径方向外側に配置され、第二相であるU相の小分割コイル20Sの一対のスロット内収納部は、全てスロットS(例えば#2と#5)内の径方向内側に配置され、第三相であるV相の小分割コイル20Sの一対のスロット内収納部の内、一方のスロット内収納部は、全てスロットS(例えば#5)の径方向外側に配置され、他方のスロット内収納部は、スロットS(例えば#8)内の径方向内側に配置されている。これによって、U相、V相、W相コイルのコイルエンドを内側から外側に向かってU相、V相、W相の順に径方向に並べることができる。したがって、各分割コイルのコイルエンド部が、相毎に、周方向に同じ高さ(鉄心から軸方向に突出する長さ)に並ぶように形成されている。これにより、巻線320Aを構成する各分割コイルを、相毎に、高さが低い層から順にスロットSに挿入でき、重ね巻を廃して単層同心巻と二層同心巻が共存する完全同心巻の配置となり、インサータによる巻線320Aの自動巻が可能となり、巻線工程の生産性を大幅に向上することが可能となる。
 このとき、各相のコイルエンド部が、軸方向に同じ高さとなり、周方向に一列に並ぶため、コイルエンド部の相間絶縁VW、UVを容易に挿入でき、巻線320Aの生産性が向上する。
 実施の形態3による回転電機によれば、分割コイルのピッチが縮小したことにより、コイルエンド部の軸方向の長さを短縮することができるため、回転電機の軸方向の長さが短縮され、回転電機の小型化、軽量化が可能となる。
 また、4ピッチの大分割コイル20Lが12個、大分割コイル20Lに比べてピッチの小さい、3ピッチの小分割コイル20Sが12個の構成のため、コイルエンド部の周方向の長さが、132ピッチ相当となり、図4の二層重ね巻の巻線20に比べ26.7%、図6の同心重ね巻の巻線20Aに比べ15.4%コイルエンド部を短くすることができ、一次銅損の低減による回転電機の効率向上、コイルエンド部の漏れリアクタンスの減少による回転電機の特性向上、銅量の削減による回転電機の軽量化が可能となる。
実施の形態4.
 以下、実施の形態4による回転電機を図を用いて、実施の形態1と異なる部分を中心に説明する。
図9は、実施の形態4による分数スロット巻の巻線420Aの展開断面図である。
巻線420Aは、巻線20、20A、220A、320Aと同じ3相8極36スロット、毎極毎相スロット数q=1+1/2の分数スロット巻で、図8のU相、V相のスロット内収納部21の挿入順を逆にしたものである。スロット#5、#14、#23、#32の内側スロット内収納部21inと外側スロット内収納部21outが逆になっているが、発生する回転磁界が図8の巻線320Aと全く同じため、図8の回転電機と全く同様の効果を奏する。
実施の形態5.
 以下、実施の形態5による回転電機を図を用いて、実施の形態1と異なる部分を中心に説明する。
図10は、比較例の分数スロット巻の巻線520の展開断面図である。
図10に示す巻線520は、毎極毎相スロット数q=1+1/3の分数スロット巻を採用した回転電機の円筒状のステータの巻線を切り開いて直線状に並べた展開断面図を示すものである。
 最も極数の少ない構成である3相6極24スロット、1相8コイル、4コイルで3極の極を構成しており、4ピッチの二層重ね巻の小分割コイル20Sが24個ある。したがって、コイルエンド部の周方向の長さは、4×24=96ピッチ分に相当する長さとなっている。
 図11は、実施の形態5による分数スロット巻の巻線520Aの展開断面図である。
図10と同様に、円筒状のステータの巻線520Aを切り開いて直線状に並べた展開断面図を示すものである。図の上側に描かれている2重線のコイルエンド部は、単層同心巻分割コイル(巻き数2n)のコイルエンド部を表し、下側に描かれている単線のコイルエンド部は、二層同心巻分割コイル(巻き数n)のコイルエンド部を表している(以下の図において同じ)。
 4ピッチの単層同心巻の大分割コイル20Lが6個、大分割コイル20Lのピッチよりも小さい3ピッチの単層同心巻の大分割コイル20Lが2個、3ピッチの二層巻の小分割コイル20Sが4個、4ピッチの二層巻の小分割コイル20Sが4個、合計16個の分割コイルで構成されている。コイルエンド部の周方向の長さは、4×6×2+3×2×2+4×4+3×4=88ピッチ分に相当する長さとなっている。
 巻線520と比較して、分割コイルの数を24個から16個に33.3%削減でき、コイルエンド部の周方向の長さを、96から88へと、8.3%削減できる、これにより、分割コイルの数の削減による生産性の向上、銅量削減による軽量化、銅損低減による効率向上を図れる。なお、12極48スロット、18極72スロットといったように、極数とスロット数を整数倍した形態でも本実施の形態と同様の効果を奏する。
