WO2021112020A1 - スクアリリウム化合物、光学フィルタ、撮像装置 - Google Patents

スクアリリウム化合物、光学フィルタ、撮像装置 Download PDF

Info

Publication number
WO2021112020A1
WO2021112020A1 PCT/JP2020/044364 JP2020044364W WO2021112020A1 WO 2021112020 A1 WO2021112020 A1 WO 2021112020A1 JP 2020044364 W JP2020044364 W JP 2020044364W WO 2021112020 A1 WO2021112020 A1 WO 2021112020A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituent
mmol
added
Prior art date
Application number
PCT/JP2020/044364
Other languages
English (en)
French (fr)
Inventor
翔 仲嶋
悟史 岡田
翔太 吉岡
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2021562627A priority Critical patent/JPWO2021112020A1/ja
Publication of WO2021112020A1 publication Critical patent/WO2021112020A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present invention relates to a novel squarylium compound, an optical filter containing the compound as a near-infrared absorbing dye, and an imaging device including the optical filter.
  • An image sensor using a solid-state image sensor transmits light in the visible region (hereinafter also referred to as “visible light”) and transmits light in the near infrared region (hereinafter referred to as “near red”) in order to reproduce color tones well and obtain a clear image.
  • a near-infrared cut filter that shields also called “outside light” is used.
  • near-infrared cut filter near-infrared light is shielded by an absorption layer in which a near-infrared absorbing dye is dispersed in a resin and a reflection layer made of a dielectric multilayer film that reflects near-infrared light.
  • Patent Document 1 describes a near-infrared absorbing dye having a heteroaryl ring containing chalcogen atoms on both sides of a squarylium skeleton and having an amino group bonded to the heteroaryl ring.
  • the near-infrared absorbing dye used in the near-infrared cut filter has a long wavelength among the near-infrared light from the viewpoint of high-precision luminosity factor correction in the imaging device with the spread of the use of near-infrared light.
  • the shielding property in the region, particularly the shielding property of light having a wavelength of 600 to 1100 nm is required.
  • An object of the present invention is to provide a novel squarylium compound and an optical filter having excellent near-infrared light shielding properties, particularly light shielding properties having a wavelength of 600 to 1100 nm, and an imaging device having excellent color reproducibility using the optical filter. To do.
  • the present invention relates to the following squarylium compounds and the like.
  • R 1 and R 2 may each independently have a substituent and may contain an unsaturated bond between carbon-carbon atoms, an oxygen atom, an alicyclic ring or an aromatic ring, each having 1 to 20 carbon atoms. It is an alkyl group.
  • R 1 may be connected to R 2 or Ar 1 to form a ring.
  • R 2 may be connected to R 1 or Ar 1 to form a ring.
  • R 3 is an alkenyl group having 2 or more carbon atoms which may have a substituent, an alkynyl group having 2 or more carbon atoms which may have a substituent, and an imino having 1 or more carbon atoms which may have a substituent.
  • R 3 may be connected to Ar 1 to form a ring.
  • Ar 1 is a divalent group containing an aromatic ring having 3 to 14 carbon atoms, which may contain a heteroatom.
  • a conjugated system is introduced into the side chain by binding a substituent having an unsaturated bond such as an aryl group, an alkenyl group, and an alkynyl group at a specific position on the aromatic ring, and absorption of near infrared rays.
  • a substituent having an unsaturated bond such as an aryl group, an alkenyl group, and an alkynyl group at a specific position on the aromatic ring
  • FIG. 1 is a cross-sectional view schematically showing an example of an optical filter of the embodiment.
  • FIG. 2 is a cross-sectional view schematically showing another example of the optical filter of the embodiment.
  • FIG. 3 is a cross-sectional view schematically showing another example of the optical filter of the embodiment.
  • FIG. 4 is a cross-sectional view schematically showing another example of the optical filter of the embodiment.
  • the near-infrared absorbing dye may be abbreviated as "NIR dye” and the ultraviolet absorbing dye may be abbreviated as "UV dye”.
  • NIR dye the compound represented by the formula (A1)
  • UV dye ultraviolet absorbing dye
  • the compound represented by the formula (A1) is referred to as a compound (A1).
  • the NIR dye composed of the compound (A1) is also referred to as NIR dye (A1), and the same applies to other dyes.
  • the group represented by the formula (1a) is also described as a group (1a), and the same applies to the groups represented by other formulas.
  • "-" representing a numerical range includes upper and lower limits.
  • the alkyl group may be linear, branched, cyclic or a combination of these structures.
  • the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, and a fluorine atom is preferable.
  • an aryl group refers to a group bonded via a carbon atom constituting an aromatic ring of an aromatic compound, for example, a benzene ring, a naphthalene ring, or a biphenyl.
  • heteroaryl group refers to a group bonded via a carbon atom or a hetero atom constituting an aromatic ring of an aromatic compound having a hetero atom, for example, a furan ring, a thiophene ring, a pyrrole ring or the like.
  • the squarylium compound refers to a compound having a squarylium skeleton represented by the following formula (S1) which can have a resonance structure represented by the following formula (S2) in the structural formula.
  • the squarylium skeleton is represented by either the formula (S1) or the formula (S2).
  • the present invention provides a squarylium compound (A1) represented by the formula (A1).
  • the squarylium compound (A1) of the present invention has a squarylium skeleton in the center of the molecular structure, and has a structure in which one aromatic ring is bonded to each of the left and right sides of the squarylium skeleton.
  • the squarylium compound (A1) of the present invention has excellent optical properties for shielding near-infrared light.
  • a substituent having an unsaturated bond is bonded to the position closest to the squarylium skeleton in the aromatic ring.
  • the conjugated system is expanded and the near-infrared absorption region is lengthened.
  • the squarylium compound (A1) of the present invention has excellent transparency of visible light.
  • the squarylium compound (A1) is represented by the following formula (A1).
  • R 1 and R 2 may each independently have a substituent and may contain an unsaturated bond between carbon-carbon atoms, an oxygen atom, an alicyclic ring or an aromatic ring, each having 1 to 20 carbon atoms. It is an alkyl group.
  • Two of R 1 in the formula (A1) may be different for the left and right squarylium skeleton, but preferably R 1 of the left and right from the viewpoint of easy production are identical.
  • R 1 may be connected to R 2 or Ar 1 to form a ring.
  • R 2 may be connected to R 1 or Ar 1 to form a ring.
  • the ring an alicyclic ring or an aromatic ring having 3 to 6 members is preferable.
  • the ring may have a substituent.
  • the substituents in R 1 and R 2 include halogen atoms, hydroxyl groups, carboxy groups, sulfo groups, cyano groups, amino groups, N-substituted amino groups, nitro groups, alkoxycarbonyl groups, carbamoyl groups, and N-substituted carbamoyl groups. Examples thereof include an imide group and an alkoxy group having 1 to 20 carbon atoms.
  • Substituents in R 1 and R 2 further include cyclic alkyl or aryl groups.
  • aryl group a phenyl group which may have 1 to 5 substituents or a naphthyl group which may have 1 to 7 substituents is preferable.
  • the substituent which may substitute the hydrogen atom of the phenyl group and the naphthyl group is an alkyl group having 1 to 12 carbon atoms which may contain an unsaturated bond or an oxygen atom between carbon atoms, an alkoxy group, or an alkyl. Examples thereof include an amino group (the alkyl group has 1 to 12 carbon atoms).
  • the phenyl group and the naphthyl group are preferably unsubstituted or substituted with 1 to 3 hydrogen atoms, and the substituent is preferably a methyl group, a t-butyl group, a dimethylamino group, a methoxy group or the like.
  • R 1 and R 2 contain an alicyclic or aromatic ring in the main chain or side chain, it is preferable in terms of heat resistance and lengthening of the NIR absorption wavelength.
  • R 1 and R 2 do not have an alicyclic or aromatic ring in the main chain or side chain, they are preferable in terms of light resistance, ease of production, and solubility in resins and solvents.
  • the number of carbon atoms in the alicyclic is preferably 3 to 10.
  • the aromatic ring preferably has 4 to 14 carbon atoms.
  • Examples of the carbon number of R 1 and R 2 include 1 to 20.
  • the carbon number of R 1 and R 2 is preferably 2 to 20 in the case of a linear structure, more preferably 3 to 16, and even more preferably 4 to 12.
  • the carbon number of R 1 and R 2 is preferably 3 to 20, more preferably 4 to 16, and even more preferably 8 to 10 in the case of a branched chain.
  • R 1 and R 2 have a substituent and the main chain or side chain contains an alicyclic or an aromatic ring, the carbon number does not include the carbon number of the substituent, the alicyclic or the aromatic ring.
  • R 1 and R 2 may be the same or different, but are preferably the same from the viewpoint of ease of manufacture. From the viewpoint of solubility in the resin and the solvent, one of R 1 and R 2 is preferably in the form of a branched chain, and more preferably both are in the form of a branched chain.
  • the number of branches is not particularly limited.
  • the number of branches is preferably 1 to 5, and more preferably 1 to 3.
  • the branch position is preferably ⁇ -position. Further, one carbon atom may be branched into two or three.
  • R 1 and R 2 are more preferably groups selected from, for example, groups (1b) to (5b). -CH (C n H 2n + 1 ) 2 ... (1b) -C (C n H 2n + 1 ) 3 ... (1c) -CH 2- CH (C n H 2n + 1 ) 2 ... (2b) -CH 2- C (C n H 2n + 1 ) 3 ... (2c) -(CH 2 ) 2- CH (C n H 2n + 1 ) 2 ... (3b) - (CH 2) 3 -CH ( C n H 2n + 1) 2 ... (4b) -(CH 2 ) m- CH 3 ... (5b)
  • n is an integer of 1 to 10, preferably 2 to 8, and more preferably 2 to 4.
  • the two or three C n H 2n + 1 in the formulas (1b) to (4b) may be linear or branched, and may be the same or different.
  • m is an integer of 0 to 19, preferably 1 to 19, more preferably 2 to 15, and even more preferably 3 to 11.
  • the groups (1b) to (5b) may have an oxygen atom between carbon atoms.
  • R 3 is an alkenyl group having 2 or more carbon atoms which may have a substituent, an alkynyl group having 2 or more carbon atoms which may have a substituent, and an imino having 1 or more carbon atoms which may have a substituent. It may have a group, a cyano group, an organic group having 1 or more carbon atoms including a carbonyl structure and having a substituent, an aryl group having 6 to 20 carbon atoms which may have a substituent, or a substituent. It is a good heteroaryl group having 3 to 13 carbon atoms.
  • R 3 may be connected to Ar 1 to form a ring.
  • a ring having 5 to 7 members is preferable.
  • the ring may have a substituent.
  • R 3 is a substituent having an unsaturated bond.
  • R 3 is a substituent having an unsaturated bond.
  • the conjugated system of the squarylium compound is expanded and the near-infrared absorption region is lengthened.
  • Two R 3 may be different in the left and right squarylium skeleton, but it is preferable from the viewpoint of manufacturability left and right R 3 are the same.
  • Examples of the substituent in R 3 include a halogen atom, a hydroxyl group, a monovalent organic group containing a carbonyl structure, a phosphoric acid group, a sulfo group, a cyano group, an amino group, an N-substituted amino group, a nitro group, an alkoxycarbonyl group and a carbamoyl group.
  • R 3 has a substituent, the carbon number of R 3 does not include the carbon number of the substituent.
  • the alkenyl group has 2 or more carbon atoms, preferably 2 to 30, more preferably 2 to 22, and even more preferably 2 to 14.
  • a group represented by the following formula (3-1) is preferable.
  • R 3a , R 3b , and R 3c independently contain a hydrogen atom, a halogen atom, a formyl group, a carboxy group, a sulfo group, a cyano group, an amino group, an N-substituted amino group, a nitro group, an alkoxycarbonyl group, and a carbamoyl group.
  • R 3b may be linked to R 3a or R 3c to form a ring with a number of 3 to 6 which may contain a heteroatom, in which case the ring may have a substituent.
  • the substituents in the ring formed by linking an aryl group, a heteroaryl group, an alkenyl group, an alkynyl group, and R 3b with R 3a or R 3c include a halogen atom, a formyl group, a carboxy group, a sulfo group, an amino group, and N.
  • -Substituted amino group nitro group, alkoxycarbonyl group, carbamoyl group, N-substituted carbamoyl group, imide group, sulfide group, alkoxy group with 1 to 20 carbon atoms, alkyl group with 1 to 20 carbon atoms, 3 to 20 carbon atoms Triorganosilyl group (trimethylsilyl group, triphenylsilyl group, triisopropylsilyl group, t-butyldiphenylsilyl group, etc.), trialkoxysilyl group having 3 to 20 carbon atoms (trimethoxysilyl group, dimethoxyethoxysilyl group, etc.) , Or an alkyl halide group having 1 to 20 carbon atoms.
  • the group (3-1) preferably has the following structure.
  • the alkynyl group has 2 or more carbon atoms, preferably 2 to 30, more preferably 2 to 22, and even more preferably 2 to 14.
  • a group represented by the following formula (3-2) is preferable.
  • R 3d is a hydrogen atom, a halogen atom, a formyl group, a carboxy group, a sulfo group, a cyano group, an amino group, an N-substituted amino group, a nitro group, an alkoxycarbonyl group, a carbamoyl group, an N-substituted carbamoyl group, an imide group and a sulfide. It has a group, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 6 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms which may have a substituent, and a substituent.
  • 3 to 20 triorganosilyl groups trimethylsilyl group, triphenylsilyl group, triisopropylsilyl group, t-butyldiphenylsilyl group, etc.
  • trialkoxysilyl group with 3 to 20 carbon atoms trimethoxysilyl group, dimethoxyethoxysilyl group, etc.
  • an alkyl halide group having 1 to 20 carbon atoms triorganosilyl groups (trimethylsilyl group, triphenylsilyl group, triisopropylsilyl group, t-butyldiphenylsilyl group, etc.), trialkoxysilyl group with 3 to 20 carbon atoms (tri
  • Substituents in the aryl group, heteroaryl group, alkenyl group and alkynyl group include halogen atom, formyl group, carboxy group, sulfo group, amino group, N-substituted amino group, nitro group, alkoxycarbonyl group, carbamoyl group and N.
  • the group (3-2) preferably has the following structure.
  • the imino group has 1 or more carbon atoms, preferably 1 to 30, more preferably 1 to 22, and even more preferably 1 to 14.
  • a group represented by the following formula (3-3) is preferable.
  • R 3e and R 3f are independently hydrogen atom, halogen atom, hydroxyl group, formyl group, carboxy group, sulfo group, cyano group, amino group, N-substituted amino group, nitro group, alkoxycarbonyl group, carbamoyl group, respectively. N-substituted carbamoyl group, imide group, sulfide group, alkoxy group having 1 to 20 carbon atoms, alkyl group having 1 to 20 carbon atoms, aralkyl group having 6 to 20 carbon atoms, and 6 carbon atoms which may have a substituent.
  • aryl groups Up to 20 aryl groups, heteroaryl groups having 3 to 20 carbon atoms which may have substituents, alkenyl groups which may have substituents and may have 2 to 20 carbon atoms, carbons which may have substituents.
  • Alkinyl group having 2 to 20 carbon atoms triorganosilyl group having 3 to 20 carbon atoms (trimethylsilyl group, triphenylsilyl group, t-butyldiphenylsilyl group, etc.), trialkoxysilyl group having 3 to 20 carbon atoms (trimethoxysilyl group) A group, a dimethoxyethoxysilyl group, etc.), or an alkyl halide group having 1 to 20 carbon atoms.
  • R 3e and R 3f may be linked to form a ring having a number of 3 to 6 which may contain a hetero atom, in which case the ring may have a substituent.
  • the substituents in the ring formed by linking an aryl group, a heteroaryl group, an alkenyl group, an alkynyl group, and R 3e and R 3f include a halogen atom, a formyl group, a carboxy group, a sulfo group, an amino group, and an N-substituted amino.
  • alkoxycarbonyl group nitro group, alkoxycarbonyl group, carbamoyl group, N-substituted carbamoyl group, imide group, sulfide group, alkoxy group with 1 to 20 carbon atoms, alkyl group with 1 to 20 carbon atoms, triorgano with 3 to 20 carbon atoms
  • a silyl group trimethylsilyl group, triphenylsilyl group, t-butyldiphenylsilyl group, etc.
  • a trialkoxysilyl group having 3 to 20 carbon atoms trimethoxysilyl group, dimethoxyethoxysilyl group, etc.
  • silyl group having 1 to 20 carbon atoms examples include alkyl halide groups.
  • the group (3-3) preferably has the following structure.
  • the cyano group is a group represented by the following formula (3-4).
  • An organic group having a carbonyl structure and may have a substituent and having 1 or more carbon atoms has 1 or more carbon atoms, preferably 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and further preferably 1 to 20 carbon atoms. It is 10.
  • a group represented by the following formula (3-5) is preferable.
  • R 3g is a hydrogen atom, a hydroxyl group, a cyano group, an amino group, an N-substituted amino group, an alkoxycarbonyl group, a sulfide group, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, and 6 to 20 carbon atoms.
  • Substituents in the aryl group, heteroaryl group, alkenyl group and alkynyl group include halogen atom, formyl group, carboxy group, sulfo group, amino group, N-substituted amino group, nitro group, alkoxycarbonyl group, carbamoyl group and N.
  • the group (3-5) preferably has the following structure.
  • the aryl group has 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms, and more preferably 6 to 10 carbon atoms.
  • a group represented by the following formula (3-6) is preferable.
  • R 3h , R 3i , R 3j , R 3k and R 3l are independently hydrogen atom, halogen atom, hydroxyl group, formyl group, carboxy group, sulfo group, cyano group, amino group, N-substituted amino group and nitro.
  • R 3h and R 3i , R 3i and R 3j , R 3j and R 3k , and R 3k and R 3l may be linked to each other to form a ring having a number of 3 to 6 which may contain a heteroatom.
  • the ring may have a substituent.
  • Halogen is used as a substituent in the ring formed by linking an aryl group, a heteroaryl group, an alkenyl group, an alkynyl group, R 3h and R 3i , R 3i and R 3j , R 3j and R 3k , and R 3k and R 3l.
  • a methoxysilyl group, a dimethoxyethoxysilyl group, etc.), or an alkyl halide group having 1 to 20 carbon atoms can be mentioned.
  • the group (3-6) preferably has the following structure.
  • the heteroaryl group has 3 to 30 carbon atoms, preferably 3 to 20 carbon atoms, and more preferably 3 to 10 carbon atoms.
  • a group represented by any of the following formulas (3-7) to (3-9) is preferable.
  • X 3a , X 3b , X 3c , X 3d , and X 3e are independently N or CR 3 m , and at least one is N.
  • R 3m is a hydrogen atom, a halogen atom, a hydroxyl group, a formyl group, a carboxy group, a sulfo group, a cyano group, an amino group, an N-substituted amino group, a nitro group, an alkoxycarbonyl group, a carbamoyl group, an N-substituted carbamoyl group, and an imide group.
  • a sulfide group an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 6 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms which may have a substituent, and a substituent.
  • X 3a , X 3b , X 3c , X 3d , and X 3e have a CR of 3 m
  • adjacent X 3a to X 3e may be connected to each other to contain heteroatoms.
  • Rings Ar 30 and Ar 31 having a number of 3 to 6 , Ar 32 , Ar 33 may be formed, in which case the ring may have a substituent.
  • the substituents at the aryl group, heteroaryl group, alkenyl group, alkynyl group, ring Ar 30 , Ar 31 , Ar 32 and Ar 33 include halogen atom, formyl group, carboxy group, sulfo group, amino group and N-substituted amino.
  • alkoxycarbonyl group nitro group, alkoxycarbonyl group, carbamoyl group, N-substituted carbamoyl group, imide group, sulfide group, alkoxy group with 1 to 20 carbon atoms, alkyl group with 1 to 20 carbon atoms, triorgano with 3 to 20 carbon atoms
  • a silyl group trimethylsilyl group, triphenylsilyl group, t-butyldiphenylsilyl group, etc.
  • a trialkoxysilyl group having 3 to 20 carbon atoms trimethoxysilyl group, dimethoxyethoxysilyl group, etc.
  • silyl group having 1 to 20 carbon atoms examples include alkyl halide groups.
  • the group (3-7) preferably has the following structure.
  • X 3f , X 3g , and X 3h are independently N or CR 3n , respectively.
  • Y 3a is S, O or NR 3o .
  • R 3n and R 3o are independently hydrogen atom, halogen atom, hydroxyl group, formyl group, carboxy group, sulfo group, cyano group, amino group, N-substituted amino group, nitro group, alkoxycarbonyl group, carbamoyl group, respectively. N-substituted carbamoyl group, imide group, sulfide group, alkoxy group having 1 to 20 carbon atoms, alkyl group having 1 to 20 carbon atoms, aralkyl group having 6 to 20 carbon atoms, and 6 carbon atoms which may have a substituent.
  • aryl groups Up to 20 aryl groups, heteroaryl groups having 3 to 20 carbon atoms which may have substituents, alkenyl groups which may have substituents and may have 2 to 20 carbon atoms, carbons which may have substituents.
  • Alkinyl group having 2 to 20 carbon atoms triorganosilyl group having 3 to 20 carbon atoms (trimethylsilyl group, triphenylsilyl group, t-butyldiphenylsilyl group, etc.), trialkoxysilyl group having 3 to 20 carbon atoms (trimethoxysilyl group) A group, a dimethoxyethoxysilyl group, etc.), or an alkyl halide group having 1 to 20 carbon atoms.
  • X 3f , X 3g , and X 3h are CR 3n and Y 3a is NR 3o
  • the adjacent X 3f , X 3g , X 3h , and Y 3a may be linked to each other to contain a heteroatom.
  • Rings Ar 34 , Ar 35 , and Ar 36 of 6 may be formed, in which case the ring may have a substituent.
  • the substituents on the aryl group, heteroaryl group, alkenyl group, alkynyl group, ring Ar 34 , Ar 35 and Ar 36 include halogen atom, formyl group, carboxy group, sulfo group, amino group, N-substituted amino group and nitro.
  • the group (3-8) preferably has the following structure.
  • X 3i , X 3j , and X 3k are independently N or CR 3p , respectively.
  • Y 3b is S, O or NR 3q .
  • R 3p and R 3q are independently hydrogen atom, halogen atom, hydroxyl group, formyl group, carboxy group, sulfo group, cyano group, amino group, N-substituted amino group, nitro group, alkoxycarbonyl group, carbamoyl group, respectively.
  • alkoxy group having 1 to 20 carbon atoms
  • alkyl group having 1 to 20 carbon atoms aralkyl group having 6 to 20 carbon atoms
  • 6 carbon atoms which may have a substituent.
  • Alkinyl group having 2 to 20 carbon atoms triorganosilyl group having 3 to 20 carbon atoms (trimethylsilyl group, triphenylsilyl group, t-butyldiphenylsilyl group, etc.), trialkoxysilyl group having 3 to 20 carbon atoms (trimethoxysilyl group) A group, a dimethoxyethoxysilyl group, etc.), or an alkyl halide group having 1 to 20 carbon atoms.
  • X 3i , X 3j , and X 3k are CR 3p and Y 3b is NR 3q
  • the adjacent X 3i , X 3j , X 3k , and Y 3b may be linked to each other to contain a heteroatom.
  • Rings Ar 37 , Ar 38 , and Ar 39 of 6 may be formed, in which case the ring may have a substituent.
  • the substituents on the aryl group, heteroaryl group, alkenyl group, alkynyl group, ring Ar 37 , Ar 38 and Ar 39 include halogen atom, formyl group, carboxy group, sulfo group, amino group, N-substituted amino group and nitro.
  • the group (3-9) preferably has the following structure.
  • Ar 1 is a divalent group containing an aromatic ring having 3 to 14 carbon atoms, which may contain a heteroatom.
  • Ar 1 is preferably a divalent group containing an aromatic hydrocarbon ring having 6 to 14 carbon atoms or a divalent group containing a heteroaryl ring having 3 to 13 carbon atoms.
  • the aromatic hydrocarbon ring may be a monocyclic ring, a polycyclic ring, or a condensed ring, and a monocyclic ring, that is, a benzene ring is preferable.
  • the heteroaryl ring may be a monocyclic ring, a polycyclic ring, or a condensed ring, and examples thereof include a 5- to 6-membered monocyclic ring or a condensed ring in which 2 to 3 5- to 6-membered rings are condensed.
  • a condensed ring of two 5-membered rings, a condensed ring of 5-membered ring and a 6-membered ring, and a condensed ring of three 5-membered rings are preferable.
  • hetero atom in the heteroaryl ring a nitrogen atom, a sulfur atom, and an oxygen atom are preferable.
  • Ar 1 preferably has 1 to 3 heteroatoms. When two or more heteroatoms are contained, they may be the same or different.
  • a pyrrole ring, a thiophene ring, a furan ring, an imidazole ring, an oxazole ring, a thiazole ring, and a thienothiophene ring are particularly preferable from the viewpoint of ease of production.
  • Ar 1 may have one or more substituents in addition to R 3 described above.
  • substituents include hydrogen atom, halogen atom, sulfo group, hydroxyl group, cyano group, nitro group, carbonyl structure-containing monovalent organic group, phosphoric acid group, silyl group, thiol group, sulfide group and amide structure-containing monovalent organic group.
  • the squalylium compound (A1) is a squalylium compound represented by the following formula (A2) having a heteroaryl ring in which two 5-membered rings are condensed, or the following formula (A3) having a 5-membered heteroaryl ring.
  • the represented squarylium compound is preferred.
  • R 1 ⁇ R 3 are the same, including the preferred embodiments and R 1 ⁇ R 3 in the formula (A1).
  • X 1 is CR 4 or N.
  • R 4 is a hydrogen atom, a halogen atom, a sulfo group, a hydroxyl group, a cyano group, a nitro group, a carbonyl structure-containing monovalent organic group, a phosphoric acid group, a silyl group, a thiol group, a sulfide group, an amide structure-containing monovalent organic group, and a sulfone.
  • R 4 may have an alkyl group having 1 to 14 carbon atoms which may have a substituent, an alkenyl group having 2 to 14 carbon atoms which may have a substituent, and 2 to 12 carbon atoms which may have a substituent.
  • R 4 is linked to any of R 1 to R 3 to each other.
  • a ring having 3 to 6 members may be formed.
  • the ring may have a substituent.
  • the substituent in R 4, halogen atom, hydroxyl group, carbonyl structure-containing monovalent organic group, a phosphoric acid group, a sulfo group, a cyano group, an amino group, N- substituted amino group, a nitro group, an alkoxycarbonyl group, a carbamoyl group, N-substituted carbamoyl group, imide group, thiol group, sulfide group, alkoxy group with 1 to 20 carbon atoms, alkyl group with 1 to 20 carbon atoms, aryl group with 6 to 20 carbon atoms, heteroaryl with 3 to 20 carbon atoms Examples thereof include a group, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, a silyl group, and an alkyl halide group having 1 to 20 carbon atoms.
  • R 4 has a substituent, the carbon number of R 4 does not include the carbon number of
  • halogen atom in R 4 is preferably a fluorine atom.
  • R 41 is a hydrogen atom, an alkyl group having 1 to 15 carbon atoms which may have a substituent, or an alkoxy group having 1 to 15 carbon atoms which may have a substituent, and is a methyl group, an ethyl group, or a propyl group.
  • R 42 is an alkyl group having 1 to 15 carbon atoms which may have a hydrogen atom or a substituent, and is a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group, an isopropyl group, or t-butyl.
  • the three R 42s may be the same or different.
  • R 43 is an alkyl group having 1 to 15 carbon atoms which may have a hydrogen atom or a substituent, and is a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group, an isopropyl group, or t-butyl.
  • R 44 is an alkyl group having 1 to 15 carbon atoms which may have a hydrogen atom or a substituent, and is a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group, an isopropyl group, or t-butyl.
  • R 45 is an alkyl group having 1 to 15 carbon atoms which may have a hydrogen atom or a substituent, and is a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group, an isopropyl group, or t-butyl.
  • a group, a 2-ethylhexyl group, is preferable.
  • the two R 45s may be the same or different.
  • R 46 is an alkyl group having 1 to 15 carbon atoms which may have a hydrogen atom or a substituent, and is a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group, an isopropyl group, or t-butyl.
  • aryl group having 6 to 20 carbon atoms in R 4 examples include a phenyl group, a 4-methoxyphenyl group, 3,4,5-trifluorophenyl group, 4-trifluoromethylphenyl group, a 1-naphthyl group, 2-naphthyl Groups, 2,5-dimethylphenyl groups and 3-nitrophenyl groups are preferred.
  • the heteroaryl group having a carbon number of 3 to 13 in R 4, a pyridyl group, a pyrimidyl group, a quinolyl group, a furyl group, a thienyl group, an oxazolyl group, an imidazolyl group, a thiazolyl group, benzoxazolyl group, benzimidazolyl group, benzothiazolyl Groups are preferred.
  • the acyloxy group of 2 to 13 carbon atoms in R 4 an acetoxy group, propionyloxy group, butyryloxy group, isobutyryloxy group, a benzoyloxy group.
  • the two R 47s may be the same or different. Further, the two R 47s may be connected to each other to form a ring.
  • —N (R 47 ) 2 a dimethylamino group, a diethylamino group, a diphenylamino group, an ethylisopropylamino group and a morpholino group are preferable.
  • X 2 is S, NR 5 , or O.
  • R 5 is an alkyl group having 1 to 15 carbon atoms which may have a hydrogen atom, a monovalent organic group containing a carbonyl structure, a sulfo group, or a substituent, and has a hydrogen atom, a methyl group, an ethyl group, an isobutyl group, and 2 -Ethylhexyl group, benzyl group, t-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, allyloxycarbonyl group, 2,2,2-triethoxycarbonyl group, 2-nitrobenzenesulfonyl group preferable.
  • R 5 is an alkyl group having 1 to 15 carbon atoms which may have a substituent
  • R 5 may form a ring of membered 3-6 in conjunction with any of the R 1 ⁇ R 3.
  • X 3 is S, NR 6 , or O.
  • R 6 is an alkyl group having 1 to 15 carbon atoms which may have a hydrogen atom, a monovalent organic group containing a carbonyl structure, a sulfo group, or a substituent, and has a hydrogen atom, a methyl group, an ethyl group, an isobutyl group, and 2 -Ethylhexyl group, benzyl group, t-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, allyloxycarbonyl group, 2,2,2-triethoxycarbonyl group, 2-nitrobenzenesulfonyl group preferable.
  • R 6 is an alkyl group having 1 to 15 carbon atoms which may have a substituent
  • R 6 may form a ring of membered 3-6 in conjunction with R 4.
  • (X 1 , X 2 , X 3 ) (CR 4 , S, S), (CR 4 , S, O), (CR 4 , S, NR 6 ), (CR 4 , O, S), (CR 4 , O, O), (CR 4 , O, NR 6 ), (CR 4 , NR 5 , S), (CR 4 , NR 5 , O), (CR 4 , NR 5 , NR 6 ), (N , S, S), (N, S, O), (N, S, NR 6 ), (N, O, S), (N, O, O), (N, O, NR 6 ), (N , NR 5 , S), (N, NR 5 , O), (N, NR 6 ), (N , NR 5 , S), (N, NR 5 , O), (N, NR 6 ), (N , NR 5 , S), (N, NR 5 , O), (N, NR 5 , ).
  • the squarylium compound represented by the formula (A2) is represented by the following formula (A4) from the viewpoint of ease of synthesis and the possibility of absorbing a longer wavelength region in the condensed ring skeleton of 5-membered rings.
  • the represented squarylium compound is preferred.
  • R 1 ⁇ R 3 are the same, including the preferred embodiments and R 1 ⁇ R 3 in the formula (A1).
  • R 4 is the same, including the preferred embodiments and R 4 in the formula (A2).
  • the squarylium compound represented by the formula (A3) is represented by the following formula (A5) from the viewpoint of ease of synthesis and the possibility of absorbing a longer wavelength region in the 5-membered ring skeleton. Compounds are preferred.
  • R 1 ⁇ R 3 are the same, including the preferred embodiments and R 1 ⁇ R 3 in the formula (A1).
