WO2022014031A1 - 固定子、電動機、圧縮機、及び空気調和機 - Google Patents

固定子、電動機、圧縮機、及び空気調和機 Download PDF

Info

Publication number
WO2022014031A1
WO2022014031A1 PCT/JP2020/027798 JP2020027798W WO2022014031A1 WO 2022014031 A1 WO2022014031 A1 WO 2022014031A1 JP 2020027798 W JP2020027798 W JP 2020027798W WO 2022014031 A1 WO2022014031 A1 WO 2022014031A1
Authority
WO
WIPO (PCT)
Prior art keywords
coils
phase
coil
stator core
phase coils
Prior art date
Application number
PCT/JP2020/027798
Other languages
English (en)
French (fr)
Inventor
淳史 石川
篤 松岡
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022536086A priority Critical patent/JP7370468B2/ja
Priority to CN202080102866.7A priority patent/CN115917930A/zh
Priority to PCT/JP2020/027798 priority patent/WO2022014031A1/ja
Priority to US17/999,088 priority patent/US20230208232A1/en
Publication of WO2022014031A1 publication Critical patent/WO2022014031A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/06Embedding prefabricated windings in machines
    • H02K15/062Windings in slots; salient pole windings
    • H02K15/065Windings consisting of complete sections, e.g. coils, waves
    • H02K15/067Windings consisting of complete sections, e.g. coils, waves inserted in parallel to the axis of the slots or inter-polar channels
    • H02K15/068Strippers