実施の形態6.
 以下、実施の形態6による回転電機を図を用いて、実施の形態1と異なる部分を中心に説明する。
図12は、比較例の分数スロット巻の巻線620の展開断面図である。
図12に示す巻線620は、毎極毎相スロット数q=1+1/2の分数スロット巻を採用した回転電機の円筒状のステータの巻線を切り開いて直線状に並べた展開断面図を示すものである。
 最も極数の少ない構成である3相4極18スロット、1相6コイル、3コイルで2極の極を構成しており、4ピッチの二層重ね巻の小分割コイル20Sが18個ある。したがって、コイルエンド部の周方向の長さは、4×18=72ピッチ分に相当する長さとなっている。
 図13は、実施の形態6による分数スロット巻の巻線620Aの展開断面図である。
図12と同様に、円筒状のステータの巻線620Aを切り開いて直線状に並べた展開断面図を示すものである。
 5ピッチの単層同心巻の大分割コイル20Lが6個、大分割コイル20Lのピッチよりも小さい3ピッチの二層重ね巻の小分割コイル20Sが6個、合計12個の分割コイルで構成されている。コイルエンド部の周方向の長さは、5×6×2+3×6=78ピッチ分に相当する長さとなっている。
 巻線620と比較して、分割コイルの数を18個から12個に33.3%削減できる。これにより、分割コイルの数の削減による生産性の向上、銅量削減による軽量化、銅損低減による効率向上を図れる。なお、8極36スロット、12極54スロットといったように、極数とスロット数を整数倍した形態でも本実施の形態と同様の効果を奏する。
実施の形態7.
 以下、実施の形態7による回転電機を図を用いて、実施の形態1と異なる部分を中心に説明する。
図14は、比較例の分数スロット巻の巻線720の展開断面図である。
図14に示す巻線720は、毎極毎相スロット数q=1+2/3の分数スロット巻を採用した回転電機の円筒状のステータの巻線を切り開いて直線状に並べた展開断面図を示すものである。
 最も極数の少ない構成である3相6極30スロット、1相10コイル、5コイルで3極の極を構成しており、5ピッチの二層重ね巻の小分割コイル20Sが30個ある。したがって、コイルエンド部の周方向の長さは、5×30=150ピッチ分に相当する長さとなっている。
 図15は、実施の形態7による分数スロット巻の巻線720Aの展開断面図である。
図14と同様に、円筒状のステータの巻線720Aを切り開いて直線状に並べた展開断面図を示すものである。
 5ピッチの単層同心巻の大分割コイル20Lが7個、4ピッチの単層同心巻の大分割コイル20Lが4個、5ピッチの二層重ね巻の小分割コイル20Sが8個、合計19個の分割コイルで構成されている。コイルエンド部の周方向の長さは、5×7×2+4×4×2+5×8=142ピッチ分に相当する長さとなっている。
 巻線720と比較して、分割コイルの数を30個から19個に36.7%削減でき、コイルエンド部の周方向の長さを150から142へと、5.3%削減できる。これにより、分割コイルの数の削減による生産性の向上、銅量削減による軽量化、銅損低減による効率向上を図れる。なお、12極60スロット、18極90スロットといったように、極数とスロット数を整数倍した形態でも本実施の形態と同様の効果を奏する。
実施の形態8.
 以下、実施の形態8による回転電機を図を用いて、実施の形態1と異なる部分を中心に説明する。
図16は、比較例の分数スロット巻の巻線820の展開断面図である。
図16に示す巻線720は、毎極毎相スロット数q=2+1/3の分数スロット巻を採用した回転電機の円筒状のステータの巻線を切り開いて直線状に並べた展開断面図を示すものである。
 最も極数の少ない構成である3相6極42スロット、1相14コイル、7コイルで3極の極を構成しており、7ピッチの二層重ね巻の小分割コイル20Sが42個ある。したがって、コイルエンド部の周方向の長さは、7×42=294ピッチ分に相当する長さとなっている。
 図17は、実施の形態8による分数スロット巻の巻線820Aの展開断面図である。
図16と同様に、円筒状のステータの巻線820Aを切り開いて直線状に並べた展開断面図を示すものである。
