WO2021111612A1 - 圧電体薄膜素子の製造方法及び電子素子の製造方法 - Google Patents

圧電体薄膜素子の製造方法及び電子素子の製造方法 Download PDF

Info

Publication number
WO2021111612A1
WO2021111612A1 PCT/JP2019/047792 JP2019047792W WO2021111612A1 WO 2021111612 A1 WO2021111612 A1 WO 2021111612A1 JP 2019047792 W JP2019047792 W JP 2019047792W WO 2021111612 A1 WO2021111612 A1 WO 2021111612A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
wafer substrate
piezoelectric
predetermined number
defect
Prior art date
Application number
PCT/JP2019/047792
Other languages
English (en)
French (fr)
Inventor
池田 圭
江口 秀幸
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to PCT/JP2019/047792 priority Critical patent/WO2021111612A1/ja
Priority to JP2021562414A priority patent/JP7464061B2/ja
Publication of WO2021111612A1 publication Critical patent/WO2021111612A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • H10N30/088Shaping or machining of piezoelectric or electrostrictive bodies by machining by cutting or dicing

Definitions

  • the present invention relates to a method for manufacturing a piezoelectric thin film device and a method for manufacturing an electronic device.
  • a defect on the film-forming surface of the piezoelectric film is located in the piezoelectric functional region of the piezoelectric thin film element, the piezoelectric function and withstand voltage characteristics may be seriously affected. Therefore, if a defect appears in the functional region in appearance, it is treated as a defect, and the yield of the piezoelectric thin film element decreases.
  • the wafer is inspected at the patterning stage and defect inspection information is acquired. Then, the yield is improved by cutting out the wafer so as to avoid the defective portion.
  • Patent Document 1 in order to avoid defective parts, the layout of a predetermined number of electronic elements on one wafer substrate is different each time, so that patterning and dicing are also performed individually for each wafer. It has to be dealt with, and the production efficiency is reduced.
  • the present invention has been made in view of the above problems in the prior art, and an object of the present invention is to improve the yield without lowering the production efficiency even if the film formed on the wafer substrate has a defect. To do.
  • the invention according to claim 1 for solving the above problems is a method for manufacturing a predetermined number of piezoelectric thin film elements from one wafer substrate.
  • a dicing step of separating the piezoelectric thin film element into individual pieces according to a predetermined number of pattern layouts in the patterning step is provided.
  • the inspection step the distribution data of defects on the piezoelectric film film-forming surface is acquired, and the distribution data is obtained.
  • the piezoelectric film serves as the piezoelectric thin film element.
  • the invention according to claim 2 is a method for manufacturing a predetermined number of piezoelectric thin film elements from one wafer substrate.
  • a film forming process for forming a piezoelectric film on a wafer substrate After the film forming step, an inspection step of inspecting the piezoelectric film film forming surface of the wafer substrate and After the inspection step, a patterning step of laying out and forming a predetermined number of patterns of the piezoelectric thin film element having an element structure including a part of the piezoelectric film on the piezoelectric film film-forming surface.
  • a dicing step of separating the piezoelectric thin film element into individual pieces according to a predetermined number of pattern layouts in the patterning step is provided.
  • the distribution data of defects on the piezoelectric film film-forming surface is acquired, and the distribution data is obtained.
  • a defect influence coefficient indicating the degree of influence of defects is set in advance for each region of the piezoelectric thin film element, the number of defects on one wafer substrate is n, the area of the nth defect is Sn, and the nth defect.
  • the evaluation function L is defined by the equation (1).
  • the evaluation function L is the minimum or possible when the layout of the pattern for a predetermined number of minutes is virtually rotated and / or XY-shifted with respect to the wafer substrate with reference to the defect distribution data. Calculate the calculated value of the rotation angle and / and the XY shift amount, which is close to the minimum value.
  • the invention according to claim 3 is the method for manufacturing a piezoelectric thin film element according to claim 1 or 2, wherein a specific angle derived from the crystal orientation of the wafer substrate is avoided and the angle of rotation is calculated. is there.