Definitions

  • This disclosure relates to a stator for motors.
  • a stator having a three-phase coil is known (for example, Patent Document 1).
  • the stator core disclosed in Patent Document 1 has 24 slots, the three-phase coil forms eight poles, and the number of slots for one pole is three.
  • the coils of each phase are arranged in every three slots, and are attached to the stator core by lap winding, and two coils of the same phase are arranged in each slot.
  • this stator has the advantage that 100% of the magnetic flux from the rotor can be used.
  • the object of the present disclosure is to reduce the winding coefficient of harmonics without significantly impairing the winding coefficient of the fundamental wave in the stator.
  • the stator is A stator core with 9 x n slots (n is an integer of 1 or more) and It is attached to the stator core by distributed winding, and is equipped with a three-phase coil that forms 4 ⁇ n magnetic poles.
  • the three-phase coil has 2 ⁇ n U-phase coils, 2 ⁇ n V-phase coils, and 2 ⁇ n W-phase coils at the coil ends of the three-phase coil.
  • the 2 ⁇ n U-phase coils are connected in series and The 2 ⁇ n V-phase coils are connected in series and The 2 ⁇ n W-phase coils are connected in series and Each of the 2 ⁇ n U-phase coils, the 2 ⁇ n V-phase coils, and the 2 ⁇ n W-phase coils has nths arranged in the stator core at a 2-slot pitch. It includes one coil and n second coils arranged in the stator core at a 3-slot pitch. The n first coils are arranged at equal intervals at 360 / n degrees in the circumferential direction at the coil end.
  • the n second coils are arranged at equal intervals at 360 / n degrees in the circumferential direction at the coil end. Assuming that the number of turns of each of the n first coils is N1 and the number of turns of each of the n second coils is N2, 0.928 ⁇ N1 / N2 ⁇ 2 or 2 ⁇ N1 / N2 ⁇ 3. 294 is satisfied.
  • Stator according to other aspects of the present disclosure A stator core with 9 x n slots (n is an integer of 1 or more) and It is attached to the stator core by distributed winding, and is equipped with a three-phase coil that forms 4 ⁇ n magnetic poles.
  • the three-phase coil has 2 ⁇ n U-phase coils, 2 ⁇ n V-phase coils, and 2 ⁇ n W-phase coils at the coil ends of the three-phase coil.
  • the 2 ⁇ n U-phase coils are connected in series and The 2 ⁇ n V-phase coils are connected in series and The 2 ⁇ n W-phase coils are connected in series and
  • Each of the 2 ⁇ n U-phase coils, the 2 ⁇ n V-phase coils, and the 2 ⁇ n W-phase coils has nths arranged in the stator core at a 2-slot pitch. It includes one coil and n second coils arranged in the stator core at a 3-slot pitch.
  • the n first coils are arranged at equal intervals at 360 / n degrees in the circumferential direction at the coil end.
  • the n second coils are arranged at equal intervals at 360 / n degrees in the circumferential direction at the coil end. Assuming that the number of turns of each of the n first coils is N1 and the number of turns of each of the n second coils is N2, 1.117 ⁇ N1 / N2 ⁇ 1.634 or 2.244 ⁇ Satisfy N1 / N2 ⁇ 2.876.
  • a stator core with 9 x n slots (n is an integer of 1 or more) and It is attached to the stator core by distributed winding, and is equipped with a three-phase coil that forms 4 ⁇ n magnetic poles.
  • the three-phase coil has 2 ⁇ n U-phase coils, 2 ⁇ n V-phase coils, and 2 ⁇ n W-phase coils at the coil ends of the three-phase coil.
  • the 2 ⁇ n U-phase coils are connected in series and The 2 ⁇ n V-phase coils are connected in series and The 2 ⁇ n W-phase coils are connected in series and Each of the 2 ⁇ n U-phase coils, the 2 ⁇ n V-phase coils, and the 2 ⁇ n W-phase coils has nths arranged in the stator core at a 2-slot pitch. It includes one coil and n second coils arranged in the stator core at a 3-slot pitch. The n first coils are arranged at equal intervals at 360 / n degrees in the circumferential direction at the coil end.
  • the n second coils are arranged at equal intervals at 360 / n degrees in the circumferential direction at the coil end. Assuming that the number of turns of each of the n first coils is N1 and the number of turns of each of the n second coils is N2, 1.347 ⁇ N1 / N2 ⁇ 2.532 is satisfied.
  • Stator according to other aspects of the present disclosure A stator core with 9 x n slots (n is an integer of 1 or more) and It is attached to the stator core by distributed winding, and is equipped with a three-phase coil that forms 4 ⁇ n magnetic poles.
  • the three-phase coil has 2 ⁇ n U-phase coils, 2 ⁇ n V-phase coils, and 2 ⁇ n W-phase coils at the coil ends of the three-phase coil.
  • the 2 ⁇ n U-phase coils are connected in series and The 2 ⁇ n V-phase coils are connected in series and The 2 ⁇ n W-phase coils are connected in series and
  • Each of the 2 ⁇ n U-phase coils, the 2 ⁇ n V-phase coils, and the 2 ⁇ n W-phase coils has nths arranged in the stator core at a 2-slot pitch. It includes one coil and n second coils arranged in the stator core at a 3-slot pitch.
  • the n first coils are arranged at equal intervals at 360 / n degrees in the circumferential direction at the coil end.
  • the n second coils are arranged at equal intervals at 360 / n degrees in the circumferential direction at the coil end. Assuming that the number of turns of each of the n first coils is N1 and the number of turns of each of the n second coils is N2, 0.928 ⁇ N1 / N2 ⁇ 2 is satisfied.
  • Stator according to other aspects of the present disclosure
  • the three-phase coil has 2 ⁇ n U-phase coils, 2 ⁇ n V-phase coils, and 2 ⁇ n W-phase coils at the coil ends of the three-phase coil.
  • the 2 ⁇ n U-phase coils are connected in series and The 2 ⁇ n V-phase coils are connected in series and The 2 ⁇ n W-phase coils are connected in series and
  • Each of the 2 ⁇ n U-phase coils, the 2 ⁇ n V-phase coils, and the 2 ⁇ n W-phase coils has nths arranged in the stator core at a 2-slot pitch. It includes one coil and n second coils arranged in the stator core at a 3-slot pitch.
  • the n first coils are arranged at equal intervals at 360 / n degrees in the circumferential direction at the coil end.
  • the n second coils are arranged at equal intervals at 360 / n degrees in the circumferential direction at the coil end. Assuming that the number of turns of each of the n first coils is N1 and the number of turns of each of the n second coils is N2, 2 ⁇ N1 / N2 ⁇ 3.294 is satisfied.
  • the motor according to another aspect of the present disclosure is With the stator It is provided with a rotor arranged inside the stator.
  • the compressor according to another aspect of the present disclosure is With a closed container With the compression device arranged in the closed container, The electric motor for driving the compression device is provided.
  • the air conditioner according to another aspect of the present disclosure is With the compressor Equipped with a heat exchanger.
  • FIG. It is a top view which shows schematic structure of the electric motor which concerns on Embodiment 1.
  • FIG. It is a top view which shows the structure of a stator schematically. It is a figure which shows schematically a three-phase coil. It is a figure which shows the example of the insertion instrument for inserting a three-phase coil into a stator core. It is a figure which shows the example of the process of inserting a three-phase coil into a stator core. It is a figure which shows the example of the process of inserting a three-phase coil into a stator core. It is a top view which shows the electric motor which concerns on a comparative example. It is a figure which shows the arrangement of the three-phase coil in the slot of the stator shown in FIG. 7.
  • FIG. 1 It is a top view which shows schematic structure of the stator of the electric motor which concerns on a modification. It is a figure which shows the arrangement of the three-phase coil in the slot of the electric motor which concerns on a modification. It is a figure which shows schematic the 3 phase coil of the electric motor which concerns on a modification. It is sectional drawing which shows schematic structure of the compressor which concerns on Embodiment 2. FIG. It is a figure which shows schematic the structure of the refrigerating and air-conditioning apparatus which concerns on Embodiment 3. FIG.
  • Embodiment 1 In the xyz Cartesian coordinate system shown in each figure, the z-axis direction (z-axis) indicates a direction parallel to the axis Ax of the electric motor 1, and the x-axis direction (x-axis) is orthogonal to the z-axis direction (z-axis).
  • the y-axis direction (y-axis) indicates a direction orthogonal to both the z-axis direction and the x-axis direction.
  • the axis Ax is the center of the stator 3 and the center of rotation of the rotor 2.
  • the direction parallel to the axis Ax is also referred to as "axial direction of rotor 2" or simply "axial direction”.
  • the radial direction is the radial direction of the rotor 2 or the stator 3 and is a direction orthogonal to the axis Ax.
  • the xy plane is a plane orthogonal to the axial direction.
  • the arrow D1 indicates the circumferential direction about the axis Ax.
  • the circumferential direction of the rotor 2 or the stator 3 is also simply referred to as "circumferential direction”.
  • FIG. 1 is a top view schematically showing the structure of the motor 1 according to the first embodiment.
  • the motor 1 has a rotor 2 having a plurality of magnetic poles, a stator 3, and a shaft 4 fixed to the rotor 2.
  • the electric motor 1 is, for example, a permanent magnet synchronous motor.
  • the rotor 2 is rotatably arranged inside the stator 3. There is an air gap between the rotor 2 and the stator 3. The rotor 2 rotates about the axis Ax.
  • the rotor 2 has a rotor core 21 and a plurality of permanent magnets 22.
  • the rotor core 21 has a plurality of magnet insertion holes 211 and a shaft hole 212 in which the shaft 4 is arranged.
  • the rotor core 21 may further have at least one flux barrier portion that is a space communicating with each magnet insertion hole 211.
  • the rotor 2 has a plurality of permanent magnets 22.
  • Each permanent magnet 22 is arranged in each magnet insertion hole 211.
  • One permanent magnet 22 forms one magnetic pole of the rotor 2, that is, an N pole or an S pole. However, two or more permanent magnets 22 may form one magnetic pole of the rotor 2.
  • one permanent magnet 22 forming one magnetic pole of the rotor 2 is arranged straight in the xy plane.
  • a set of permanent magnets 22 forming one magnetic pole of the rotor 2 may be arranged so as to have a V shape.
  • each magnetic pole of the rotor 2 is located at the center of the north pole or the south pole of the rotor 2.
  • Each magnetic pole of the rotor 2 (also simply referred to as “each magnetic pole” or “magnetic pole”) means a region serving as an N pole or an S pole of the rotor 2.
  • FIG. 2 is a top view schematically showing the structure of the stator 3.
  • FIG. 3 is a diagram schematically showing a three-phase coil 32. As shown in FIGS. 1 and 2, the stator 3 has a stator core 31 and a three-phase coil 32 attached to the stator core 31 in a distributed winding manner.
  • the three-phase coil 32 (that is, the coil of each phase) has a coil side arranged in the slot 311 and a coil end 32a not arranged in the slot 311. Each coil end 32a is an end portion of the three-phase coil 32 in the axial direction.
  • the three-phase coil 32 has 2 ⁇ n U-phase coils 32U, 2 ⁇ n V-phase coils 32V, and 2 ⁇ n W-phase coils 32W at each coil end 32a (FIG. 1). That is, the three-phase coil 32 has three phases, a first phase, a second phase, and a third phase.
  • the first phase is the U phase
  • the second phase is the V phase
  • the third phase is the W phase.
  • each of the three phases is referred to as a U phase, a V phase, and a W phase.
  • the 2 ⁇ n coils 32U are also referred to as “U-phase coil group”, the 2 ⁇ n V-phase coils 32V are also referred to as “V-phase coil group”, and the 2 ⁇ n W-phase coils 32W are referred to as “W-phase coils”. Also called a group.
  • Each of the U-phase coil group, the V-phase coil group, and the W-phase coil group is also referred to as "a coil group of each phase”.
  • the coil group of each phase includes n first coils and n second coils.
  • Each first coil is arranged on the stator core 31 at a 2-slot pitch.
  • Each second coil is arranged on the stator core 31 at a 3-slot pitch.
  • Each first coil and each second coil is also simply referred to as a "coil".
  • 2 slot pitch means "every 2 slots”. That is, the two-slot pitch means that one coil is arranged in the slot 311 every two slots. In other words, the two-slot pitch means that one coil is arranged in the slot 311 every other slot.
  • 3 slot pitch means "every 3 slots". That is, the 3-slot pitch means that one coil is arranged in the slot 311 every 3 slots. In other words, the 3-slot pitch means that one coil is arranged in slot 311 every two slots.
  • n 1. Therefore, in the example shown in FIG. 1, at the coil end 32a, the three-phase coil 32 has two U-phase coils 32U, two V-phase coils 32V, and two W-phase coils 32W.
  • the number of coils in each phase is not limited to two.
  • the stator 3 has the structure shown in FIG. 1 at the two coil ends 32a. However, the stator 3 may have the structure shown in FIG. 1 at one of the two coil ends 32a.
  • 2 ⁇ n U-phase coils 32U ie, first coil U1 and second coil U2
  • 2 ⁇ n V-phase coils 32V ie, first coil V1
  • the second coil V2 and 2 ⁇ n W-phase coils 32W (that is, the first coil W1 and the second coil W2) are connected by, for example, a Y connection.
  • the 2 ⁇ n U-phase coils 32U, the 2 ⁇ n V-phase coils 32V, and the 2 ⁇ n W-phase coils 32W are connected by a connection other than the Y connection, for example, a delta connection. good.
  • Each first coil and each second coil is also simply referred to as a coil.
  • the 2 ⁇ n U-phase coils 32U include n first coils U1 and n second coils U2.
  • the two U-phase coils 32U are composed of one first coil U1 and one second coil U2.
  • the 2 ⁇ n U-phase coils 32U are connected in series. Therefore, in the present embodiment, one first coil U1 and one second coil U2 are connected in series.
  • the first coil U1 is arranged on the stator core 31 at a pitch of 2 slots.
  • the second coil U2 is arranged on the stator core 31 at a pitch of 3 slots.
  • the first coil U1 of the U phase is arranged in two slots 311 every other slot on one end side of the stator core 31.
  • the first coil U1 of the U phase is arranged in two slots 311 with one slot 311 interposed therebetween on one end side of the stator core 31.
  • the second coil U2 of the U phase is arranged in two slots 311 every two slots on one end side of the stator core 31.
  • the second coil U2 of the U phase is arranged in two slots 311 with the two slots 311 interposed therebetween on one end side of the stator core 31.
  • the stator 3 has, for example, 0.928 ⁇ . Satisfy N1 / N2 ⁇ 2 or 2 ⁇ N1 / N2 ⁇ 3.294.
  • the 2 ⁇ n V-phase coils 32V include n first coils V1 and n second coils V2.
  • the two V-phase coils 32V are composed of one first coil V1 and one second coil V2.
  • the 2 ⁇ n V-phase coils 32V are connected in series. Therefore, in the present embodiment, one first coil V1 and one second coil V2 are connected in series.
  • the first coil V1 is arranged on the stator core 31 at a 2-slot pitch.
  • the second coil V2 is arranged on the stator core 31 at a pitch of 3 slots.
  • the first coil V1 of the V phase is arranged in two slots 311 every other slot on one end side of the stator core 31.
  • the first coil V1 of the V phase is arranged in two slots 311 with one slot 311 interposed therebetween on one end side of the stator core 31.
  • the second coil V2 of the V phase is arranged in two slots 311 every two slots on one end side of the stator core 31.
  • the second coil V2 of the V phase is arranged in two slots 311 with the two slots 311 interposed therebetween on one end side of the stator core 31.
  • the stator 3 has, for example, 0.928 ⁇ . Satisfy N1 / N2 ⁇ 2 or 2 ⁇ N1 / N2 ⁇ 3.294.
  • the 2 ⁇ n W-phase coils 32W include n first coils W1 and n second coils W2.
  • the two W-phase coils 32W are composed of one first coil W1 and one second coil W2.
  • the 2 ⁇ n W-phase coils 32W are connected in series. Therefore, in the present embodiment, one first coil W1 and one second coil W2 are connected in series.
  • the first coil W1 is arranged on the stator core 31 at a pitch of 2 slots.
  • the second coil W2 is arranged on the stator core 31 at a pitch of 3 slots.
  • the first coil W1 of the W phase is arranged in two slots 311 every other slot on one end side of the stator core 31.
  • the first coil W1 of the W phase is arranged in two slots 311 with one slot 311 interposed therebetween on one end side of the stator core 31.
  • the second coil W2 of the W phase is arranged in two slots 311 every two slots on one end side of the stator core 31.
  • the second coil W2 of the W phase is arranged in two slots 311 with the two slots 311 interposed therebetween on one end side of the stator core 31.
  • the stator 3 has, for example, 0.928 ⁇ . Satisfy N1 / N2 ⁇ 2 or 2 ⁇ N1 / N2 ⁇ 3.294.
  • FIG. 4 is a diagram showing an example of an insertion device 9 for inserting the three-phase coil 32 into the stator core 31.
  • 5 and 6 are diagrams showing an example of a process of inserting a three-phase coil into the stator core 31.
  • the three-phase coil 32 is attached to, for example, a stator core 31 prepared in advance by an insertion tool 9. In the present embodiment, the three-phase coil 32 is attached to the stator core 31 by distributed winding.
  • the three-phase coil 32 is arranged between the blades 91 of the insertion device 9 as shown in FIGS. 5 and 6.
  • the blade 91 is inserted inside the stator core 31 together with the three-phase coil 32.
  • the three-phase coil 32 is slid in the axial direction and placed in the slot 311.
  • FIG. 7 is a top view showing the electric motor 1a according to the comparative example.
  • FIG. 8 is a diagram showing the arrangement of the three-phase coil 32 in the slot of the stator 3a shown in FIG.
  • FIG. 8 is a developed view of the stator 3a shown in FIG. 7.
  • the three-phase coil 32 is lap-wound and attached to the stator core 31.
  • one side of each coil is arranged in the outer layer of slot 311 and the other side of the coil is arranged in the inner layer of the other slot 311.