 9ピッチの単層同心巻の大分割コイル20Lが1個、8ピッチの単層同心巻の大分割コイル20Lが6個、7ピッチの単層同心巻の大分割コイル20Lが2個、6ピッチの単層同心巻の大分割コイル20Lが8個、7ピッチの二層同心巻の小分割コイル20Sが8個、合計25個の分割コイルで構成されている。コイルエンド部の周方向の長さは、9×1×2+8×6×2+7×2×2+6×8+7×8=246ピッチ分に相当する長さとなっている。
 巻線820と比較して、分割コイルの数を、30個から25個に16.7%削減でき、コイルエンド部の周方向の長さを294から246へと、16.3%削減できる。これにより、分割コイルの数の削減による生産性の向上、銅量削減による軽量化、銅損低減による効率向上を図れる。なお、12極84スロット、18極126スロットといったように、極数とスロット数を整数倍した形態でも本実施の形態と同様の効果を奏する。
実施の形態9.
 以下、実施の形態9による回転電機を図を用いて、実施の形態1と異なる部分を中心に説明する。
図18は、比較例の分数スロット巻の巻線920の展開断面図である。
図18に示す巻線920は、毎極毎相スロット数q=2+1/2の分数スロット巻を採用した回転電機の円筒状のステータの巻線を切り開いて直線状に並べた展開断面図を示すものである。
 最も極数の少ない構成である3相4極30スロット、1相10コイル、5コイルで2極の極を構成しており、7ピッチの二層重ね巻の小分割コイル20Sが30個ある。したがって、コイルエンド部の周方向の長さは、7×30=210ピッチ分に相当する長さとなっている。
 図19は、実施の形態9による分数スロット巻の巻線920Aの展開断面図である。
図18と同様に、円筒状のステータの巻線920Aを切り開いて直線状に並べた展開断面図を示すものである。
 8ピッチの単層同心巻の大分割コイル20Lが6個、6ピッチの単層同心巻の大分割コイル20Lが6個、大分割コイル20Lのピッチよりも小さい5ピッチの二層重ね巻の小分割コイル20Sが6個、合計18個の分割コイルで構成されている。コイルエンド部の周方向の長さは、8×6×2+6×6×2+5×6=198ピッチ分に相当する長さとなっている。
 巻線920と比較して、分割コイルの数を30個から18個に40%削減でき、コイルエンド部の周方向の長さを210から198へと、5.7%削減でき、分割コイルの数の削減による生産性の向上、銅量削減による軽量化、銅損低減による効率向上を図れる。なお、8極60スロット、12極90スロットといったように、極数とスロット数を整数倍した形態でも本実施の形態と同様の効果を奏する。
実施の形態10.
 以下、実施の形態10による回転電機を図を用いて、実施の形態1と異なる部分を中心に説明する。
図20は、比較例の分数スロット巻の巻線1020の展開断面図である。
図20に示す巻線1020は、毎極毎相スロット数q=2+2/3の分数スロット巻を採用した回転電機の円筒状のステータの巻線1020を切り開いて直線状に並べた展開断面図を示すものである。
 最も極数の少ない構成である3相6極48スロット、1相16コイル、8コイルで3極の極を構成しており、8ピッチの二層重ね巻の小分割コイル20Sが48個ある。したがって、コイルエンド部の周方向の長さは、8×48=384ピッチに相当する長さとなっている。
 図21は、実施の形態10による分数スロット巻の巻線1020Aの展開断面図である。
図20と同様に、円筒状のステータの巻線1020Aを切り開いて直線状に並べた展開断面図を示すものである。
 9ピッチの単層同心巻の大分割コイル20Lが9個、7ピッチの単層同心巻の大分割コイル20Lが9個、9ピッチの大分割コイル20Lよりもピッチの小さい、8ピッチの二層重ね巻の小分割コイル20Sが12個、合計24個の分割コイルで構成されている。コイルエンド部の周方向の長さは、9×9×2+7×9×2+8×12=384ピッチ分に相当する長さとなっている。
 巻線1020と比較して、分割コイルの数を48個から30個に37.5%削減でき、分割コイルの数の削減による生産性の向上、銅量削減による軽量化、銅損低減による効率向上を図れる。
 なお、12極96スロット、18極144スロットといったように、極数とスロット数を整数倍した形態でも本実施の形態と同様の効果を奏する。
実施の形態11.
 以下、実施の形態11による回転電機を図を用いて、実施の形態1から実施の形態10と異なる部分を中心に説明する。
図22は、本実施の形態11による回転電機の二層分割コイル(小分割コイル)が挿入されるステータのスロットSの断面図である。
図23は、本実施の形態11による回転電機の単層分割コイル(大分割コイル)が挿入されるステータのスロットSの断面図である。