  • R 4 is the same, including the preferred embodiments for R 4 in Formula (A3).
  • the squarylium compound (A4) more specifically, R 1 ⁇ R 4 are tables compounds shown in 1 below (Table 1 also shows the abbreviations as a squarylium compound (A4).) Can be mentioned.
  • R 1 to R 4 indicate the symbols of the formula when the formula is shown. In all the compounds shown in Table 1, R 1 to R 4 are all the same on the left and right sides of the formula.
  • the squarylium compound (A5) and more specifically, R 1 ⁇ R 4 are tables compounds shown in 2 below (Table 2 also shows the abbreviations as a squarylium compound (A5).) Can be mentioned.
  • R 1 to R 4 indicate the symbols of the formula when the formula is shown. In all the compounds shown in Table 2, R 1 to R 4 are all the same on the left and right sides of the formula.
  • the squarylium compound (A1) has a maximum absorption wavelength ⁇ max (A1) in a dichloromethane solution in the range of approximately 600 to 1100 nm. Since the maximum absorption wavelength ⁇ max (A1) is in such a range, it has absorption in the long wavelength region in the near infrared region and can absorb near infrared light of 600 to 1100 nm. Further, the squarylium compound (A2) has a maximum absorption wavelength ⁇ max (A2) in a dichloromethane solution in a range of approximately 700 to 1100 nm. The squarylium compound (A3) has a maximum absorption wavelength ⁇ max (A3) in a dichloromethane solution in the range of approximately 800 to 1100 nm.
  • the squarylium compound (A4) has a maximum absorption wavelength ⁇ max (A4) in a dichloromethane solution in the range of approximately 650 to 950 nm.
  • the squarylium compound (A5) has a maximum absorption wavelength ⁇ max (A5) in a dichloromethane solution in the range of approximately 700 to 950 nm.
  • the method for producing the squarylium compound (A1) will be described using the method for producing the squarylium compound (A2) and the method for producing the squarylium compound (A3), but the method for producing the squarylium compound (A1) is not limited thereto.
  • the method for obtaining the squarylium compound (A2) is shown in the scheme (FA2).
  • step A is a reaction that converts a carboxylic acid to a dialkylamine, details of which are shown in the scheme below.
  • HetAr means heteroaryl.
  • the azide is preferably diphenylphosphoryl azide.
  • the N alkylation is preferably an S N 2 reaction using an alkyl halide and a base, or a reductive amination reaction using an aldehyde and a reducing agent.
  • step B is a reaction that converts halogen into various substituents by cross-coupling reaction, Heck reaction, formylation, and formylation.
  • Wittig reaction, Knevenagel reaction, Henry reaction, nucleophilic addition reaction of alkyl metal reactant, etc. with respect to the obtained aldehyde can be used, but are not limited thereto.
  • the starting material (a2-1) of the scheme (FA2) can be obtained from, for example, a known compound by the following synthetic method.
  • X 1 , X 2 , (X 3 ), and R are as follows.
  • Compound (a2-1-6): (X 1 , X 2 , R) (-CH, -NH, H)
  • Compound (a2-1-7): (X 1 , X 2 , X 3 , R) (-CH, -NH, -NH, -CH 2 CH 3 )
  • Compound (a2-1-8): (X 1 , X 2 , X 3 , R) (-CH, -NH, -NH, H)
  • the starting material (a3-1) of the scheme (FA3) can be obtained, for example, by the following synthetic method.
  • the squarylium compound (A1) of the present invention is useful as a near-infrared absorbing dye.
  • the optical filter of one embodiment of the present invention includes an absorption layer containing a near-infrared absorbing dye and a resin, and the squarylium compound (A1) of the present invention is used as the near-infrared absorbing dye. )including.
  • the near-infrared absorbing dye composed of the squarylium compound (A1) is also referred to as "NIR dye (A1)".
  • This filter may further have a reflective layer made of a dielectric multilayer film in addition to the above absorbing layer.
  • the "reflective layer” refers to a reflective layer made of a dielectric multilayer film.
  • This filter may further have a transparent substrate.
  • the absorption layer is provided on the main surface of the transparent substrate.
  • the filter has a transparent substrate and an absorption layer and a reflection layer
  • the absorption layer and the reflection layer are provided on the main surface of the transparent substrate.
  • the present filter may have the absorption layer and the reflection layer on the same main surface of the transparent substrate, or may have the absorption layer and the reflection layer on different main surfaces.
  • the stacking order thereof is not particularly limited.
  • This filter may also have another functional layer.
  • other functional layers include an antireflection layer that suppresses the loss of visible light transmittance.
  • an antireflection layer that suppresses the loss of visible light transmittance.
  • the absorption layer has the outermost surface structure, a visible light transmittance loss due to reflection occurs at the interface between the absorption layer and air, so it is preferable to provide an antireflection layer on the absorption layer.
  • FIG. 1 is a cross-sectional view showing an optical filter 10A composed of an absorption layer 11.
  • the absorption layer 11 may be a layer containing the NIR dye (A1) and the resin.
  • the absorption layer 11 can take the form of a film or a substrate.
  • FIG. 2 is a cross-sectional view schematically showing an example of an optical filter of an embodiment having a transparent substrate, an absorption layer, and a reflection layer.
  • the optical filter 10D has an absorption layer 11 arranged on one main surface of the transparent substrate 13 and the transparent substrate 13, and a reflection layer 12 provided on the other main surface of the transparent substrate 13.
  • the phrase "providing the absorption layer 11 on one main surface (upper) of the transparent substrate 13" is not limited to the case where the absorption layer 11 is provided in contact with the transparent substrate 13, and the transparent substrate 13 and the absorption layer 11 The same applies to the following configurations, including the case where another functional layer is provided between the two.
  • FIG. 3 is a configuration example of an optical filter 10F provided with absorption layers 11a and 11b on both main surfaces of the transparent substrate 13 and further provided with reflection layers 12a and 12b on the main surfaces of the absorption layers 11a and 11b.
  • FIG. 4 is a configuration example of the optical filter 10G provided with the antireflection layer 14 on the main surface of the absorption layer 11 of the optical filter 10D shown in FIG.
  • the antireflection layer 14 may cover not only the outermost surface of the absorption layer 11 but also the entire side surface of the absorption layer 11. In that case, the moisture-proof effect of the absorption layer 11 can be enhanced.
  • the absorption layer the reflection layer, the transparent substrate, and the antireflection layer will be described.
  • the absorption layer contains a NIR dye (A1).
  • the absorption layer may further contain an NIR dye other than the NIR dye (A1) (hereinafter, referred to as another NIR dye) as long as the effect of the present invention is not impaired.
  • the content of the NIR dye (A1) in the absorption layer is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin in the total amount of the NIR dye (A1) and other NIR dyes.
  • a desired near-infrared absorbing ability is obtained at 0.1 parts by mass or more, and a decrease in near-infrared absorbing ability and an increase in haze value are suppressed at 30 parts by mass or less.
  • the total content of the NIR dye (A1) and other NIR dyes is more preferably 0.5 to 25 parts by mass, and even more preferably 1 to 20 parts by mass.
  • NIR dyes have a maximum absorption wavelength in the range of 660 to 1100 nm, and there is a predetermined difference between the maximum absorption wavelength and the maximum absorption wavelength ⁇ max (A1) of the NIR dye (A1). Is preferable.
  • the difference between the two maximum absorption wavelengths is preferably 30 nm or more, more preferably 50 nm or more, further preferably 80 nm or more, and particularly preferably 100 nm or more.
  • NIR dyes include cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, dithiol metal complex compounds, diimonium compounds, polymethine compounds, phthalide compounds, naphthoquinone compounds, anthraquinone compounds, and indophenol compounds.
  • squarylium compounds other than NIR dye (A) can be mentioned.
  • the other NIR dyes one type may be used alone, or two or more types may be mixed and used.
  • the absorption layer contains a NIR dye (A1) and a resin, and is typically a layer or a (resin) substrate in which the NIR dye (A1) is uniformly dissolved or dispersed in the resin.
  • the resin is usually a transparent resin, and the absorption layer may contain other NIR dyes in addition to the NIR dye (A1). Further, the absorption layer may contain a dye other than the NIR dye, particularly a UV dye.
  • UV dye examples include oxazole-based, merocyanine-based, cyanine-based, naphthalimide-based, oxadiazole-based, oxazine-based, oxazolidine-based, naphthalic acid-based, styryl-based, anthracene-based, cyclic carbonyl-based, and triazole-based. Pigments can be mentioned. Of these, oxazole-based and merocyanine-based pigments are preferable. In addition, one type of UV dye may be used alone for the absorption layer, or two or more types may be used in combination.
  • acrylic resin epoxy resin, en-thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyether sulfone resin, polyparaphenylene resin, polyarylene ether phosphine oxide resin, polyimide
  • resins polyamideimide resins, polyolefin resins, cyclic olefin resins, and polyester resins such as polyethylene terephthalate resins and polyethylene naphthalate resins.
  • One of these resins may be used alone, or two or more of these resins may be mixed and used.
  • the transparent resin is preferably a resin having a high glass transition point (Tg) from the viewpoints of transparency, solubility of NIR dye (A1), and heat resistance.
  • Tg glass transition point
  • one or more selected from polyester resin, polycarbonate resin, polyether sulfone resin, polyarylate resin, polyimide resin, and epoxy resin is preferable, and one or more selected from polyester resin and polyimide resin is more preferable. ..
  • the absorption layer further comprises an adhesion imparting agent, a color tone correcting dye, a leveling agent, an antistatic agent, a heat stabilizer, a light stabilizer, an antioxidant, a dispersant, a flame retardant, as long as the effects of the present invention are not impaired. It may have an optional component such as a lubricant or a plasticizer.
  • a dye containing NIR dye (A1), a resin or a raw material component of the resin, and each component to be blended as needed are dissolved or dispersed in a solvent to prepare a coating liquid.
  • the base material may be a transparent substrate arbitrarily included in the present filter, or may be a peelable base material used only when forming an absorption layer.
  • the solvent may be a dispersion medium that can be stably dispersed or a solvent that can be dissolved.
  • the coating liquid may contain a surfactant for improving voids due to minute bubbles, dents due to adhesion of foreign substances, repellency in the drying process, and the like.
  • a dip coating method, a cast coating method, a spin coating method or the like can be used for the coating of the coating liquid.
  • An absorption layer is formed by applying the above coating liquid on a substrate and then drying it.
  • the coating liquid contains a raw material component of a resin, further curing treatments such as thermosetting and photocuring are performed.
  • the absorption layer can be manufactured in the form of a film by extrusion molding, and this film may be laminated on another member and integrated by thermocompression bonding or the like.
  • this film may be attached onto the transparent substrate.
  • This filter may have two or more absorption layers.
  • each layer may be the same or different.
  • the absorption layer has two or more layers, there is an example in which one layer is a near-infrared absorption layer made of a resin containing a NIR dye and the other layer is an ultraviolet absorption layer made of a resin containing a UV dye. .. Further, the absorption layer itself may be a substrate (resin substrate).
  • the thickness of the absorption layer is preferably 0.1 to 100 ⁇ m.
  • the total thickness of each layer is preferably 0.1 to 100 ⁇ m. If the thickness is less than 0.1 ⁇ m, the desired optical characteristics may not be sufficiently exhibited, and if the thickness is more than 100 ⁇ m, the flatness of the layer may be lowered and the absorption rate may vary in the plane.
  • the thickness of the absorption layer is more preferably 0.3 to 50 ⁇ m.
  • another functional layer such as a reflective layer or an antireflection layer is provided, cracks or the like may occur if the absorbing layer is too thick depending on the material thereof. Therefore, the thickness of the absorption layer is more preferably 0.3 to 10 ⁇ m.
  • the transparent substrate is an arbitrary component in this filter.
  • the thickness of the transparent substrate is preferably 0.03 to 5 mm, more preferably 0.05 to 1 mm from the viewpoint of thinning.
  • glass, (birefringent) crystal, or resin can be used as long as it transmits visible light.
  • absorption type glass near infrared absorption glass base material
  • CuO or the like is added to fluoride-based glass, phosphate-based glass, etc., soda lime glass, borosilicate glass, non-alkali glass, etc. , Quartz glass and the like.
  • the "phosphate glass” also includes a silicate glass in which a part of the skeleton of the glass is composed of SiO 2.
  • the transparent substrate is phosphate glass
  • P 2 O 5 30 to 80%
  • Al 2 O 3 1 to 20%
  • R 2 O 0.5 to 30%, in terms of mass%
  • R 2 O is at least one of Li 2 O, Na 2 O, and K 2 O, and the value on the left is the total value of the respective contents
  • CuO 1 to 1.
  • RO 0.5 to 40%
  • RO is at least one of MgO, CaO, SrO, BaO, and ZnO, and the value on the left is the total value of the respective contents. Is).
  • the CuO-containing glass described above may further contain a metal oxide.
  • a metal oxide When one or more of, for example, Fe 2 O 3 , MoO 3 , WO 3 , CeO 2 , Sb 2 O 3 , V 2 O 5, etc. are contained as the metal oxide, the CuO-containing glass has an ultraviolet absorbing property. Have.
  • acrylic resin epoxy resin, en-thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyether sulfone resin, polyparaphenylene resin, polyarylene ether phosphine
  • oxide resins polyimide resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, and polyester resins such as polyethylene terephthalate resins and polyethylene naphthalate resins.
  • One of these resins may be used alone, or two or more of these resins may be mixed and used.
  • the reflective layer is an arbitrary component in this filter.
  • the reflective layer is made of a dielectric multilayer film and has a function of shielding light in a specific wavelength range.
  • Examples of the reflective layer include those having wavelength selectivity that transmits visible light and mainly reflects light having a wavelength other than the light-shielding region of the absorption layer.
  • the reflection region of the reflection layer may include a light-shielding region in the near-infrared region of the absorption layer.
  • the reflective layer is not limited to the above characteristics, and may be appropriately designed according to specifications for shielding light in a predetermined wavelength range.
  • the NIR dye (A1) has a reflective property having a transmittance of 1% or less in light having a maximum absorption wavelength ⁇ max (A1).
  • this filter synergistically obtains high light-shielding property (high OD value) at the maximum absorption wavelength ⁇ max (A1) of the NIR dye (A1).
  • This filter may have one reflective layer or two or more reflective layers.
  • each layer may be the same or different.
  • one layer shields at least near-infrared light, particularly, a near-infrared shielding layer having the above-mentioned reflective characteristics, and the other layer shields at least ultraviolet light.
  • a combination of an ultraviolet shielding layer may be used.
  • the reflective layer is composed of a dielectric multilayer film in which a low refractive index dielectric film (low refractive index film) and a high refractive index dielectric film (high refractive index film) are alternately laminated.
  • a low refractive index dielectric film low refractive index film
  • a high refractive index dielectric film high refractive index film
  • the material of the high refractive index film include Ta 2 O 5 , TiO 2 , and Nb 2 O 5 . Of these, TiO 2 is preferable from the viewpoints of film formation property, reproducibility in refractive index and the like, stability and the like.
  • Examples of the material of the low refractive index film include SiO 2 , SiO x N y and the like. SiO 2 is preferable from the viewpoint of reproducibility, stability, economy and the like in terms of film forming property.
  • the film thickness of the reflective layer is preferably 2 to 10 ⁇ m.
  • Anti-reflective layer examples include a dielectric multilayer film, an intermediate refractive index medium, and a moth-eye structure in which the refractive index gradually changes. Above all, the use of a dielectric multilayer film is preferable from the viewpoint of high light utilization efficiency and productivity.
  • this filter can realize excellent light-shielding property against near-infrared light and can realize high visible light transmission.
  • This filter can be used, for example, in an imaging device such as a digital still camera, an ambient light sensor, or the like.
  • An image pickup device using this filter includes a solid-state image pickup element, an image pickup lens, and this filter.
  • This filter can be used, for example, by being arranged between an image pickup lens and a solid-state image sensor, or by being directly attached to a solid-state image sensor, an image sensor, or the like of an image pickup device via an adhesive layer.
  • NIR dyes (A1-1) to (A1-11) and NIR dyes (B1) to (B3) were produced. Further, as dyes used in Comparative Examples, NIR dyes (Acf1) to (Acf4) and (Bcf1) to (Bcf3) were produced. The optical characteristics of the obtained NIR dye were measured and evaluated.
  • the structure of the produced NIR dye was confirmed by 1 1 H NMR.
  • An ultraviolet-visible spectrophotometer (UV-3600Plus type manufactured by Shimadzu Corporation) was used to evaluate the optical characteristics of the NIR dye and the absorption layer containing the NIR dye.
  • NIR dye (A1-1) was synthesized according to the reaction route shown below.
  • Step 1 Lithium diisopropylamide (THF / hexane solution, 1.08M, 200 mL, 216 mmol) was placed in a nitrogen-substituted 1 L 4-neck flask, cooled to ⁇ 78 ° C., and then diluted with THF (200 mL), 3,4-dibromo. Thiophene (50.11 g, 207 mmol) was added over 10 minutes using a dropping funnel, followed by stirring for 30 minutes. The temperature was raised to 0 ° C. and the mixture was stirred for 10 minutes, then DMF (19.2 mL, 248 mmol) was added, and the mixture was stirred at 30 ° C. for 2.5 hours.
  • Step 2 Potassium carbonate (42.86 g, 310 mmol), crude product of intermediate a1-1 (60.82 g), DMF (200 mL), ethyl mercaptoacetate (25 mL, 229 mmol), in a nitrogen-substituted 500 mL four-necked flask. 18-Crown-6-ether (2.742 g, 10.4 mmol) was added, and the mixture was heated and stirred at 60 ° C. overnight.
  • Step 4> The crude product, lithium hydroxide monohydrate (4.617 g, 110.0 mmol), tetrabutylammonium iodide (1.848 g, 5.003 mmol), water (33 mL) in a nitrogen-substituted eggplant flask (300 mL). , Methanol (20 mL) and THF (67 mL) were added, and the mixture was heated and stirred at 80 ° C. for 3 hours. After completion of the reaction, hexane was added, the mixture was extracted with water, and then acidified with 6N hydrochloric acid.
  • Steps 1 to 6> Intermediate a1-6 was obtained by the same steps as in steps 1 to 6 of the method for producing NIR dye (A1-1).
  • NIR dye (A1-3) was synthesized according to the reaction route shown below.
  • Steps 1-2> Intermediate a1-2 was obtained by the same steps as in steps 1 and 2 of the method for producing NIR dye (A1-1).
  • Step 4> Intermediate a3-3 (20.00 g, 83.2 mmol) and toluene (300 mL) were added to a nitrogen-substituted eggplant flask (1 L), and the mixture was stirred and dissolved at 50 ° C.
  • Step 5 To a nitrogen-substituted eggplant flask (1 L), add the crude product of the above intermediate a3-4 (31.34 g), THF (150 mL), ethanol (150 mL), and an aqueous sodium hydroxide solution (1.0 M, 125 mL, 125 mmol). , 40 ° C. for 30 minutes. After completion of the reaction, hydrochloric acid (1M, 135 mL, 135 mmol) was added at 0 ° C. to stop the reaction, the organic solvent was distilled off, and the mixture was filtered through a hydrophilic membrane filter.
  • NIR dye (A1-4) was synthesized according to the reaction route shown below.
  • Steps 1-2> Intermediate a1-2 was obtained by the same steps as in steps 1 and 2 of the method for producing NIR dye (A1-1).
  • NIR dye (A1-5) was synthesized according to the reaction route shown below.
  • Steps 1-7> Intermediate a4-7 was obtained by the same steps as in steps 1 to 7 of the method for producing NIR dye (A1-4).
  • NIR dye (A1-6) was synthesized according to the reaction route shown below.
  • Steps 1-7> Intermediate a4-7 was obtained by the same steps as in steps 1 to 7 of the method for producing NIR dye (A1-4).
  • Step 8> Intermediate a4-7 (2.281 g, 4.974 mmol), t-butyl acrylate (1.10 mL, 7.48 mmol), triethylamine (2.09 mL, 15.0 mmol), in a nitrogen-substituted three-necked flask (100 mL), Palladium acetate (II) (57.9 mg, 0.258 mmol), trioltotrilphosphine (153.3 mg, 0.5037 mmol) and DMF (25.0 mL) were added, and the mixture was heated and stirred at 100 ° C. for 1 hour.
  • NIR dye (A1-7) was synthesized according to the reaction route shown below.
  • Steps 1-7> Intermediate a4-7 was obtained by the same steps as in steps 1 to 7 of the method for producing NIR dye (A1-4).
  • Steps 1-7> Intermediate a4-7 was obtained by the same steps as in steps 1 to 7 of the method for producing NIR dye (A1-4).
  • Step 8> Intermediate a4-7 (2.576 g, 4.999 mmol) and THF (10 mL) were added to a nitrogen-substituted two-necked flask (100 mL), and n-butyllithium (hexane solution, 1.55 M, 6. 45 mL, 10.0 mmol) was added. After stirring for 5 minutes, DMF (1.55 mL, 20.0 mmol) was added, and the mixture was stirred for 30 minutes, and further stirred at 0 ° C. for 30 minutes.
  • Step 9 Sodium hydride (60%, dispersed in liquid paraffin, 147.8 mg, 3.695 mmol) and THF (20 mL) were added to a nitrogen-substituted three-necked flask (300 mL), and triethyl phosphonoacetate (0.830 mL, 0.830 mL) was added at 0 ° C. 4.20 mmol) was added, and the mixture was stirred at room temperature for 10 minutes, then a solution of intermediate a8-8 (1.227 g, 3.009 mmol) in THF (10 mL) was added, and the mixture was stirred for 30 minutes.
  • NIR dye (A1-9) was synthesized according to the reaction route shown below.
  • Steps 1-7> Intermediate a4-7 was obtained by the same steps as in steps 1 to 7 of the method for producing NIR dye (A1-4).
  • NIR dye (A1-10) NIR dye (A1-10) was synthesized according to the reaction route shown below.
  • Steps 1-8> Intermediate a8-8 was obtained by the same steps as in steps 1 to 8 of the NIR dye (A1-8) production method.
  • NIR dye (A1-11) was synthesized according to the reaction route shown below.
  • Steps 1-8> Intermediate a8-8 was obtained by the same steps as in steps 1 to 8 of the NIR dye (A1-8) production method.
  • NIR dye (B1) was synthesized according to the reaction route shown below.
  • Steps 1 to 4> Intermediate b1-4 was obtained by the same steps as in steps 1 to 4 of the NIR dye (B1) production method.
  • Step 5> Intermediate b1-4 (6.09 g, 15.1 mmol) and THF (30 mL) were added to a nitrogen-substituted two-necked flask (500 mL), and n-butyllithium (hexane solution, 1.55 M, 20. 0 mL, 31.0 mmol) was added. After stirring for 10 minutes, DMF (4.80 mL, 62.0 mmol) was added, and the mixture was stirred for 50 minutes, and further stirred at 0 ° C. for 2.5 hours.
  • n-butyllithium hexane solution, 1.55 M, 20. 0 mL, 31.0 mmol
  • ⁇ Step 6> Sodium hydride (60%, dispersed in liquid paraffin, 0.545 g, 13.6 mmol) and THF (50 mL) were added to a nitrogen-substituted three-necked flask (300 mL), and triethyl phosphonoacetate (3.047 g, 3.047 g) was added at 0 ° C. 13.6 mmol) was added, and the mixture was stirred at room temperature for 15 minutes, then a solution of intermediate b2-5 (3.97 g, 11.3 mmol) in THF (60 mL) was added at ⁇ 40 ° C., and the mixture was stirred for 2 hours.
  • Steps 1-5> Intermediate b1-4 was obtained by the same steps as in steps 1 to 5 of the NIR dye (B2) production method.
  • Step 6 Sodium hydride (60%, dispersed in liquid paraffin, 78.2 mg, 1.96 mmol) and THF (5 mL) were added to a nitrogen-substituted two-necked flask (50 mL), and diethyl cyanomethylphosphonate (297.9 mg) was added at 0 ° C. , 1.68 mmol) was added, and the mixture was stirred at room temperature for 10 minutes, then a solution of intermediate b2-5 (562.1 mg, 1.60 mmol) in THF (10 mL) was added at ⁇ 40 ° C., and the mixture was stirred for 30 minutes.
  • Tetraisopropyl orthotitamate (2.59 g, 9.13 mmol) was added dropwise to a mixed solution cooled to -40 ° C, and the mixture was stirred for 5 minutes, followed by mixing N-chlorosuccinimide and bis- (2-ethylhexyl) amine. The solution was added dropwise. The mixture was stirred at room temperature for 3 hours, and after completion of the reaction, a saturated aqueous potassium carbonate solution (18 mL) was added. It was subsequently diluted with ethyl acetate and filtered, and the resulting solution was extracted with ethyl acetate.
  • Step 1 Zinc bromide (9.00 g, 40.0 mmol) was placed in a flask, isobutylmagnesium bromide (1.0 MTH F solution, 40 mL, 40 mmol) was added at ⁇ 78 ° C. under a nitrogen atmosphere, and the mixture was stirred at room temperature for 2 hours.
  • Step 2> The intermediate acf2-1 (0.600 g, 3.06 mmol) was placed in a flask, dissolved in anhydrous diethyl ether (6.5 mL) under a nitrogen atmosphere, and t-butyllithium (pentane solution, 1.6 M, 1.6 M) at 0 ° C. 2.00 mL (3.21 mmol) was added, and the mixture was stirred at room temperature for 1 hour. A solution of iodine (0.81 g, 3.21 mmol) in diethyl ether (11 mL) was added at 0 ° C., and the mixture was stirred at room temperature for 1 hour.
  • Step 1 Zinc bromide (9.00 g, 40.0 mmol) was placed in a flask, isobutylmagnesium bromide (1.0 MTH F solution, 40 mL, 40 mmol) was added at ⁇ 78 ° C. under a nitrogen atmosphere, and the mixture was stirred at room temperature for 2 hours.
  • Step 2> The intermediate acf3-1 (2.65 g, 11.5 mmol) was placed in a flask, dissolved in anhydrous diethyl ether (23.8 mL) under a nitrogen atmosphere, and t-butyllithium (pentane solution, 1.6 M, 1.6 M) at 0 ° C. 7.55 mL (12.1 mmol) was added, and the mixture was stirred at room temperature for 1 hour. A solution of iodine (3.07 g, 12.1 mmol) in diethyl ether (40.8 mL) was added at 0 ° C., and the mixture was stirred at room temperature for 1 hour.
  • Steps 1-7> Intermediate a4-7 was obtained by the same steps as in steps 1 to 7 of the method for producing NIR dye (A1-4).
  • Step 1 Nitrogen-substituted eggplant flask (300 mL) with cis-1,2-cyclohexanedicarboxylic acid anhydride (10.0 g, 64.9 mmol), bis (2-ethylhexyl) amine (22 mL, 73.3 mmol), 1,4-dioxane (100 mL) was added, and the mixture was heated and stirred at 80 ° C. for 3 hours. After completion of the reaction, the mixture was concentrated, separated by hydrochloric acid and dichloromethane, and the obtained organic layer was dried over sodium sulfate and then concentrated to obtain a crude product of intermediate bcf3-1. The crude product was used as it was in the next reaction.
  • Example 22 Measurement of transmittance in dichloromethane
  • the NIR dyes (A1-1) to (A1-11), (B1) to (B3) obtained above, and the NIR dyes (Acf1) to (Acf4), (Bcf1). )-(Bcf3) was dissolved in dichloromethane, the light absorption spectrum having a wavelength of 300 to 1300 nm was measured, and the maximum absorption wavelength ⁇ max (A) DCM was obtained from the absorbance curve.
  • the NIR dyes (A1-1) to (A1-11) of the examples are more resistant to near-infrared light than the NIR dyes (Acf1) to (Acf4) of the comparative examples.
  • the NIR dyes (A1-2) to (A1-11) showed a longer wavelength of 50 nm or more and a maximum of 264 nm than the NIR dye (Acf1).
  • the maximum absorption wavelength in the near-infrared region can be greatly lengthened by directly bonding the unsaturated bonding group to.
  • the NIR dye (Acf4) having an allyl group into which the unsaturated bond is not directly bonded has a longer wavelength than that of the NIR dye (Acf1) by only about 10 nm.
  • the NIR dyes (B1) to (B3) of the examples have a higher light-shielding property with respect to near-infrared light than the NIR dyes (Bcf1) to (Bcf3) of the comparative examples. Further, since the NIR dyes (B1) to (B3) showed a longer wavelength of 100 nm or more and a maximum of 138 nm than the NIR dyes (Bcf1), the unsaturated bond group was directly bonded to the 3-position of the thiophene ring. It can be seen that the maximum absorption wavelength in the near-infrared region can be greatly lengthened.
  • the NIR dyes (Bcf2) to (Bcf3) having an alkyl group introduced at the 3-position of the thiophene ring have a longer wavelength than the NIR dye (Bcf1) by only about 30 nm.
  • Example 23 For NIR dyes (A1-1) to (A1-11) and (B1) to (B3), the coating solution obtained in the above test was applied onto a glass plate (D263; manufactured by SCHOTT, trade name) and dried. Therefore, an absorption layer having a film thickness of 1 ⁇ m could be obtained.
  • the optical filter having the configuration shown in FIG. 2 is manufactured by the following method.
  • a transparent substrate a glass substrate having a thickness of 0.21 mm or a glass substrate having a thickness of 0.2 mm (D263; manufactured by SCHOTT, trade name) made of CuO-containing borosilicate glass (manufactured by AGC, trade name: NF-50GX). Is used.
  • a dielectric multilayer film formed as follows is used as the reflective layer.
  • the dielectric multilayer film is formed by alternately laminating a total of 42 layers of, for example, TiO 2 film and SiO 2 film on one main surface of a glass substrate by a vapor deposition method.
  • the structure of the reflective layer is simulated by using the number of laminated dielectric multilayer films, the thickness of the TiO 2 film, and the thickness of the SiO 2 film as parameters, and in a spectral transmittance curve with an incident angle of 0 degrees, light having a wavelength of 850 to 1100 nm. It is designed so that the average transmittance of is 0.03%.
  • one or more of the transparent resin and the NIR dye (A1) are combined to form an absorption layer having a thickness of about 1.0 ⁇ m. Form. After that, seven layers of TiO 2 film and SiO 2 film are alternately laminated on the surface of the absorption layer by a vapor deposition method to form an antireflection layer, and an optical filter (NIR filter) is obtained.
  • NIR filter optical filter
  • the squarylium compound of the present invention is useful as a near-infrared absorbing dye because it can realize excellent light-shielding property against light in a long wavelength region among near-infrared light, and can be used as an optical filter for blocking near-infrared light. Applicable.
  • the optical filter of the present invention can be applied to an imaging device.
  • 10A, 10D, 10F, 10G Optical filter, 11, 11a, 11b ... Absorption layer, 12, 12a, 12b ... Reflective layer, 13 ... Transparent substrate, 14 ... Antireflection layer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Filters (AREA)