  • the three-phase coil 32 when the three-phase coil 32 is attached to the stator core 31 by lap winding, it is difficult to attach the three-phase coil 32 to the stator core 31 using an insertion tool (for example, the insertion tool 9 shown in FIG. 4). .. Therefore, usually, when the three-phase coil 32 is attached to the stator core 31 by lap winding as in the comparative example, the three-phase coil 32 is attached to the stator core 31 by hand. In this case, the productivity of the stator 3 decreases.
  • an insertion tool for example, the insertion tool 9 shown in FIG. 4
  • Winding coefficient of the first coil of each phase and the winding coefficient of the second coil of each phase are different from each other. Therefore, in order to calculate the winding coefficient of the stator 3 of the motor 1, the winding coefficient of the first coil of each phase and the winding coefficient of the second coil of each phase are calculated.
  • the distributed winding coefficient of the stator 3 of the motor 1 is 1 regardless of the fundamental wave and the harmonics.
  • the winding coefficient is obtained by the product of the distributed winding coefficient and the short-knot winding coefficient. Since the distributed winding coefficient of the stator 3 of the motor 1 is 1, in the present embodiment, the winding coefficient and the short-knot winding coefficient are equal.
  • Kp_m cos ⁇ (m ⁇ ⁇ ) /2 ⁇ ⁇ (1- ⁇ ) ⁇ ⁇ ⁇ ⁇ (1)
  • is a shortness and is defined by “coil pitch / number of slots per pole”.
  • the number of turns of the first coil of each phase is N1
  • the number of turns of the second coil of each phase is N2
  • the coefficient of short-knot winding of the first coil of each phase is Kp1
  • the number of short-knot winding of the second coil of each phase is Kp1.
  • the short-knot winding coefficient Kp of the stator 3 of the motor 1 can be obtained by the following equation (4).
  • the winding coefficient Kp1_1 of the fundamental wave of the first coil of each phase, the winding coefficient Kp2_1 of the fundamental wave of the second coil of each phase, and the winding coefficient Kp_1 of the fundamental wave of the stator 3 of the motor 1 are expressed by the equations. Using (1) and (4), it is obtained by the following equations (5), (6), and (7).
  • Kp_1 [1 / ⁇ (N1 / N2) + 1 ⁇ ] x ⁇ (N1 / N2) x
  • Kp1_1 + Kp2_1 ⁇ [1 / ⁇ (N1 / N2) +1 ⁇ ] ⁇ ⁇ (N1 / N2) ⁇ cos10 ° + cos30 ° ⁇ ⁇ ⁇ ⁇ (7)
  • FIG. 9 is a graph showing the winding coefficient of the fundamental wave.
  • FIG. 10 is a graph showing a third-order winding coefficient.
  • FIG. 11 is a graph showing the absolute value of the fifth-order winding coefficient.
  • FIG. 12 is a graph showing the absolute value of the 7th-order winding coefficient.
  • the harmonic components that should be considered in order to reduce the torque ripple, which is the main cause of vibration in the motor 1, will be described.
  • the torque of the motor 1 is proportional to the product of the induced voltage generated in the three-phase coil 32 and the motor current. For example, if both the induced voltage and the motor current are represented by an ideal sine wave, no torque ripple due to harmonics will occur in motor 1. However, when harmonics are superimposed on the induced voltage and motor current, the torque of the motor 1 pulsates and torque ripple occurs.
  • the sixth component is dominant in the electrical order. Assuming that the pole logarithm is P, the sixth-order component in the electrical order appears as a 6 ⁇ Pth-order component in the mechanical order.
  • the torque of the motor 1 is proportional to the product of the induced voltage generated in the three-phase coil 32 and the motor current. Therefore, the harmonic component of the interlinkage magnetic flux or the harmonic component of the motor current can be mentioned as the main cause of the torque ripple of the sixth order in the electric order.
  • D 7th order magnetic flux x 1st order current
  • N1 / N2 for reducing high-order harmonics (specifically, 5th and 7th orders), which are the main factors of torque ripple, are calculated.
  • the fifth-order winding coefficient Kp1_5 of the first coil of each phase, the fifth-order winding coefficient Kp2_5 of the second coil of each phase, and the fifth-order winding coefficient Kp_5 of the stator 3 of the motor 1 are expressed by the formulas. Using (1) and (4), it is obtained by the following equations (9), (10), and (11).
  • Kp_5 [1 / ⁇ (N1 / N2) + 1 ⁇ ] x ⁇ (N1 / N2) x
  • Kp1_5 + Kp2_5 ⁇ [1 / ⁇ (N1 / N2) +1 ⁇ ] ⁇ ⁇ (N1 / N2) ⁇ cos50 ° + cos150 ° ⁇ ⁇ ⁇ (11)
  • the 7th-order winding coefficient Kp1_7 of the 1st coil of each phase, the 7th-order winding coefficient Kp2_7 of the 2nd coil of each phase, and the 7th-order winding coefficient Kp_7 of the stator 3 of the motor 1 are expressed by the formulas. Using (1) and (4), it can be obtained by the following equations (13), (14), and (15).
  • Kp_7 [1 / ⁇ (N1 / N2) + 1 ⁇ ] x ⁇ (N1 / N2) x
  • Kp1_7 + Kp2_7 ⁇ [1 / ⁇ (N1 / N2) +1 ⁇ ] ⁇ ⁇ (N1 / N2) ⁇ cos70 ° + cos210 ° ⁇ ⁇ ⁇ ⁇ (15)
  • Kp_7 is ⁇ 0.061 according to the equation (16).
  • the ratio N1 / N2 for reducing the 5th-order winding coefficient and the 7th-order winding coefficient is calculated.
  • the winding coefficient Kp is regarded as a function of N1 / N2 and expressed as Kp (N1 / N2).
  • N1 / N2 2
  • the lower limit of the ratio N1 / N2 at which the fifth-order winding coefficient smaller than the fifth-order winding coefficient Kp_5 (2) can be obtained is ⁇ 5.
  • N1 / N2 2
  • the upper limit of the ratio N1 / N2 at which the 7th-order winding coefficient smaller than the 7th-order winding coefficient Kp_7 (2) can be obtained is ⁇ 7.
  • the third harmonic is a factor that generates a circulating current in the three-phase coil connected by the delta connection. Therefore, it is desirable that the third harmonic is as low as possible. As shown in FIG. 10, when N1 / N2 ⁇ 2, the third-order winding coefficient can be sufficiently reduced. Therefore, when the ratio N1 / N2 satisfies 0.928 ⁇ N1 / N2 ⁇ 2, the circulating current in the three-phase coil connected by the delta connection can be reduced.
  • the ratio N1 / N2 for further reducing the fifth-order winding coefficient is calculated.
  • the winding coefficient Kp is regarded as a function of N1 / N2 and expressed as Kp (N1 / N2).
  • ⁇ 5b be N1 / N2 for which Kp_5 (N1 / N2) ⁇ (1/2) ⁇ Kp_5 (2) is satisfied.
  • Kp_5 ( ⁇ 5b) ⁇ (1/2) ⁇ Kp_5 (2) ⁇ ⁇ ⁇ (26) ⁇ 1 / ( ⁇ 5b + 1) ⁇ ⁇ ( ⁇ 5b ⁇ cos50 ° + cos150 °) (1/2) ⁇ ⁇ 1 / (2 + 1) ⁇ ⁇ (2 ⁇ cos50 ° + cos150 °) ⁇ ⁇ ⁇ (27)
  • the ratio N1 / N2 for further reducing the 7th-order winding coefficient is calculated.
  • the winding coefficient Kp is regarded as a function of N1 / N2 and expressed as Kp (N1 / N2).
  • stator 3 of the motor 1 satisfies 1.117 ⁇ N1 / N2 ⁇ 1.634 or 2.244 ⁇ N1 / N2 ⁇ 2.876, it has at least a fifth-order winding coefficient or a seventh-order winding.
  • FIG. 13 is a graph showing the content of winding coefficients of harmonics (specifically, 5th and 7th orders) with respect to the fundamental wave.
  • FIG. 14 is a graph showing a third-order winding coefficient, a fifth-order winding coefficient, and a seventh-order winding coefficient.
  • the stator 3 of the motor 1 satisfies 1.347 ⁇ N1 / N2 ⁇ 2.532, both the fifth-order winding coefficient and the seventh-order winding coefficient are reduced. This makes it possible to reduce the content of winding coefficients of harmonics (specifically, 5th and 7th orders) with respect to the fundamental wave.
  • FIG. 15 is a top view schematically showing the structure of the electric motor 1 according to the modified example.
  • the value of "n" is different from the value of "n” described in the first embodiment.
  • n 2.
  • a configuration different from that of the first embodiment will be described. The details not explained in the modified example can be the same details as those in the first embodiment.
  • FIG. 16 is a cross-sectional view schematically showing the structure of the rotor 2 of the electric motor 1 according to the modified example.
  • the rotor 2 has a rotor core 21 and at least one permanent magnet 22.
  • the rotor 2 has 4 ⁇ n (n is an integer of 1 or more) magnetic poles. In the modified example, the rotor 2 has eight magnetic poles.
  • FIG. 17 is a top view schematically showing the structure of the stator 3 of the electric motor 1 according to the modified example.
  • FIG. 18 is a diagram showing the arrangement of the three-phase coil 32 in the slot 311 of the electric motor 1 according to the modified example.
  • FIG. 19 is a diagram schematically showing a three-phase coil 32 of the electric motor 1 according to the modified example.
  • n 2. Therefore, in the example shown in FIG. 15, at the coil end 32a, the three-phase coil 32 has four U-phase coils 32U, four V-phase coils 32V, and four W-phase coils 32W.
  • the coil group of each phase includes two first coils and two second coils.
  • Each first coil is arranged on the stator core 31 at a 2-slot pitch.
  • Each second coil is arranged on the stator core 31 at a 3-slot pitch.
  • 2 ⁇ n U-phase coils 32U ie, two first coils U1 and two second coils U2
  • 2 ⁇ n V-phase coils 32V ie, 2 ⁇ n V-phase coils 32V
  • 2 ⁇ n W-phase coils 32W ie, two first coils W1 and two second coils W2).
  • the 2 ⁇ n U-phase coils 32U include n first coils U1 and n second coils U2.
  • the four U-phase coils 32U are composed of two first coils U1 and two second coils U2.
  • the 2 ⁇ n U-phase coils 32U are connected in series. Therefore, in the modified example, the two first coils U1 and the two second coils U2 are connected in series.
  • Each first coil U1 is arranged on the stator core 31 at a pitch of 2 slots.
  • Each second coil U2 is arranged on the stator core 31 at a pitch of 3 slots.
  • n first coils U1 are arranged at equal intervals of 360 / n degrees in the circumferential direction at each coil end 32a.
  • the two first coils U1 of the U phase are arranged at equal intervals of 180 degrees in the circumferential direction at each coil end 32a.
  • the n first coils U1 are arranged at equal intervals at each coil end 32a with a deviation of 360 / n degrees from each other.
  • the two first coils U1 of the U phase are arranged at equal intervals at each coil end 32a with a deviation of 180 degrees from each other.
  • n second coils U2 are arranged at equal intervals of 360 / n degrees in the circumferential direction at each coil end 32a.
  • the two second coils U2 of the U phase are arranged at equal intervals of 180 degrees in the circumferential direction at each coil end 32a.
  • the n second coils U2 are arranged at equal intervals at each coil end 32a with a deviation of 360 / n degrees from each other.
  • the two second coils U2 of the U phase are arranged at equal intervals at each coil end 32a with a deviation of 180 degrees from each other.
  • the 2 ⁇ n V-phase coils 32V include n first coils V1 and n second coils V2.
  • the four V-phase coils 32V are composed of two first coils V1 and two second coils V2.
  • the 2 ⁇ n V-phase coils 32V are connected in series. Therefore, in the modified example, the two first coils V1 and the two second coils V2 are connected in series.
  • Each first coil V1 is arranged on the stator core 31 at a pitch of 2 slots.
  • Each second coil V2 is arranged on the stator core 31 at a pitch of 3 slots.
  • n first coils V1 are arranged at equal intervals of 360 / n degrees in the circumferential direction at each coil end 32a.
  • the two first coils V1 of the V phase are arranged at equal intervals of 180 degrees in the circumferential direction at each coil end 32a.
  • the n first coils V1 are arranged at equal intervals at each coil end 32a with a deviation of 360 / n degrees from each other.
  • the two first coils V1 of the V phase are arranged at equal intervals at each coil end 32a with a deviation of 180 degrees from each other.
  • n second coils V2 are arranged at equal intervals of 360 / n degrees in the circumferential direction at each coil end 32a.
  • the two second coils V2 of the V phase are arranged at equal intervals of 180 degrees in the circumferential direction at each coil end 32a.
  • the n second coils V2 are arranged at equal intervals at each coil end 32a with a deviation of 360 / n degrees from each other.
  • the two second coils V2 of the V phase are arranged at equal intervals at each coil end 32a with a deviation of 180 degrees from each other.
  • the 2 ⁇ n W-phase coils 32W include n first coils W1 and n second coils W2.
  • the four W-phase coils 32W are composed of two first coils W1 and two second coils W2.
  • the 2 ⁇ n W-phase coils 32W are connected in series. Therefore, in the modified example, the two first coils W1 and the two second coils W2 are connected in series.
  • Each first coil W1 is arranged on the stator core 31 at a pitch of 2 slots.
  • Each second coil W2 is arranged on the stator core 31 at a pitch of 3 slots.
  • n first coils W1 are arranged at equal intervals of 360 / n degrees in the circumferential direction at each coil end 32a.
  • the two first coils W1 of the W phase are arranged at equal intervals of 180 degrees in the circumferential direction at each coil end 32a.
  • the n first coils W1 are arranged at equal intervals at each coil end 32a with a deviation of 360 / n degrees from each other.
  • the two first coils W1 of the W phase are arranged at equal intervals at each coil end 32a with a deviation of 180 degrees from each other.
  • n second coils W2 are arranged at equal intervals of 360 / n degrees in the circumferential direction at each coil end 32a.
  • the two second coils W2 of the W phase are arranged at equal intervals of 180 degrees in the circumferential direction at each coil end 32a.
  • the n second coils W2 are arranged at equal intervals at each coil end 32a with a deviation of 360 / n degrees from each other.
  • the two second coils W2 of the W phase are arranged at equal intervals at each coil end 32a with a deviation of 180 degrees from each other.
  • FIG. 20 is a cross-sectional view schematically showing the structure of the compressor 300.
  • the compressor 300 has a motor 1 as an electric element, a closed container 307 as a housing, and a compression mechanism 305 as a compression element (also referred to as a compression device).
  • the compressor 300 is a scroll compressor.
  • the compressor 300 is not limited to the scroll compressor.
  • the compressor 300 may be a compressor other than the scroll compressor, for example, a rotary compressor.
  • the electric motor 1 in the compressor 300 is the electric motor 1 described in the first embodiment (including a modification).
  • the electric motor 1 drives the compression mechanism 305.
  • the compressor 300 further includes a subframe 308 that supports the lower end of the shaft 4 (that is, the end opposite to the compression mechanism 305 side).
  • the compression mechanism 305 is arranged in the closed container 307.
  • the compression mechanism 305 has a fixed scroll 301 having a spiral portion, a swing scroll 302 having a spiral portion forming a compression chamber between the spiral portion of the fixed scroll 301, and a compliance frame 303 holding the upper end portion of the shaft 4. And a guide frame 304 fixed to the closed container 307 and holding the compliance frame 303.
  • a suction pipe 310 penetrating the closed container 307 is press-fitted into the fixed scroll 301. Further, the closed container 307 is provided with a discharge pipe 306 for discharging the high-pressure refrigerant gas discharged from the fixed scroll 301 to the outside.
  • the discharge pipe 306 communicates with an opening provided between the compression mechanism 305 of the closed container 307 and the electric motor 1.
  • the motor 1 is fixed to the closed container 307 by fitting the stator 3 into the closed container 307.
  • the configuration of the electric motor 1 is as described above.
  • a glass terminal 309 for supplying electric power to the electric motor 1 is fixed to the closed container 307 by welding.
  • the compressor 300 Since the compressor 300 has the electric motor 1 described in the first embodiment, it has the advantages described in the first embodiment.
  • the compressor 300 has the electric motor 1 described in the first embodiment, the performance of the compressor 300 can be improved.
  • FIG. 21 is a diagram schematically showing the configuration of the refrigerating and air-conditioning apparatus 7 according to the third embodiment.
  • the refrigerating and air-conditioning device 7 can be operated for heating and cooling, for example.
  • the refrigerant circuit diagram shown in FIG. 21 is an example of a refrigerant circuit diagram of an air conditioner capable of cooling operation.
  • the refrigerating and air-conditioning device 7 has an outdoor unit 71, an indoor unit 72, and a refrigerant pipe 73 connecting the outdoor unit 71 and the indoor unit 72.
  • the outdoor unit 71 has a compressor 300, a condenser 74 as a heat exchanger, a throttle device 75, and an outdoor blower 76 (first blower).
  • the condenser 74 condenses the refrigerant compressed by the compressor 300.
  • the throttle device 75 decompresses the refrigerant condensed by the condenser 74 and adjusts the flow rate of the refrigerant.
  • the diaphragm device 75 is also referred to as a decompression device.
  • the indoor unit 72 has an evaporator 77 as a heat exchanger and an indoor blower 78 (second blower).
  • the evaporator 77 evaporates the refrigerant decompressed by the throttle device 75 to cool the indoor air.
  • the refrigerant is compressed by the compressor 300 and flows into the condenser 74.
  • the refrigerant is condensed by the condenser 74, and the condensed refrigerant flows into the throttle device 75.
  • the refrigerant is decompressed by the throttle device 75, and the decompressed refrigerant flows into the evaporator 77.
  • the refrigerant evaporates in the evaporator 77, and the refrigerant (specifically, the refrigerant gas) flows into the compressor 300 of the outdoor unit 71 again.
  • the configuration and operation of the refrigerating and air-conditioning apparatus 7 described above is an example, and is not limited to the above-mentioned example.
  • the refrigerating and air-conditioning apparatus 7 according to the third embodiment, it has the advantages described in the first embodiment.
  • the refrigerating and air-conditioning apparatus 7 according to the third embodiment has the compressor 300 according to the second embodiment, the performance of the refrigerating and air-conditioning apparatus 7 can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