図22に示す小分割コイル20Sについて、例えば24ターンの巻線が巻回されているとき、実施の形態1から10では、大分割コイル20Lは48ターンの巻線が巻回され、巻数比は1:2としていた。大分割コイル20Lのスロット内収納部21では、セパレータ27の必要が無いため、スペースファクタ(絶縁材などの断面積を除いた、巻線を巻くことができるスロット面積に対する巻線面積の割合)が低くなっていた。
 そこで、図23に示すように、大分割コイル20Lにおいては、セパレータ27がなくなった分の余裕部分を利用して、大分割コイル20Lの素線として、小分割コイル20Sの素線W1よりも直径の大きな素線W2を使用する。これにより、大分割コイル20Lの抵抗値を下げて銅損低減、回転電機の効率向上が可能となる。
実施の形態12.
 以下、実施の形態12による回転電機を図を用いて、実施の形態1から実施の形態10と異なる部分を中心に説明する。
図24は、本実施の形態12による回転電機の単層分割コイルが挿入されるステータのスロットSの断面図である。
 本実施の形態では、実施の形態1~10においてセパレータ27が不要となり空いたスペースに巻線を追加して巻回し、例えば、小分割コイル20S(2層コイルのそれぞれが24ターンの巻線のとき、大分割コイル20L(単層コイル)を、5ターン分増やして、53ターンの巻線とした例をしている。これにより、回転電機の効率向上が可能となる。
実施の形態13.
 以下、実施の形態13による回転電機を図を用いて、実施の形態1から実施の形態10と異なる部分を中心に説明する。
図25は、本実施の形態13による回転電機の単層コイルが挿入されるステータのスロットSの断面図である。
 本実施の形態では、実施の形態1~10においてセパレータ27が不要となり開いたスペースを利用して、大分割コイル20Lの素線として、小分割コイル20Sの素線の直径よりも大きな素線を使用する。さらに、大分割コイル20Lの巻数を実施の形態1から10の場合よりも2ターン減らし、大分割コイル20Lの抵抗値を下げて銅損低減、効率向上を図っている。このように、線径とスペースファクタとの兼ね合いで、巻き数を増やしても良いし、要求される特性を考慮して、巻き数を減らして線径を太くしても良い。
実施の形態14.
 以下、実施の形態14による回転電機を図を用いて、実施の形態1から実施の形態10と異なる部分を中心に説明する。
図26は、本実施の形態14による回転電機の極数変換(二重巻線)コイルが挿入されるステータのスロットSの展開断面図である。
 本実施の形態では、ステータのスロットSに、少なくとも2つの、極数の異なる独立した巻線1420A、1420Bが施され、そのうち少なくとも1つに実施の形態1から実施の形態10の巻線が施される。
 少なくとも2つの独立した巻線1420A、1420Bのいずれか1つの巻線に通電することによって回転電機が回転し、通電する巻線の極数に反比例した回転速度(∝巻線に通電する電流の電気角周波数/(巻線の極数/2))でロータが回転する。通電する巻線を切り替えることによって、モータの回転速度を変更することができる。
 図26は、スロットの径方向内側に実施の形態3の構成の8極巻線が施され、スロットの径方向外側に4極巻線(2-1同心巻、一般的に使用される従来技術の巻線)の巻線が施された例である。8極巻線に通電すると、4極巻線に通電したときのおよそ半分の回転速度で回転電機を回転させることができる。従って、通電する巻線を切り替えることにより、同じ電気角周波数の電流で、回転速度を高速回転(4極巻線)と低速回転(8極巻線)とに切り替えることが可能となる。
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 100A,100B,100C 回転電機、11A,11B ハウジング、12A,12B,12C フレーム、13,13C ブラケット、14A,14C ステータ、15 ベアリング、16 回転軸、17A,17B,17C ロータ、20,20A,220A,320A,420A,520,520A,620,620A,720,720A,820,820A,920,920A,1020,1020A,1420A,1420B 巻線、21,21A,21B スロット内収納部、21in 内側スロット内収納部、21out 外側スロット内収納部、22,23 コイルエンド部、25 スロットセル、26 ウエッジ、27 セパレータ、UV,VW 相間絶縁、Mg 永久磁石、W1,W2 素線、S スロット。