Abstract

本発明は、近赤外光の遮蔽性、特に波長600~1100nmの光の遮蔽性に優れる近赤外線吸収色素、光学フィルタ、および該光学フィルタを用いた色再現性に優れる撮像装置の提供を目的とする。本発明は、下記式(A1)で表されるスクアリリウム化合物に関する。 式(A1)中、R、R、R、Arはそれぞれ、明細書に記載された定義と同様である。

Description

スクアリリウム化合物、光学フィルタ、撮像装置
 本発明は、新規スクアリリウム化合物、近赤外線吸収色素として該化合物を含む光学フィルタ、該光学フィルタを備えた撮像装置に関する。
 固体撮像素子を用いた撮像装置には、色調を良好に再現し鮮明な画像を得るため、可視域の光(以下「可視光」ともいう)を透過し近赤外域の光(以下「近赤外光」ともいう)を遮蔽する近赤外カットフィルタが用いられる。近赤外カットフィルタにおいては、樹脂中に近赤外線吸収色素を分散させた吸収層や、近赤外光を反射する誘電体多層膜からなる反射層により近赤外光の遮蔽が行われる。
 このような近赤外カットフィルタに用いる近赤外線吸収色素として、スクアリリウム骨格とその両側にヘテロ芳香環構造を有するスクアリリウム化合物が知られている。例えば、特許文献1には、スクアリリウム骨格の両側にカルコゲン原子を含むヘテロアリール環を有し、ヘテロアリール環にアミノ基が結合した構造の近赤外線吸収色素が記載されている。
国際公開第2017/104283号
 ここで、近赤外カットフィルタに用いる近赤外線吸収色素には、近赤外光利用の普及に伴い、撮像装置における高精度での視感度補正の観点から、近赤外光のなかでも長波長領域での遮蔽性、特に波長600~1100nmの光の遮蔽性が求められている。
 本発明は、近赤外光の遮蔽性、特に波長600~1100nmの光の遮蔽性に優れる新規スクアリリウム化合物、光学フィルタ、および該光学フィルタを用いた色再現性に優れる撮像装置の提供を目的とする。
 本発明は、下記スクアリリウム化合物等に関する。
[1]下記式(A1)で表されるスクアリリウム化合物。
Figure JPOXMLDOC01-appb-C000006
[上記式における各記号の意味は下記のとおりである。
 RおよびRは、それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでよい、炭素数1~20のアルキル基である。RはRまたはArと連結して環を形成してもよい。RはRまたはArと連結して環を形成してもよい。
 Rは、置換基を有してもよい炭素数2以上のアルケニル基、置換基を有してもよい炭素数2以上のアルキニル基、置換基を有してもよい炭素数1以上のイミノ基、シアノ基、カルボニル構造を含み置換基を有してもよい炭素数1以上の有機基、置換基を有してもよい炭素数6~20のアリール基、または置換基を有してもよい炭素数3~13のヘテロアリール基である。RはArと連結して環を形成してもよい。
 Arは、ヘテロ原子を含んでもよい、炭素数3~14の芳香環を含む2価の基である。]
 本発明に係るスクアリリウム化合物は、アリール基、アルケニル基、アルキニル基等の不飽和結合を有する置換基が芳香環の特定位置に結合することで、共役系が側鎖にも導入され、近赤外線吸収領域の長波長化を実現できた。
 かかるスクアリリウム化合物によれば、長波長近赤外光の遮蔽性に優れる近赤外線吸収色素を提供できる。さらに、本発明によれば、該色素を用いた光学フィルタ、および該光学フィルタを用いた色再現性に優れる撮像装置を提供できる。
図1は実施形態の光学フィルタの一例を概略的に示す断面図である。 図2は実施形態の光学フィルタの別の一例を概略的に示す断面図である。 図3は実施形態の光学フィルタの別の一例を概略的に示す断面図である。 図4は実施形態の光学フィルタの別の一例を概略的に示す断面図である。
 以下、本発明の実施の形態について説明する。
 本明細書において、近赤外線吸収色素を「NIR色素」、紫外線吸収色素を「UV色素」と略記することもある。
 本明細書において、式(A1)で示される化合物を化合物(A1)という。他の式で表される化合物も同様である。化合物(A1)からなるNIR色素をNIR色素(A1)ともいい、他の色素についても同様である。また、例えば、式(1a)で表される基を基(1a)とも記し、他の式で表される基も同様である。
 本明細書において、数値範囲を表す「~」では、上下限を含む。
 本明細書において、特に断りのない限り、アルキル基は、直鎖状、分岐鎖状、環状またはこれらの構造を組み合わせた構造でもよい。
 ハロゲン原子としては、特に断りのない限り、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子が好ましい。
 本明細書において、特に断りのない限り、アリール基は芳香族化合物が有する芳香環、例えば、ベンゼン環、ナフタレン環、ビフェニル等を構成する炭素原子を介して結合する基をいう。また、ヘテロアリール基は、ヘテロ原子を有する芳香族化合物が有する芳香環、例えば、フラン環、チオフェン環、ピロール環等を構成する炭素原子あるいはヘテロ原子を介して結合する基をいう。
 本明細書において、スクアリリウム化合物とは、構造式において下記式(S2)で表す共鳴構造をとり得る下記式(S1)で表されるスクアリリウム骨格を有する化合物をいう。本明細書において、スクアリリウム骨格は式(S1)または式(S2)のいずれかで示される。
Figure JPOXMLDOC01-appb-C000007
<スクアリリウム化合物>
 本発明は、式(A1)に示されるスクアリリウム化合物(A1)を提供する。
 本発明のスクアリリウム化合物(A1)は、分子構造の中央にスクアリリウム骨格を有し、スクアリリウム骨格の左右に各1個の芳香環が結合した構造を有する。これにより、本発明のスクアリリウム化合物(A1)は、近赤外光を遮蔽する光学特性に優れる。芳香環におけるスクアリリウム骨格から最も近い位置には不飽和結合を有する置換基が結合する。これにより共役系が拡大され近赤外線吸収領域が長波長化される。具体的には、不飽和結合を有する置換基を有することで40~300nm程度の長波長化が可能となった。さらに芳香環のスクアリリウム骨格とは反対側にはアルキル基を2個有するアミノ基が結合している。これにより、本発明のスクアリリウム化合物(A1)は、可視光の透過性に優れる。
 以下、スクアリリウム化合物(A1)について詳細に説明する。スクアリリウム化合物(A1)は、以下の式(A1)で示される。
Figure JPOXMLDOC01-appb-C000008
 RおよびRは、それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでよい、炭素数1~20のアルキル基である。
 式(A1)中の2つのRは、スクアリリウム骨格の左右で異なってもよいが、製造容易性の観点から左右のRが同一であることが好ましい。R、R、Arについても同様である。また、これ以降の記号についても同様である。すなわち化学式中における2つの記号はスクアリリウム骨格の左右で異なってもよいが、製造容易性の観点から左右の記号が同一であることが好ましい。
 RはRまたはArと連結して環を形成してもよい。RはRまたはArと連結して環を形成してもよい。環としては員数3~6の脂環または芳香環が好ましい。また、該環は置換基を有していてもよい。
 RおよびRにおける置換基としては、ハロゲン原子、水酸基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、炭素数1~20のアルコキシ基が挙げられる。
 RおよびRにおける置換基としては、さらに、環状のアルキル基またはアリール基が挙げられる。アリール基としては、1~5個の置換基を有してもよいフェニル基または、1~7個の置換基を有してもよいナフチル基が好ましい。フェニル基およびナフチル基の水素原子を置換してもよい置換基としては、炭素-炭素原子間に不飽和結合または酸素原子を含んでよい炭素数1~12のアルキル基、もしくはアルコキシ基、またはアルキルアミノ基(アルキル基の炭素数は1~12)が挙げられる。フェニル基およびナフチル基は、非置換または、水素原子が1~3個置換されているのが好ましく、置換基としては、メチル基、t-ブチル基、ジメチルアミノ基、メトキシ基等が好ましい。
 RおよびRが、主鎖または側鎖に脂環または芳香環を含む場合、耐熱性や、NIR吸収波長の長波長化の点で好ましい。RおよびRが、主鎖または側鎖に脂環または芳香環を有しない場合、耐光性や、製造容易性や、樹脂および溶媒への溶解性の点で好ましい。脂環の炭素数としては3~10が好ましい。芳香環の炭素数は4~14が好ましい。
 RおよびRの炭素数としては1~20が挙げられる。RおよびRの炭素数は、直鎖状の場合2~20が好ましく、3~16がより好ましく、4~12がさらに好ましい。RおよびRの炭素数は、分岐鎖状の場合、3~20が好ましく、4~16がより好ましく、8~10がさらに好ましい。
 RおよびRが置換基を有する場合、および主鎖または側鎖に脂環または芳香環を含む場合、上記炭素数には置換基、脂環、芳香環の炭素数は含まれない。
 RおよびRは同一であっても異なってもよいが、製造容易性の点から同一であるのが好ましい。RおよびRは、樹脂および溶媒への溶解性の観点からは、いずれか一方が分岐鎖状であるのが好ましく、両方が分岐鎖状であるのがより好ましい。
 RおよびRが分岐鎖状の場合、分岐の数は特に制限されない。分岐の数は1~5が好ましく、1~3がより好ましい。樹脂および溶媒への溶解性および製造容易性の両観点から、分岐の位置は、β位が好ましい。また、一つの炭素原子から2つに分岐していてもよく3つに分岐していてもよい。
 RおよびRは、例えば、基(1b)~(5b)から選ばれる基がさらに好ましい。
 -CH(C2n+1  …(1b)
 -C(C2n+1  …(1c)
 -CH-CH(C2n+1  …(2b)
 -CH-C(C2n+1  …(2c)
 -(CH-CH(C2n+1  …(3b)
 -(CH-CH(C2n+1  …(4b)
 -(CH-CH  …(5b)
 ただし、式(1b)~(4b)においてnは1~10の整数であり、2~8が好ましく、2~4がより好ましい。式(1b)~(4b)における2個または3個のC2n+1は直鎖であっても分岐鎖であってもよく、同一であっても異なってもよい。式(5b)においてmは0~19の整数であり、1~19が好ましく、2~15がより好ましく、3~11がさらに好ましい。さらに、基(1b)~(5b)は炭素-炭素原子間に酸素原子を有してもよい。
 Rは、置換基を有してもよい炭素数2以上のアルケニル基、置換基を有してもよい炭素数2以上のアルキニル基、置換基を有してもよい炭素数1以上のイミノ基、シアノ基、カルボニル構造を含み置換基を有してもよい炭素数1以上の有機基、置換基を有してもよい炭素数6~20のアリール基、または置換基を有してもよい炭素数3~13のヘテロアリール基である。
 RはArと連結して環を形成してもよい。環としては員数5~7の環が好ましい。また、該環は置換基を有していてもよい。
 上記のように、Rは不飽和結合を有する置換基である。Rがヘテロアリール環に結合することで、スクアリリウム化合物の共役系が拡大され、近赤外線吸収領域が長波長化される。
 2つのRは、スクアリリウム骨格の左右で異なってもよいが、製造容易性の観点から左右のRが同一であることが好ましい。
 Rにおける置換基としては、ハロゲン原子、水酸基、カルボニル構造含有1価有機基、リン酸基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、チオール基、スルフィド基、炭素数1~20のアルコキシ基、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数3~20のヘテロアリール基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、シリル基、炭素数1~20のハロゲン化アルキル基が挙げられる。
 Rが置換基を有する場合、Rの炭素数には置換基の炭素数は含まれない。
 アルケニル基の炭素数は2以上であり、好ましくは2~30であり、より好ましくは2~22であり、さらに好ましくは2~14である。
 アルケニル基としては下記式(3-1)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000009
 R3a、R3b、R3cは、それぞれ独立して水素原子、ハロゲン原子、ホルミル基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、スルフィド基、炭素数1~20のアルコキシ基、炭素数1~20のアルキル基、炭素数6~20のアラルキル基、置換基を有してもよい炭素数6~20のアリール基、置換基を有してもよい炭素数3~20のヘテロアリール基、置換基を有してもよい炭素数2~20のアルケニル基、置換基を有してもよい炭素数2~20のアルキニル基、炭素数3~20のトリオルガノシリル基(トリメチルシリル基、トリフェニルシリル基、t-ブチルジフェニルシリル基等)、炭素数3~20のトリアルコキシシリル基(トリメトキシシリル基、ジメトキシエトキシシリル基等)、または炭素数1~20のハロゲン化アルキル基である。R3bはR3aまたはR3cと連結してヘテロ原子を含んでもよい員数3~6の環を形成してもよく、その場合、該環は置換基を有していてもよい。
 アリール基、ヘテロアリール基、アルケニル基、アルキニル基、R3bがR3aまたはR3cと連結して形成した環における置換基としては、ハロゲン原子、ホルミル基、カルボキシ基、スルホ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、スルフィド基、炭素数1~20のアルコキシ基、炭素数1~20のアルキル基、炭素数3~20のトリオルガノシリル基(トリメチルシリル基、トリフェニルシリル基、トリイソプロピルシリル基、t-ブチルジフェニルシリル基等)、炭素数3~20のトリアルコキシシリル基(トリメトキシシリル基、ジメトキシエトキシシリル基等)、または炭素数1~20のハロゲン化アルキル基が挙げられる。
 基(3-1)としては好ましくは下記構造が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 アルキニル基の炭素数は2以上であり、好ましくは2~30であり、より好ましくは2~22であり、さらに好ましくは2~14である。
 アルキニル基としては下記式(3-2)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000011
 R3dは水素原子、ハロゲン原子、ホルミル基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、スルフィド基、炭素数1~20のアルコキシ基、炭素数1~20のアルキル基、炭素数6~20のアラルキル基、置換基を有してもよい炭素数6~20のアリール基、置換基を有してもよい炭素数3~20のヘテロアリール基、置換基を有してもよい炭素数2~20のアルケニル基、置換基を有してもよい炭素数2~20のアルキニル基、炭素数3~20のトリオルガノシリル基(トリメチルシリル基、トリフェニルシリル基、トリイソプロピルシリル基、t-ブチルジフェニルシリル基等)、炭素数3~20のトリアルコキシシリル基(トリメトキシシリル基、ジメトキシエトキシシリル基等)、または炭素数1~20のハロゲン化アルキル基である。
 アリール基、ヘテロアリール基、アルケニル基、アルキニル基における置換基としては、ハロゲン原子、ホルミル基、カルボキシ基、スルホ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、スルフィド基、炭素数1~20のアルコキシ基、炭素数3~20のトリオルガノシリル基(トリメチルシリル基、トリフェニルシリル基、t-ブチルジフェニルシリル基等)、炭素数3~20のトリアルコキシシリル基(トリメトキシシリル基、ジメトキシエトキシシリル基等)、または炭素数1~20のハロゲン化アルキル基が挙げられる。
 基(3-2)としては好ましくは下記構造が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 イミノ基の炭素数は1以上であり、好ましくは1~30であり、より好ましくは1~22であり、さらに好ましくは1~14である。
 イミノ基としては下記式(3-3)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000013
 R3e、R3fは、それぞれ独立して水素原子、ハロゲン原子、水酸基、ホルミル基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、スルフィド基、炭素数1~20のアルコキシ基、炭素数1~20のアルキル基、炭素数6~20のアラルキル基、置換基を有してもよい炭素数6~20のアリール基、置換基を有してもよい炭素数3~20のヘテロアリール基、置換基を有してもよい炭素数2~20のアルケニル基、置換基を有してもよい炭素数2~20のアルキニル基、炭素数3~20のトリオルガノシリル基(トリメチルシリル基、トリフェニルシリル基、t-ブチルジフェニルシリル基等)、炭素数3~20のトリアルコキシシリル基(トリメトキシシリル基、ジメトキシエトキシシリル基等)、または炭素数1~20のハロゲン化アルキル基である。R3eとR3fは連結してヘテロ原子を含んでもよい員数3~6の環を形成してもよく、その場合、該環は置換基を有していてもよい。
 アリール基、ヘテロアリール基、アルケニル基、アルキニル基、R3eとR3fが連結して形成した環における置換基としては、ハロゲン原子、ホルミル基、カルボキシ基、スルホ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、スルフィド基、炭素数1~20のアルコキシ基、炭素数1~20のアルキル基、炭素数3~20のトリオルガノシリル基(トリメチルシリル基、トリフェニルシリル基、t-ブチルジフェニルシリル基等)、炭素数3~20のトリアルコキシシリル基(トリメトキシシリル基、ジメトキシエトキシシリル基等)、または炭素数1~20のハロゲン化アルキル基が挙げられる。
 基(3-3)としては好ましくは下記構造が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 シアノ基は下記式(3-4)で表される基である。
Figure JPOXMLDOC01-appb-C000015
 カルボニル構造を含み置換基を有してもよい炭素数1以上の有機基の炭素数は1以上であり、好ましくは1~30であり、より好ましくは1~20であり、さらに好ましくは1~10である。
 かかる有機基としては下記式(3-5)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000016
 R3gは水素原子、水酸基、シアノ基、アミノ基、N-置換アミノ基、アルコキシカルボニル基、スルフィド基、炭素数1~20のアルコキシ基、炭素数1~20のアルキル基、炭素数6~20のアラルキル基、置換基を有してもよい炭素数6~20のアリール基、置換基を有してもよい炭素数3~20のヘテロアリール基、置換基を有してもよい炭素数2~20のアルケニル基、置換基を有してもよい炭素数2~20のアルキニル基、炭素数3~20のトリオルガノシリル基(トリメチルシリル基、トリフェニルシリル基、t-ブチルジフェニルシリル基等)、炭素数3~20のトリアルコキシシリル基(トリメトキシシリル基、ジメトキシエトキシシリル基等)、または炭素数1~20のハロゲン化アルキル基である。
 アリール基、ヘテロアリール基、アルケニル基、アルキニル基における置換基としては、ハロゲン原子、ホルミル基、カルボキシ基、スルホ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、スルフィド基、炭素数1~20のアルコキシ基、炭素数1~20のアルキル基、炭素数3~20のトリオルガノシリル基(トリメチルシリル基、トリフェニルシリル基、t-ブチルジフェニルシリル基等)、炭素数3~20のトリアルコキシシリル基(トリメトキシシリル基、ジメトキシエトキシシリル基等)、または炭素数1~20のハロゲン化アルキル基が挙げられる。
 基(3-5)としては好ましくは下記構造が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 アリール基の炭素数は6~30であり、好ましくは6~20であり、より好ましくは6~10である。
 アリール基としては下記式(3-6)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000018
 R3h、R3i、R3j、R3k、R3lは、それぞれ独立して水素原子、ハロゲン原子、水酸基、ホルミル基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、スルフィド基、炭素数1~20のアルコキシ基、炭素数1~20のアルキル基、炭素数6~20のアラルキル基、置換基を有してもよい炭素数6~20のアリール基、置換基を有してもよい炭素数3~20のヘテロアリール基、置換基を有してもよい炭素数2~20のアルケニル基、置換基を有してもよい炭素数2~20のアルキニル基、炭素数3~20のトリオルガノシリル基(トリメチルシリル基、トリフェニルシリル基、t-ブチルジフェニルシリル基等)、炭素数3~20のトリアルコキシシリル基(トリメトキシシリル基、ジメトキシエトキシシリル基等)、または炭素数1~20のハロゲン化アルキル基である。
 R3hとR3i、R3iとR3j、R3jとR3k、R3kとR3lは互いに連結してヘテロ原子を含んでもよい員数3~6の環を形成してもよく、その場合、該環は置換基を有していてもよい。
 アリール基、ヘテロアリール基、アルケニル基、アルキニル基、R3hとR3i、R3iとR3j、R3jとR3k、R3kとR3lが連結して形成した環における置換基としては、ハロゲン原子、ホルミル基、カルボキシ基、スルホ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、スルフィド基、炭素数1~20のアルコキシ基、炭素数1~20のアルキル基、炭素数3~20のトリオルガノシリル基(トリメチルシリル基、トリフェニルシリル基、t-ブチルジフェニルシリル基等)、炭素数3~20のトリアルコキシシリル基(トリメトキシシリル基、ジメトキシエトキシシリル基等)、または炭素数1~20のハロゲン化アルキル基が挙げられる。
 基(3-6)としては好ましくは下記構造が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 ヘテロアリール基の炭素数は3~30であり、好ましくは3~20であり、より好ましくは3~10である。
 ヘテロアリール基としては下記式(3-7)~(3-9)のいずれかで表される基が好ましい。
Figure JPOXMLDOC01-appb-C000020
 X3a、X3b、X3c、X3d、X3eは、それぞれ独立して、NまたはCR3mであり、少なくとも一つはNである。R3mは水素原子、ハロゲン原子、水酸基、ホルミル基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、スルフィド基、炭素数1~20のアルコキシ基、炭素数1~20のアルキル基、炭素数6~20のアラルキル基、置換基を有してもよい炭素数6~20のアリール基、置換基を有してもよい炭素数3~20のヘテロアリール基、置換基を有してもよい炭素数2~20のアルケニル基、置換基を有してもよい炭素数2~20のアルキニル基、炭素数3~20のトリオルガノシリル基(トリメチルシリル基、トリフェニルシリル基、t-ブチルジフェニルシリル基等)、炭素数3~20のトリアルコキシシリル基(トリメトキシシリル基、ジメトキシエトキシシリル基等)、または炭素数1~20のハロゲン化アルキル基である。
 X3a、X3b、X3c、X3d、X3eがCR3mである場合、隣り合うX3a~X3eは互いに連結してヘテロ原子を含んでもよい員数3~6の環Ar30、Ar31、Ar32、Ar33を形成してもよく、その場合、該環は置換基を有していてもよい。
 アリール基、ヘテロアリール基、アルケニル基、アルキニル基、環Ar30、Ar31、Ar32、Ar33における置換基としては、ハロゲン原子、ホルミル基、カルボキシ基、スルホ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、スルフィド基、炭素数1~20のアルコキシ基、炭素数1~20のアルキル基、炭素数3~20のトリオルガノシリル基(トリメチルシリル基、トリフェニルシリル基、t-ブチルジフェニルシリル基等)、炭素数3~20のトリアルコキシシリル基(トリメトキシシリル基、ジメトキシエトキシシリル基等)、または炭素数1~20のハロゲン化アルキル基が挙げられる。
 基(3-7)としては好ましくは下記構造が挙げられる。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 X3f、X3g、X3hは、それぞれ独立してNまたはCR3nである。Y3aはS、OまたはNR3oである。
 R3nはおよびR3oはそれぞれ独立に、水素原子、ハロゲン原子、水酸基、ホルミル基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、スルフィド基、炭素数1~20のアルコキシ基、炭素数1~20のアルキル基、炭素数6~20のアラルキル基、置換基を有してもよい炭素数6~20のアリール基、置換基を有してもよい炭素数3~20のヘテロアリール基、置換基を有してもよい炭素数2~20のアルケニル基、置換基を有してもよい炭素数2~20のアルキニル基、炭素数3~20のトリオルガノシリル基(トリメチルシリル基、トリフェニルシリル基、t-ブチルジフェニルシリル基等)、炭素数3~20のトリアルコキシシリル基(トリメトキシシリル基、ジメトキシエトキシシリル基等)、または炭素数1~20のハロゲン化アルキル基である。
 X3f、X3g、X3hがCR3nであり、Y3aがNR3oである場合、隣り合うX3f、X3g、X3h、Y3aは互いに連結してヘテロ原子を含んでもよい員数3~6の環Ar34、Ar35、Ar36を形成してもよく、その場合、該環は置換基を有していてもよい。
 アリール基、ヘテロアリール基、アルケニル基、アルキニル基、環Ar34、Ar35、Ar36における置換基としては、ハロゲン原子、ホルミル基、カルボキシ基、スルホ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、スルフィド基、炭素数1~20のアルコキシ基、炭素数1~20のアルキル基、炭素数3~20のトリオルガノシリル基(トリメチルシリル基、トリフェニルシリル基、t-ブチルジフェニルシリル基等)、炭素数3~20のトリアルコキシシリル基(トリメトキシシリル基、ジメトキシエトキシシリル基等)、または炭素数1~20のハロゲン化アルキル基が挙げられる。