固定子(3)は、9×n個(nは1以上の整数)のスロット(311)を有する固定子鉄心(31)と、4×n個の磁極を形成する3相コイル(32)とを有する。3相コイル(32)は、コイルエンド(32a)において、2×n個のU相コイル(32U)、2×n個のV相コイル(32V)、及び2×n個のW相コイル(32W)を有する。2×n個のU相コイル(32U)、2×n個のV相コイル(32V)、及び2×n個のW相コイル(32W)の各々は、2スロットピッチで固定子鉄心(31)に配置されたn個の第1のコイルと、3スロットピッチで固定子鉄心(31)に配置されたn個の第2のコイルとを含む。n個の第1のコイルの各々の巻数をN1とし、n個の第2のコイルの各々の巻数をN2とすると、0.928≦N1/N2<2、又は2<N1/N2≦3.294を満たす。

Description

固定子、電動機、圧縮機、及び空気調和機
 本開示は、電動機用の固定子に関する。
 一般に、3相コイルを有する固定子が知られている(例えば、特許文献1)。特許文献1に開示された固定子鉄心は、24個のスロットを持ち、3相コイルは8磁極を形成し、1磁極に対するスロット数は、3である。この固定子では、各相のコイルが3スロット毎に配置されており、重ね巻きで固定子鉄心に取り付けられており、各スロットに同じ相の2つのコイルが配置されている。この場合、この固定子は、回転子からの磁束を100%利用できるという利点がある。
実開昭53-114012号公報
 一般に、基本波の巻線係数及び高調波の巻線係数が大きくなるにつれて、電動機における振動が増加する。従来の技術では、高調波の巻線係数を減らすことができても、同時に基本波の巻線係数も減り、その結果、固定子における有効磁束量が十分に得られず、電動機の効率(電動機効率とも称する)が低下する。
 本開示の目的は、固定子における基本波の巻線係数を大きく損ねることなく、高調波の巻線係数を低減することである。
 本開示の一態様に係る固定子は、
 9×n個(nは1以上の整数)のスロットを有する固定子鉄心と、
 前記固定子鉄心に分布巻きで取り付けられており、4×n個の磁極を形成する3相コイルと
 を備え、
 前記3相コイルは、前記3相コイルのコイルエンドにおいて、2×n個のU相コイル、2×n個のV相コイル、及び2×n個のW相コイルを有し、
 前記2×n個のU相コイルは直列に接続されており、
 前記2×n個のV相コイルは直列に接続されており、
 前記2×n個のW相コイルは直列に接続されており、
 前記2×n個のU相コイル、前記2×n個のV相コイル、及び前記2×n個のW相コイルの各々は、2スロットピッチで前記固定子鉄心に配置されたn個の第1のコイルと、3スロットピッチで前記固定子鉄心に配置されたn個の第2のコイルとを含み、
 前記n個の第1のコイルは、前記コイルエンドにおいて、周方向に360/n度ごとに等間隔に配置されており、
 前記n個の第2のコイルは、前記コイルエンドにおいて、前記周方向に360/n度ごとに等間隔に配置されており、
 前記n個の第1のコイルの各々の巻数をN1とし、前記n個の第2のコイルの各々の巻数をN2とすると、0.928≦N1/N2<2、又は2<N1/N2≦3.294を満たす。
 本開示の他の態様に係る固定子は、
 9×n個(nは1以上の整数)のスロットを有する固定子鉄心と、
 前記固定子鉄心に分布巻きで取り付けられており、4×n個の磁極を形成する3相コイルと
 を備え、
 前記3相コイルは、前記3相コイルのコイルエンドにおいて、2×n個のU相コイル、2×n個のV相コイル、及び2×n個のW相コイルを有し、
 前記2×n個のU相コイルは直列に接続されており、
 前記2×n個のV相コイルは直列に接続されており、
 前記2×n個のW相コイルは直列に接続されており、
 前記2×n個のU相コイル、前記2×n個のV相コイル、及び前記2×n個のW相コイルの各々は、2スロットピッチで前記固定子鉄心に配置されたn個の第1のコイルと、3スロットピッチで前記固定子鉄心に配置されたn個の第2のコイルとを含み、
 前記n個の第1のコイルは、前記コイルエンドにおいて、周方向に360/n度ごとに等間隔に配置されており、
 前記n個の第2のコイルは、前記コイルエンドにおいて、前記周方向に360/n度ごとに等間隔に配置されており、
 前記n個の第1のコイルの各々の巻数をN1とし、前記n個の第2のコイルの各々の巻数をN2とすると、1.117≦N1/N2≦1.634、又は2.244≦N1/N2≦2.876を満たす。
 本開示の他の態様に係る固定子は、
 9×n個(nは1以上の整数)のスロットを有する固定子鉄心と、
 前記固定子鉄心に分布巻きで取り付けられており、4×n個の磁極を形成する3相コイルと
 を備え、
 前記3相コイルは、前記3相コイルのコイルエンドにおいて、2×n個のU相コイル、2×n個のV相コイル、及び2×n個のW相コイルを有し、
 前記2×n個のU相コイルは直列に接続されており、
 前記2×n個のV相コイルは直列に接続されており、
 前記2×n個のW相コイルは直列に接続されており、
 前記2×n個のU相コイル、前記2×n個のV相コイル、及び前記2×n個のW相コイルの各々は、2スロットピッチで前記固定子鉄心に配置されたn個の第1のコイルと、3スロットピッチで前記固定子鉄心に配置されたn個の第2のコイルとを含み、
 前記n個の第1のコイルは、前記コイルエンドにおいて、周方向に360/n度ごとに等間隔に配置されており、
 前記n個の第2のコイルは、前記コイルエンドにおいて、前記周方向に360/n度ごとに等間隔に配置されており、
 前記n個の第1のコイルの各々の巻数をN1とし、前記n個の第2のコイルの各々の巻数をN2とすると、1.347≦N1/N2≦2.532を満たす。
 本開示の他の態様に係る固定子は、
 9×n個(nは1以上の整数)のスロットを有する固定子鉄心と、
 前記固定子鉄心に分布巻きで取り付けられており、4×n個の磁極を形成する3相コイルと
 を備え、
 前記3相コイルは、前記3相コイルのコイルエンドにおいて、2×n個のU相コイル、2×n個のV相コイル、及び2×n個のW相コイルを有し、
 前記2×n個のU相コイルは直列に接続されており、
 前記2×n個のV相コイルは直列に接続されており、
 前記2×n個のW相コイルは直列に接続されており、
 前記2×n個のU相コイル、前記2×n個のV相コイル、及び前記2×n個のW相コイルの各々は、2スロットピッチで前記固定子鉄心に配置されたn個の第1のコイルと、3スロットピッチで前記固定子鉄心に配置されたn個の第2のコイルとを含み、
 前記n個の第1のコイルは、前記コイルエンドにおいて、周方向に360/n度ごとに等間隔に配置されており、
 前記n個の第2のコイルは、前記コイルエンドにおいて、前記周方向に360/n度ごとに等間隔に配置されており、
 前記n個の第1のコイルの各々の巻数をN1とし、前記n個の第2のコイルの各々の巻数をN2とすると、0.928≦N1/N2<2を満たす。
 本開示の他の態様に係る固定子は、
 9×n個(nは1以上の整数)のスロットを有する固定子鉄心と、
 前記固定子鉄心に分布巻きで取り付けられており、4×n個の磁極を形成する3相コイルと
 を備え、
 前記3相コイルは、前記3相コイルのコイルエンドにおいて、2×n個のU相コイル、2×n個のV相コイル、及び2×n個のW相コイルを有し、
 前記2×n個のU相コイルは直列に接続されており、
 前記2×n個のV相コイルは直列に接続されており、
 前記2×n個のW相コイルは直列に接続されており、
 前記2×n個のU相コイル、前記2×n個のV相コイル、及び前記2×n個のW相コイルの各々は、2スロットピッチで前記固定子鉄心に配置されたn個の第1のコイルと、3スロットピッチで前記固定子鉄心に配置されたn個の第2のコイルとを含み、
 前記n個の第1のコイルは、前記コイルエンドにおいて、周方向に360/n度ごとに等間隔に配置されており、
 前記n個の第2のコイルは、前記コイルエンドにおいて、前記周方向に360/n度ごとに等間隔に配置されており、
 前記n個の第1のコイルの各々の巻数をN1とし、前記n個の第2のコイルの各々の巻数をN2とすると、2<N1/N2≦3.294を満たす。
 本開示の他の態様に係る電動機は、
 前記固定子と、
 前記固定子の内側に配置された回転子と
 を備える。
 本開示の他の態様に係る圧縮機は、
 密閉容器と、
 前記密閉容器内に配置された圧縮装置と、
 前記圧縮装置を駆動する前記電動機と
 を備える。
 本開示の他の態様に係る空気調和機は、
 前記圧縮機と、
 熱交換器と
 を備える。
 本開示によれば、固定子における基本波の巻線係数を大きく損ねることなく、高調波の巻線係数を低減することができる。
実施の形態1に係る電動機の構造を概略的に示す上面図である。 固定子の構造を概略的に示す上面図である。 3相コイルを概略的に示す図である。 3相コイルを固定子鉄心内に挿入するための挿入器具の例を示す図である。 3相コイルを固定子鉄心内に挿入する工程の例を示す図である。 3相コイルを固定子鉄心内に挿入する工程の例を示す図である。 比較例に係る電動機を示す上面図である。 図7に示される固定子のスロット内の3相コイルの配置を示す図である。 基本波の巻線係数を示すグラフである。 3次の巻線係数を示すグラフである。 5次の巻線係数の絶対値を示すグラフである。 7次の巻線係数の絶対値を示すグラフである。 基本波に対する高調波(具体的には、5次、7次)の巻線係数の含有率を示すグラフである。 3次の巻線係数、5次の巻線係数、及び7次の巻線係数を示すグラフである。 変形例に係る電動機の構造を概略的に示す上面図である。 変形例に係る電動機の回転子の構造を概略的に示す断面図である。 変形例に係る電動機の固定子の構造を概略的に示す上面図である。 変形例に係る電動機のスロット内の3相コイルの配置を示す図である。 変形例に係る電動機の3相コイルを概略的に示す図である。 実施の形態2に係る圧縮機の構造を概略的に示す断面図である。 実施の形態3に係る冷凍空調装置の構成を概略的に示す図である。
実施の形態1.
 各図に示されるxyz直交座標系において、z軸方向(z軸)は、電動機1の軸線Axと平行な方向を示し、x軸方向(x軸)は、z軸方向(z軸)に直交する方向を示し、y軸方向(y軸)は、z軸方向及びx軸方向の両方に直交する方向を示す。軸線Axは、固定子3の中心であり、回転子2の回転中心でもある。軸線Axと平行な方向は、「回転子2の軸方向」又は単に「軸方向」ともいう。径方向は、回転子2又は固定子3の半径方向であり、軸線Axと直交する方向である。xy平面は、軸方向と直交する平面である。矢印D1は、軸線Axを中心とする周方向を示す。回転子2又は固定子3の周方向を、単に「周方向」ともいう。
〈電動機1〉
 図1は、実施の形態1に係る電動機1の構造を概略的に示す上面図である。
 電動機1は、複数の磁極を持つ回転子2と、固定子3と、回転子2に固定されたシャフト4とを有する。電動機1は、例えば、永久磁石同期電動機である。
 回転子2は、固定子3の内側に回転可能に配置されている。回転子2と固定子3との間には、エアギャップが存在する。回転子2は、軸線Axを中心として回転する。
 回転子2は、回転子鉄心21と、複数の永久磁石22とを有する。
 回転子鉄心21は、複数の磁石挿入孔211と、シャフト4が配置されるシャフト孔212とを有する。回転子鉄心21は、各磁石挿入孔211に連通する空間である少なくとも1つのフラックスバリア部をさらに有してもよい。
 本実施の形態では、回転子2は、複数の永久磁石22を有する。各永久磁石22は、各磁石挿入孔211内に配置されている。
 1つの永久磁石22が、回転子2の1磁極、すなわち、N極又はS極を形成する。ただし、2以上の永久磁石22が回転子2の1磁極を形成してもよい。
 本実施の形態では、xy平面において、回転子2の1磁極を形成する1つの永久磁石22は、真っ直ぐに配置されている。ただし、xy平面において、回転子2の1磁極を形成する1組の永久磁石22が、V字形状を持つように配置されていてもよい。
 回転子2の各磁極の中心は、回転子2のN極又はS極の中心に位置する。回転子2の各磁極(単に「各磁極」又は「磁極」とも称する)とは、回転子2のN極又はS極の役目をする領域を意味する。
〈固定子3〉
 図2は、固定子3の構造を概略的に示す上面図である。
 図3は、3相コイル32を概略的に示す図である。
 図1及び図2に示されるように、固定子3は、固定子鉄心31と、固定子鉄心31に分布巻きで取り付けられた3相コイル32とを有する。
 固定子鉄心31は、3相コイル32が配置される9×n個(nは1以上の整数)のスロット311を有する。本実施の形態では、n=1である。したがって、図1及び図2に示される例では、固定子鉄心31は、9個のスロット311を有する。
 3相コイル32(すなわち、各相のコイル)は、スロット311内に配置されたコイルサイドと、スロット311内に配置されていないコイルエンド32aとを持つ。各コイルエンド32aは、軸方向における3相コイル32の端部である。
 3相コイル32は、各コイルエンド32aにおいて、2×n個のU相コイル32U、2×n個のV相コイル32V、及び2×n個のW相コイル32Wを有する(図1)。すなわち、3相コイル32は、第1相、第2相、及び第3相の3相を持つ。例えば、第1相はU相であり、第2相はV相であり、第3相はW相である。本実施の形態では、3相の各々を、U相、V相、及びW相と称する。2×n個のコイル32Uを「U相コイル群」とも称し、2×n個のV相コイル32Vを「V相コイル群」とも称し、2×n個のW相コイル32Wを「W相コイル群」とも称する。U相コイル群、V相コイル群、及びW相コイル群の各々を、「各相のコイル群」とも称する。