Claims (11)

  1. 回転電機のステータであって、
    前記ステータの巻線は、複数の分割コイルを有し、
    前記分割コイルは、前記ステータの隣り合うティースの間に形成させた複数のスロットの内、異なるスロットにそれぞれ収納される一対のスロット内収納部を有し、
    前記ステータと共に利用するロータの極数をP、前記回転電機に印加する交流電源の相数をM(Mは3以上の整数)、前記スロットの数をSnとするとき、q=Sn/(P×M)で表される毎極毎相スロット数qが既約分数となり、
    前記分割コイルは、一対の前記スロット内収納部が、それぞれ単独で前記スロットに収納される大分割コイルと、一対の前記スロット内収納部が、それぞれ他の分割コイルのスロット内収納部と共に前記スロットに収納される小分割コイルの2種類が存在する回転電機のステータ。
  2. 前記小分割コイルのコイルピッチは、前記大分割コイルのコイルピッチよりも小さい請求項1に記載の回転電機のステータ。
  3. 前記小分割コイルは、重ね巻に形成されている請求項1又は請求項2に記載の回転電機のステータ。
  4. 三相の前記分割コイルを備え、
    第一相の前記小分割コイルの一対の前記スロット内収納部は、全て前記スロット内の径方向外側に配置され、
    第二相の前記小分割コイルの一対の前記スロット内収納部は、全て前記スロット内の径方向内側に配置され、
    第三相の前記小分割コイルの一対の前記スロット内収納部の内、一方の前記スロット内収納部は、前記スロット内の径方向外側に配置され、他方の前記スロット内収納部は、前記スロット内の径方向内側に配置されている請求項1から請求項3のいずれか1項に記載の回転電機のステータ。
  5. 全ての前記分割コイルは、同心巻に形成されている請求項1又は請求項2に記載の回転電機のステータ。
  6. 前記大分割コイルと、前記小分割コイルとは、線径が異なる請求項1から請求項5のいずれか1項に記載の回転電機のステータ。
  7. 前記小分割コイルと、前記大分割コイルとは、それぞれの前記分割コイルを構成する素線の巻数比が1:2である請求項1から請求項6のいずれか1項に記載の回転電機のステータ。
  8. 前記小分割コイルと、前記大分割コイルとは、それぞれのコイルを構成する素線の巻数比が1:2ではない請求項6に記載の回転電機のステータ。
  9. 前記毎極毎相スロット数qは、4/3、3/2、5/3、7/3、5/2、8/3のいずれかである請求項1から請求項8のいずれか1項に記載の回転電機のステータ。
  10. 各前記スロットには、極数の異なる少なくとも2種類の独立した前記巻線が施され、
    少なくとも一種類の前記巻線は、前記大分割コイルと前記小分割コイルを有する請求項1から請求項9のいずれか1項に記載の回転電機のステータ。
  11. 請求項1から請求項10のいずれか1項に記載の回転電機のステータと、
    外周面を前記ステータの内周面に対向するように配設されたロータとを備える回転電機。
PCT/JP2020/044519 2019-12-02 2020-11-30 回転電機のステータおよび回転電機 WO2021112040A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080075743.9A CN114731080A (zh) 2019-12-02 2020-11-30 旋转电机的定子以及旋转电机
JP2021562635A JP7292418B2 (ja) 2019-12-02 2020-11-30 回転電機のステータおよび回転電機
US17/638,948 US12009714B2 (en) 2019-12-02 2020-11-30 Rotating electric machine stator and rotating electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-217746 2019-12-02
JP2019217746 2019-12-02