 基(3-8)としては好ましくは下記構造が挙げられる。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 X3i、X3j、X3kは、それぞれ独立してNまたはCR3pである。Y3bはS、OまたはNR3qである。R3pおよびR3qは、それぞれ独立して水素原子、ハロゲン原子、水酸基、ホルミル基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、スルフィド基、炭素数1~20のアルコキシ基、炭素数1~20のアルキル基、炭素数6~20のアラルキル基、置換基を有してもよい炭素数6~20のアリール基、置換基を有してもよい炭素数3~20のヘテロアリール基、置換基を有してもよい炭素数2~20のアルケニル基、置換基を有してもよい炭素数2~20のアルキニル基、炭素数3~20のトリオルガノシリル基(トリメチルシリル基、トリフェニルシリル基、t-ブチルジフェニルシリル基等)、炭素数3~20のトリアルコキシシリル基(トリメトキシシリル基、ジメトキシエトキシシリル基等)、または炭素数1~20のハロゲン化アルキル基である。
 X3i、X3j、X3kがCR3pであり、Y3bがNR3qである場合、隣り合うX3i、X3j、X3k、Y3bは互いに連結してヘテロ原子を含んでもよい員数3~6の環Ar37、Ar38、Ar39を形成してもよく、その場合、該環は置換基を有していてもよい。
 アリール基、ヘテロアリール基、アルケニル基、アルキニル基、環Ar37、Ar38、Ar39における置換基としては、ハロゲン原子、ホルミル基、カルボキシ基、スルホ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、スルフィド基、炭素数1~20のアルコキシ基、炭素数1~20のアルキル基、炭素数3~20のトリオルガノシリル基(トリメチルシリル基、トリフェニルシリル基、t-ブチルジフェニルシリル基等)、炭素数3~20のトリアルコキシシリル基(トリメトキシシリル基、ジメトキシエトキシシリル基等)、または炭素数1~20のハロゲン化アルキル基が挙げられる。
 基(3-9)としては好ましくは下記構造が挙げられる。
Figure JPOXMLDOC01-appb-C000025
 Ar1は、ヘテロ原子を含んでもよい、炭素数3~14の芳香環を含む2価の基である。Ar1は、好ましくは、炭素数6~14の芳香族炭化水素環を含む2価の基、または炭素数3~13のヘテロアリール環を含む2価の基である。
 芳香族炭化水素環は、単環でも多環でも縮環でもよく、単環すなわちベンゼン環が好ましい。
 ヘテロアリール環は、単環でも多環でも縮環でもよく、5~6員環の単環、または、2~3つの5~6員環が縮合した縮環が挙げられる。縮環としては、2つの5員環の縮環、5員環と6員環の縮環、3つの5員環の縮環が好ましい。
 ヘテロアリール環におけるヘテロ原子としては、窒素原子、硫黄原子、酸素原子が好ましい。Arは、ヘテロ原子を1~3個有することが好ましい。ヘテロ原子を2以上含む場合、同一でも異なっていてもよい。
 ヘテロアリール環としては、製造容易性の観点から、ピロール環、チオフェン環、フラン環、イミダゾール環、オキサゾール環、チアゾール環、チエノチオフェン環が特に好ましい。
 Arは、上記R以外に1以上の置換基を有してもよい。かかる置換基としては、水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボニル構造含有1価有機基、リン酸基、シリル基、チオール基、スルフィド基、アミド構造含有1価有機基、スルホンアミド基、ウレア基、ウレタン構造含有1価有機基、置換基を有してもよい炭素数1~14のアルキル基、置換基を有してもよい炭素数2~14のアルケニル基、置換基を有してもよい炭素数2~12のアルキニル基、置換基を有してもよい炭素数6~20のアリール基、置換基を有してもよい炭素数3~13のヘテロアリール基、置換基を有してもよい炭素数1~12のアルコキシ基、置換基を有してもよい炭素数2~13のアシルオキシ基、または、―N(R47(R47は水素原子または置換基を有してもよい炭素数1~15のアルキル基である。)が挙げられる。
 スクアリリウム化合物(A1)としては、2つの5員環が縮合したヘテロアリール環を有する下記式(A2)で表されるスクアリリウム化合物、または、5員環のヘテロアリール環を有する下記式(A3)で表されるスクアリリウム化合物が好ましい。
Figure JPOXMLDOC01-appb-C000026
 R~Rは式(A1)におけるR~Rと好ましい態様を含めて同様である。
 XはCRまたはNである。
 Rは水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボニル構造含有1価有機基、リン酸基、シリル基、チオール基、スルフィド基、アミド構造含有1価有機基、スルホンアミド基、ウレア基、ウレタン構造含有1価有機基、置換基を有してもよい炭素数1~14のアルキル基、置換基を有してもよい炭素数2~14のアルケニル基、置換基を有してもよい炭素数2~12のアルキニル基、置換基を有してもよい炭素数6~20のアリール基、置換基を有してもよい炭素数3~13のヘテロアリール基、置換基を有してもよい炭素数1~12のアルコキシ基、置換基を有してもよい炭素数2~13のアシルオキシ基、または、―N(R47(R47は水素原子または置換基を有してもよい炭素数1~15のアルキル基である。)である。
 Rが置換基を有してもよい炭素数1~14のアルキル基、置換基を有してもよい炭素数2~14のアルケニル基、置換基を有してもよい炭素数2~12のアルキニル基、置換基を有してもよい炭素数6~20のアリール基、置換基を有してもよい炭素数3~13のヘテロアリール基、置換基を有してもよい炭素数1~12のアルコキシ基、置換基を有してもよい炭素数2~13のアシルオキシ基、または、―N(R47である場合、RはR~Rのいずれかと互いに連結して員数3~6の環を形成してもよい。また、当該環は置換基を有してもよい。
 Rにおける置換基としては、ハロゲン原子、水酸基、カルボニル構造含有1価有機基、リン酸基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、チオール基、スルフィド基、炭素数1~20のアルコキシ基、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数3~20のヘテロアリール基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、シリル基、炭素数1~20のハロゲン化アルキル基が挙げられる。
 Rが置換基を有する場合、Rの炭素数には置換基の炭素数は含まれない。
 Rにおけるハロゲン原子としてはフッ素原子が好ましい。
 Rにおけるカルボニル構造含有1価有機基としては、-C(=O)-R41が好ましい。R41は水素原子、置換基を有してもよい炭素数1~15のアルキル基、または置換基を有してもよい炭素数1~15のアルコキシ基であり、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、イソプロピル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ヘキシルオキシ基、オクチルオキシ基、イソプロポキシ基、イソブトキシ基、2-エチルヘキシルオキシ基が好ましい。
 Rにおけるシリル基としては-Si(R42が好ましい。R42は、水素原子または置換基を有してもよい炭素数1~15のアルキル基であり、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、イソプロピル基、t-ブチル基、2-エチルヘキシル基が好ましい。3つのR42は同一でも異なっていてもよい。
 Rにおけるスルフィド基としては-SR43が好ましい。R43は、水素原子または置換基を有してもよい炭素数1~15のアルキル基であり、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、イソプロピル基、t-ブチル基、2-エチルヘキシル基が好ましい。
 Rにおけるアミド構造含有1価有機基としては、-C(=O)-NH-R44が好ましい。R44は、水素原子または置換基を有してもよい炭素数1~15のアルキル基であり、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、イソプロピル基、t-ブチル基、2-エチルヘキシル基が好ましい。
 Rにおけるスルホンアミド基としては、-SO-N(R45が好ましい。R45は、水素原子または置換基を有してもよい炭素数1~15のアルキル基であり、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、イソプロピル基、t-ブチル基、2-エチルヘキシル基が好ましい。2つのR45は同一でも異なっていてもよい。
 Rにおけるウレタン構造含有1価有機基としては、-NH-C(=O)O-R46が好ましい。R46は、水素原子または置換基を有してもよい炭素数1~15のアルキル基であり、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、イソプロピル基、t-ブチル基、2-エチルヘキシル基が好ましい。
 Rにおける炭素数1~14のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、イソプロピル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、が好ましい。
 Rにおける炭素数2~14のアルケニル基としては、ビニル基、1-プロペニル基、イソブテニル基、スチリル基、2-フルオロビニル基、2,2-ジフルオロビニル基、3,3,3-トリフルオロプロペニル基が好ましい。
 Rにおける炭素数2~12のアルキニル基としては、アセチレニル基、1-プロピニル基、トリメチルシリルエチニル基、トリエチルシリルエチニル基、トリイソプロピルシリルエチニル基、t-ブチルジメチルシリルエチニル基が好ましい。
 Rにおける炭素数6~20のアリール基としては、フェニル基、4-メトキシフェニル基、3,4,5-トリフルオロフェニル基、4-トリフルオロメチルフェニル基、1-ナフチル基、2-ナフチル基、2,5-ジメチルフェニル基、3-ニトロフェニル基が好ましい。
 Rにおける炭素数3~13のヘテロアリール基としては、ピリジル基、ピリミジル基、キノリル基、フリル基、チエニル基、オキサゾリル基、イミダゾリル基、チアゾリル基、ベンズオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基が好ましい。
 Rにおける炭素数1~15のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ヘキシルオキシ基、オクチルオキシ基、イソプロポキシ基、イソブトキシ基、2-エチルヘキシルオキシ基が好ましい。
 Rにおける炭素数2~13のアシルオキシ基としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ベンゾイルオキシ基が好ましい。
 Rにおける―N(R47において2つのR47は同一でも異なっていてもよい。また、2つのR47同士が連結して環を形成してもよい。―N(R47としてはジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、エチルイソプロピルアミノ基、モルホリノ基が好ましい。
 XはS、NR、またはOである。Rは水素原子、カルボニル構造含有1価有機基、スルホ基、または置換基を有してもよい炭素数1~15のアルキル基であり、水素原子、メチル基、エチル基、イソブチル基、2-エチルヘキシル基、ベンジル基、t-ブトキシカルボニル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、2,2,2-トリエトキシカルボニル基、2―ニトロベンゼンスルホニル基が好ましい。
 Rが置換基を有してもよい炭素数1~15のアルキル基である場合、RはR~Rのいずれかと連結して員数3~6の環を形成してもよい。
 XはS、NR、またはOである。Rは水素原子、カルボニル構造含有1価有機基、スルホ基、または置換基を有してもよい炭素数1~15のアルキル基であり、水素原子、メチル基、エチル基、イソブチル基、2-エチルヘキシル基、ベンジル基、t-ブトキシカルボニル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、2,2,2-トリエトキシカルボニル基、2―ニトロベンゼンスルホニル基が好ましい。
 Rが置換基を有してもよい炭素数1~15のアルキル基である場合、RはRと連結して員数3~6の環を形成してもよい。
 式(A2)において、X,X,Xとしては、以下の組み合わせが挙げられる。
(X,X,X)=(CR,S,S)、(CR,S,O)、(CR,S,NR)、(CR,O,S)、(CR,O,O)、(CR,O,NR)、(CR,NR,S)、(CR,NR,O)、(CR,NR,NR)、(N,S,S)、(N,S,O)、(N,S,NR)、(N,O,S)、(N,O,O)、(N,O,NR)、(N,NR,S)、(N,NR,O)、(N,NR,NR)。
 長波長化の観点から、好ましくは、(X,X,X)=(CR,S,S)、(CR,S,O)、(CR,O,S)、(CR,O,O)、(CR,NR,S)、(CR,NR,O)であり、より好ましくは、(X,X,X)=(CR,S,S)、(CR,S,O)、(CR,NR,S)、(CR,NR,O)である。
 式(A3)において、X,Xとしては、以下の組み合わせが挙げられる。
(X,X)=(CR,S)、(CR,NR)、(CR,O)、(N,S)、(N,NR)、(N,O)。
 長波長化の観点から、好ましくは、(X,X)=(CR,S)、(CR,NR)、(CR,O)であり、より好ましくは(CR,S)、(CR,O)である。
 式(A2)で表されるスクアリリウム化合物としては、合成容易性に加えて、5員環同士の縮環骨格の中でもより長波長領域を吸収できると予測される観点から、下記式(A4)で表されるスクアリリウム化合物が好ましい。
Figure JPOXMLDOC01-appb-C000027
 R~Rは式(A1)におけるR~Rと好ましい態様を含めて同様である。
 Rは式(A2)におけるRと好ましい態様を含めて同様である。
 式(A3)で表されるスクアリリウム化合物としては、合成容易性に加えて、5員環骨格の中でもより長波長領域を吸収できると予測される観点から、下記式(A5)で表されるスクアリリウム化合物が好ましい。
Figure JPOXMLDOC01-appb-C000028
 R1~R3は式(A1)におけるR1~R3と好ましい態様を含めて同様である。
 R4は式(A3)におけるR4と好ましい態様を含めて同様である。
 スクアリリウム化合物(A4)としては、より具体的には、R~Rが、以下の表1に示される化合物(表1には、そのスクアリリウム化合物(A4)としての略号を併せて示す。)が挙げられる。表1において、R~Rは、式が示された基である場合、式の記号を示す。表1に示す全ての化合物において、R~Rは式の左右で全て同一である。
Figure JPOXMLDOC01-appb-T000029
 スクアリリウム化合物(A5)としては、より具体的には、R~Rが、以下の表2に示される化合物(表2には、そのスクアリリウム化合物(A5)としての略号を併せて示す。)が挙げられる。表2において、R~Rは、式が示された基である場合、式の記号を示す。表2に示す全ての化合物において、R~Rは式の左右で全て同一である。
Figure JPOXMLDOC01-appb-T000030
 スクアリリウム化合物(A1)は、ジクロロメタン溶液中での最大吸収波長λmax(A1)が、概ね600~1100nmの範囲にある。
 最大吸収波長λmax(A1)がかかる範囲にあることで近赤外領域の中でも長波長化領域に吸収を有し、600~1100nmの近赤外光を吸収することが可能である。
 また、スクアリリウム化合物(A2)は、ジクロロメタン溶液中での最大吸収波長λmax(A2)が、概ね700~1100nmの範囲にある。
 スクアリリウム化合物(A3)は、ジクロロメタン溶液中での最大吸収波長λmax(A3)が、概ね800~1100nmの範囲にある。
 スクアリリウム化合物(A4)は、ジクロロメタン溶液中での最大吸収波長λmax(A4)が、概ね650~950nmの範囲にある。
 スクアリリウム化合物(A5)は、ジクロロメタン溶液中での最大吸収波長λmax(A5)が、概ね700~950nmの範囲にある。
 スクアリリウム化合物(A1)の製造方法について、スクアリリウム化合物(A2)の製造方法およびスクアリリウム化合物(A3)の製造方法を用いて説明するが、スクアリリウム化合物(A1)の製造方法はこれらに限定されない。
 スクアリリウム化合物(A2)を得る方法をスキーム(F-A2)に示す。
Figure JPOXMLDOC01-appb-C000031
 スクアリリウム化合物(A3)を得る方法をスキーム(F-A3)に示す。
Figure JPOXMLDOC01-appb-C000032
 スキーム(F-A2)および(F-A3)において、工程A(step(A))はカルボン酸をジアルキルアミンに変換する反応であり、詳細を下記スキームに示す。
 下記スキームにおいてHetArはヘテロアリールを意味する。また、azideはジフェニルホスホリルアジドが好ましい。N alkylationは、ハロゲン化アルキルと塩基を用いるSN2反応または、アルデヒドと還元剤を用いる還元的アミノ化反応が好ましい。
Figure JPOXMLDOC01-appb-C000033
 スキーム(F-A2)および(F-A3)において、工程B(step(B))はハロゲンを各種置換基に変換する反応であり、クロスカップリング反応、Heck反応、ホルミル化、およびホルミル化により得られるアルデヒドに対するWittig反応、Knevenagel反応、ヘンリー反応、アルキル金属反応剤の求核付加反応等を利用することができるが、これらに限られない。
 スキーム(F-A2)の出発原料(a2-1)は、例えば公知の化合物から下記合成方法により得ることができる。
 出発原料(a2-1)において、X、X、Rが下記である、化合物の合成方法:
化合物(a2-1-1):(X、X、R)=(-CH、S、-CHCH
化合物(a2-1-2):(X、X、R)=(-CH、S、H)
Figure JPOXMLDOC01-appb-C000034
 出発原料(a2-1)において、X、X、Rが下記である、化合物の合成方法:
化合物(a2-1-3):(X、X、R)=(-CH、O、-CHCH
化合物(a2-1-4):(X、X、R)=(-CH、O、H)
Figure JPOXMLDOC01-appb-C000035
 出発原料(a2-1)において、X、X、(X)、Rが下記である、化合物の合成方法:化合物(a2-1-5):(X、X、R)=(-CH、-NH、-CHCH)化合物(a2-1-6):(X、X、R)=(-CH、-NH、H)化合物(a2-1-7):(X、X、X、R)=(-CH、-NH、-NH、-CHCH)化合物(a2-1-8):(X、X、X、R)=(-CH、-NH、-NH、H)
Figure JPOXMLDOC01-appb-C000036
 出発原料(a2-1)において、X、X、Rが下記である、化合物の合成方法:
化合物(a2-1-9):(X、X、R)=(N、O、-CHCH
化合物(a2-1-10):(X、X、R)=(N、O、H)
Figure JPOXMLDOC01-appb-C000037
 出発原料(a2-1)において、X、X、Rが下記である、化合物の合成方法:
化合物(a2-1-11):(X、X、R)=(N、-NH、-CHCH
化合物(a2-1-12):(X、X、R)=(N、-NH、H)
Figure JPOXMLDOC01-appb-C000038
 出発原料(a2-1)において、X、X、Rが下記である、化合物の合成方法:
化合物(a2-1-13):(X、X、R)=(N、S、-CHCH
化合物(a2-1-14):(X、X、R)=(N、S、H)
Figure JPOXMLDOC01-appb-C000039
 スキーム(F-A3)の出発原料(a3-1)は例えば下記合成方法により得ることができる。
Figure JPOXMLDOC01-appb-C000040
 本発明のスクアリリウム化合物(A1)は、近赤外線吸収色素として有用である。
<光学フィルタ>
 本発明の一実施形態の光学フィルタ(以下、「本フィルタ」とも記載する。)は、近赤外線吸収色素と樹脂とを含有する吸収層を備え、近赤外線吸収色素として本発明のスクアリリウム化合物(A1)を含む。以下、スクアリリウム化合物(A1)からなる近赤外線吸収色素を「NIR色素(A1)」とも記載する。
 本フィルタは、上記吸収層に加えて、誘電体多層膜からなる反射層をさらに有してもよい。以下の、説明において「反射層」は、誘電体多層膜からなる反射層を指す。
 本フィルタは、透明基板をさらに有してもよい。この場合、吸収層は透明基板の主面上に設けられる。本フィルタが透明基板と吸収層および反射層を有する場合、吸収層および反射層は、透明基板の主面上に設けられる。本フィルタは、吸収層と反射層を、透明基板の同一主面上に有してもよく、異なる主面上に有してもよい。吸収層と反射層を同一主面上に有する場合、これらの積層順は特に限定されない。
 本フィルタは、また他の機能層を有してもよい。他の機能層としては、例えば可視光の透過率損失を抑制する反射防止層が挙げられる。特に、吸収層が最表面の構成をとる場合には、吸収層と空気との界面で反射による可視光透過率損失が発生するため、吸収層上に反射防止層を設けるとよい。
 次に、図面を用いて本フィルタの構成例について説明する。
 図1は、吸収層11からなる光学フィルタ10Aを示す断面図である。吸収層11は、NIR色素(A1)と樹脂とを含有する層であり得る。光学フィルタ10Aにおいて、吸収層11はフィルムや基板の形態を取り得る。
 図2は、透明基板と吸収層と反射層を有する実施形態の光学フィルタの一例を概略的に示す断面図である。光学フィルタ10Dは、透明基板13と透明基板13の一方の主面上に配置された吸収層11と透明基板13の他方の主面上に設けられた反射層12を有する。なお、「透明基板13の一方の主面(上)に、吸収層11を備える」とは、透明基板13に接触して吸収層11が備わる場合に限らず、透明基板13と吸収層11との間に、別の機能層が備わる場合も含み、以下の構成も同様である。
 図3は、透明基板13の両主面に吸収層11aおよび11bを備え、さらに吸収層11aおよび11bの主面上に、反射層12aおよび12bを備えた光学フィルタ10Fの構成例である。
 図4は、図2に示す光学フィルタ10Dの吸収層11の主面上に反射防止層14を備えた光学フィルタ10Gの構成例である。反射防止層14は、吸収層11の最表面だけでなく、吸収層11の側面全体も覆う構成でもよい。その場合、吸収層11の防湿の効果を高められる。
 以下、吸収層、反射層、透明基板および反射防止層について説明する。
(吸収層)
 吸収層はNIR色素(A1)を含有する。吸収層は、本発明の効果を阻害しない範囲であれば、さらにNIR色素(A1)以外のNIR色素(以下、その他のNIR色素という。)を含有してよい。
 吸収層中におけるNIR色素(A1)の含有量は、NIR色素(A1)とその他のNIR色素との合計量で樹脂100質量部に対して、0.1~30質量部が好ましい。0.1質量部以上で所望の近赤外線吸収能が得られ、30質量部以下で、近赤外線吸収能の低下やヘイズ値の上昇等が抑制される。また、NIR色素(A1)とその他のNIR色素の合計の含有量は、0.5~25質量部がより好ましく、1~20質量部がさらに好ましい。
 その他のNIR色素としては、その最大吸収波長が660~1100nmの範囲にあり、該最大吸収波長とNIR色素(A1)の最大吸収波長λmax(A1))との間に所定の差があるものが好ましい。両者の最大吸収波長の差は、30nm以上が好ましく、50nm以上がより好ましく、80nm以上がさらに好ましく、100nm以上が特に好ましい。
 その他のNIR色素としては、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、ジチオール金属錯体系化合物、ジイモニウム系化合物、ポリメチン系化合物、フタリド化合物、ナフトキノン系化合物、アントラキノン系化合物、インドフェノール系化合物、およびNIR色素(A)以外のスクアリリウム系化合物が挙げられる。その他のNIR色素は1種を単独で使用してもよく、2種以上を混合して使用してもよい。
 吸収層は、NIR色素(A1)と樹脂を含有し、典型的には、樹脂中にNIR色素(A1)が均一に溶解または分散した層または(樹脂)基板である。樹脂は、通常、透明樹脂であり、吸収層は、NIR色素(A1)以外にその他のNIR色素を含有してもよい。さらに、吸収層は、NIR色素以外の色素、特にはUV色素を含有してもよい。
 UV色素は、具体例に、オキサゾール系、メロシアニン系、シアニン系、ナフタルイミド系、オキサジアゾール系、オキサジン系、オキサゾリジン系、ナフタル酸系、スチリル系、アントラセン系、環状カルボニル系、トリアゾール系等の色素が挙げられる。この中でも、オキサゾール系、メロシアニン系の色素が好ましい。また、UV色素は、吸収層に1種を単独で用いてもよく、2種以上を併用してもよい。
 透明樹脂としては、アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、およびポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル樹脂等が挙げられる。これらの樹脂は1種を単独で使用してもよく、2種以上を混合して使用してもよい。
 上記透明樹脂は、透明性、NIR色素(A1)の溶解性、ならびに耐熱性の観点からは、ガラス転移点(Tg)の高い樹脂が好ましい。具体的には、ポリエステル樹脂、ポリカーボネート樹脂、ポリエーテルサルホン樹脂、ポリアリレート樹脂、ポリイミド樹脂、およびエポキシ樹脂から選ばれる1種以上が好ましく、ポリエステル樹脂、ポリイミド樹脂から選ばれる1種以上がより好ましい。
 吸収層は、さらに、本発明の効果を損なわない範囲で、密着性付与剤、色調補正色素、レベリング剤、帯電防止剤、熱安定剤、光安定剤、酸化防止剤、分散剤、難燃剤、滑剤、可塑剤等の任意成分を有してもよい。
 吸収層は、例えば、NIR色素(A1)を含む色素と、樹脂または樹脂の原料成分と、必要に応じて配合される各成分とを、溶媒に溶解または分散させて塗工液を調製し、これを基材に塗工し乾燥させ、さらに必要に応じて硬化させて形成できる。上記基材は、本フィルタに任意に含まれる透明基板でもよいし、吸収層を形成する際にのみ使用する剥離性の基材でもよい。また、溶媒は、安定に分散できる分散媒または溶解できる溶媒であればよい。
 また、塗工液は、微小な泡によるボイド、異物等の付着による凹み、乾燥工程でのはじき等の改善のため界面活性剤を含んでもよい。さらに、塗工液の塗工には、例えば、浸漬コーティング法、キャストコーティング法、またはスピンコート法等を使用できる。上記塗工液を基材上に塗工後、乾燥させることにより吸収層が形成される。また、塗工液が樹脂の原料成分を含有する場合、さらに熱硬化、光硬化等の硬化処理を行う。