 各相のコイル群は、n個の第1のコイルと、n個の第2のコイルとを含む。各第1のコイルは、2スロットピッチで固定子鉄心31に配置されている。各第2のコイルは、3スロットピッチで固定子鉄心31に配置されている。各第1のコイル及び各第2のコイルを単に「コイル」とも称する。
 2スロットピッチとは、「2スロット毎」を意味する。すなわち、2スロットピッチとは、1つのコイルが2スロット毎にスロット311に配置されることを意味する。言い換えると、2スロットピッチとは、1つのコイルが1スロットおきにスロット311に配置されることを意味する。
 3スロットピッチとは、「3スロット毎」を意味する。すなわち、3スロットピッチとは、1つのコイルが3スロット毎にスロット311に配置されることを意味する。言い換えると、3スロットピッチとは、1つのコイルが2スロットおきにスロット311に配置されることを意味する。
 本実施の形態では、n=1である。したがって、図1に示される例では、コイルエンド32aにおいて、3相コイル32は、2個のU相コイル32U、2個のV相コイル32V、及び2個のW相コイル32Wを持っている。ただし、各相のコイルの数は、2個に限定されない。本実施の形態では、固定子3は、2つのコイルエンド32aにおいて、図1に示される構造を持っている。ただし、固定子3は、2つのコイルエンド32aの一方において、図1に示される構造を持っていればよい。
 3相コイル32に電流が流れたとき、3相コイル32は、4×n個の磁極を形成する。本実施の形態では、n=1である。したがって、本実施の形態では、3相コイル32に電流が流れたとき、3相コイル32は、4磁極を形成する。
 図3に示されるように、2×n個のU相コイル32U(すなわち、第1のコイルU1及び第2のコイルU2)、2×n個のV相コイル32V(すなわち、第1のコイルV1及び第2のコイルV2)、及び2×n個のW相コイル32W(すなわち、第1のコイルW1及び第2のコイルW2)は、例えば、Y結線で接続されている。ただし、2×n個のU相コイル32U、2×n個のV相コイル32V、及び2×n個のW相コイル32Wは、Y結線以外の結線、例えば、デルタ結線で接続されていてもよい。
 各相のn個の第1のコイルは、各コイルエンド32aにおいて、周方向に360/n度ごとに等間隔に配置されている。例えば、n=1の場合、各相の第1のコイルは、各コイルエンド32aにおいて任意の位置に配置されている。各相のn個の第2のコイルは、各コイルエンド32aにおいて、周方向に360/n度ごとに等間隔に配置されている。例えば、n=1の場合、各相の第2のコイルは、各コイルエンド32aにおいて任意の位置に配置されている。各第1のコイル及び各第2のコイルを、単にコイルとも称する。
〈U相コイル32U〉
 図2に示されるように、2×n個のU相コイル32Uは、n個の第1のコイルU1と、n個の第2のコイルU2とを含む。本実施の形態では、2個のU相コイル32Uは、1個の第1のコイルU1と、1個の第2のコイルU2とで構成されている。2×n個のU相コイル32Uは、直列に接続されている。したがって、本実施の形態では、1個の第1のコイルU1及び1個の第2のコイルU2は、直列に接続されている。第1のコイルU1は、2スロットピッチで固定子鉄心31に配置されている。第2のコイルU2は、3スロットピッチで固定子鉄心31に配置されている。
 図2に示されるように、U相の第1のコイルU1は、固定子鉄心31の一端側において、1スロットおきに2つのスロット311に配置されている。言い換えると、U相の第1のコイルU1は、固定子鉄心31の一端側において、1つのスロット311をはさんで2つのスロット311に配置されている。
 図2に示されるように、U相の第2のコイルU2は、固定子鉄心31の一端側において、2スロットおきに2つのスロット311に配置されている。言い換えると、U相の第2のコイルU2は、固定子鉄心31の一端側において、2つのスロット311をはさんで2つのスロット311に配置されている。
 U相のn個の第1のコイルU1は、各コイルエンド32aにおいて、周方向に360/n度ごとに等間隔に配置されている。ただし、n=1の場合、第1のコイルU1は、各コイルエンド32aにおいて任意の位置に配置されている。U相のn個の第2のコイルU2は、各コイルエンド32aにおいて、周方向に360/n度ごとに等間隔に配置されている。ただし、n=1の場合、第2のコイルU2は、各コイルエンド32aにおいて任意の位置に配置されている。
 U相のn個の第1のコイルU1の各々の巻数をN1とし、U相のn個の第2のコイルU2の各々の巻数をN2とすると、固定子3は、例えば、0.928≦N1/N2<2、又は2<N1/N2≦3.294を満たす。
〈V相コイル32V〉
 図2に示されるように、2×n個のV相コイル32Vは、n個の第1のコイルV1と、n個の第2のコイルV2とを含む。本実施の形態では、2個のV相コイル32Vは、1個の第1のコイルV1と、1個の第2のコイルV2とで構成されている。2×n個のV相コイル32Vは、直列に接続されている。したがって、本実施の形態では、1個の第1のコイルV1及び1個の第2のコイルV2は、直列に接続されている。第1のコイルV1は、2スロットピッチで固定子鉄心31に配置されている。第2のコイルV2は、3スロットピッチで固定子鉄心31に配置されている。
 図2に示されるように、V相の第1のコイルV1は、固定子鉄心31の一端側において、1スロットおきに2つのスロット311に配置されている。言い換えると、V相の第1のコイルV1は、固定子鉄心31の一端側において、1つのスロット311をはさんで2つのスロット311に配置されている。
 図2に示されるように、V相の第2のコイルV2は、固定子鉄心31の一端側において、2スロットおきに2つのスロット311に配置されている。言い換えると、V相の第2のコイルV2は、固定子鉄心31の一端側において、2つのスロット311をはさんで2つのスロット311に配置されている。
 V相のn個の第1のコイルV1は、各コイルエンド32aにおいて、周方向に360/n度ごとに等間隔に配置されている。ただし、n=1の場合、第1のコイルV1は、各コイルエンド32aにおいて任意の位置に配置されている。V相のn個の第2のコイルV2は、各コイルエンド32aにおいて、周方向に360/n度ごとに等間隔に配置されている。ただし、n=1の場合、第2のコイルV2は、各コイルエンド32aにおいて任意の位置に配置されている。
 V相のn個の第1のコイルV1の各々の巻数をN1とし、V相のn個の第2のコイルV2の各々の巻数をN2とすると、固定子3は、例えば、0.928≦N1/N2<2、又は2<N1/N2≦3.294を満たす。
〈W相コイル32W〉
 図2に示されるように、2×n個のW相コイル32Wは、n個の第1のコイルW1と、n個の第2のコイルW2とを含む。本実施の形態では、2個のW相コイル32Wは、1個の第1のコイルW1と、1個の第2のコイルW2とで構成されている。2×n個のW相コイル32Wは、直列に接続されている。したがって、本実施の形態では、1個の第1のコイルW1及び1個の第2のコイルW2は、直列に接続されている。第1のコイルW1は、2スロットピッチで固定子鉄心31に配置されている。第2のコイルW2は、3スロットピッチで固定子鉄心31に配置されている。
 図2に示されるように、W相の第1のコイルW1は、固定子鉄心31の一端側において、1スロットおきに2つのスロット311に配置されている。言い換えると、W相の第1のコイルW1は、固定子鉄心31の一端側において、1つのスロット311をはさんで2つのスロット311に配置されている。
 図2に示されるように、W相の第2のコイルW2は、固定子鉄心31の一端側において、2スロットおきに2つのスロット311に配置されている。言い換えると、W相の第2のコイルW2は、固定子鉄心31の一端側において、2つのスロット311をはさんで2つのスロット311に配置されている。
 W相のn個の第1のコイルW1は、各コイルエンド32aにおいて、周方向に360/n度ごとに等間隔に配置されている。ただし、n=1の場合、第1のコイルW1は、各コイルエンド32aにおいて任意の位置に配置されている。W相のn個の第2のコイルW2は、各コイルエンド32aにおいて、周方向に360/n度ごとに等間隔に配置されている。ただし、n=1の場合、第2のコイルW2は、各コイルエンド32aにおいて任意の位置に配置されている。
 W相のn個の第1のコイルW1の各々の巻数をN1とし、W相のn個の第2のコイルW2の各々の巻数をN2とすると、固定子3は、例えば、0.928≦N1/N2<2、又は2<N1/N2≦3.294を満たす。
〈挿入器具〉
 図4は、3相コイル32を固定子鉄心31内に挿入するための挿入器具9の例を示す図である。
 図5及び図6は、3相コイルを固定子鉄心31内に挿入する工程の例を示す図である。
 3相コイル32は、例えば、予め作製された固定子鉄心31に挿入器具9で取り付けられる。本実施の形態では、3相コイル32を、分布巻きで固定子鉄心31に取り付ける。図4に示される挿入器具9で3相コイル32を固定子鉄心31に挿入する場合、図5及び図6に示されるように、挿入器具9のブレード91間に3相コイル32を配置し、3相コイル32と共にブレード91を固定子鉄心31の内側に挿入する。次に、3相コイル32を軸方向にスライドさせ、スロット311内に配置する。
〈比較例〉
 図7は、比較例に係る電動機1aを示す上面図である。
 図8は、図7に示される固定子3aのスロット内の3相コイル32の配置を示す図である。図8は、図7に示される固定子3aの展開図である。
 比較例では、3相コイル32が重ね巻きで固定子鉄心31に取り付けられている。この場合、各コイルエンド32aにおいて、各コイルの片側がスロット311の外層に配置され、そのコイルの他方側が他のスロット311の内層に配置されている。
 したがって、3相コイル32を重ね巻きで固定子鉄心31に取り付ける場合、挿入器具(例えば、図4に示される挿入器具9)を用いて、3相コイル32を固定子鉄心31に取り付けることが難しい。そのため、通常、比較例のような重ね巻きで3相コイル32を固定子鉄心31に取り付ける場合、手で3相コイル32を固定子鉄心に取り付ける。この場合、固定子3の生産性が下がる。
 各スロットに2つのコイルを配置する場合、各スロット内の2つのコイル間にインダクタンスの差が生じる。この場合、電動機の駆動中に3相コイルに流れる電流のばらつきが相間に生じ、インダクタンスの大きい相に電流が流れにくく、インダクタンスの小さい相に電流が流れやすい。その結果として、トルクリプルが生じる。
〈巻線係数〉
 本実施の形態では、各相の第1のコイルの巻線係数及び各相の第2のコイルの巻線係数は、互いに異なる。そこで、電動機1の固定子3の巻線係数を算出するために、各相の第1のコイルの巻線係数及び各相の第2のコイルの巻線係数を算出する。
 電動機1の固定子3の分布巻係数は、基本波及び高調波に関わらず1である。巻線係数は、分布巻係数と短節巻係数との積で求められる。電動機1の固定子3の分布巻係数は1であるため、本実施の形態では、巻線係数と短節巻係数は等しい。
 m次の短節巻係数Kp_m(mは次数を示す)は、次の式(1)のように求められる。
 Kp_m=cos{(m×π)/2}×(1-β)}      ・・・(1)
 βは、短節度であり、「コイルピッチ/毎極のスロット数」で定義される。本実施の形態では、毎極のスロット数は、9n/4n=9/4=2.25である。よって、各相の第1のコイルの短節度β1及び各相の第2のコイルの短節度β2は、次の式(2),(3)でそれぞれ求められる。
 β1=2/(9/4)=8/9                          ・・・(2)
 β2=3/(9/4)=4/3                          ・・・(3)
 各相の第1のコイルの巻数をN1、各相の第2のコイルの巻数をN2、各相の第1のコイルの短節巻係数をKp1、各相の第2のコイルの短節巻係数をKp2とすると、電動機1の固定子3の短節巻係数Kpは、次の式(4)で求められる。
 Kp=Kp1×{N1/(N1+N2)}+Kp2×{N2/(N1+N2)}
   =Kp1×[(N1/N2)/{(N1/N2)+1}]+Kp2×[1/{(N1/N2)+1}]
   =[1/{(N1/N2)+1}]×{(N1/N2)×Kp1+Kp2}
・・・(4)
 各相の第1のコイルの基本波の巻線係数Kp1_1、各相の第2のコイルの基本波の巻線係数Kp2_1、及び電動機1の固定子3の基本波の巻線係数Kp_1は、式(1)及び(4)を用いて、次の式(5),(6),及び(7)で求められる。
 Kp1_1=cos{(π/2)×(1-β1)}
      =cos{(π/2)×(1-(8/9)}
      =cos(π/18)
      =cos10°                              ・・・(5)
 Kp2_1=cos{(π/2)×(1-β2)}
      =cos{(π/2)×(1-(4/3)}
      =cos(π/6)
      =cos30°                              ・・・(6)
 Kp_1=[1/{(N1/N2)+1}]×{(N1/N2)×Kp1_1+Kp2_1}
     =[1/{(N1/N2)+1}]×{(N1/N2)×cos10°+cos30°}                                               ・・・(7)
 図9は、基本波の巻線係数を示すグラフである。
 図10は、3次の巻線係数を示すグラフである。
 図11は、5次の巻線係数の絶対値を示すグラフである。
 図12は、7次の巻線係数の絶対値を示すグラフである。