  • the rotation angle is calculated by avoiding a specific angle at which the notched portion of the wafer substrate is applied to the layout of the predetermined number of patterns.
  • the invention according to claim 5 is a method for manufacturing a predetermined number of electronic elements from one wafer substrate.
  • the distribution data of defects on the working membrane is acquired, and
  • the working film functions as the electronic element when the layout of the pattern for a predetermined number of minutes is virtually rotated or / or XY-shifted with respect to the wafer substrate with reference to the defect distribution data.
  • the invention according to claim 6 is a method for manufacturing a predetermined number of electronic elements from one wafer substrate.
  • the distribution data of defects on the working membrane is acquired, and A defect influence coefficient indicating the degree of influence of defects is set in advance for each region of the electronic element, the number of defects on one wafer substrate is n, the area of the nth defect is Sn, and the nth defect is
  • the evaluation function L is defined by the equation (1).
  • the evaluation function L is the minimum or possible when the layout of the pattern for a predetermined number of minutes is virtually rotated and / or XY-shifted with respect to the wafer substrate with reference to the defect distribution data. Calculate the calculated value of the rotation angle and / and the XY shift amount, which is close to the minimum value. This is a method for manufacturing an electronic device that executes the patterning step and the dicing step according to the calculated value.
  • the invention according to claim 7 is the method for manufacturing an electronic element according to claim 5 or 6, which calculates the rotation angle by avoiding a specific angle derived from the crystal orientation of the wafer substrate.
  • the invention according to claim 8 is the invention of claims 5 to 7, wherein the notched portion of the wafer substrate avoids a specific angle over the layout of the predetermined number of patterns, and the rotation angle is calculated.
  • the pattern layout for a predetermined number of minutes is rotated or / or XY-shifted as a whole to avoid the defect as much as possible, and the patterning step and Since the dicing process is executed, the yield can be improved without lowering the production efficiency.
  • FIG. 5 is a partial cross-sectional view of a wafer after undergoing a film forming step according to the first embodiment of the present invention. It is a top view of the wafer which superimposes the defect detected in the inspection process which concerns on 1st Embodiment of this invention.
  • FIG. 5 is a plan view of a wafer in which pattern layouts are superimposed according to the first embodiment of the present invention.
  • FIG. 5 is a plan view showing a pattern for one element according to the first embodiment of the present invention. It is a top view which shows the area division of the pattern for one element which concerns on 1st Embodiment of this invention.
  • FIG. 5 is a partial cross-sectional view of a wafer after undergoing a film forming step according to the first embodiment of the present invention. It is a top view of the wafer which superimposes the defect detected in the inspection process which concerns on 1st Embodiment of this invention.
  • FIG. 5 is a plan view of a wafer in which pattern layout
  • FIG. 5 is a plan view showing an example of defect distribution on a wafer before rearrangement based on an evaluation function according to the first embodiment of the present invention.
  • FIG. 5 is a plan view showing an example of defect distribution on a wafer after optimization by rotational rearrangement based on an evaluation function according to the first embodiment of the present invention.
  • FIG. 5 is a plan view showing an example of defect distribution on a wafer after optimization by XY shift based on an evaluation function according to the first embodiment of the present invention.
  • FIG. 5 is a plan view of one element after patterning the upper electrode according to the first embodiment of the present invention.
  • FIG. 5 is a partial cross-sectional view of a wafer after patterning the upper electrode according to the first embodiment of the present invention.
  • FIG. 5 is a plan view of one element after patterning the piezoelectric film according to the first embodiment of the present invention.
  • FIG. 5 is a partial cross-sectional view of a wafer after patterning a piezoelectric film according to the first embodiment of the present invention.
  • FIG. 5 is a plan view of one element after patterning the wafer substrate according to the first embodiment of the present invention.
  • FIG. 5 is a partial cross-sectional view of a wafer after patterning a wafer substrate according to the first embodiment of the present invention.
  • FIG. 5 is a plan view of one element after joining a nozzle plate to the back surface according to the first embodiment of the present invention.