Publications (1)

Publication Number Publication Date
WO2021112040A1 true WO2021112040A1 (ja) 2021-06-10

Family

ID=76222301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044519 WO2021112040A1 (ja) 2019-12-02 2020-11-30 回転電機のステータおよび回転電機

Country Status (4)

Country Link
US (1) US12009714B2 (ja)
JP (1) JP7292418B2 (ja)
CN (1) CN114731080A (ja)
WO (1) WO2021112040A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7223932B1 (ja) 2022-04-06 2023-02-17 パナソニックIpマネジメント株式会社 固定子、電動機
WO2023135836A1 (ja) * 2022-01-11 2023-07-20 パナソニックIpマネジメント株式会社 固定子及びそれを有する電動機

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114731080A (zh) * 2019-12-02 2022-07-08 三菱电机株式会社 旋转电机的定子以及旋转电机
JP2021158873A (ja) * 2020-03-30 2021-10-07 株式会社アイシン 回転電機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554675U (ja) * 1978-06-26 1980-01-12
JP2006060915A (ja) * 2004-08-19 2006-03-02 Toyota Industries Corp 電動機の電機子
JP2017046508A (ja) * 2015-08-28 2017-03-02 三菱電機株式会社 回転電機およびその製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6943477B1 (en) * 2000-04-27 2005-09-13 Denso Corporation Stator of rotary electric machine and method for making the same
JP4940252B2 (ja) * 2009-02-03 2012-05-30 株式会社日立製作所 回転電機の製造方法
JP6356394B2 (ja) * 2013-08-07 2018-07-11 株式会社東芝 回転電機、及び回転電機の製造方法
CN106030993B (zh) * 2014-02-14 2018-10-09 三菱电机株式会社 旋转电机
JP6117740B2 (ja) 2014-06-18 2017-04-19 ファナック株式会社 トルクリップルの低減構造を備える3相交流電動機
JP6381820B2 (ja) * 2015-09-28 2018-08-29 三菱電機株式会社 回転電機および回転電機の製造方法
JP6455725B2 (ja) * 2015-11-03 2019-01-23 株式会社デンソー 回転電機
KR20180098229A (ko) * 2015-12-25 2018-09-03 아이신에이더블류 가부시키가이샤 스테이터 코일, 스테이터의 제조 방법 및 회전 전기 기기
JP6626514B2 (ja) * 2015-12-25 2019-12-25 日立オートモティブシステムズエンジニアリング株式会社 回転電機
JP7000710B2 (ja) * 2017-06-12 2022-02-04 株式会社アイシン 回転電機
JP7449657B2 (ja) * 2019-08-29 2024-03-14 株式会社小松製作所 モータ
CN114731080A (zh) * 2019-12-02 2022-07-08 三菱电机株式会社 旋转电机的定子以及旋转电机
JP2021158850A (ja) * 2020-03-27 2021-10-07 株式会社アイシン 回転電機
US20230179054A1 (en) * 2020-04-28 2023-06-08 Fanuc Corporation Stator having wave-winding coil structure, three-phase ac motor equipped with same, and method for producing stator
DE112021001240T5 (de) * 2020-04-28 2023-01-05 Fanuc Corporation Stator mit spulenstruktur aus verteilten wicklungen und dreiphasiger wechselstrommotor mit diesem stator
EP4089886A4 (en) * 2020-05-26 2023-08-23 Aisin Corporation STATOR FOR ROTARY ELECTRIC MACHINE
WO2022014031A1 (ja) * 2020-07-17 2022-01-20 三菱電機株式会社 固定子、電動機、圧縮機、及び空気調和機
US20230231456A1 (en) * 2020-08-13 2023-07-20 Mitsubishi Electric Corporation Electric motor, driving device, compressor, and air conditioner
US20230291263A1 (en) * 2020-09-02 2023-09-14 Mitsubishi Electric Corporation Stator, electric motor, compressor, air conditioner, and method for fabricating stator
JP7365983B2 (ja) * 2020-09-04 2023-10-20 株式会社日立製作所 固定子及び回転電機、並びに電動ホイール及び車両
US20230318381A1 (en) * 2020-09-11 2023-10-05 Mitsubishi Electric Corporation Stator, electric motor, compressor, air conditioner, and method for fabricating stator
JP6953608B1 (ja) * 2020-12-22 2021-10-27 株式会社日立製作所 回転電機、電動ホイールおよび車両
CN116998097A (zh) * 2021-03-18 2023-11-03 株式会社电装 励磁绕组型旋转电机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554675U (ja) * 1978-06-26 1980-01-12
JP2006060915A (ja) * 2004-08-19 2006-03-02 Toyota Industries Corp 電動機の電機子
JP2017046508A (ja) * 2015-08-28 2017-03-02 三菱電機株式会社 回転電機およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135836A1 (ja) * 2022-01-11 2023-07-20 パナソニックIpマネジメント株式会社 固定子及びそれを有する電動機
JP7223932B1 (ja) 2022-04-06 2023-02-17 パナソニックIpマネジメント株式会社 固定子、電動機
JP2023154118A (ja) * 2022-04-06 2023-10-19 パナソニックIpマネジメント株式会社 固定子、電動機