 図9に示されるように、例えば、N1/N2=2の場合、Kp_1は、式(8)より、0.945である。
 Kp_1={1/(2+1)}×(2×Kp1_1+Kp2_1)
     =(1/3)×(2×cos10°+cos30°)
     =0.945                                  ・・・(8)
 電動機1における振動の主要因であるトルクリプルを低減するために考慮すべき高調波成分について説明する。電動機1のトルクは、3相コイル32に発生する誘起電圧とモータ電流との積に比例する。例えば、誘起電圧及びモータ電流の両方が理想的な正弦波で表される場合、高調波に起因するトルクリプルは電動機1に生じない。しかしながら、誘起電圧及びモータ電流に高調波が重畳されると、電動機1のトルクが脈動し、トルクリプルが発生する。
 トルクリプルでは、電気次数で6次成分が支配的である。極対数をPとすると、電気次数での6次成分は、機械次数で6×P次成分として現れる。
 上述のように、電動機1のトルクは、3相コイル32に発生する誘起電圧とモータ電流との積に比例する。そのため、電気次数で6次のトルクリプルの主な発生要因として、鎖交磁束の高調波成分又はモータ電流の高調波成分が挙げられる。6次のトルクリプルの発生条件として、次の4つの条件がある。
 (A)1次磁束×5次電流
 (B)1次磁束×7次電流
 (C)5次磁束×1次電流
 (D)7次磁束×1次電流
 高調波を含む磁束又は高調波を含む電流では、低い次数の高調波の含有率が高い傾向にある。そのため、7次の巻線係数に比べて、5次の巻線係数を低減することが望ましい。したがって、トルクリプルの主要因である高い次数の高調波(具体的には、5次、7次)を低減するためのN1/N2を算出する。
 各相の第1のコイルの5次の巻線係数Kp1_5、各相の第2のコイルの5次の巻線係数Kp2_5、及び電動機1の固定子3の5次の巻線係数Kp_5は、式(1)及び(4)を用いて、次の式(9),(10),及び(11)で求められる。
 Kp1_5=cos{(5π/2)×(1-β1)}
      =cos{(5π/2)×(1-(8/9)}
      =cos(5π/18)
      =cos50°                              ・・・(9)
 Kp2_5=cos{(5π/2)×(1-β2)}
      =cos{(5π/2)×(1-(4/3)}
      =cos(5π/6)
      =cos150°                     ・・・(10)
 Kp_5=[1/{(N1/N2)+1}]×{(N1/N2)×Kp1_5+Kp2_5}
     =[1/{(N1/N2)+1}]×{(N1/N2)×cos50°+cos150°}                                             ・・・(11)
 例えば、N1/N2=2の場合、Kp_5は、式(12)より、0.14である。
 Kp_5={1/(2+1)}×(2×Kp1_5+Kp2_5)
     =(1/3)×(2×cos50°+cos150°)
     =0.14                             ・・・(12)
 各相の第1のコイルの7次の巻線係数Kp1_7、各相の第2のコイルの7次の巻線係数Kp2_7、及び電動機1の固定子3の7次の巻線係数Kp_7は、式(1)及び(4)を用いて、次の式(13),(14),及び(15)で求められる。
 Kp1_7=cos{(7π/2)×(1-β1)}
      =cos{(7π/2)×(1-(8/9)}
      =cos(7π/18)
      =cos70°                       ・・・(13)
 Kp2_7=cos{(7π/2)×(1-β2)}
      =cos{(7π/2)×(1-(4/3)}
      =cos(7π/6)
      =cos210°                     ・・・(14)
 Kp_7=[1/{(N1/N2)+1}]×{(N1/N2)×Kp1_7+Kp2_7}
     =[1/{(N1/N2)+1}]×{(N1/N2)×cos70°+cos210°}                                             ・・・(15)
 例えば、N1/N2=2の場合、Kp_7は、式(16)より、-0.061である。
 Kp_7={1/(2+1)}×(2×Kp1_7+Kp2_7)
     =(1/3)×(2×cos70°+cos210°)
     =-0.061                         ・・・(16)
 5次の巻線係数及び7次の巻線係数を低減するための比率N1/N2を算出する。
 巻線係数Kpを、N1/N2の関数とみなし、Kp(N1/N2)と表現する。この場合、N1/N2=2の場合における5次の巻線係数Kp_5(2)よりも小さい5次の巻線係数が得られる比率N1/N2は、次の式(17),(18),及び(19)で求められる。N1/N2=2の場合における5次の巻線係数Kp_5(2)よりも小さい5次の巻線係数が得られる比率N1/N2の下限をγ5とする。
 -Kp_5(γ5)≦Kp_5(2)             ・・・(17)
 -{1/(γ5+1)}×(γ5×cos50°+cos150°)={1/(2+1)}×(2×cos50°+cos150°)               ・・・(18)
 γ5=(2×cos50°+4×cos150°)/(-5×cos50°-cos150°)=0.928                                     ・・・(19)
 次の式(17),(18),及び(19)より、N1/N2=2の場合における5次の巻線係数Kp_5(2)よりも小さい5次の巻線係数が得られる比率N1/N2の条件は、0.928≦N1/N2<2である。
 したがって、比率N1/N2が、0.928≦N1/N2<2を満たすとき、固定子3における基本波の巻線係数を大きく損ねることなく、比較例(例えば、N1/N2=2)に比べて、5次の巻線係数を低減することができる。その結果、電動機1におけるトルクリプルを低減することができ、電動機1の効率の低下を防ぐことができる。
 N1/N2=2の場合における7次の巻線係数Kp_7(2)よりも小さい7次の巻線係数が得られる比率N1/N2は、次の式(20),(21),及び(22)で求められる。N1/N2=2の場合における7次の巻線係数Kp_7(2)よりも小さい7次の巻線係数が得られる比率N1/N2の上限をγ7とする。
 -Kp_7(γ7)≦Kp_7(2)             ・・・(20)
 -{1/(γ7+1)}×(γ7×cos70°+cos210°)={1/(2+1)}×(2×cos70°+cos210°)               ・・・(21)
 γ7=(2×cos70°+4×cos210°)/(-5×cos70°-cos210°)=3.294                                     ・・・(22)
 式(20),(21),及び(22)より、N1/N2=2の場合における7次の巻線係数Kp_7(2)よりも小さい7次の巻線係数が得られる比率N1/N2の条件は、2<N1/N2≦3.294である。
 したがって、比率N1/N2が、2<N1/N2≦3.294を満たすとき、固定子3における基本波の巻線係数を大きく損ねることなく、比較例(例えば、N1/N2=2)に比べて、7次の巻線係数を低減することができる。その結果、電動機1におけるトルクリプルを低減することができ、電動機1の効率の低下を防ぐことができる。
 以上に説明したように、比率N1/N2が、0.928≦N1/N2<2、又は2<N1/N2≦3.294を満たすとき、固定子3における基本波の巻線係数を大きく損ねることなく、比較例(例えば、N1/N2=2)に比べて、高調波の巻線係数を低減することができる。この場合、少なくとも5次の巻線係数又は7次の巻線係数を低減することができる。その結果、電動機1におけるトルクリプルを低減することができ、電動機1の効率の低下を防ぐことができる。
 一般に、3次高調波は、デルタ結線で接続された3相コイルに循環電流を発生させる要因となる。そのため、3次高調波は、できるだけ低いことが望ましい。図10に示されるように、N1/N2<2のとき、3次の巻線係数を十分に低減することができる。よって、比率N1/N2が0.928≦N1/N2<2を満たすとき、デルタ結線で接続された3相コイルにおける循環電流を低減することができる。
〈ε5aを算出〉
 5次の巻線係数をさらに低減するための比率N1/N2を算出する。一例として、N1/N2=2の場合における5次の巻線係数Kp_5(2)の半分以下となる5次の巻線係数が得られる比率N1/N2の範囲を算出する。
 巻線係数Kpを、N1/N2の関数とみなし、Kp(N1/N2)と表現する。この場合、N1/N2=2の場合における5次の巻線係数Kp_5(2)の半分以下となる5次の巻線係数が得られる比率N1/N2の範囲は、次の式(23)から(28)で求められる。N1/N2=2の場合における5次の巻線係数Kp_5(2)の半分以下となる5次の巻線係数が得られる比率N1/N2の下限をε5aとする。
 Kp_5(ε5a)≦-(1/2)×Kp_5(2)・・・(23)
 {1/(ε5a+1)}×(ε5a×cos50°+cos150°)=-(1/2)×{1/(2+1)}×(2×cos50°+cos150°)       ・・・(24)
 ε5a=(-2×cos50°-7×cos150°)/(8×cos50°+cos150°)=1.117                                          ・・・(25)
 Kp_5(N1/N2)≦(1/2)×Kp_5(2)が成立するN1/N2をε5bとする。
 Kp_5(ε5b)≦(1/2)×Kp_5(2) ・・・(26)
 {1/(ε5b+1)}×(ε5b×cos50°+cos150°)=(1/2)×{1/(2+1)}×(2×cos50°+cos150°)         ・・・(27)
 ε5b=(2×cos50°-5×cos150°)/(4×cos50°-cos150°)=1.634                                            ・・・(28)
 図11に示されるように、N1/N2=2の場合における5次の巻線係数Kp_5(2)の半分以下となる5次の巻線係数が得られる比率N1/N2の範囲は、1.117≦N1/N2≦1.634である。
〈ε7aを算出〉
 7次の巻線係数をさらに低減するための比率N1/N2を算出する。一例として、N1/N2=2の場合における7次の巻線係数Kp_7(2)の半分以下となる比率N1/N2の範囲を算出する。
 巻線係数Kpを、N1/N2の関数とみなし、Kp(N1/N2)と表現する。この場合、N1/N2=2の場合における7次の巻線係数Kp_7(2)の半分以下となる7次の巻線係数が得られる比率N1/N2の範囲は、次の式(29)から(34)で求められる。N1/N2=2の場合における7次の巻線係数Kp_7(2)の半分以下となる7次の巻線係数が得られる比率N1/N2の下限をε7aとする。
 Kp_7(ε7a)≦(1/2)×Kp_7(2) ・・・(29)
 {1/(ε7a+1)}×(ε7a×cos70°+cos210°)=(1/2)×{1/(2+1)}×(2×cos70°+cos210°)  ・・・(30)
 ε7a=(2×cos70°-5×cos210°)/(4×cos70°-cos210°)=2.244                                     ・・・(31)
 N1/N2=2の場合における7次の巻線係数Kp_7(2)の半分以下となる7次の巻線係数が得られる比率N1/N2の上限をε7bとする。
 Kp_7(ε7b)≦-(1/2)×Kp_7(2)・・・(32)
 {1/(ε7b+1)}×(ε7b×cos70°+cos210°)=-(1/2)×{1/(2+1)}×(2×cos70°+cos210°)       ・・・(33)
 ε7b=(-2×cos70°-7×cos210°)/(8×cos70°+cos210°)=2.876                                          ・・・(34)
 図12に示されるように、N1/N2=2の場合における7次の巻線係数Kp_7(2)の半分以下となる7次の巻線係数が得られる比率N1/N2の範囲は、2.244≦N1/N2≦2.876である。
 したがって、電動機1の固定子3が、1.117≦N1/N2≦1.634、又は2.244≦N1/N2≦2.876を満たすとき、少なくとも5次の巻線係数又は7次の巻線係数を、比較例(例えば、N1/N2=2)に比べて半分以下にすることができる。
〈α5,α7を算出〉
 5次の巻線係数及び7次の巻線係数の両方を適切に低減するための比率N1/N2の範囲を算出する。
 図13は、基本波に対する高調波(具体的には、5次、7次)の巻線係数の含有率を示すグラフである。
 含有率γは、次の式(35)で求められる。
 γ=√[{(Kp_5)+(Kp_7))}/Kp_1]
・・・(35)
 5次の巻線係数が0であるN1/N2をα5とする。すなわち、Kp_5(N1/N2)=0が成立するN1/N2をα5とする。この場合、式(11)は、次の式(36)に変換される。
 {1/(α5+1)}×(α5×cos50°+cos150°)=0・・・(36)
 α5>0より、式(36)は、次の式(37),(38)に変換される。
 α5×cos50°+cos150°=0         ・・・(37)
 α5=-cos150°/cos50°=1.347・・・(38)