  • FIG. 5 is a partial cross-sectional view of a wafer after a nozzle plate is bonded to the back surface according to the first embodiment of the present invention.
  • FIG. 5 is a partial cross-sectional view of a piezoelectric thin film element (inkjet actuator) according to the first embodiment of the present invention. It is a schematic diagram which shows the appearance that the piezoelectric thin film element (inkjet actuator) was mounted according to 1st Embodiment of this invention.
  • FIG. 1 A silicon substrate is generally used as the wafer substrate 11.
  • the wafer substrate 11 is provided with a notch portion 12 called an orientation flat (orientation flat), a notch, or the like as a mark for making the crystal orientation known.
  • the lower electrode film (diaphragm) 13 the piezoelectric film 14, and the upper electrode film 15 are formed and laminated in this order on the wafer substrate 11.
  • Typical piezoelectric materials are lead zirconate titanate (Pb (Zr, Ti) O3) (hereinafter referred to as "PZT"), which is an oxide of perovskite-type crystal structure, and magnesium (Mg) in this PZT.
  • PZT lead zirconate titanate
  • Mg magnesium
  • manganese (Mn), nickel (Ni), niobium (Nb) and the like are added.
  • a large piezoelectric displacement is obtained in the ⁇ 001> axial direction (C-axis direction), and in the case of a rhombic crystal PZT, in the ⁇ 111> axial direction. A large piezoelectric displacement can be obtained.
  • the piezoelectric film (PZT film) is formed at a high temperature of 600 ° C. or higher and has a thickness of about 3 ⁇ m. At this time, a PZT film is also deposited inside the film forming apparatus, but a part of the PZT film is easily peeled off and adheres to the wafer to cause a defect. It is desirable to keep the inside of the equipment clean at all times, but there is a balance between maintenance costs such as cleaning and parts replacement of the equipment and the operating rate of the equipment, and it is difficult to suppress the occurrence rate of defects above a certain level. Therefore, it is inevitable to allow a certain level of defects to occur in the wafer after the piezoelectric film is formed.
  • FIG. 3 schematically shows how the defect d appears on the film-forming surface of the piezoelectric film 14 of the wafer substrate 11 after the piezoelectric film 14 is formed.
  • an inspection step of inspecting the film forming surface of the piezoelectric film 14 of the wafer substrate 11 is executed.
  • the distribution data of the defect d on the film-forming surface of the piezoelectric film 14 is acquired.
  • the wafer substrate 11 having the film formed up to the piezoelectric film 14 is hung on a wafer defect inspection device to obtain the position coordinates of the defect d with reference to the notch portion 12.
  • the format of the distribution data of the defect d does not matter. Any information may be used as long as it is information that shows which position is defective or not over the entire surface of the wafer substrate 11.
  • the type of the wafer defect inspection device is not particularly limited, such as an SEM type inspection device, a bright field type inspection device, a dark field type inspection device, and the like.
  • FIG. 4 shows a layout (hereinafter referred to as “wafer pattern layout”) 16 for a predetermined number of patterns arranged on the wafer substrate 11.
  • the wafer pattern layout 16 of this example has 28 patterns 17 for one element.
  • the pattern 17 for one element is shown in FIG.
  • the pattern 17 for one element of the piezoelectric thin film element has a pressure chamber region 17a, a wiring region 17b, a power feeding pad region 17c, and a non-functional region 17d. Only each region division is shown in FIG.
  • the pressure chamber region 17a is a region including the upper electrode of each piezoelectric element, and is the portion where the ink ejection operation is driven by the piezoelectric effect of the piezoelectric film 14 when the driving voltage is applied to the piezoelectric element. is important. Similar to the pressure chamber region 17a, the wiring region 17b and the power feeding pad region 17c are portions where the upper electrode film 15 is left in a predetermined shape, and the piezoelectric film 14 remains on the base thereof. For the non-functional region 17d, the upper electrode film 15 and the piezoelectric film 14 are removed.