 また、吸収層は、押出成形によりフィルム状に製造可能でもあり、このフィルムを他の部材に積層し熱圧着等により一体化させてもよい。例えば、本フィルタが透明基板を含む場合、このフィルムを透明基板上に貼着してもよい。
 本フィルタは、吸収層を2層以上有してもよい。吸収層が2層以上で構成される場合、各層は同じでも異なってもよい。吸収層が2層以上の構成の場合、一方の層が、NIR色素を含む樹脂からなる近赤外線吸収層、もう一方の層が、UV色素を含む樹脂からなる紫外線吸収層とする例が挙げられる。また、吸収層は、それそのものが基板(樹脂基板)であってもよい。
 本フィルタにおいて、吸収層の厚さは、0.1~100μmが好ましい。吸収層が複数層からなる場合、各層の合計の厚さは、0.1~100μmが好ましい。厚さが0.1μm未満では、所望の光学特性を十分に発現できないおそれがあり、厚さが100μm超では、層の平坦性が低下し、吸収率の面内バラツキが生じるおそれがある。吸収層の厚さは、0.3~50μmがより好ましい。また、反射層や、反射防止層等の他の機能層を備えた場合、その材質によっては、吸収層が厚すぎると割れ等が生ずるおそれがある。そのため、吸収層の厚さは、0.3~10μmがより好ましい。
(透明基板)
 本フィルタにおいて透明基板は任意の構成要素である。本フィルタが透明基板を備える場合、該透明基板の厚さは、0.03~5mmが好ましく、薄型化の点から、0.05~1mmがより好ましい。透明基板の材料としては、可視光を透過するものであれば、ガラスや(複屈折性)結晶、樹脂が利用できる。
 透明基板用のガラスとしては、フツリン酸塩系ガラスやリン酸塩系ガラス等にCuO等を添加した吸収型のガラス(近赤外線吸収ガラス基材)、ソーダライムガラス、ホウケイ酸ガラス、無アルカリガラス、石英ガラス等が挙げられる。なお、「リン酸塩ガラス」には、ガラスの骨格の一部がSiOで構成されるケイリン酸塩ガラスも含むものとする。
 透明基板がフツリン酸塩系ガラスの場合、具体的にカチオン%表示で、P5+:20~45%、Al3+:1~25%、R:1~30%(但し、Rは、Li、Na、Kのうち少なくとも1つであって、左記の値は、それぞれの含有割合を合計した値である)、Cu2+:1~20%、R2+:1~50%(但し、R2+は、Mg2+、Ca2+、Sr2+、Ba2+、Zn2+のうち少なくとも1つであって、左記の値は、それぞれの含有割合を合計した値である)を含有するとともに、アニオン%表示で、F:10~65%、O2-:35~90%を含有していることが好ましい。
 また、透明基板がリン酸塩系ガラスの場合、質量%表示で、P:30~80%、Al:1~20%、RO:0.5~30%、(但し、ROは、LiO、NaO、KOのうちの少なくとも1つであって、左記の値は、それぞれの含有割合を合計した値である。)、CuO:1~12%、RO:0.5~40%(但し、ROは、MgO、CaO、SrO、BaO、ZnOのうちの少なくとも1つであって、左記の値は、それぞれの含有割合を合計した値である)を含有することが好ましい。
 上記したCuO含有ガラスは、金属酸化物をさらに含有してもよい。金属酸化物として、例えば、Fe、MoO、WO、CeO、Sb、V等の1種または2種以上を含有すると、CuO含有ガラスは紫外線吸収特性を有する。これらの金属酸化物の含有量は、上記CuO含有ガラス100質量部に対して、Fe、MoO、WOおよびCeOからなる群から選択される少なくとも1種を、Fe:0.6~5質量部、MoO:0.5~5質量部、WO:1~6質量部、CeO:2.5~6質量部、またはFeとSbの2種をFe:0.6~5質量部+Sb:0.1~5質量部、もしくはVとCeOの2種をV:0.01~0.5質量部+CeO:1~6質量部とすることが好ましい。
 透明基板用の透明樹脂としては、アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、およびポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル樹脂等が挙げられる。これらの樹脂は1種を単独で使用してもよく、2種以上を混合して使用してもよい。
(反射層)
 本フィルタにおいて反射層は任意の構成要素である。反射層は、誘電体多層膜からなり、特定の波長域の光を遮蔽する機能を有する。反射層としては、例えば、可視光を透過し、吸収層の遮光域以外の波長の光を主に反射する波長選択性を有するものが挙げられる。この場合、反射層の反射領域は、吸収層の近赤外域における遮光領域を含んでもよい。反射層は、上記特性に限らず、所定の波長域の光を遮蔽する仕様に合わせて適宜設計してよい。
 本フィルタにおいて反射層を備える場合、NIR色素(A1)の最大吸収波長λmax(A1)の光における透過率が1%以下の反射特性を有するとよい。これにより、本フィルタは、NIR色素(A1)の最大吸収波長λmax(A1)において、相乗的に、高い遮光性(高OD値)が得られる。
 本フィルタは反射層を1層有してもよく、2層以上有してもよい。反射層が2層以上で構成される場合、各層は同じでも異なってもよい。反射層が2層以上の構成の場合、一方の層が、少なくとも近赤外光を遮蔽する、特には、上記反射特性を有する近赤外線遮蔽層、もう一方の層が、少なくとも紫外光を遮蔽する紫外線遮蔽層とする組合せでもよい。
 反射層は、低屈折率の誘電体膜(低屈折率膜)と高屈折率の誘電体膜(高屈折率膜)とを交互に積層した誘電体多層膜から構成される。高屈折率膜の材料としては、Ta、TiO、Nbが挙げられる。このうち、成膜性、屈折率等における再現性、安定性等の点から、TiOが好ましい。低屈折率膜の材料としては、SiO、SiO等が挙げられる。成膜性における再現性、安定性、経済性等の点から、SiOが好ましい。また、反射層の膜厚は、2~10μmが好ましい。
(反射防止層)
 反射防止層としては、誘電体多層膜や中間屈折率媒体、屈折率が漸次的に変化するモスアイ構造等が挙げられる。中でも高い光利用効率、生産性の観点から誘電体多層膜の使用が好ましい。
 本フィルタは、NIR色素(A1)を含有する吸収層を有することで、近赤外光に対して優れた遮光性を実現できるとともに、高い可視光透過性を実現できる。本フィルタは、例えば、デジタルスチルカメラ等の撮像装置や環境光センサー等に使用できる。
 本フィルタを用いた撮像装置は、固体撮像素子と、撮像レンズと、本フィルタとを備える。本フィルタは、例えば、撮像レンズと固体撮像素子との間に配置されたり、撮像装置の固体撮像素子、撮像レンズ等に粘着剤層を介して直接貼着されたりして使用できる。
 次に、本発明をさらに具体的に説明する。まず、実施例で使用する色素として、NIR色素(A1-1)~(A1-11)およびNIR色素(B1)~(B3)を製造した。さらに、比較例で使用する色素として、NIR色素(Acf1)~(Acf4)および(Bcf1)~(Bcf3)を製造した。得られたNIR色素の光学特性を測定し評価した。
 また、得られたNIR色素を含有する吸収層を有する光学フィルタの実施例について説明する。
 なお、以下の各例において、製造したNIR色素の構造は1H NMRにより確認した。また、NIR色素、これを含む吸収層の光学特性の評価には、紫外可視分光光度計((株)島津製作所社製、UV-3600Plus形)を用いた。
[例1]NIR色素(A1-1)の製造
 以下に示す反応経路に従い、NIR色素(A1-1)を合成した。
Figure JPOXMLDOC01-appb-C000041
<ステップ1>
 窒素置換した1Lの4つ口フラスコにリチウムジイソプロピルアミド(THF/ヘキサン溶液、1.08M、200mL、216mmol)を入れ、-78℃に冷却したのち、THF(200mL)で希釈した3,4-ジブロモチオフェン(50.11g、207mmol)を滴下ロートにより10分間かけて加えたのち30分間撹拌した。0℃に昇温し10分間撹拌したのち、DMF(19.2mL、248mmol)を加え30℃で2.5時間撹拌した。反応終了後、0℃に冷却し飽和塩化アンモニウム水(200mL)を加えた。酢酸エチルで抽出、飽和食塩水で洗浄、硫酸マグネシウムで乾燥したのち減圧濃縮し、中間体a1-1の粗生成物(60.8g)を得た。粗生成物のまま次の反応に用いた。H NMR(CDCl、300MHz)δ9.95(1H,s),7.76(1H,s).
<ステップ2>
 窒素置換した500mLの4つ口フラスコに炭酸カリウム(42.86g、310mmol)、上記中間体a1-1の粗生成物(60.82g)、DMF(200mL)、メルカプト酢酸エチル(25mL、229mmol)、18-クラウン-6-エーテル(2.742g、10.4mmol)を加え、60℃で終夜加熱撹拌した。室温にしたのち、固体を濾過除去し、水を加え酢酸エチルで抽出、飽和食塩水で洗浄、硫酸マグネシウムで乾燥、減圧濃縮後、ヘキサンで洗浄し、中間体a1-2(42.6g、2工程71%収率)を得た。H NMR(CDCl、300MHz)δ8.01(1H,s),7.47(1H,s),4.39(2H,q,J=7.1Hz),1.40(3H,t,J=7.2Hz).
<ステップ3>
 窒素置換したナスフラスコ(500mL)に中間体a1-2(29.31g、100.6mmol)、カリウムビニルトリフルオロボラート(15.52g、110.1mmol)、塩化パラジウム(II)(374.6mg、2.007mmol)、トリフェニルホスフィン(1.571g、5.990mmol)、炭酸セシウム(97.72g、299.9mmol)、THF/水(9/1)(200mL)を加え、85℃で3日間加熱撹拌した。反応終了後、水を加えジクロロメタンで抽出、飽和食塩水で洗浄、硫酸マグネシウムで乾燥、減圧濃縮し、中間体a1-3の粗生成物(27.09g)を得た。粗生成物のまま次の反応に用いた。H NMR(CDCl、300MHz)δ8.00(1H,s),7.47(1H,s),6.83(1H,dd,J=17.7,11.0Hz),5.73(1H,d,J=17.6Hz),5.48(1H,d,J=10.9Hz),4.40(2H,q,J=7.1Hz),1.41(3H,t,J=7.1Hz).
<ステップ4>
 窒素置換したナスフラスコ(300mL)に上記粗生成物、水酸化リチウム1水和物(4.617g、110.0mmol)、ヨウ化テトラブチルアンモニウム(1.848g、5.003mmol)、水(33mL)、メタノール(20mL)、THF(67mL)を加え、80℃で3時間加熱撹拌した。反応終了後、ヘキサンを加え、水で抽出したのち、6規定塩酸により酸性化した。酢酸エチルにて抽出、硫酸マグネシウムで乾燥、減圧濃縮した後、ジクロロメタンで洗浄し、中間体a1-4(18.69g、2工程88%収率)を得た。H NMR(DMSO-d,300MHz)δ8.04(1H,s),7.72(1H,s),6.91(1H,dd,J=17.6,11.1Hz),5.69(1H,d,J=17.8Hz),5.47(1H,d,J=11.1Hz).
<ステップ5>
 窒素置換した2口ナスフラスコ(300mL)に中間体a1-4(7.489g、35.61mmol)、ジフェニルホスホリルアジド(11.3mL、52.0mmol)、トリエチルアミン(7.3mL、52mmol)、THF(140mL)を加え、80℃で2.5時間加熱還流した。室温放冷後、シリカゲル(500cm)を加え、濾過したのち減圧濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=95:5)で中間体a1-5(6.938g、94%収率)を得た。H NMR(CDCl,300MHz)δ8.04(1H,s),7.55(1H,s),6.83(1H,dd,J=17.8,11.1Hz),5.73(1H,d,J=17.6Hz),5.51(1H,d,J=11.1Hz).
<ステップ6>
 窒素置換したマイクロウェーブ用試験管に中間体a1-5(724.4mg、3.495mmol)、THF(8.0mL)、水(8.0mL)を加え、マイクロ波照射下、150℃で5分加熱撹拌した。これを7バッチ行い、中間体a1-5を計4.926g用いて反応を行った。反応終了後、7バッチを合わせ、酢酸エチルで抽出、濃縮後、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=80:20)で中間体a1-6(2.223g、52%収率)を得た。H NMR(CDCl,300MHz)δ7.02(1H,s),6.76(1H,dd,J=17.7,11.0Hz),6.43(1H,s),5.53(1H,d,J=17.6Hz),5.35(1H,d,J=10.9Hz),3.91(2H,brs).
<ステップ7>
 窒素置換したネジ口式試験管に、中間体a1-6(89.4mg、0.493mmol)、イソブチルアルデヒド(0.20mL、2.2mmol)、ナトリウムトリアセトキシボロヒドリド(469.6mg、2.216mmol)、1,2-ジクロロエタン(2.5mL)を加え、室温で9.5時間撹拌した。飽和重曹水を加えたのち、ジクロロメタンで抽出、フロリジル濾過、濃縮後、シリカゲルカラムクロマトグラフィー(ヘキサン100%)で中間体a1-7(65.3mg、45%収率)を得た。H NMR(CDCl,300MHz)δ6.90(1H,s),6.76(1H,dd,J=17.6,10.9Hz),6.04(1H,s),5.57(1H,d,J=17.6Hz),5.33(1H,d,J=10.9Hz),3.09(4H,d,J=7.3Hz),2.22-2.08(2H,m),0.93(12H,d,J=6.6Hz).
<ステップ8>
 窒素置換した2口フラスコ(100mL)に中間体a1-7(276.8mg、0.9431mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(64.7mg、0.567mmol)、ノルマルブタノール(23.5mL)、トルエン(23.5mL)を加え、130℃で1.5時間加熱還流した。反応終了後、溶媒を除去して、シリカゲルカラムクロマトグラフィー(ジクロロメタン:酢酸エチル=99:1)でNIR色素(A1-1)(63.6mg、20%収率)を得た。H NMR(CDCl,300MHz)δ8.58(2H,dd,J=17.6,11.1Hz),6.10(2H,s),5.74(2H,d,J=17.6Hz),5.72(2H,d,J=11.4Hz),3.28(8H,d,J=7.3Hz),2.30-2.20(4H,m),0.98(24H,d,J=6.6Hz).
[例2]NIR色素(A1-2)の製造
 以下に示す反応経路に従い、NIR色素(A1-2)を合成した。
Figure JPOXMLDOC01-appb-C000042
<ステップ1~6>
 NIR色素(A1-1)の製造方法のステップ1~6と同様の工程により、中間体a1-6を得た。
<ステップ7>
 窒素置換した2口フラスコ(200mL)に、中間体a1-6(3.008g、16.59mmol)、2-エチルヘキサナール(9.297g、72.51mmol)、ナトリウムトリアセトキシボロヒドリド(15.38g、72.58mmol)、1,2-ジクロロエタン(82.5mL)を加え、室温で7.5時間撹拌した。飽和重曹水を加えたのち、ジクロロメタンで抽出、硫酸マグネシウムで乾燥、濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン100%)で精製し中間体a2-7(369.1mg、6%収率)を得た。1H NMR(CDCl3,400MHz)δ6.91(1H,s),6.76(1H,dd,J=17.6,11.0Hz),6.05(1H,s),5.57(1H,d,J=17.6Hz),5.33(1H,d,J=11.0Hz),3.14(4H,d,J=9.8Hz),1.88-1.77(2H,m),1.44-1.21(16H,m),0.93-0.85(12H,m).
<ステップ8>
 窒素置換したナスフラスコ(100mL)に中間体a2-7(249.9mg、0.6160mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(37.8mg、0.331mmol)、オルトギ酸トリメチル(0.33mL、3.0mmol)、1-プロパノール(30mL)を加え、80℃で2時間加熱還流した。反応終了後、溶媒を除去して、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=80:20)でNIR色素(A1-2)(39.7mg、14%収率)を得た。H NMR(CDCl,300MHz)δ8.59(2H,dd,J=17.6,11.1Hz),6.09(2H,s),5.73(2H,d,J=17.3Hz),5.72(2H,d,J=11.4Hz),3.33(8H,d,J=7.3Hz),2.00-1.87(4H,m),1.45-1.21(32H,m),0.99-0.85(24H,m).
[例3]NIR色素(A1-3)の製造
 以下に示す反応経路に従い、NIR色素(A1-3)を合成した。
Figure JPOXMLDOC01-appb-C000043
<ステップ1~2>
 NIR色素(A1-1)の製造方法のステップ1~2と同様の工程により、中間体a1-2を得た。
<ステップ3>
 窒素置換した4口フラスコ(2L)に中間体a1-2(100.61g、328.2mmol)、THF(500mL)を加え、-78℃でイソプロピルマグネシウムクロリド-塩化リチウム錯体(THF溶液、1.3M、500mL、650mmol)を1時間かけて滴下した。1.5時間撹拌後、DMF(64mL、827mmol)を加え、0℃で1時間撹拌した。反応終了後、飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出、飽和塩化アンモニウム水溶液ついで飽和食塩水で洗浄、硫酸ナトリウムで乾燥、濃縮し、粗生成物を得た。これをジクロロメタンに溶解し、シリカゲル濾過後、半分程度の体積まで濃縮し、ヘキサンを加えて再沈殿を行った。析出した固体を吸引濾過し、ヘキサンで洗浄し、乾燥させ、中間体a3-3(65.24g、83%収率)を得た。1H NMR(CDCl3,300MHz)δ10.02(1H,s),8.39(1H,s),8.03(1H,s),4.40(2H,q,J=7.1Hz),1.41(3H,t,J=7.2Hz).
<ステップ4>
 窒素置換したナスフラスコ(1L)に中間体a3-3(20.00g、83.2mmol)、トルエン(300mL)を加え、50℃で撹拌し溶解させた。別途窒素置換した4口フラスコ(1L)に水素化ナトリウム(55%、流動パラフィンに分散、4.370g、100.2mmol)、トルエン(150mL)を加え、0℃でシアノメチルホスホン酸ジエチル(16.0mL、17.7g、15.7mmol)を滴下し、室温で10分撹拌した。0℃で、中間体a3-3/トルエン溶液を15分かけて滴下し、1時間撹拌した。反応終了後、飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出、水および飽和食塩水で洗浄、硫酸ナトリウムで乾燥、濃縮し、中間体a3-4の粗生成物(31.34g、E/Z=84/16)を得た。粗生成物のまま次の反応に用いた。E体:H NMR(CDCl,300MHz)δ8.03(1H,s),7.82(1H,s),7.47(1H,d,J=16.7Hz),5.81(1H,d,J=16.7Hz),4.42(2H,q,J=7.1Hz),1.42(3H,t,J=7.1Hz).Z体:
 NMR(CDCl,300MHz)δ8.58(1H,s),8.00(1H,s),7.14(1H,d,J=11.8Hz),5.54(1H,d,J=11.8Hz),4.40(2H,q,J=7.1Hz),1.41(3H,t,J=7.2Hz).
<ステップ5>
 窒素置換したナスフラスコ(1L)に上記中間体a3-4の粗生成物(31.34g)、THF(150mL)、エタノール(150mL)、水酸化ナトリウム水溶液(1.0M、125mL、125mmol)を加え、40℃で30分加熱撹拌した。反応終了後、0℃で塩酸(1M、135mL、135mmol)を加え反応を停止させ、有機溶媒を留去後、親水性メンブレンフィルターにて濾過した。ろ物を水、水/メタノール=1/1、ヘキサンで洗浄後、トルエンとの共沸による水の除去を行い、中間体a3-5(19.32g、99%収率、E/Z=86/14)を得た。E体:H NMR(DMSO-d,300MHz)δ13.46(1H,brs),8.39(1H,s),8.20(1H,s),7.84(1H,d,J=16.7Hz),6.05(1H,d,J=16.7).Z体:H NMR(DMSO-d,300MHz)δ13.46(1H,brs),8.58(1H,s),8.17(1H,s),7.50(1H,d,J=11.8Hz),5.97(1H,d,J=11.8).
<ステップ6>
 窒素置換したナスフラスコ(1L)に中間体a3-5(25.03g、106.4mmol)、トルエン(500mL)、トリエチルアミン(30.0mL、215mmol)、およびジフェニルホスホリルアジド(32.17g、116.9mmol)を加え、60℃で30分加熱撹拌した。反応終了後、反応溶液を分液ロートに移し、飽和重曹水で洗浄、酢酸エチルで抽出、飽和重曹水および水で洗浄後、有機層を濃縮した。得られた固体をヘキサンで洗浄後、真空乾燥し、中間体a3-6(26.47g、>99%収率、E/Z=88/12)を得た。E体:H NMR(DMSO-d,400MHz)δ8.51(1H,s),8.40(1H,s),7.86(1H,d,J=16.9Hz),6.10(1H,d,J=16.9Hz).Z体:H NMR(DMSO-d,400MHz)δ8.70(1H,s),8.36(1H,s),7.54(1H,d,J=12.0Hz),6.01(1H,d,J=11.7Hz).
<ステップ7>
 窒素置換したナスフラスコ(2L)に中間体a3-6(6.614g、28.47mmol)、ジオキサン(1.00L)、水(500mL)を加え、120℃で2時間加熱還流した。反応終了後、溶媒留去し、THFに溶解して塩基処理されたシリカゲルで濾過し、溶媒留去、真空乾燥により中間体a3-7(4.12g、70%収率、91%純度、E/Z=94/6)を得た。E体:H NMR(DMSO-d,300MHz)δ7.67(1H,d,J=16.6Hz),7.66(1H,s),6.23(1H,s),6.07(2H,s),5.71(1H,d,J=16.9Hz).Z体:H NMR(DMSO-d,300MHz)δ7.82(1H,s),7.26(1H,d,J=11.7Hz),6.19(1H,s),6.02(2H,s),5.80(1H,d,J=11.7Hz).
<ステップ8>
 窒素置換したナスフラスコ(500mL)に、中間体a3-7(2.504g、12.14mmol)、2-エチルヘキサナール(7.697g、60.03mmol)、メタノール(120mL)、酢酸(60mL)を加え、0℃にて2-ピコリンボラン(2.603g、24.10mmol)を加え、30分撹拌したのち、室温でさらに3時間撹拌した。反応終了後溶媒を減圧留去し、酢酸エチルで抽出、飽和重曹水で洗浄、硫酸マグネシウムで乾燥、濃縮後、シリカゲルカラムクロマトグラフィー(ヘキサン:ジクロロメタン=80:20)で中間体a3-8(3.50g、67%収率)を得た。H NMR(CDCl,300MHz)δ:7.39(1H,d,J=16.5Hz),7.23(1H,s),6.03(1H,s),5.64(1H,d,J=16.5Hz),3.16(4H,d,J=7.5Hz),1.93-1.73(2H,m),1.47-1.22(16H,m),1.02-0.83(12H,m).
<ステップ9>
 窒素置換したナスフラスコ(2L)に中間体a3-8(13.20g,30.64mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(5.327g,46.70mmol)、オルトギ酸トリメチル(33.2g、313mmol)、1-プロパノール(1.50L)を加え、80℃で1.5時間加熱還流した。反応終了後、溶媒を約半量濃縮し、ヘキサンを加えて再沈殿し、シリカゲルクロマトグラフィー(ジクロロメタン:酢酸エチル=50:1)でNIR色素(A1-3)(10.93g、76%収率)を得た。H NMR(CDCl,300MHz)δ9.33(2H,d,J=16.5Hz),6.17(2H,s),5.75(2H,d,J=16.5Hz),3.37(8H,d,J=7.1Hz),2.01-1.88(4H,m),1.47-1.23(32H,m),1.01-0.87(24H,m).
[例4]NIR色素(A1-4)の製造
 以下に示す反応経路に従い、NIR色素(A1-4)を合成した。
Figure JPOXMLDOC01-appb-C000044
<ステップ1~2>
 NIR色素(A1-1)の製造方法のステップ1~2と同様の工程により、中間体a1-2を得た。
<ステップ3>
 窒素置換したナスフラスコ(2L)に中間体a1-2(83.66g、272.9mmol)、THF(175mL)、エタノール(175mL)、水酸化ナトリウム水溶液(1.0M、430mL、430mmol)を加え、40℃で1時間加熱撹拌した。反応終了後、0℃にて塩酸(1.0M、450mL)を加え酸性化し、有機溶媒を減圧除去後、親水性メンブレンフィルターを用いて濾過した。ろ物を水、ついで水:メタノール(=1:1)混合溶媒で洗浄し、トルエン共沸で溶媒除去したのち、真空乾燥して中間体a4-3(79.4g、>99%収率)を得た。H NMR(DMSO-d,300MHz)δ13.51(1H,brs),8.23(1H,s),8.08(1H,s).
<ステップ4>
 窒素置換したナスフラスコ(300mL)に中間体a4-3(26.53g、100.8mmol)、トルエン(200mL)、トリエチルアミン(21.0mL、151mmol)、ジフェニルホスホリルアジド(30.62g、111.3mmol)を加え、60℃で30分加熱撹拌した。反応終了後、0℃にて飽和重曹水と酢酸エチルを加えて分液後、得られた有機層を飽和重曹水、水、飽和食塩水で洗浄、硫酸ナトリウムで乾燥、濃縮後、ヘキサンで洗浄したのち、真空乾燥して中間体a4-4(25.24g、96%収率)を得た。H NMR(CDCl,400MHz)δ8.05(1H,s),7.55(1H,s).
<ステップ5>
 窒素置換したナスフラスコ(500mL)に中間体a4-4(12.01g、46.19mmol)、t-ブチルアルコール(100mL)、トルエン(100mL)を加え、80℃で15時間加熱撹拌した。反応終了後、濃縮し、ジクロロメタンに溶解してシリカゲル濾過し、溶媒留去、真空乾燥により中間体a4-5(12.21g、79%収率)を得た。H NMR(DMSO-d,300MHz)δ10.80(1H,s),7.50(1H,s),6.92(1H,s),1.49(9H,s).
<ステップ6~7>