Also Published As

Publication number Publication date
JPWO2021112040A1 (ja) 2021-06-10
US20220302783A1 (en) 2022-09-22
CN114731080A (zh) 2022-07-08
JP7292418B2 (ja) 2023-06-16
US12009714B2 (en) 2024-06-11

Similar Documents

Publication Publication Date Title
WO2021112040A1 (ja) 回転電機のステータおよび回転電機
US7122933B2 (en) Reduced coil segmented stator
JP6068953B2 (ja) 電動モータ
JP2003250252A (ja) 電動機の製造方法
WO2017110760A1 (ja) 回転電機およびその製造方法
JP5619046B2 (ja) 回転電機およびそれに用いられるステータの製造方法
JP7070075B2 (ja) 回転電機
JP2015057012A (ja) 回転電機
JP2003143822A (ja) 誘導電動機
CN111564919A (zh) 一种电机定子绕组、电机定子及电机
JP4415176B2 (ja) リング状の固定子コイルを有する誘導電動機
CN213990307U (zh) 一种电机定子及电机
CN214412445U (zh) 一种电机定子绕组、电机定子及电机
CN211880197U (zh) 一种电机定子及电机
CN211908498U (zh) 一种电机定子及电机
CN212183202U (zh) 一种电机定子及电机
JPH07143697A (ja) 三相電機子巻線
CN112467898A (zh) 一种电机定子及电机
JP2017184475A (ja) モータ装置、およびモータ装置の製造方法
CN112583168A (zh) 一种电机定子绕组、定子及电机
JP2003189565A (ja) 誘導電動機
JP6582973B2 (ja) 回転電機およびその製造方法
CN212114942U (zh) 一种电机定子及电机
CN212085913U (zh) 一种电机定子及电机
CN218243125U (zh) 一种定子及电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562635

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897001

Country of ref document: EP

Kind code of ref document: A1