  • a defect influence coefficient indicating the degree of influence of the design defect d is set in advance for each of the regions 17a, 17b, 17c, and 17d of the above-mentioned piezoelectric thin film element.
  • the defect influence coefficient Kd of the non-functional region 17d 0.
  • the number of defects d on one wafer substrate 11 is n
  • the area of the nth defect is Sn
  • the defect influence coefficient of the region of the piezoelectric thin film element in which the nth defect dn is virtually laid out is Kn.
  • the evaluation function is defined by the equation (1).
  • the evaluation function L when the wafer pattern layout 16 is virtually rotated or / or XY-shifted with respect to the wafer substrate 11 is calculated.
  • the calculated value of the rotation angle and / and the XY shift amount that minimizes the evaluation function L is calculated.
  • the XY shift refers to the movement on the biaxial coordinates on the biaxial coordinate plane parallel to the surface of the wafer substrate 11.
  • the wafer pattern layout 16 is actually applied to the wafer substrate 11 to the rotation angle and / and the XY shift amount according to the calculated value.
  • the patterning step and the dicing step are performed.
  • FIG. 7 shows an example of the defect distribution on the wafer substrate 11 before the rearrangement based on the evaluation function L is performed.
  • 10 defects d1 to d10 have been detected.
  • Seven defects d1, d3, d4, d5, d6, d8, and d10 are arranged in the pressure chamber region 17a having a high defect influence coefficient. Further, since these defects are divided into patterns 17 for seven different elements, there is a possibility that the seven piezoelectric thin film elements become defective.
  • FIG. 8 shows an example of the defect distribution on the wafer substrate 11 after optimization by rotational rearrangement based on the evaluation function L in the case where the same defect distribution as in FIG. 7 is present. Since the rotation angle is selected so that the evaluation function L is minimized, the defects existing in the pressure chamber region 17a, the wiring region 17b, and the feeding pad region 17c are reduced as shown in FIG. In particular, defects existing in the pressure chamber region 17a in which the defect influence coefficient is set to be large can be significantly reduced. Further, the number of defects d in the regions 17a, 17b, 17c in which the piezoelectric film 14 functions as the piezoelectric thin film element has also decreased.
  • the area of the defect d in the regions 17a, 17b, 17c in which the piezoelectric film 14 functions as the piezoelectric thin film element was also reduced.
  • the number of elements with defects in the regions 17a, 17b, and 17c also decreased. From the above, it is possible to make a layout in which all 28 elements are likely to be non-defective products.
  • FIG. 9 shows an example of the defect distribution on the wafer substrate 11 after optimization by XY shift based on the evaluation function L in the case where the same defect distribution as in FIG. 7 is present.
  • the XY shift amount is selected so that the evaluation function L is minimized, defects existing in the pressure chamber region 17a, the wiring region 17b, and the feeding pad region 17c, as shown in FIG. Has decreased.
  • defects existing in the pressure chamber region 17a in which the defect influence coefficient is set to be large can be significantly reduced.
  • the number of defects d in the regions 17a, 17b, 17c in which the piezoelectric film 14 functions as the piezoelectric thin film element has also decreased.
  • the area of the defect d in the regions 17a, 17b, 17c in which the piezoelectric film 14 functions as the piezoelectric thin film element was also reduced.
  • the number of elements with defects in the regions 17a, 17b, and 17c also decreased. From the above, it is possible to make a layout in which all 28 elements are likely to be non-defective products.
  • rotation or XY shift may be used as the operation amount to optimize the arrangement of the wafer pattern layout 16 with respect to the wafer substrate 11. It is preferable to calculate the rotation angle by avoiding a specific angle derived from the crystal orientation of the wafer substrate 11. This is because the wafer substrate has a specific crystal orientation that is easily broken.
  • cracking not only when handling a silicon wafer, but also when cutting an element, etching from the back surface for a cavity 18, and joining with a nozzle, impact and stress may induce cracking. If the cleavage directions of the crystals match in a specific process, they may crack.