 窒素置換したナスフラスコ(1L)に中間体a4-5(12.20g、36.49mmol)、ヨウ化ナトリウム(11.00g、73.40mmol)、アセトニトリル(370mL)を加え40℃でクロロトリメチルシラン(7.776g、71.58mmol)を加えた。16.5時間加熱撹拌した後、室温にて飽和重曹水と酢酸エチルを加えて分液し、有機層を飽和重曹水、水、飽和食塩水で洗浄した。得られた有機層に2-エチルヘキサナール(7.021g、54.76mmol)と硫酸ナトリウムを加え15分静置したのち、濾過し、溶媒留去した。得られたものを4口フラスコ(1L)に移し、メタノール(270mL)、酢酸(37mL)、2-エチルヘキサナール(14.05g、109.6mmol)を加え、窒素雰囲気下-10℃で撹拌し、2-ピコリンボラン(7.900g、71.65mmol)のメタノール(100mL)溶液を10分かけて滴下した。19時間撹拌した後、飽和重曹水、ヘキサン、酢酸エチルを加えて分液し、得られた有機層を飽和重曹水、水、飽和食塩水で洗浄、硫酸ナトリウムで乾燥、濃縮し粗生成物を得た。原料のアルデヒドをNHシリカゲル濾過で除去したのち、シリカゲルカラムクロマトグラフィー(ヘキサン100%)で中間体a4-7(12.01g、72%収率)を得た。H NMR(CDCl,300MHz)δ6.98(1H,s),6.14(1H,s),3.13(4H,d,J=7.5Hz),1.91-1.75(2H,m),1.45-1.21(16H,m),1.00-0.82(12H,m).
<ステップ8>
 窒素置換したマイクロウェーブ用試験管に中間体a4-7(458.6mg、1.000mmol)、ジエチルアミン(1.0mL、7.1mmol)、ヨウ化銅(4.2mg、0.022mmol)、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(7.4mg、0.011mmol)、トリイソプロピルシリルアセチレン(0.24mL、1.1mmol)、THF(1.0mL)を加え、マイクロ波照射下、120℃で1時間加熱撹拌した。反応終了後、酢酸エチルで抽出、濃縮後、シリカゲルカラムクロマトグラフィー(ヘキサン100%)で中間体a4-8(540mg、89%純度、86%収率)を原料であるトリイソプロピルシリルアセチレンとの混合物として得た。H NMR(CDCl,300MHz)δ7.11(1H,s),5.98(1H,s),3.17-3.06(4H,m),1.90-1.74(2H,m),1.37-1.23(16H,m),1.20-1.04(21H,m),0.93-0.84(12H,m).
<ステップ9>
 窒素置換したネジ口式試験管に中間体a4-8(62.3mg、98.7μmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(17.1mg、0.150mmol)、オルトギ酸トリメチル(0.11mL、1.0mmol)、1-プロパノール(67mL)を加え、80℃で1時間加熱還流した。反応終了後、0℃にて飽和重曹水を加えたのち、酢酸エチルで抽出、飽和食塩水で洗浄、硫酸マグネシウムで乾燥、濃縮し、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=80:20)でNIR色素(A1-4)(0.5mg、収率0.8%)を得た。H NMR(CDCl,300MHz)δ5.99(2H,s),3.35-3.25(8H,m),1.97-1.86(4H,m),1.39-1.15(62H,m),0.97-0.78(24H,m).
[例5]NIR色素(A1-5)の製造
 以下に示す反応経路に従い、NIR色素(A1-5)を合成した。
Figure JPOXMLDOC01-appb-C000045
<ステップ1~7>
 NIR色素(A1-4)の製造方法のステップ1~7と同様の工程により、中間体a4-7を得た。
<ステップ8>
 窒素置換した3口フラスコ(100mL)に中間体a4-7(2.282g、4.976mmol)、N,Nジメチルアクリルアミド(0.780mL、7.60mmol)、トリエチルアミン(2.09mL、15.0mmol)、酢酸パラジウム(II)(58.1mg、0.259mmol)、トリオルトトリルホスフィン(154.8mg、0.5086mmol)、DMF(25.0mL)を加え、100℃で1時間加熱撹拌した。反応終了後、0℃にて飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出、飽和食塩水で洗浄、硫酸マグネシウムで乾燥、濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=50:50)で中間体a5-8(917.2mg、39%収率)を得た。H NMR(CDCl,300MHz)δ7.69(1H,d,J=15.2Hz),7.21(1H,s),6.70(1H,d,J=15.2Hz),6.07(1H,s),3.21(3H,s),3.19-3.12(4H,m),3.09(3H,s),1.91-1.77(2H,m),1.46-1.21(16H,m),0.95-0.83(12H,m).
<ステップ9>
 窒素置換したナスフラスコ(100mL)に中間体a5-8(559.9mg、1.205mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(200.1mg、1.754mmol)、オルトギ酸トリメチル(1.267g,11.94mmol)、1-プロパノール(60mL)を加え、80℃で2.5時間加熱還流した。反応終了後、0℃にてヘキサンを加え再沈殿により粗生成物を得たのち、シリカゲルカラムクロマトグラフィー(ジクロロメタン:メタノール:トリエチルアミン=30:2:1)でNIR色素(A1-5)(390.0mg、63%収率)を得た。H NMR(CDCl,300MHz)δ9.12(2H,d,J=16.1Hz),6.68(2H,d,J=16.1Hz),6.11(2H,s),3.34(8H,d,J=6.6Hz),3.25(6H,s),3.11(6H,s),1.97-1.87(4H,m),1.41-1.24(32H,m),0.97-0.85(24H,m).
[例6]NIR色素(A1-6)の製造
 以下に示す反応経路に従い、NIR色素(A1-6)を合成した。
Figure JPOXMLDOC01-appb-C000046
<ステップ1~7>
 NIR色素(A1-4)の製造方法のステップ1~7と同様の工程により、中間体a4-7を得た。
<ステップ8>
 窒素置換した3口フラスコ(100mL)に中間体a4-7(2.281g、4.974mmol)、t-ブチルアクリレート(1.10mL、7.48mmol)、トリエチルアミン(2.09mL、15.0mmol)、酢酸パラジウム(II)(57.9mg、0.258mmol)、トリオルトトリルホスフィン(153.3mg、0.5037mmol)、DMF(25.0mL)を加え、100℃で1時間加熱撹拌した。反応終了後、0℃にて飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出、飽和食塩水で洗浄、硫酸マグネシウムで乾燥、濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=80:20)で中間体a6-8(1.035g、41%収率)を得た。H NMR(CDCl,400MHz)δ7.60(1H,d,J=15.9Hz),7.20(1H,s),6.14(1H,d,J=15.7Hz),6.04(1H,s),3.21-3.09(4H,m),1.89-1.78(2H,m),1.54(9H,s),1.44-1.22(16H,m),0.94-0.84(12H,m).
<ステップ9>
 窒素置換したナスフラスコ(200mL)に中間体a6-8(1.090g、2.155mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(372.3mg、3.264mmol)、オルトギ酸トリメチル(2.306g,21.73mmol)、1-プロパノール(110mL)を加え、80℃で3時間加熱還流した。反応終了後、溶媒留去し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=5:1)でNIR色素(A1-6)(360.0mg、31%収率)を得た。H NMR(CDCl,400MHz)δ9.52(2H,d,J=15.9Hz),6.23(2H,d,J=15.9Hz),6.12(2H,s),3.42-3.27(8H,m),1.99-1.88(4H,m),1.63(18H,s),1.44-1.24(32H,m),0.95-0.87(24H,m).
[例7]NIR色素(A1-7)の製造
 以下に示す反応経路に従い、NIR色素(A1-7)を合成した。
Figure JPOXMLDOC01-appb-C000047
<ステップ1~7>
 NIR色素(A1-4)の製造方法のステップ1~7と同様の工程により、中間体a4-7を得た。
<ステップ8>
 窒素置換した2口フラスコ(50mL)に中間体a4-7(2.005g、4.372mmol)、イソブチルアクリレート(859.6mg、6.707mmol)、トリエチルアミン(1.365g、13.49mmol)、酢酸パラジウム(II)(49.3mg、0.220mmol)、トリオルトトリルホスフィン(131.9mg、0.4334mmol)、DMF(25.0mL)を加え、80℃で2時間加熱撹拌後、115℃で4時間加熱撹拌した。中間体a4-7以外の試薬を上記と同量加え、100℃で1.5時間加熱撹拌した。反応終了後、0℃にて飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出し、得られた有機層を水、飽和食塩水で洗浄、硫酸ナトリウムで乾燥、濃縮した後、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=30:1)で中間体a7-8(713.1mg、32%収率)を得た。H NMR(CDCl,300MHz)δ7.70(1H,d,J=15.8Hz),7.24(1H,s),6.23(1H,d,J=15.8Hz),6.04(1H,s),4.00(2H,d,J=6.6Hz),3.24-3.08(4H,m),2.08-1.99(1H,m),1.91-1.78(2H,m),1.45-1.23(16H,m),1.00(6H,d,J=6.6Hz),0.94-0.85(12H,m).
<ステップ9>
 窒素置換したナスフラスコ(100mL)に中間体a7-8(713.0mg、1.410mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(242.6mg、2.127mmol)、オルトギ酸トリメチル(1.880g、17.70mmol)、1-プロパノール(70mL)を加え、80℃で2時間加熱還流した。反応終了後、飽和重曹水を加え、酢酸エチルで抽出し、得られた有機層を水、飽和食塩水で洗浄、硫酸ナトリウムで乾燥、濃縮し、ヘキサンを加え生じた固体を濾別した。得られた固体をシリカゲルカラムクロマトグラフィー(ジクロロメタン:酢酸エチル=40:1)で精製し、NIR色素(A1-7)(420.0mg、55%収率)を得た。H NMR(CDCl,300MHz)δ9.56(2H,d,J=16.1Hz),6.32(2H,d,J=15.8Hz),6.13(2H,s),4.08(4H,d,J=6.6Hz),3.40-3.31(8H,m),2.28-2.06(2H,m),2.01-1.86(4H,m),1.45-1.25(32H,m),1.08(12H,d,J=6.6Hz),0.99-0.87(24H,m).
[例8]NIR色素(A1-8)の製造
 以下に示す反応経路に従い、NIR色素(A1-8)を合成した。
Figure JPOXMLDOC01-appb-C000048
<ステップ1~7>
 NIR色素(A1-4)の製造方法のステップ1~7と同様の工程により、中間体a4-7を得た。
<ステップ8>
 窒素置換した2口フラスコ(100mL)に中間体a4-7(2.576g、4.999mmol)、THF(10mL)を加え、-78℃でn-ブチルリチウム(ヘキサン溶液、1.55M、6.45mL、10.0mmol)を加えた。5分撹拌したのち、DMF(1.55mL、20.0mmol)を加え30分撹拌し、さらに0℃で30分撹拌した。反応終了後飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出、飽和食塩水で洗浄、硫酸マグネシウムで乾燥、濃縮したのち、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=98:2)にて精製し中間体a8-8(1.52g、75%収率)を得た。H NMR(CDCl,400MHz)δ9.88(1H,s),7.77(1H,s),5.97(1H,s),3.18(4H,d,J=7.3Hz),1.92-1.81(2H,m),1.43-1.28(16H,m),0.90-0.87(12H,m).
<ステップ9>
 窒素置換した3口フラスコ(300mL)に水素化ナトリウム(60%、流動パラフィンに分散、147.8mg、3.695mmol)、THF(20mL)を加え、0℃にてホスホノ酢酸トリエチル(0.830mL、4.20mmol)を加え、室温で10分撹拌したのち、0℃にて中間体a8-8(1.227g、3.009mmol)のTHF(10mL)溶液を加え30分撹拌した。反応終了後、飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出、飽和食塩水で洗浄、硫酸マグネシウムで乾燥、濃縮したのち、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=95:5)で精製して中間体a8-9(1.44g、>99%収率)を得た。H NMR(CDCl,300MHz)δ7.70(1H,d,J=15.8Hz),7.24(1H,s),6.22(1H,d,J=16.1Hz),6.04(1H,s),4.28(2H,q,J=7.1Hz),3.23-3.07(4H,m),1.91-1.75(2H,m),1.45-1.21(19H,m),0.94-0.84(12H,m).
<ステップ10>
 窒素置換した3口フラスコ(200mL)に中間体a8-9(474.4mg、0.9929mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(172.0mg、1.508mmol)、オルトギ酸トリメチル(1.10mL、10.0mmol)、1-プロパノール(50mL)を加え、80℃で1時間加熱撹拌した。反応終了後、0℃で飽和重曹水を加え、酢酸エチルで抽出、飽和食塩水で洗浄、硫酸マグネシウムで乾燥し、濃縮したのち、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=60:40)で精製し、NIR色素(A1-8)(308.1mg、60%収率)を得た。H NMR(CDCl,300MHz)δ9.58(2H,d,J=15.8Hz),6.31(2H,d,J=15.8Hz),6.13(2H,s),4.37(4H,q,J=6.6Hz),3.35(8H,d,J=6.0Hz),1.99-1.87(4H,m),1.53-1.19(38H,m),1.03-0.80(24H,m).
[例9]NIR色素(A1-9)の製造
 以下に示す反応経路に従い、NIR色素(A1-9)を合成した。
Figure JPOXMLDOC01-appb-C000049
<ステップ1~7>
 NIR色素(A1-4)の製造方法のステップ1~7と同様の工程により、中間体a4-7を得た。
<ステップ8>
 窒素置換した2口フラスコ(50mL)に中間体a4-7(1.994g、4.349mmol)、アクリル酸メチル(560.4mg、6.509mmol)、トリエチルアミン(1.300g、12.84mmol)、酢酸パラジウム(II)(49.9mg、0.222mmol)、トリオルトトリルホスフィン(132.8mg、0.4363mmol)、DMF(25.0mL)を加え、85℃で3時間加熱撹拌した。反応終了後、0℃にて飽和塩化アンモニウム水溶液を加え、ヘキサン/酢酸エチルで抽出、水、飽和食塩水で洗浄、硫酸マグネシウムで乾燥、濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:1)で中間体a9-8(461.9mg、23%収率)を得た。H NMR(CDCl,300MHz)δ7.71(1H,d,J=16.1Hz),7.24(1H,s),6.23(1H,d,J=15.8Hz),6.04(1H,s),3.82(3H,s),3.15(4H,d,J=7.3Hz),1.47-1.21(16H,m),0.96-0.83(12H,m).
<ステップ9>
 窒素置換したナスフラスコ(100mL)に中間体a9-8(461.9mg、0.996mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(172.2mg、1.509mmol)、オルトギ酸トリメチル(1.279g、12.05mmol)、1-プロパノール(50mL)を加え、80℃で1.5時間加熱撹拌した。反応終了後、約半量まで濃縮し、ヘキサン、酢酸エチル、飽和重曹水を加えて分液し、得られた有機層を水で洗浄、硫酸ナトリウムで乾燥、濃縮し、ヘキサンで洗浄した。得られた固体をシリカゲルカラムクロマトグラフィー(ジクロロメタン:酢酸エチル=30:1)で精製し、NIR色素(A1-9)(345.5mg、69%収率)を得た。H NMR(CDCl,300MHz)δ9.57(2H,d,J=14.3Hz),6.32(2H,d,J=16.1Hz),6.13(2H,s),3.94(6H,s),3.35(8H,d,J=7.1Hz),2.00-1.87(4H,m),1.48-1.23(32H,m),1.01-0.85(24H,m).
[例10]NIR色素(A1-10)の製造
 以下に示す反応経路に従い、NIR色素(A1-10)を合成した。
Figure JPOXMLDOC01-appb-C000050
<ステップ1~8>
 NIR色素(A1-8)製造方法のステップ1~8と同様の工程により、中間体a8-8を得た。
<ステップ9>
 窒素置換したネジ口式試験管に中間体a8-8(206.2mg,0.5058mmol)、シアノ酢酸エチル(66.1mg、0.584mmol)、ピペリジン(0.010mL、0.10mmol)、エタノール(5.0mL)を加え、60℃で3時間加熱撹拌した。反応終了後、濃縮し、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=98:2)で中間体10-9(203.2mg、80%収率)を得た。H NMR(CDCl,300MHz)δ8.32(1H,s),8.13(1H,s),6.00(1H,s),4.38(2H,q,J=7.1Hz),3.15(4H,d,J=7.3Hz),1.93-1.78(2H,m),1.44-1.23(16H,m),1.40(3H,t,J=7.1Hz),0.98-0.86(12H,m).
<ステップ10>
 窒素置換したナスフラスコ(100mL)に中間体a10-9(192.8mg、0.3835mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(132.6mg、1.163mmol)、オルトギ酸トリメチル(0.88mL、8.0mmol)、1-プロパノール(20mL)を加え、80℃で4時間加熱還流した。反応終了後、0℃にて飽和重曹水を加えたのち、酢酸エチルで抽出、飽和食塩水で洗浄、硫酸マグネシウムで乾燥、濃縮し、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=80:20)でNIR色素(A1-10)(4.8mg、収率3%)を得た。H NMR(CDCl,300MHz)δ9.84(2H,s),6.16(2H,s),4.45(4H,q,J=7.1Hz),3.37(8H,d,J=7.1Hz),1.98-1.87(4H,m),1.45(6H,t,J=7.1Hz),1.42-1.19(32H,m),0.98-0.82(24H,m).
[例11]NIR色素(A1-11)の製造
 以下に示す反応経路に従い、NIR色素(A1-11)を合成した。
Figure JPOXMLDOC01-appb-C000051
<ステップ1~8>
 NIR色素(A1-8)製造方法のステップ1~8と同様の工程により、中間体a8-8を得た。
<ステップ9>
 窒素置換したネジ口式試験管に中間体a8-8(203.5mg、0.4991mmol)、マロノニトリル(33.7mg、0.510mmol)、ピペリジン(0.010mL、0.10mmol)、エタノール(5.0mL)を加え、60℃で1時間加熱撹拌した。反応終了後、濃縮し、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=98:2)で中間体a11-9(155.3mg、68%収率)を得た。H NMR(CDCl,300MHz)δ8.24(1H,s),7.64(1H,s),5.98(1H,s),3.16(4H,d,J=7.3Hz),1.92-1.77(2H,m),1.44-1.21(16H,m),0.97-0.83(12H,m).
<ステップ10>
 窒素置換したネジ口式試験管に中間体a11-9(146.9mg、0.3224mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(84.5mg、0.741mmol)、オルトギ酸トリメチル(0.55mL、5.0mmol)、1-プロパノール(25mL)を加え、80℃で1時間加熱還流した。反応終了後、0℃にて飽和重曹水を加えたのち、酢酸エチルで抽出、飽和食塩水で洗浄、硫酸マグネシウムで乾燥、濃縮し、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=80:20)でNIR色素(A1-11)(4.8mg、収率3%)を得た。H NMR(CDCl,300MHz)δ9.61(2H,s),6.21(2H,s),3.40(8H,d,J=7.3Hz),1.99-1.87(4H,m),1.38-1.24(32H,m),0.96-0.86(24H,m).
[例12]NIR色素(B1)の製造
 以下に示す反応経路に従い、NIR色素(B1)を合成した。
Figure JPOXMLDOC01-appb-C000052
<ステップ1>
 窒素置換したナスフラスコ(1L)に4-ブロモー2-チオフェンカルボン酸(25.21g、121.8mmol)、トルエン(300mL)、トリエチルアミン(25mL、179mmol)、ジフェニルホスホリルアジド(36.54g、132.8mmol)を加え、65℃で1.5時間加熱撹拌した。反応終了後、0℃にて飽和重曹水とトルエンを加えて分液後、得られた有機層を飽和重曹水、水、飽和食塩水で洗浄、硫酸ナトリウムで乾燥、シリカゲル濾過し、濃縮したのち、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1)で精製し中間体b1-1(25.8g、>99%収率)を得た。H NMR(CDCl,400MHz)δ7.73(1H,d,J=1.2Hz),7.55(1H,d,J=1.5Hz).
<ステップ2>
 窒素置換したナスフラスコ(1L)に中間体b1-1(13.75g、67.39mmol)、t-ブチルアルコール(300mL)を加え、95℃で16.5時間加熱撹拌した。反応溶液を濃縮後、ジクロロメタンに溶解して濾過し、ろ液を濃縮、真空乾燥することにより中間体b1-2(15.6g、83%収率)を得た。H NMR(DMSO-d,300MHz)δ10.65(1H,s),6.99(1H,d,J=1.7Hz),6.43(1H,d,J=1.7Hz),1.47(9H,s).
<ステップ3>
 窒素置換したナスフラスコ(1L)に中間体b1-2(14.99g、57.19mmol)、ヨウ化ナトリウム(16.28g、108.6mmol)、アセトニトリル(500mL)を加え50℃でクロロトリメチルシラン(11.61g、106.9mmol)を加えた。4.5時間加熱撹拌した後、室温にて飽和重曹水とトルエンを加えて分液し、有機層を飽和重曹水、水、飽和食塩水で洗浄、硫酸ナトリウムで乾燥した。ここに塩酸(1.0M、80mL、80mmol)を加え、室温で30分撹拌した。析出した固体を吸引濾過で回収し、真空乾燥することで中間体b1-3(11.6g、>99%収率)を得た。H NMR(DMSO-d,300MHz)δ6.96(1H,s),6.31(1H,s),5.90(3H,brs).
<ステップ4>
 窒素置換したナスフラスコ(500mL)に、中間体b1-3(5.984g、27.89mmol)、酢酸ナトリウム(3.511g、42.80mmol)、メタノール(140mL)、酢酸(30mL)、2-エチルヘキサナール(10.80g、99.78mmol)を加え、0℃にて2-ピコリンボラン(6.009g、56.18mmol)のメタノール(140mL)溶液を加え、30分撹拌したのち、室温でさらに19時間撹拌した。反応終了後、水とヘキサンを加えて分液し、有機層を水、飽和重曹水、飽和食塩水で洗浄、硫酸ナトリウムで乾燥、濃縮後、シリカゲルカラムクロマトグラフィー(ヘキサン100%)で中間体b1-4(8.18g、73%収率)を得た。H NMR(CDCl,300MHz)δ6.44(1H,d,J=1.5Hz),5.73(1H,d,J=1.3Hz),3.07(4H,d,J=7.2Hz),1.85-1.71(2H,m),1.40-1.18(16H,m),0.94-0.82(12H,m).
<ステップ5>
 窒素置換した2口フラスコ(50mL)に中間体b1-4(501.3mg、1.24mmol)、N,Nジメチルアクリルアミド(198.3mg、2.00mmol)、N,N-ジイソプロピルエチルアミン(0.650mL、3.73mmol)、酢酸パラジウム(II)(15.3mg、68.2μmol)、トリオルトトリルホスフィン(38.9mg、0.128mmol)、DMF(10.0mL)を加え、60℃で64時間加熱撹拌した。反応終了後、0℃にて飽和塩化アンモニウム水溶液を加え、ヘキサン/酢酸エチルで抽出し、得られた有機層を水、飽和食塩水で洗浄、硫酸ナトリウムで乾燥、濃縮し、アルミナカラムクロマトグラフィー(ヘキサン:酢酸エチル:トリエチルアミン=8:2:1~6:2:1)で中間体b1-5(112.8mg、22%収率)を得た。H NMR(CDCl,300MHz)δ7.46(1H,d,J=15.2Hz)、6.61(1H,d,J=1.5Hz)、6.52(1H,d,J=15.2Hz)、5.95(1H,d,J=1.5Hz)、3.17-3.02(4H,m)、3.14(3H,s)、3.05(3H,s)、1.88-1.72(2H,m)、1.42-1.18(16H,m)、0.95-0.81(12H,m).
<ステップ6>
 窒素置換したナスフラスコ(30mL)に中間体b1-5(112.8mg、0.268mmol)、3、4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(46.2mg、0.405mmol)、オルトギ酸トリメチル(301.6mg、2.84mmol)、1-プロパノール(15mL)を加え、80℃で2時間加熱還流した。反応終了後、室温にて飽和重曹水を加えたのち、ヘキサン/酢酸エチルで抽出、水および飽和食塩水で洗浄、硫酸ナトリウムで乾燥、濃縮し、ヘキサンで洗浄することでNIR色素(B1)(70.0mg、収率56%)を得た。H NMR(CDCl,300MHz)δ8.69(2H,d,J=16.3Hz),6.58(2H,d,J=16.1Hz),6.42(2H,s)、3.36(8H,d,J=7.5Hz),3.24(6H,s)、3.08(6H,s)、1.98-1.85(4H,m),1.43-1.21(32H,m),0.98-0.83(24H,m).