 したがって、Kp_5(N1/N2)=0が成立する比率N1/N2は、1.347である。
 7次の巻線係数が0であるN1/N2をα7とする。すなわち、Kp_7(N1/N2)=0が成立するN1/N2をα7とする。この場合、式(15)は、次の式(39)に変換される。
 {1/(α7+1)}×(α7×cos70°+cos210°)=0・・・(39)
 α7>0より、式(39)は、次の式(40),(41)に変換される。
 α7×cos70°+cos210°=0         ・・・(40)
 α7=-cos210°/cos70°=2.532・・・(41)
 したがって、Kp_7(N1/N2)=0が成立する比率N1/N2は、2.532である。
 図14は、3次の巻線係数、5次の巻線係数、及び7次の巻線係数を示すグラフである。
 図14に示されるように、電動機1の固定子3が、1.347≦N1/N2≦2.532を満たすとき、5次の巻線係数及び7次の巻線係数の両方を低減することができ、基本波に対する高調波(具体的には、5次、7次)の巻線係数の含有率を低減することができる。
変形例.
〈電動機1〉
 図15は、変形例に係る電動機1の構造を概略的に示す上面図である。
 変形例では、「n」の値が、実施の形態1で説明した「n」の値と異なる。変形例では、n=2である。変形例では、実施の形態1と異なる構成について説明する。変形例において説明されない詳細は、実施の形態1と同じ詳細とすることができる。
 図16は、変形例に係る電動機1の回転子2の構造を概略的に示す断面図である。
 回転子2は、回転子鉄心21と、少なくとも1つの永久磁石22とを有する。回転子2は、4×n個(nは1以上の整数)の磁極を持つ。変形例では、回転子2は、8個の磁極を持つ。
〈固定子3〉
 図17は、変形例に係る電動機1の固定子3の構造を概略的に示す上面図である。
 図18は、変形例に係る電動機1のスロット311内の3相コイル32の配置を示す図である。
 図19は、変形例に係る電動機1の3相コイル32を概略的に示す図である。
 固定子鉄心31は、3相コイル32が配置される9×n個のスロット311を有する。変形例では、n=2である。したがって、変形例では、固定子鉄心31は、18個のスロット311を有する。
 変形例では、n=2である。したがって、図15に示される例では、コイルエンド32aにおいて、3相コイル32は、4個のU相コイル32U、4個のV相コイル32V、及び4個のW相コイル32Wを持っている。
 3相コイル32に電流が流れたとき、3相コイル32は、4×n個の磁極を形成する。変形例では、n=2である。したがって、変形例では、3相コイル32に電流が流れたとき、3相コイル32は、8磁極を形成する。
 変形例では、各相のコイル群は、2個の第1のコイルと、2個の第2のコイルとを含む。各第1のコイルは、2スロットピッチで固定子鉄心31に配置されている。各第2のコイルは、3スロットピッチで固定子鉄心31に配置されている。
 図19に示されるように、2×n個のU相コイル32U(すなわち、2個の第1のコイルU1及び2個の第2のコイルU2)、2×n個のV相コイル32V(すなわち、2個の第1のコイルV1及び2個の第2のコイルV2)、及び2×n個のW相コイル32W(すなわち、2個の第1のコイルW1及び2個の第2のコイルW2)は、例えば、Y結線で接続される。ただし、2×n個のU相コイル32U、2×n個のV相コイル32V、及び2×n個のW相コイル32Wは、Y結線以外の結線、例えば、デルタ結線で接続されていてもよい。
〈U相コイル32U〉
 2×n個のU相コイル32Uは、n個の第1のコイルU1と、n個の第2のコイルU2とを含む。変形例では、4個のU相コイル32Uは、2個の第1のコイルU1と、2個の第2のコイルU2とで構成されている。2×n個のU相コイル32Uは、直列に接続されている。したがって、変形例では、2個の第1のコイルU1及び2個の第2のコイルU2は、直列に接続されている。各第1のコイルU1は、2スロットピッチで固定子鉄心31に配置されている。各第2のコイルU2は、3スロットピッチで固定子鉄心31に配置されている。
 n≧2の場合、n個の第1のコイルU1は、各コイルエンド32aにおいて、周方向に360/n度ごとに等間隔に配置されている。変形例では、U相の2個の第1のコイルU1は、各コイルエンド32aにおいて、周方向に180度ごとに等間隔に配置されている。言い換えると、n個の第1のコイルU1は、各コイルエンド32aにおいて、互いに360/n度ずれて等間隔に配置されている。変形例では、U相の2個の第1のコイルU1は、各コイルエンド32aにおいて、互いに180度ずれて等間隔に配置されている。
 n≧2の場合、n個の第2のコイルU2は、各コイルエンド32aにおいて、周方向に360/n度ごとに等間隔に配置されている。変形例では、U相の2個の第2のコイルU2は、各コイルエンド32aにおいて、周方向に180度ごとに等間隔に配置されている。言い換えると、n個の第2のコイルU2は、各コイルエンド32aにおいて、互いに360/n度ずれて等間隔に配置されている。変形例では、U相の2個の第2のコイルU2は、各コイルエンド32aにおいて、互いに180度ずれて等間隔に配置されている。
〈V相コイル32V〉
 2×n個のV相コイル32Vは、n個の第1のコイルV1と、n個の第2のコイルV2とを含む。変形例では、4個のV相コイル32Vは、2個の第1のコイルV1と、2個の第2のコイルV2とで構成されている。2×n個のV相コイル32Vは、直列に接続されている。したがって、変形例では、2個の第1のコイルV1及び2個の第2のコイルV2は、直列に接続されている。各第1のコイルV1は、2スロットピッチで固定子鉄心31に配置されている。各第2のコイルV2は、3スロットピッチで固定子鉄心31に配置されている。
 n≧2の場合、n個の第1のコイルV1は、各コイルエンド32aにおいて、周方向に360/n度ごとに等間隔に配置されている。変形例では、V相の2個の第1のコイルV1は、各コイルエンド32aにおいて、周方向に180度ごとに等間隔に配置されている。言い換えると、n個の第1のコイルV1は、各コイルエンド32aにおいて、互いに360/n度ずれて等間隔に配置されている。変形例では、V相の2個の第1のコイルV1は、各コイルエンド32aにおいて、互いに180度ずれて等間隔に配置されている。
 n≧2の場合、n個の第2のコイルV2は、各コイルエンド32aにおいて、周方向に360/n度ごとに等間隔に配置されている。変形例では、V相の2個の第2のコイルV2は、各コイルエンド32aにおいて、周方向に180度ごとに等間隔に配置されている。言い換えると、n個の第2のコイルV2は、各コイルエンド32aにおいて、互いに360/n度ずれて等間隔に配置されている。変形例では、V相の2個の第2のコイルV2は、各コイルエンド32aにおいて、互いに180度ずれて等間隔に配置されている。
〈W相コイル32W〉
 2×n個のW相コイル32Wは、n個の第1のコイルW1と、n個の第2のコイルW2とを含む。変形例では、4個のW相コイル32Wは、2個の第1のコイルW1と、2個の第2のコイルW2とで構成されている。2×n個のW相コイル32Wは、直列に接続されている。したがって、変形例では、2個の第1のコイルW1及び2個の第2のコイルW2は、直列に接続されている。各第1のコイルW1は、2スロットピッチで固定子鉄心31に配置されている。各第2のコイルW2は、3スロットピッチで固定子鉄心31に配置されている。
 n≧2の場合、n個の第1のコイルW1は、各コイルエンド32aにおいて、周方向に360/n度ごとに等間隔に配置されている。変形例では、W相の2個の第1のコイルW1は、各コイルエンド32aにおいて、周方向に180度ごとに等間隔に配置されている。言い換えると、n個の第1のコイルW1は、各コイルエンド32aにおいて、互いに360/n度ずれて等間隔に配置されている。変形例では、W相の2個の第1のコイルW1は、各コイルエンド32aにおいて、互いに180度ずれて等間隔に配置されている。
 n≧2の場合、n個の第2のコイルW2は、各コイルエンド32aにおいて、周方向に360/n度ごとに等間隔に配置されている。変形例では、W相の2個の第2のコイルW2は、各コイルエンド32aにおいて、周方向に180度ごとに等間隔に配置されている。言い換えると、n個の第2のコイルW2は、各コイルエンド32aにおいて、互いに360/n度ずれて等間隔に配置されている。変形例では、W相の2個の第2のコイルW2は、各コイルエンド32aにおいて、互いに180度ずれて等間隔に配置されている。
〈巻線係数〉
 実施の形態1で説明した比率N1/N2は、変形例に係る電動機1の固定子3にも適用できる。
実施の形態2.
 実施の形態2に係る圧縮機300について説明する。
 図20は、圧縮機300の構造を概略的に示す断面図である。
 圧縮機300は、電動要素としての電動機1と、ハウジングとしての密閉容器307と、圧縮要素(圧縮装置とも称する)としての圧縮機構305とを有する。本実施の形態では、圧縮機300は、スクロール圧縮機である。ただし、圧縮機300は、スクロール圧縮機に限定されない。圧縮機300は、スクロール圧縮機以外の圧縮機、例えば、ロータリー圧縮機でもよい。
 圧縮機300内の電動機1は、実施の形態1(変形例を含む)で説明した電動機1である。電動機1は、圧縮機構305を駆動する。
 圧縮機300は、さらに、シャフト4の下端部(すなわち、圧縮機構305側と反対側の端部)を支持するサブフレーム308を備えている。
 圧縮機構305は、密閉容器307内に配置されている。圧縮機構305は、渦巻部分を有する固定スクロール301と、固定スクロール301の渦巻部分との間に圧縮室を形成する渦巻部分を有する揺動スクロール302と、シャフト4の上端部を保持するコンプライアンスフレーム303と、密閉容器307に固定されてコンプライアンスフレーム303を保持するガイドフレーム304とを備える。
 固定スクロール301には、密閉容器307を貫通する吸入管310が圧入されている。また、密閉容器307には、固定スクロール301から吐出される高圧の冷媒ガスを外部に吐出する吐出管306が設けられている。この吐出管306は、密閉容器307の圧縮機構305と電動機1との間に設けられた開口部に連通している。
 電動機1は、固定子3を密閉容器307に嵌め込むことにより密閉容器307に固定されている。電動機1の構成は、上述した通りである。密閉容器307には、電動機1に電力を供給するガラス端子309が溶接により固定されている。
 電動機1が回転すると、その回転が揺動スクロール302に伝達され、揺動スクロール302が揺動する。揺動スクロール302が揺動すると、揺動スクロール302の渦巻部分と固定スクロール301の渦巻部分とで形成される圧縮室の容積が変化する。そして、吸入管310から冷媒ガスが吸入され、圧縮されて、吐出管306から吐出される。
 圧縮機300は、実施の形態1で説明した電動機1を有するので、実施の形態1で説明した利点を持つ。
 さらに、圧縮機300は実施の形態1で説明した電動機1を有するので、圧縮機300の性能を改善することができる。
実施の形態3.
 実施の形態2に係る圧縮機300を有する、空気調和機としての冷凍空調装置7について説明する。
 図21は、実施の形態3に係る冷凍空調装置7の構成を概略的に示す図である。
 冷凍空調装置7は、例えば、冷暖房運転が可能である。図21に示される冷媒回路図は、冷房運転が可能な空気調和機の冷媒回路図の一例である。
 実施の形態3に係る冷凍空調装置7は、室外機71と、室内機72と、室外機71及び室内機72を接続する冷媒配管73とを有する。
 室外機71は、圧縮機300と、熱交換器としての凝縮器74と、絞り装置75と、室外送風機76(第1の送風機)とを有する。凝縮器74は、圧縮機300によって圧縮された冷媒を凝縮する。絞り装置75は、凝縮器74によって凝縮された冷媒を減圧し、冷媒の流量を調節する。絞り装置75は、減圧装置とも言う。
 室内機72は、熱交換器としての蒸発器77と、室内送風機78(第2の送風機)とを有する。蒸発器77は、絞り装置75によって減圧された冷媒を蒸発させ、室内空気を冷却する。
 冷凍空調装置7における冷房運転の基本的な動作について以下に説明する。冷房運転では、冷媒は、圧縮機300によって圧縮され、凝縮器74に流入する。凝縮器74によって冷媒が凝縮され、凝縮された冷媒が絞り装置75に流入する。絞り装置75によって冷媒が減圧され、減圧された冷媒が蒸発器77に流入する。蒸発器77において冷媒は蒸発し、冷媒(具体的には、冷媒ガス)が再び室外機71の圧縮機300へ流入する。室外送風機76によって空気が凝縮器74に送られると冷媒と空気との間で熱が移動し、同様に、室内送風機78によって空気が蒸発器77に送られると冷媒と空気との間で熱が移動する。
 以上に説明した冷凍空調装置7の構成及び動作は、一例であり、上述した例に限定されない。
 実施の形態3に係る冷凍空調装置7によれば、実施の形態1で説明した利点を持つ。
 さらに、実施の形態3に係る冷凍空調装置7は、実施の形態2に係る圧縮機300を有するので、冷凍空調装置7の性能を改善することができる。
 以上に説明した各実施の形態における特徴及び各変形例における特徴は、互いに組み合わせることができる。
 1 電動機、 2 回転子、 3 固定子、 7 冷凍空調装置、 31 固定子鉄心、 32 3相コイル、 32a コイルエンド、 32U U相コイル、 32V V相コイル、 32W W相コイル、 71 室外機、 72 室内機、 74 凝縮器、 77 蒸発器、 300 圧縮機、 305 圧縮機構、 307 密閉容器、 311 スロット、 U1,V1,W1 第1のコイル、 U2,V2,W2 第2のコイル。