  • the rotation angle is calculated by avoiding a specific angle at which the notch portion 12 of the wafer substrate 11 hangs on the wafer pattern layout 16. This is because when the notch portion 12 hangs on the wafer pattern layout 16, the pattern 17 in which the notch portion 12 is arranged is not a product and the yield is lowered.
  • the XY shift amount the case where the notch portion 12 is applied to the wafer pattern layout 16 is avoided. (Of course, it is a condition that the wafer pattern layout 16 is contained in the wafer substrate 11.)
  • the angle and the XY shift amount that cannot be selected due to some request are avoided. Therefore, when the rotation angle and XY shift amount at which the evaluation function L is minimized cannot be selected, a value as close to the minimum as possible is selected.
  • the pattern of a predetermined number of piezoelectric thin film elements (28 in the present embodiment) having an element structure including a part of the piezoelectric film 14 can be formed on the piezoelectric film 14.
  • a patterning step of laying out and forming on the film-forming surface is performed. In the patterning step, as shown in FIGS. 10 and 11, the upper electrode film 15 is etched to form a predetermined pattern. Next, as shown in FIGS. 12 and 13, the piezoelectric film 14 under the upper electrode film 15 is etched to form a predetermined pattern. Next, as shown in FIGS. 14 and 15, the wafer substrate 11 is etched from the back surface to form a hollow portion 18 having a predetermined pattern.
  • the cavity 18 is a pattern having an ink supply path to the pressure chamber 18a and the pressure chamber 18a.
  • 17A is the front side
  • 17B is the back side.
  • a nozzle plate 19 having nozzle holes 19a is joined to the back surface of the wafer substrate 11, and each nozzle hole 19a is connected to each pressure chamber 18a.
  • a dicing step of cutting the wafer substrate 11 and separating the piezoelectric thin film element 27 into individual pieces is executed according to the wafer pattern layout 16 in the patterning step.
  • the pattern 17 portion for one element is cut out to form one piezoelectric thin film element 27.
  • the piezoelectric thin film element 27 is connected to a drive circuit (not shown), and as shown in FIG. 18, a drive voltage is applied between the upper electrode film 15 and the lower electrode film 13 to deform the piezoelectric film 14.
  • the lower electrode film 13 that also serves as a vibrating plate vibrates.
  • the ink 29 is connected to the ink tank 28, the ink 29 is supplied to the pressure chamber 18a, and the ink droplet 30 is ejected from the nozzle hole 19a due to the vibration of the diaphragm.
  • a piezoelectric film formed on the wafer substrate 11 is formed. Since the defect d generated in No. 14 is retracted to a region that does not affect the function of the element or a region that has little influence, the piezoelectric thin film element can be manufactured with a good yield. Since the wafer pattern layout 16 is rotated or / and XY-shifted as a whole, the relative positional relationship between the patterns of one element in the wafer pattern layout 16 is unchanged.
  • the patterning step and the dicing step may be performed based on the reference that the rotation or / and XY-shifted movement amount of the wafer pattern layout 16 as a whole is moved by the same amount, and the production efficiency is not reduced.
  • the layout 16 of the pattern for a predetermined number of minutes is rotated or / or XY-shifted as a whole to cause a defect as much as possible. Since the patterning step and the dicing step are executed while avoiding d, the yield can be improved without lowering the production efficiency.
  • the wafer substrate was cut after patterning, but the wafer substrate was cut to a predetermined size, and each of the cut wafer substrates was patterned, and the piezoelectric thin film element was made into individual pieces.
  • the effect of the present invention is the same even if separated.
  • the rotation angle and / and the XY shift amount are calculated so that the number of defects in the region where the piezoelectric film functions as the piezoelectric thin film element is the minimum or as close to the minimum as possible.
  • the number of defects d on one wafer substrate is n
  • the number of defects d in the regions 17a, 17b, 17c in which the piezoelectric film 14 functions as the piezoelectric thin film element is m.
  • the rotation angle and / and XY shift is such that the number of defects m becomes the minimum or as close to the minimum as possible. Calculate the calculated value of the quantity.