[例13]NIR色素(B2)の製造
 以下に示す反応経路に従い、NIR色素(B2)を合成した。
Figure JPOXMLDOC01-appb-C000053
<ステップ1~4>
 NIR色素(B1)製造方法のステップ1~4と同様の工程により、中間体b1-4を得た。
<ステップ5>
 窒素置換した2口フラスコ(500mL)に中間体b1-4(6.09g、15.1mmol)、THF(30mL)を加え、-78℃でn-ブチルリチウム(ヘキサン溶液、1.55M、20.0mL、31.0mmol)を加えた。10分撹拌したのち、DMF(4.80mL、62.0mmol)を加え50分撹拌し、さらに0℃で2.5時間撹拌した。反応終了後飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出、飽和食塩水で洗浄、硫酸ナトリウムで乾燥、濃縮したのち、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=15:1)にて精製し中間体b2-5(3.97g、75%収率)を得た。H NMR(CDCl,300MHz)δ9.64(1H,s),7.23(1H,d,J=1.5Hz),6.16(1H,d,J=1.5Hz),3.12(4H,d,J=7.3Hz),1.88-1.73(2H,m),1.49-1.17(16H,m),1.02-0.78(12H,m).
<ステップ6>
 窒素置換した3口フラスコ(300mL)に水素化ナトリウム(60%、流動パラフィンに分散、0.545g、13.6mmol)、THF(50mL)を加え、0℃にてホスホノ酢酸トリエチル(3.047g、13.6mmol)を加え、室温で15分撹拌したのち、-40℃にて中間体b2-5(3.97g、11.3mmol)のTHF(60mL)溶液を加え2時間撹拌した。反応終了後、飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出、飽和食塩水で洗浄、硫酸ナトリウムで乾燥、濃縮したのち、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=15:1)で精製して中間体b2-6(3.73g、81%収率)を得た。H NMR(CDCl,300MHz)δ7.46(1H,d,J=15.8Hz),6.64(1H,d,J=1.1Hz),6.07(1H,d,J=15.8Hz),5.95(1H,d,J=1.3Hz),4.24(2H,q,J=7.1Hz),3.10(4H,d,J=7.3Hz),1.90-1.70(2H,m),1.44-1.20(19H,m),0.98-0.83(12H,m).
<ステップ7>
 窒素置換したナスフラスコ(1L)に中間体b2-6(3.73g、9.19mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(1.57g、13460.8mmol)、オルトギ酸トリメチル(9.85g、92.8mmol)、1-プロパノール(50mL)を加え、80℃で1.5時間加熱撹拌した。反応終了後、溶媒を約1/3量まで濃縮し、ヘキサンを加えて再沈殿し、シリカゲルカラムクロマトグラフィー(ジクロロメタン:酢酸エチル=15:1)で精製し、NIR色素(B2)(2.98g、71%収率)を得た。H NMR(CDCl,300MHz)δ9.23(2H,d,J=15.8Hz),6.43(2H,s),6.28(2H,d,J=15.8Hz),4.32(4H,q,J=7.0 Hz),3.36(8H,d,J=7.1Hz),2.05-1.81(4H,m),1.51-1.17(38H,m),1.02-0.80(24H,m).
[例14]NIR色素(B3)の製造
 以下に示す反応経路に従い、NIR色素(B3)を合成した。
Figure JPOXMLDOC01-appb-C000054
<ステップ1~5>
 NIR色素(B2)製造方法のステップ1~5と同様の工程により、中間体b1-4を得た。
<ステップ6>
 窒素置換した2口フラスコ(50mL)に水素化ナトリウム(60%、流動パラフィンに分散、78.2mg、1.96mmol)、THF(5mL)を加え、0℃にてシアノメチルホスホン酸ジエチル(297.9mg、1.68mmol)を加え、室温で10分撹拌したのち、-40℃にて中間体b2-5(562.1mg、1.60mmol)のTHF(10mL)溶液を加え30分撹拌した。反応終了後、飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出、飽和食塩水で洗浄、硫酸ナトリウムで乾燥、濃縮したのち、シリカゲルカラムクロマトグラフィー(ヘキサン:トルエン=1:1)で精製して中間体b3-6(362.5mg、61%収率)を得た。H NMR(CDCl,300MHz)δ6.61(1H,d,J=1.3Hz),5.81(1H,d,J=1.5Hz),5.47(1H,d,J=16.3Hz),3.21-3.01(4H,m),1.88-1.69(2H,m),1.44-1.18(16H,m),1.00-0.82(12H,m).
<ステップ7>
 窒素置換したナスフラスコ(100mL)に中間体b3-6(362.5mg、0.968mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(162.0mg、1.42mmol)、オルトギ酸トリメチル(1.038g、9.78mmol)、1-プロパノール(50mL)を加え、80℃で1.5時間加熱撹拌した。反応終了後、室温に戻しヘキサン(50mL)を加え一晩静置した後、析出した固体を濾過し、シリカゲルカラムクロマトグラフィー(ジクロロメタン:酢酸エチル=10:1)で精製し、NIR色素(B3)(302.0mg、76%収率)を得た。H NMR(CDCl,400MHz)δ9.03(2H,d,J=16.1Hz),6.36(2H,s),5.73(2H,d,J=16.4Hz),3.38(8H,d,J=7.3Hz),1.96-1.83(4H,m),1.42-1.20(32H,m),0.99-0.84(24H,m).
[例15]NIR色素(Acf1)の製造
 以下に示す反応経路に従い、NIR色素(Acf1)を合成した。
Figure JPOXMLDOC01-appb-C000055
<ステップ1>
 フラスコにチエノ[3,2-b]チオフェン(4.00g、28.5mmol)を入れ、窒素雰囲気下で無水ジメチルホルムアミド(28.5mL)に溶解した。上記溶液を-15℃に冷やし、N-ブロモスクシンイミド(5.08g、28.5mmol)を溶かした無水ジメチルホルムアミド溶液(28.5mL)を滴下した。上記混合液を室温で30分間撹拌し、その後60℃で5時間撹拌した。反応終了後、氷水に注ぎ、ジイソプロピルエーテルで抽出した。得られた有機層を飽和食塩水で洗い、溶媒を除去した後、シリカゲルカラムクロマトグラフィー(ヘキサン)で中間体acf1-1(5.09g、収率81%)を得た。
<ステップ2>
 フラスコに中間体acf1-1(2.00g、9.13mmol)、削り状マグネシウム(0.440g、18.3mmol)を入れ、窒素雰囲気下で無水テトラヒドロフラン(13mL)に溶解した。上記溶液を3時間還流して、-40℃に冷やした。別フラスコにN-クロロスクシンイミド(0.490g、3.65mmol)を窒素雰囲気下で無水トルエン(18mL)に溶解し、ビス-(2-エチルヘキシル)アミン(0.880g、3.65mmol)を加えて、20分間撹拌した。
 -40℃に冷やした混合溶液にオルトチタン酸テトライソプロピル(2.59g、9.13mmol)を滴下し、5分間撹拌した後、続いてN-クロロスクシンイミドとビス-(2-エチルヘキシル)アミンの混合溶液を滴下した。室温で3時間撹拌し、反応終了後、飽和炭酸カリウム水溶液(18mL)を加えた。続いて酢酸エチルで希釈して濾過して、得られた溶液を酢酸エチルで抽出した。得られた有機層を飽和食塩水で洗い、溶媒を除去して、シリカゲルカラムクロマトグラフィー(ヘキサン:トリエチルアミン=100:3)で中間体acf1-2(0.987g、収率28%)を得た。
<ステップ3>
 フラスコに中間体acf1-2(0.411g、1.08mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(0.0617g、0.541mmol)を入れ、窒素雰囲気下でノルマルブタノール(3mL)とトルエン(3mL)の混合溶液に溶解した。3時間還流撹拌して、反応終了後、溶媒を除去して、シリカゲルクロマトグラフィー(ジクロロメタン:メタノール=50:1)でNIR色素(Acf1)(0.100g、収率22%)を得た。
[例16]NIR色素(Acf2)の製造
 以下に示す反応経路に従い、NIR色素(Acf2)を合成した。
Figure JPOXMLDOC01-appb-C000056
<ステップ1>
 フラスコに臭化亜鉛(9.00g、40.0mmol)を入れ、窒素雰囲気下、-78℃で臭化イソブチルマグネシウム(1.0MTHF溶液、40mL、40mmol)を加え、室温にて2時間撹拌した。
 マイクロウェーブ用試験管に[1,1’-ビス(ジフェニルホスフィの)フェロセン]ジクロロパラジウム(II)(29.8mg、53.8μmol)、3-ブロモチエノ[3,2-b]チオフェン(2.00g、9.13mmol)を入れ、窒素雰囲気下で上記で調製した臭化イソブチル亜鉛(1.0MTHF溶液、13.7mL、13.7mmol)を加え、マイクロ波照射下150℃で30分撹拌した。反応終了後、飽和塩化アンモニウム水溶液を加え、ジエチルエーテルで抽出、5%塩酸および飽和食塩水で洗浄、硫酸マグネシウムで乾燥、溶媒除去したのち、シリカゲルカラムクロマトグラフィー(ヘキサン/ジクロロメタン)で精製し、中間体acf2-1(680.8mg、38%収率)を得た。
<ステップ2>
 フラスコに中間体acf2-1(0.600g、3.06mmol)を入れ、窒素雰囲気下、無水ジエチルエーテル(6.5mL)に溶解し、0℃でt-ブチルリチウム(ペンタン溶液、1.6M、2.00mL、3.21mmol)を加え、室温にて1時間撹拌した。0℃でヨウ素(0.81g、3.21mmol)のジエチルエーテル(11mL)溶液を加え、室温で1時間撹拌した。反応終了後、氷水に注ぎジエチルエーテルで抽出、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄、硫酸マグネシウムで乾燥、溶媒除去したのち、シリカゲルカラムクロマトグラフィー(ヘキサン100%)で精製し、中間体acf2-2(631.2mg、64%収率)を得た。
<ステップ3>
 フラスコに中間体acf2-2(0.630g、1.96mmol)、ピロリジン(0.242mL、2.93mmol)、粉末銅(12.5mg、0.196mmol)、リン酸カリウム(0.830g、3.92mmol)、N,N-ジメチルアミノエタノール(1.96mL)を入れ、窒素雰囲気下60℃で22時間加熱撹拌した。反応終了後、室温にて水(1.96mL)を加え、ジイソプロピルエーテルで抽出、硫酸マグネシウムで乾燥、溶媒除去したのち、シリカゲルカラムクロマトグラフィーで精製し、中間体acf2-3(0.443g、85%収率)を得た。
<ステップ4>
 フラスコに中間体acf2-3(0.443g、1.67mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(94.7mg、0.830mmol)を入れ、窒素雰囲気下でノルマルブタノール(2.23mL)とトルエン(6.70mL)の混合溶液に溶解し、3時間還流撹拌した。反応終了後、溶媒を除去して、シリカゲルクロマトグラフィー(ジクロロメタン:メタノール=95:5)でNIR色素(Acf2)(0.127g、25%収率)を得た。
[例17]NIR色素(Acf3)の製造
 以下に示す反応経路に従い、NIR色素(Acf3)を合成した。
Figure JPOXMLDOC01-appb-C000057
<ステップ1>
 フラスコに臭化亜鉛(9.00g、40.0mmol)を入れ、窒素雰囲気下、-78℃で臭化イソブチルマグネシウム(1.0MTHF溶液、40mL、40mmol)を加え、室温にて2時間撹拌した。
 マイクロウェーブ用試験管に[1,1’-ビス(ジフェニルホスフィの)フェロセン]ジクロロパラジウム(II)(44.7mg、0.055mmol)、3-ブロモチエノ[3,2-b]チオフェン(3.00g、13.7mmol)を入れ、窒素雰囲気下で上記で調製した臭化イソブチル亜鉛(THF溶液、0.50M、41.1mL、20.6mmol)を加え、マイクロ波照射下150℃で30分撹拌した。反応終了後、飽和塩化アンモニウム水溶液を加え、ジエチルエーテルで抽出、5%塩酸および飽和食塩水で洗浄、硫酸マグネシウムで乾燥、溶媒除去したのち、シリカゲルカラムクロマトグラフィー(ヘキサン100%)で精製し、中間体acf3-1(2.66g、84%収率)を得た。
<ステップ2>
 フラスコに中間体acf3-1(2.65g、11.5mmol)を入れ、窒素雰囲気下、無水ジエチルエーテル(23.8mL)に溶解し、0℃でt-ブチルリチウム(ペンタン溶液、1.6M、7.55mL、12.1mmol)を加え、室温にて1時間撹拌した。0℃でヨウ素(3.07g、12.1mmol)のジエチルエーテル(40.8mL)溶液を加え、室温で1時間撹拌した。反応終了後、氷水に注ぎジエチルエーテルで抽出、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄、硫酸マグネシウムで乾燥、溶媒除去したのち、シリカゲルカラムクロマトグラフィー(ヘキサン100%)で精製し、中間体acf3-2(3.67g、90%収率)を得た。
<ステップ3>
 フラスコに中間体acf3-2(2.00g、5.61mmol)、ピロリジン(0.689mL、8.39mmol)、粉末銅(35.7mg、0.561mmol)、リン酸カリウム(2.38g、11.2mmol)、N,N-ジメチルアミノエタノール(5.61mL)を入れ、窒素雰囲気下60℃で22時間加熱撹拌した。反応終了後、室温にて水(5.61mL)を加え、ジイソプロピルエーテルで抽出、硫酸マグネシウムで乾燥、溶媒除去したのち、シリカゲルカラムクロマトグラフィーで精製し、中間体acf3-3(1.46g、87%収率)を得た。
<ステップ4>
 フラスコに中間体acf3-3(0.921g、3.08mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(0.175g、1.54mmol)を入れ、窒素雰囲気下でノルマルブタノール(7.5mL)とトルエン(7.5mL)の混合溶液に溶解し、2時間還流撹拌した。反応終了後、溶媒を除去して、シリカゲルクロマトグラフィー(ジクロロメタン:メタノール=95:5)でNIR色素(Acf3)(48.4mg、収率23%)を得た。
[例18]NIR色素(Acf4)の製造
 以下に示す反応経路に従い、NIR色素(Acf4)を合成した。
Figure JPOXMLDOC01-appb-C000058
<ステップ1~7>
 NIR色素(A1-4)の製造方法のステップ1~7と同様の工程により、中間体a4-7を得た。
<ステップ8>
 窒素置換した2口ナスフラスコ(50mL)に中間体a4-7(455.7mg、0.9937mmol)、THF(5.0mL)を入れ、-78℃でn-ブチルリチウム(ヘキサン溶液、1.55M、1.00mL、1.55mmol)を加えた。15分撹拌した後、臭化アリル(0.26mL、3.0mmol)を加え、1時間撹拌し、さらに0℃で1時間撹拌した。飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出、飽和食塩水で洗浄、硫酸マグネシウムで乾燥、溶媒除去し、シリカゲルカラムクロマトグラフィー(ヘキサン100%)で精製した。さらに、リサイクル分取GPC(溶媒:クロロホルム)で精製し、中間体acf4-8(59.0mg、13%収率)を得た。H NMR(CDCl,300MHz)δ6.64(1H,s)、6.06-5.91(1H,m)、6.05(1H,s)、5.21(1H,ddt,J=16.9,1.6,1.5Hz)、5.14(1H,ddt,J=9.9,1.4,1.3Hz),3.39(1H,ddd,J=6.6,1.3,1.1Hz)、3.09(4H,d,J=7.3Hz)、1.88-1.72(2H,m)、1.42-1.19(16H,m)、0.97-0.80(12H,m).
<ステップ9>
 窒素置換したネジ口式試験管に中間体acf4-8(59.0mg、0.141mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(23.8mg、0.209mmol)、オルトギ酸トリメチル(0.15mL、1.4mmol)、1-プロパノール(7mL)を加え、80℃で1時間加熱撹拌した。反応終了後、0℃で飽和炭酸水素ナトリウム水溶液を加え、ヘキサン/酢酸エチルで抽出し、得られた有機層を水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥、濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=80:20)で精製し、NIR色素(Acf4)(7.5mg、12%収率)を得た。H NMR(CDCl、400MHz)δ6.08-5.98(2H,m)、6.04(2H,s)、5.25(2H,ddd,J=17.0,5.6,1.6Hz)、5.15(2H,ddd,J=9.8,4.2,1.5Hz)、4.30(H,d,J=6.4Hz)、3.36-3.20(8H,m)、1.96-1.84(4H,m)、1.42-1.20(32H,m)、0.95-0.83(24H,m).
[例19]NIR色素(Bcf1)の製造
 以下に示す反応経路に従い、NIR色素(Bcf1)を合成した。
Figure JPOXMLDOC01-appb-C000059
<ステップ1>
 窒素置換したナスフラスコ(300mL)にテトラヒドロフラン-2,5-ジオン(10.03g、100.2mmol)、ビス(2-エチルヘキシル)アミン(33.0mL、109.9mmol)、1,4-ジオキサン(100mL)を入れ、80℃で3時間加熱撹拌した。反応終了後、濃縮し、塩酸とジクロロメタンで分液し、得られた有機層を硫酸ナトリウムで乾燥したのち、濃縮し、中間体bcf1-1を定量的に得た。
<ステップ2>
 窒素置換したナスフラスコ(200mL)に中間体bcf1-1(3.000g、8.785mmol)、ローソン試薬(4.264g、10.54mmol)、トルエン(50mL)を入れ、2時間加熱還流した。反応終了後、濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=6:1)で精製し、中間体bcf1-2(852mg、63%収率)を得た。
<ステップ3>
 窒素置換したネジ口式試験管に中間体bcf1-2(100.0mg,0.3090mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(19.4mg,0.170mmol)、1-ブタノール(0.6mL)、トルエン(0.6mL)を加え、1時間加熱還流した。反応終了後、濃縮し、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=90:10)でNIR色素(Bcf1)(17.2mg、15%収率)を得た。
[例20]NIR色素(Bcf2)の製造
 以下に示す反応経路に従い、NIR色素(Bcf2)を合成した。
Figure JPOXMLDOC01-appb-C000060
<ステップ1>
 窒素置換したナスフラスコ(300mL)にシクロペンタン-1,2-ジカルボン酸(6.00g、37.9mmol)、トリエチルアミン(27mL、194mmol)、DMF(3滴)、ジクロロメタン(150mL)を入れ、塩化オキサリル(3.30mL、38.0mmol)を0℃でゆっくり加えたのち、1時間加熱還流した。続いて、ビス(2-エチルヘキシル)アミン(11.4mL、37.94mmol)を加え、1時間加熱還流した。反応終了後、濃縮し、吸引濾過にて固体を除去した。得られた有機層を塩酸で洗浄し、硫酸ナトリウムで乾燥、濃縮し、シリカゲルカラムクロマトグラフィー(ジクロロメタン/メタノール=96/4)で精製し、中間体bcf2-1(12.0g、83%収率)を得た。
<ステップ2>
 窒素置換したナスフラスコ(2000mL)に中間体bcf2-1(10.0g、26.2mmol)、五硫化二リン(6.00g、27.0mmol)、トルエン(600mL)を入れ、2時間加熱還流した。反応終了後、濃縮し、活性アルミナカラムクロマトグラフィー(ヘキサン100%)で精製し、中間体bcf2-2(700mg、7%収率)を得た。
<ステップ3>
 窒素置換したナスフラスコ(300mL)に中間体bcf2-2(790mg、2.17mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(376mg、3.30mmol)、オルトギ酸トリメチル(3.6mL、33mmol)、1-プロパノール(100mL)を入れ、1時間加熱還流した。反応終了後、濃縮し、シリカゲルクロマトグラフィー(ヘキサン:ジクロロメタン=10:0-3:2、ヘキサン酢酸エチル=10:0-5:1)でNIR色素(Bcf2)(123mg、14%収率)を得た。
[例21]NIR色素(Bcf3)の製造
 以下に示す反応経路に従い、NIR色素(Bcf3)を合成した。
Figure JPOXMLDOC01-appb-C000061
<ステップ1>
 窒素置換したナスフラスコ(300mL)にcis-1,2-シクロヘキサンジカルボン酸無水物(10.0g、64.9mmol)、ビス(2-エチルヘキシル)アミン(22mL、73.3mmol)、1,4-ジオキサン(100mL)を入れ、80℃で3時間加熱撹拌した。反応終了後、濃縮し、塩酸とジクロロメタンで分液し、得られた有機層を硫酸ナトリウムで乾燥したのち、濃縮し、中間体bcf3-1の粗生成物を得た。粗生成物のまま次反応に用いた。
<ステップ2>
 窒素置換したナスフラスコ(200mL)に中間体bcf3-1(3.25g、8.22mmol)、ローソン試薬(5.46g、13.5mmol)、トルエン(60mL)を入れ、2時間加熱還流した。反応終了後、濃縮し、活性アルミナカラムクロマトグラフィー(ヘキサン100%)で精製し、中間体bcf3-2(808mg、26%収率)を得た。
<ステップ3>
 窒素置換したネジ口式試験管に中間体bcf3-2(300mg、0.794mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(52.4mg、0.459mmol)、1-ブタノール(2mL)、トルエン(2mL)を加え、1時間加熱還流した。反応終了後、濃縮し、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=9:1-4:1)でNIR色素(Bcf3)(190mg、57%収率)を得た。
[例22]ジクロロメタン中の透過率測定
 上記で得られたNIR色素(A1-1)~(A1-11)、(B1)~(B3)および、NIR色素(Acf1)~(Acf4)、(Bcf1)~(Bcf3)をジクロロメタンに溶解して波長300~1300nmの光吸収スペクトルを測定して吸光度曲線から、最大吸収波長λmax(A)DCMを求めた。
Figure JPOXMLDOC01-appb-T000062
 上記評価結果から明らかなように、実施例のNIR色素(A1-1)~(A1-11)はいずれも、比較例のNIR色素(Acf1)~(Acf4)よりも近赤外光に対して高い遮光性を有する。また、上記評価結果から、NIR色素(A1-2)~(A1-11)はNIR色素(Acf1)よりも50nm以上、最大で264nmの長波長化を示したことから、チエノチオフェン環の3位に不飽和結合基が直接結合することで近赤外領域の最大吸収波長を大きく長波長化できることが分かる。一方、不飽和結合が直接結合しないアリル基を導入したNIR色素(Acf4)は、NIR色素(Acf1)よりも10nm程度しか長波長化しないことが分かる。
 実施例のNIR色素(B1)~(B3)についても同様に、比較例のNIR色素(Bcf1)~(Bcf3)よりも近赤外光に対して高い遮光性を有する。また、NIR色素(B1)~(B3)はNIR色素(Bcf1)よりも100nm以上、最大で138nmの長波長化を示したことから、チオフェン環の3位に不飽和結合基が直接結合することで近赤外領域の最大吸収波長を大きく長波長化できることが分かる。一方、チオフェン環の3位にアルキル基を導入したNIR色素(Bcf2)~(Bcf3)は、NIR色素(Bcf1)よりも30nm程度しか長波長化しないことが分かる。
[例23]
 NIR色素(A1-1)~(A1-11)、(B1)~(B3)について、上記試験で得られた塗布溶液を、ガラス板(D263;SCHOTT製、商品名)上に塗布し、乾燥して膜厚1μmの吸収層を得ることができた。
 図2に示す構成の光学フィルタを以下の方法で製造する。
 透明基板として、CuO含有フツリン酸ガラス(AGC社製、商品名:NF-50GX)からなる厚さ0.21mmのガラス基板または、厚さ0.2mmのガラス基板(D263;SCHOTT製、商品名)を用いる。
 反射層としては、以下のとおり形成した誘電体多層膜を用いる。誘電体多層膜は、ガラス基板の一方の主面に、蒸着法により、例えばTiO膜とSiO膜を交互に合計42層積層して形成する。反射層の構成は、誘電体多層膜の積層数、TiO膜の膜厚およびSiO膜の膜厚をパラメータとしてシミュレーションし、入射角0度の分光透過率曲線において、波長850~1100nmの光の平均透過率が0.03%となるように設計する。
 また、ガラス基板の反射層が形成されたのと反対側の主面上に、透明樹脂とNIR色素(A1)の1種類または2種類以上を組み合わせて、厚さ約1.0μmの吸収層を形成する。この後、吸収層の表面に、蒸着法により、TiO膜とSiO膜を交互に7層積層して反射防止層を形成し、光学フィルタ(NIRフィルタ)を得る。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2019年12月4日出願の日本特許出願(特願2019-219968)及び2020年5月29日出願の日本特許出願(特願2020-094783)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のスクアリリウム化合物は、近赤外光のなかでも長波長領域の光に対して優れた遮光性を実現できることから、近赤外線吸収色素として有用であり、近赤外光を遮蔽する光学フィルタに適用可能である。本発明の光学フィルタは撮像装置に適用できる。
 10A,10D,10F,10G…光学フィルタ、11,11a,11b…吸収層、12,12a,12b…反射層、13…透明基板、14…反射防止層。