Claims (10)

  1.  9×n個(nは1以上の整数)のスロットを有する固定子鉄心と、
     前記固定子鉄心に分布巻きで取り付けられており、4×n個の磁極を形成する3相コイルと
     を備え、
     前記3相コイルは、前記3相コイルのコイルエンドにおいて、2×n個のU相コイル、2×n個のV相コイル、及び2×n個のW相コイルを有し、
     前記2×n個のU相コイルは直列に接続されており、
     前記2×n個のV相コイルは直列に接続されており、
     前記2×n個のW相コイルは直列に接続されており、
     前記2×n個のU相コイル、前記2×n個のV相コイル、及び前記2×n個のW相コイルの各々は、2スロットピッチで前記固定子鉄心に配置されたn個の第1のコイルと、3スロットピッチで前記固定子鉄心に配置されたn個の第2のコイルとを含み、
     前記n個の第1のコイルは、前記コイルエンドにおいて、周方向に360/n度ごとに等間隔に配置されており、
     前記n個の第2のコイルは、前記コイルエンドにおいて、前記周方向に360/n度ごとに等間隔に配置されており、
     前記n個の第1のコイルの各々の巻数をN1とし、前記n個の第2のコイルの各々の巻数をN2とすると、0.928≦N1/N2<2、又は2<N1/N2≦3.294を満たす
     固定子。
  2.  9×n個(nは1以上の整数)のスロットを有する固定子鉄心と、
     前記固定子鉄心に分布巻きで取り付けられており、4×n個の磁極を形成する3相コイルと
     を備え、
     前記3相コイルは、前記3相コイルのコイルエンドにおいて、2×n個のU相コイル、2×n個のV相コイル、及び2×n個のW相コイルを有し、
     前記2×n個のU相コイルは直列に接続されており、
     前記2×n個のV相コイルは直列に接続されており、
     前記2×n個のW相コイルは直列に接続されており、
     前記2×n個のU相コイル、前記2×n個のV相コイル、及び前記2×n個のW相コイルの各々は、2スロットピッチで前記固定子鉄心に配置されたn個の第1のコイルと、3スロットピッチで前記固定子鉄心に配置されたn個の第2のコイルとを含み、
     前記n個の第1のコイルは、前記コイルエンドにおいて、周方向に360/n度ごとに等間隔に配置されており、
     前記n個の第2のコイルは、前記コイルエンドにおいて、前記周方向に360/n度ごとに等間隔に配置されており、
     前記n個の第1のコイルの各々の巻数をN1とし、前記n個の第2のコイルの各々の巻数をN2とすると、1.117≦N1/N2≦1.634、又は2.244≦N1/N2≦2.876を満たす
     固定子。
  3.  9×n個(nは1以上の整数)のスロットを有する固定子鉄心と、
     前記固定子鉄心に分布巻きで取り付けられており、4×n個の磁極を形成する3相コイルと
     を備え、
     前記3相コイルは、前記3相コイルのコイルエンドにおいて、2×n個のU相コイル、2×n個のV相コイル、及び2×n個のW相コイルを有し、
     前記2×n個のU相コイルは直列に接続されており、
     前記2×n個のV相コイルは直列に接続されており、
     前記2×n個のW相コイルは直列に接続されており、
     前記2×n個のU相コイル、前記2×n個のV相コイル、及び前記2×n個のW相コイルの各々は、2スロットピッチで前記固定子鉄心に配置されたn個の第1のコイルと、3スロットピッチで前記固定子鉄心に配置されたn個の第2のコイルとを含み、
     前記n個の第1のコイルは、前記コイルエンドにおいて、周方向に360/n度ごとに等間隔に配置されており、
     前記n個の第2のコイルは、前記コイルエンドにおいて、前記周方向に360/n度ごとに等間隔に配置されており、
     前記n個の第1のコイルの各々の巻数をN1とし、前記n個の第2のコイルの各々の巻数をN2とすると、1.347≦N1/N2≦2.532を満たす
     固定子。
  4.  9×n個(nは1以上の整数)のスロットを有する固定子鉄心と、
     前記固定子鉄心に分布巻きで取り付けられており、4×n個の磁極を形成する3相コイルと
     を備え、
     前記3相コイルは、前記3相コイルのコイルエンドにおいて、2×n個のU相コイル、2×n個のV相コイル、及び2×n個のW相コイルを有し、
     前記2×n個のU相コイルは直列に接続されており、
     前記2×n個のV相コイルは直列に接続されており、
     前記2×n個のW相コイルは直列に接続されており、
     前記2×n個のU相コイル、前記2×n個のV相コイル、及び前記2×n個のW相コイルの各々は、2スロットピッチで前記固定子鉄心に配置されたn個の第1のコイルと、3スロットピッチで前記固定子鉄心に配置されたn個の第2のコイルとを含み、
     前記n個の第1のコイルは、前記コイルエンドにおいて、周方向に360/n度ごとに等間隔に配置されており、
     前記n個の第2のコイルは、前記コイルエンドにおいて、前記周方向に360/n度ごとに等間隔に配置されており、
     前記n個の第1のコイルの各々の巻数をN1とし、前記n個の第2のコイルの各々の巻数をN2とすると、0.928≦N1/N2<2を満たす
     固定子。
  5.  9×n個(nは1以上の整数)のスロットを有する固定子鉄心と、
     前記固定子鉄心に分布巻きで取り付けられており、4×n個の磁極を形成する3相コイルと
     を備え、
     前記3相コイルは、前記3相コイルのコイルエンドにおいて、2×n個のU相コイル、2×n個のV相コイル、及び2×n個のW相コイルを有し、
     前記2×n個のU相コイルは直列に接続されており、
     前記2×n個のV相コイルは直列に接続されており、
     前記2×n個のW相コイルは直列に接続されており、
     前記2×n個のU相コイル、前記2×n個のV相コイル、及び前記2×n個のW相コイルの各々は、2スロットピッチで前記固定子鉄心に配置されたn個の第1のコイルと、3スロットピッチで前記固定子鉄心に配置されたn個の第2のコイルとを含み、
     前記n個の第1のコイルは、前記コイルエンドにおいて、周方向に360/n度ごとに等間隔に配置されており、
     前記n個の第2のコイルは、前記コイルエンドにおいて、前記周方向に360/n度ごとに等間隔に配置されており、
     前記n個の第1のコイルの各々の巻数をN1とし、前記n個の第2のコイルの各々の巻数をN2とすると、2<N1/N2≦3.294を満たす
     固定子。
  6.  前記2×n個のU相コイル、前記2×n個のV相コイル、及び前記2×n個のW相コイルは、Y結線で接続されている請求項1から5のいずれか1項に記載の固定子。
  7.  前記固定子の分布巻係数は、1である請求項1から6のいずれか1項に記載の固定子。
  8.  請求項1から7のいずれか1項に記載の固定子と、
     前記固定子の内側に配置された回転子と
     を備えた電動機。
  9.  密閉容器と、
     前記密閉容器内に配置された圧縮装置と、
     前記圧縮装置を駆動する請求項8に記載の電動機と
     を備えた圧縮機。
  10.  請求項9に記載の圧縮機と、
     熱交換器と
     を備えた空気調和機。
PCT/JP2020/027798 2020-07-17 2020-07-17 固定子、電動機、圧縮機、及び空気調和機 WO2022014031A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022536086A JP7370468B2 (ja) 2020-07-17 2020-07-17 固定子、電動機、圧縮機、及び空気調和機
CN202080102866.7A CN115917930A (zh) 2020-07-17 2020-07-17 定子、电动机、压缩机以及空调机
PCT/JP2020/027798 WO2022014031A1 (ja) 2020-07-17 2020-07-17 固定子、電動機、圧縮機、及び空気調和機
US17/999,088 US20230208232A1 (en) 2020-07-17 2020-07-17 Stator, electric motor, compressor, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/027798 WO2022014031A1 (ja) 2020-07-17 2020-07-17 固定子、電動機、圧縮機、及び空気調和機

Publications (1)

Publication Number Publication Date
WO2022014031A1 true WO2022014031A1 (ja) 2022-01-20

Family

ID=79554552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027798 WO2022014031A1 (ja) 2020-07-17 2020-07-17 固定子、電動機、圧縮機、及び空気調和機

Country Status (4)

Country Link
US (1) US20230208232A1 (ja)
JP (1) JP7370468B2 (ja)
CN (1) CN115917930A (ja)
WO (1) WO2022014031A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116317231A (zh) * 2023-05-11 2023-06-23 佛山市南海九洲普惠风机有限公司 一种18槽8极永磁电机定子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471605U (ja) * 1977-10-31 1979-05-22
JPS5486714A (en) * 1977-12-21 1979-07-10 Yaskawa Denki Seisakusho Kk Coil for 33phase concentrically wound induction motor
JPS62178757U (ja) * 1986-05-02 1987-11-13
JP2009171799A (ja) * 2008-01-21 2009-07-30 Hitachi Ltd 永久磁石式同期モータ
WO2017130288A1 (ja) * 2016-01-26 2017-08-03 三菱電機株式会社 電動機、圧縮機、冷凍サイクル装置及び電動機の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471605U (ja) * 1977-10-31 1979-05-22
JPS5486714A (en) * 1977-12-21 1979-07-10 Yaskawa Denki Seisakusho Kk Coil for 33phase concentrically wound induction motor
JPS62178757U (ja) * 1986-05-02 1987-11-13
JP2009171799A (ja) * 2008-01-21 2009-07-30 Hitachi Ltd 永久磁石式同期モータ
WO2017130288A1 (ja) * 2016-01-26 2017-08-03 三菱電機株式会社 電動機、圧縮機、冷凍サイクル装置及び電動機の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116317231A (zh) * 2023-05-11 2023-06-23 佛山市南海九洲普惠风机有限公司 一种18槽8极永磁电机定子
CN116317231B (zh) * 2023-05-11 2023-07-25 佛山市南海九洲普惠风机有限公司 一种18槽8极永磁电机定子

Also Published As

Publication number Publication date
CN115917930A (zh) 2023-04-04
JPWO2022014031A1 (ja) 2022-01-20
JP7370468B2 (ja) 2023-10-27
US20230208232A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
JP6537623B2 (ja) ステータ、電動機、圧縮機、及び冷凍空調装置
WO2015159658A1 (ja) 永久磁石式回転電機及びそれを用いた圧縮機
TWI500239B (zh) Permanent magnetic synchronous motors and compressors using them
WO2018128006A1 (ja) 永久磁石式回転電機、及び、それを用いた圧縮機
JP6789390B2 (ja) リラクタンスモータ、圧縮機および空気調和装置
JP7195408B2 (ja) ロータ、モータ、圧縮機、及び空気調和機
WO2022014031A1 (ja) 固定子、電動機、圧縮機、及び空気調和機
WO2022034665A1 (ja) 電動機、駆動装置、圧縮機、及び空気調和機
WO2014065102A1 (ja) 永久磁石同期機及びこれを用いた駆動システム、圧縮機
JP6470598B2 (ja) 永久磁石式回転電機、並びにそれを用いる圧縮機
JP2016100927A (ja) 永久磁石式回転電機及びそれを用いた圧縮機
WO2021161406A1 (ja) 固定子、電動機、圧縮機、空気調和機、及び固定子の製造方法
WO2021161403A1 (ja) 固定子、電動機、圧縮機、空気調和機、及び固定子の製造方法
WO2023152891A1 (ja) リラクタンスモータ駆動装置、リラクタンスモータユニット、圧縮機及び空気調和装置
JP6518720B2 (ja) 永久磁石式回転電機及びそれを用いた圧縮機
WO2022054219A1 (ja) 固定子、電動機、圧縮機、空気調和機、及び固定子の製造方法
WO2021181593A1 (ja) 固定子、電動機、圧縮機、空気調和機、及び固定子の製造方法
WO2023032134A1 (ja) 電動機、圧縮機および冷凍サイクル装置
WO2023112076A1 (ja) 電動機、圧縮機、及び空気調和機
JP7353508B2 (ja) 固定子、電動機、圧縮機および空気調和装置
JP7337281B2 (ja) 固定子、電動機、圧縮機、空気調和機、及び固定子の製造方法
WO2023084676A1 (ja) リラクタンスモータ、圧縮機、空気調和装置、及びリラクタンスモータの製造方法
WO2021205527A1 (ja) 着磁方法、電動機の製造方法、電動機、圧縮機、及び空気調和機
WO2023037438A1 (ja) ロータ、モータ、圧縮機および冷凍サイクル装置
JPWO2020044419A1 (ja) 永久磁石式回転電機及びそれを用いた圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536086

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945105

Country of ref document: EP

Kind code of ref document: A1