  • the patterning step and the dicing step are executed according to the calculated value.
  • the number m of defects d in the regions 17a, 17b, 17c in which the piezoelectric film 14 functions as the piezoelectric thin film element is reduced, so that the piezoelectric thin film element can be manufactured with good yield.
  • the area DS of the defect d in the regions 17a, 17b, 17c in which the piezoelectric film 14 functions as the piezoelectric thin film element is reduced, so that the piezoelectric thin film element can be manufactured with good yield.
  • the rotation angle and / and the XY shift amount are calculated so that the number of elements having defects in the region where the piezoelectric film functions as the piezoelectric thin film element is the minimum or as close to the minimum as possible.
  • N be the number of elements having a defect d in the regions 17a, 17b, 17c in which the piezoelectric film 14 functions as a piezoelectric thin film element.
  • the number N of elements having defects d in the regions 17a, 17b, 17c in which the piezoelectric film 14 functions as the piezoelectric thin film element is reduced, so that the piezoelectric thin film element can be manufactured with good yield.
  • the manufacturing target is a piezoelectric thin film device, but it can also be applied to other electronic devices in general.
  • the target film for inspecting the defect is the working film of the electronic device.
  • the piezoelectric conversion action film of the piezoelectric thin film element is the above-mentioned piezoelectric film 14.
  • the present invention can be used in a method for manufacturing a piezoelectric thin film device and other electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

一枚のウエハ基板から所定数の電子素子を製造する方法であって、成膜工程と、検査工程と、パターニング工程と、ダイシング工程と、を有し、前記検査工程において、欠陥の分布データを取得する。欠陥の分布データを参照しつつ、所定数分の電子素子のパターンのレイアウトを全体として、ウエハ基板に対し仮想的に回転又は/及びXYシフトさせたとき、電子素子として機能する領域中にある欠陥の数若しくは面積又は当該領域中に欠陥がある素子数が、最小又は可及的に最小に近い値となる当該回転の角度又は/及びXYシフト量の算出値を算出する。当該算出値に従って前記パターニング工程及びダイシング工程を実行する。また、上記欠陥の数等に代え、領域ごとに欠陥の影響度による重みづけ係数と欠陥面積との積の総和である評価関数Lを適用する。