Claims (12)

  1.  下記式(A1)で表されるスクアリリウム化合物。
    Figure JPOXMLDOC01-appb-C000001
    [上記式における各記号の意味は下記のとおりである。
     RおよびRは、それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでよい、炭素数1~20のアルキル基である。RはRまたはArと連結して環を形成してもよい。RはRまたはArと連結して環を形成してもよい。
     Rは、置換基を有してもよい炭素数2以上のアルケニル基、置換基を有してもよい炭素数2以上のアルキニル基、置換基を有してもよい炭素数1以上のイミノ基、シアノ基、カルボニル構造を含み置換基を有してもよい炭素数1以上の有機基、置換基を有してもよい炭素数6~20のアリール基、または置換基を有してもよい炭素数3~13のヘテロアリール基である。RはArと連結して環を形成してもよい。
     Arは、ヘテロ原子を含んでもよい、炭素数3~14の芳香環を含む2価の基である。]
  2.  前記式(A1)で表されるスクアリリウム化合物が、下記式(A2)で表されるスクアリリウム化合物である、請求項1に記載のスクアリリウム化合物。
    Figure JPOXMLDOC01-appb-C000002
    [上記式における各記号の意味は下記のとおりである。
     R~Rの定義は請求項1と同様である。
     XはCRまたはNである。Rは水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボニル構造含有1価有機基、リン酸基、シリル基、チオール基、スルフィド基、アミド構造含有1価有機基、スルホンアミド基、ウレア基、ウレタン構造含有1価有機基、置換基を有してもよい炭素数1~14のアルキル基、置換基を有してもよい炭素数2~14のアルケニル基、置換基を有してもよい炭素数2~12のアルキニル基、置換基を有してもよい炭素数6~20のアリール基、置換基を有してもよい炭素数3~13のヘテロアリール基、置換基を有してもよい炭素数1~12のアルコキシ基、置換基を有してもよい炭素数2~13のアシルオキシ基、または、―N(R47(R47は、水素原子または置換基を有してもよい炭素数1~15のアルキル基である。)である。
     XはS、NR、またはOである。Rは水素原子、カルボニル構造含有1価有機基、スルホ基、または置換基を有してもよい炭素数1~15のアルキル基である。
     XはS、NR、またはOである。Rは水素原子、カルボニル構造含有1価有機基、スルホ基、または置換基を有してもよい炭素数1~15のアルキル基である。]
  3.  前記式(A1)で表されるスクアリリウム化合物が、下記式(A3)で表されるスクアリリウム化合物である、請求項1に記載のスクアリリウム化合物。
    Figure JPOXMLDOC01-appb-C000003
    [上記式における各記号の意味は下記のとおりである。
     R~Rの定義は請求項1と同様である。
     XはCRまたはNである。Rは水素原子、ハロゲン原子、スルホ基、水酸基、シアノ基、ニトロ基、カルボニル構造含有1価有機基、リン酸基、シリル基、チオール基、スルフィド基、アミド構造含有1価有機基、スルホンアミド基、ウレア基、ウレタン構造含有1価有機基、置換基を有してもよい炭素数1~14のアルキル基、置換基を有してもよい炭素数2~14のアルケニル基、置換基を有してもよい炭素数2~12のアルキニル基、置換基を有してもよい炭素数6~20のアリール基、置換基を有してもよい炭素数3~13のヘテロアリール基、置換基を有してもよい炭素数1~12のアルコキシ基、置換基を有してもよい炭素数2~13のアシルオキシ基、または、―N(R47(R47は、水素原子または置換基を有してもよい炭素数1~15のアルキル基である。)である。
     XはS、NR、またはOである。Rは水素原子、カルボニル構造含有1価有機基、スルホ基、または置換基を有してもよい炭素数1~15のアルキル基である。]
  4.  前記式(A2)で表されるスクアリリウム化合物が、下記式(A4)で表されるスクアリリウム化合物である、請求項2に記載のスクアリリウム化合物。
    Figure JPOXMLDOC01-appb-C000004
    [上記式における各記号の意味は下記のとおりである。
     R~Rの定義は請求項1と同様である。
     Rの定義は請求項2と同様である。]
  5.  前記式(A3)で表されるスクアリリウム化合物が、下記式(A5)で表されるスクアリリウム化合物である、請求項3に記載のスクアリリウム化合物。
    Figure JPOXMLDOC01-appb-C000005
    [上記式における各記号の意味は下記のとおりである。
     R~Rの定義は請求項1と同様である。
     Rの定義は請求項3と同様である。]
  6.  近赤外線吸収色素と樹脂とを含有する吸収層を備える光学フィルタであって、
     前記近赤外線吸収色素として請求項1~5のいずれか1項に記載のスクアリリウム化合物を含む、光学フィルタ。
  7.  さらに誘電体多層膜を含む反射層を有する請求項6に記載の光学フィルタ。
  8.  さらに透明基板を有し、前記透明基板上に前記吸収層を備える請求項6または7に記載の光学フィルタ。
  9.  前記透明基板は、ガラスにより構成される請求項8に記載の光学フィルタ。
  10.  前記ガラスは、近赤外線吸収ガラスである、請求項9に記載の光学フィルタ。
  11.  前記透明基板は、樹脂により構成される請求項8に記載の光学フィルタ。
  12.  固体撮像素子と、撮像レンズと、請求項6~11のいずれか1項に記載の光学フィルタとを備えた撮像装置。
PCT/JP2020/044364 2019-12-04 2020-11-27 スクアリリウム化合物、光学フィルタ、撮像装置 WO2021112020A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021562627A JPWO2021112020A1 (ja) 2019-12-04 2020-11-27

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019219968 2019-12-04
JP2019-219968 2019-12-04
JP2020-094783 2020-05-29
JP2020094783 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021112020A1 true WO2021112020A1 (ja) 2021-06-10

Family

ID=76221606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044364 WO2021112020A1 (ja) 2019-12-04 2020-11-27 スクアリリウム化合物、光学フィルタ、撮像装置

Country Status (2)

Country Link
JP (1) JPWO2021112020A1 (ja)
WO (1) WO2021112020A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD294962A5 (de) * 1990-06-05 1991-10-17 Th "Carl Schorlemmer",De Verfahren zur herstellung neuer thiophenhaltiger quadratsaeurefarbstoffe
JPH03291668A (ja) * 1990-04-10 1991-12-20 Citizen Watch Co Ltd 電子写真用感光体
JPH0416853A (ja) * 1990-05-11 1992-01-21 Citizen Watch Co Ltd 電子写真用感光体
DE4122563A1 (de) * 1991-07-08 1993-09-30 Wolfen Filmfab Gmbh Neue thiazolsubstituierte Quadratsäurefarbstoffe und Verfahren zu ihrer Herstellung
JP2017181891A (ja) * 2016-03-31 2017-10-05 Jsr株式会社 光学フィルターおよび光学フィルターを用いた装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291668A (ja) * 1990-04-10 1991-12-20 Citizen Watch Co Ltd 電子写真用感光体
JPH0416853A (ja) * 1990-05-11 1992-01-21 Citizen Watch Co Ltd 電子写真用感光体
DD294962A5 (de) * 1990-06-05 1991-10-17 Th "Carl Schorlemmer",De Verfahren zur herstellung neuer thiophenhaltiger quadratsaeurefarbstoffe
DE4122563A1 (de) * 1991-07-08 1993-09-30 Wolfen Filmfab Gmbh Neue thiazolsubstituierte Quadratsäurefarbstoffe und Verfahren zu ihrer Herstellung
JP2017181891A (ja) * 2016-03-31 2017-10-05 Jsr株式会社 光学フィルターおよび光学フィルターを用いた装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KEIL D; HARTMANN H: "Synthesis and characterization of 1,3-bis-(2- dialkylamino-5-thiazolyl)- substituted squaraines and their 2- (dialkylamino)thiazole precursors", LIEBIGS ANNALEN, vol. 6, 1995, pages 979 - 984, XP055184581 *
KEIL, DIETMAR ET AL.: "Preparation and characterisation of 2-amino-5- selenazolyl-substituted squaraines", DYES AND PIGMENTS, vol. 44, 2000, pages 149 - 153, XP004244390, DOI: 10.1016/S0143-7208(99)00080-7 *
KEIL, DIETMAR ET AL.: "Synthesis and characterization of 1,3-bis(2- dialkylamino-5-thienyl)-substituted squaraines - a novel class of intensively colored panchromatic dyes", DYES AND PIGMENTS, vol. 17, 1991, pages 19 - 27, XP000226923, DOI: 10.1016/0143-7208(91)85025-4 *
KIM, JAE JOON ET AL.: "Properties of unsymmetrical squarylium dyes containing strongly electron-donating 4'-amino-2,2'-bis(diethylamino)-4,5'-bithiazole residue", DYES AND PIGMENTS, vol. 57, 2003, pages 165 - 170, XP004418127, DOI: 10.1016/S0143-7208(02)00127-4 *

Also Published As

Publication number Publication date
JPWO2021112020A1 (ja) 2021-06-10

Similar Documents

Publication Publication Date Title
JP6197940B2 (ja) スクアリリウム系色素、樹脂膜、光学フィルタおよび撮像装置
JP6786858B2 (ja) エレクトロクロミック化合物及びエレクトロクロミック組成物
CN103833872B (zh) 一种双肟酯类光引发剂及其制备方法和应用
CN110563661B (zh) 具红移效应的苯并三唑紫外线吸收剂及其用途
CN107418505A (zh) 紫外光固化巯基/烯有机硅胶黏剂及其制备方法
JP6874825B2 (ja) 化合物およびこれを含む色変換フィルム
WO1993013110A1 (de) Jodoniumsalze und verfahren zu deren herstellung
WO2021112020A1 (ja) スクアリリウム化合物、光学フィルタ、撮像装置
JP7310806B2 (ja) 近赤外線吸収色素、光学フィルタおよび撮像装置
JP7061045B2 (ja) 積層体および光学物品
JP7456295B2 (ja) スクアリリウム化合物、光学フィルタ、撮像装置
JP7459709B2 (ja) 光学フィルタ
KR20160129385A (ko) 컬러필터용 착색 염료 및 이를 포함하는 감광성 수지 조성물
KR20240005843A (ko) 칼콘 구조의 옥심 에스테르계 광개시제 및 이의 제조 방법과 응용
JP7230910B2 (ja) 近赤外線吸収色素、光学フィルタおよび撮像装置
JP6896970B2 (ja) 含窒素化合物、これを含む色変換フィルム、およびこれを含むバックライトユニットおよびディスプレイ装置
WO2016047766A1 (ja) 透明体の製造方法、透明体及び非晶質体
WO2022181422A1 (ja) 光学フィルタ
JP5896339B2 (ja) 有機シリカ系材料
Driess et al. The First Orthotelluric Acid Polysilylesters: Synthesis and Crystal Structure of [(Me3SiO) 8Te2O2] and [(Me4Si2O2) 3Te]
CN115894268A (zh) 一种浅底色蓝光吸收剂及其制备方法与应用
TW202132306A (zh) 四氮雜卟啉化合物、墨水組合物、膜、光學材料、光學膜、顯示器表面膜、及顯示裝置
JP2022159577A (ja) フラノン誘導体およびその製造法
KR20210028832A (ko) 컬러 필터 배열 구조용 저유전 염료형 블랙매트릭스
JPH05230072A (ja) シリル基含有アゾ化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897098

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562627

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897098

Country of ref document: EP

Kind code of ref document: A1