Description

圧電体薄膜素子の製造方法及び電子素子の製造方法
 本発明は、圧電体薄膜素子の製造方法及び電子素子の製造方法に関する。
 一般に、一枚のウエハ基板から所定数の電子素子を製造するにあたり、成膜工程、パターニング工程、ダイシング工程を経て、個々の電子素子が得られる。このとき、パターニング工程における所定数の電子素子のウエハ基板に対するレイアウトが固定であると、ダイシング工程でもそのレイアウトに従って切り出すから、ウエハ基板上のどの位置がどの電子素子のどの位置になるか一定である。この場合に、ウエハ基板上の電子素子となる領域に欠陥が生じると、その欠陥を含んだ電子素子を製造することとなることを回避できない。また、ウエハ基板上の電子素子となる領域中の重要な機能領域に欠陥が生じた場合も、同様である。
 例えば、圧電体薄膜素子を製造するにあたり、圧電膜は高温で長時間結晶成長させるため、圧電体薄膜素子の製作工程においては初期にウエハ基板に成膜されるのが一般的である。
 したがって、圧電膜成膜面上の欠陥が圧電体薄膜素子の圧電機能領域に位置した場合は、圧電機能や耐電圧特性に深刻な影響を及ぼす可能性がある。
 そのため外観的に欠陥が機能領域に見える場合は不良として扱うので圧電体薄膜素子の歩留まりが低下する。
 特許文献1に記載のプローブユニットの製造方法にあっては、パターニング段階でウエハを検査し、欠陥の検査情報を取得する。そして、欠陥個所を避けるようにウエハを切り出すことで歩留まりを向上させる。
特開平11-51971号公報
 しかし、特許文献1に記載の発明によると、      欠陥箇所を避けるために、一枚のウエハ基板上の所定数の電子素子同士のレイアウトが都度異なってしまうため、パターンニング及びダイシングもウエハごと個別に対応しなければならず、生産効率が低下する。
 本発明は以上の従来技術における問題に鑑みてなされたものであって、ウエハ基板上に成膜した膜に欠陥があっても、生産効率を低下させることなく、歩留まりを向上することを課題とする。
 以上の課題を解決するための請求項1記載の発明は、一枚のウエハ基板から所定数の圧電体薄膜素子を製造する方法であって、
ウエハ基板に圧電膜を成膜する成膜工程と、
前記成膜工程の後、前記ウエハ基板の前記圧電膜成膜面を検査する検査工程と、
前記検査工程の後、前記圧電膜の一部を含む素子構造を有した前記圧電体薄膜素子の所定数分のパターンを、前記圧電膜成膜面上にレイアウトして形成するパターニング工程と、
前記パターニング工程の後、前記パターニング工程における所定数分のパターンのレイアウトに従って前記圧電体薄膜素子を個片に分離するダイシング工程と、を有し、
前記検査工程において、前記圧電膜成膜面上の欠陥の分布データを取得し、
前記欠陥の分布データを参照しつつ、前記所定数分のパターンのレイアウトを全体として、前記ウエハ基板に対し仮想的に回転又は/及びXYシフトさせたとき、前記圧電膜が前記圧電体薄膜素子として機能する領域中にある欠陥の数若しくは面積又は当該領域中に欠陥がある素子数が、最小又は可及的に最小に近い値となる当該回転の角度又は/及びXYシフト量の算出値を算出し、
前記算出値に従って前記パターニング工程及びダイシング工程を実行する圧電体薄膜素子の製造方法である。
 請求項2記載の発明は、一枚のウエハ基板から所定数の圧電体薄膜素子を製造する方法であって、
ウエハ基板に圧電膜を形成する成膜工程と、
前記成膜工程の後、前記ウエハ基板の前記圧電膜成膜面を検査する検査工程と、
前記検査工程の後、前記圧電膜の一部を含む素子構造を有した前記圧電体薄膜素子の所定数分のパターンを、前記圧電膜成膜面上にレイアウトして形成するパターニング工程と、
前記パターニング工程の後、前記パターニング工程における所定数分のパターンのレイアウトに従って前記圧電体薄膜素子を個片に分離するダイシング工程と、を有し、
前記検査工程において、前記圧電膜成膜面上の欠陥の分布データを取得し、
圧電体薄膜素子の領域ごとに欠陥の影響度を示す欠陥影響係数を予め設定しておき、1枚のウエハ基板上の欠陥の個数をn、n番目の欠陥の面積をSnとし、n番目の欠陥が仮想的にレイアウトされる圧電体薄膜素子の領域の欠陥影響係数をKnとしたとき、評価関数Lを式(1)で定義し、
Figure JPOXMLDOC01-appb-M000003
前記欠陥の分布データを参照しつつ、前記所定数分のパターンのレイアウトを全体として、前記ウエハ基板に対し仮想的に回転又は/及びXYシフトさせたとき、前記評価関数Lが最小又は可及的に最小に近い値となる当該回転の角度又は/及びXYシフト量の算出値を算出し、
前記算出値に従って前記パターニング工程及びダイシング工程を実行する圧電体薄膜素子の製造方法である。
 請求項3記載の発明は、前記ウエハ基板の結晶方位に由来する特定の角度を忌避して、前記回転の角度を算出する請求項1又は請求項2に記載の圧電体薄膜素子の製造方法である。
 請求項4記載の発明は、前記ウエハ基板の切り欠き部が前記所定数分のパターンのレイアウトに掛かる特定の角度を忌避して、前記回転の角度を算出する請求項1から請求項3のうちいずれか一に記載の圧電体薄膜素子の製造方法である。
 請求項5記載の発明は、一枚のウエハ基板から所定数の電子素子を製造する方法であって、
ウエハ基板に前記電子素子の作用膜を形成する成膜工程と、
前記成膜工程の後、前記ウエハ基板の前記作用膜を検査する検査工程と、
前記検査工程の後、前記作用膜の一部を含む素子構造を有した前記電子素子の所定数分のパターンを、前記作用膜成膜面上にレイアウトして形成するパターニング工程と、
前記パターニング工程の後、前記パターニング工程における所定数分のパターンのレイアウトに従って前記電子素子を個片に分離するダイシング工程と、を有し、
前記検査工程において、前記作用膜上の欠陥の分布データを取得し、
前記欠陥の分布データを参照しつつ、前記所定数分のパターンのレイアウトを全体として、前記ウエハ基板に対し仮想的に回転又は/及びXYシフトさせたとき、前記作用膜が前記電子素子として機能する領域中にある欠陥の数若しくは面積又は当該領域中に欠陥がある素子数が、最小又は可及的に最小に近い値となる当該回転の角度又は/及びXYシフト量の算出値を算出し、
前記算出値に従って前記パターニング工程及びダイシング工程を実行する電子素子の製造方法である。
 請求項6記載の発明は、一枚のウエハ基板から所定数の電子素子を製造する方法であって、
ウエハ基板に前記電子素子の作用膜を形成する成膜工程と、
前記成膜工程の後、前記ウエハ基板の前記作用膜を検査する検査工程と、
前記検査工程の後、前記作用膜の一部を含む素子構造を有した前記電子素子の所定数分のパターンを、前記作用膜成膜面上にレイアウトして形成するパターニング工程と、
前記パターニング工程の後、前記パターニング工程における所定数分のパターンのレイアウトに従って前記電子素子を個片に分離するダイシング工程と、を有し、
前記検査工程において、前記作用膜上の欠陥の分布データを取得し、
電子素子の領域ごとに欠陥の影響度を示す欠陥影響係数を予め設定しておき、1枚のウエハ基板上の欠陥の個数をn、n番目の欠陥の面積をSnとし、n番目の欠陥が仮想的にレイアウトされる電子素子の領域の欠陥影響係数をKnとしたとき、評価関数Lを式(1)で定義し、
Figure JPOXMLDOC01-appb-M000004
前記欠陥の分布データを参照しつつ、前記所定数分のパターンのレイアウトを全体として、前記ウエハ基板に対し仮想的に回転又は/及びXYシフトさせたとき、前記評価関数Lが最小又は可及的に最小に近い値となる当該回転の角度又は/及びXYシフト量の算出値を算出し、
前記算出値に従って前記パターニング工程及びダイシング工程を実行する電子素子の製造方法である。
 請求項7記載の発明は、前記ウエハ基板の結晶方位に由来する特定の角度を忌避して、前記回転の角度を算出する請求項5又は請求項6に記載の電子素子の製造方法である。
 請求項8記載の発明は、前記ウエハ基板の切り欠き部が前記所定数分のパターンのレイアウトに掛かる特定の角度を忌避して、前記回転の角度を算出する請求項5から請求項7のうちいずれか一に記載の電子素子の製造方法である。
 本発明によれば、ウエハ基板上に成膜した膜に欠陥があっても、所定数分のパターンのレイアウトを全体として回転又は/及びXYシフトして可及的に欠陥を避けてパターニング工程及びダイシング工程を実行するため、生産効率を低下させることなく、歩留まりを向上することができる。
本発明の第1実施形態に係るウエハ基板の平面図である。 本発明の第1実施形態に係り、成膜工程を経た後のウエハの部分断面図である。 本発明の第1実施形態に係り、検査工程で検出した欠陥を重ねて示したウエハの平面図である。 本発明の第1実施形態に係り、パターンレイアウトを重ねて示したウエハの平面図である。 本発明の第1実施形態に係り、1素子分のパターンを示す平面図である。 本発明の第1実施形態に係り、1素子分のパターンの領域分けを示す平面図である。 本発明の第1実施形態に係り、評価関数に基づく再配置を行う前のウエハ上の欠陥分布の一例を示す平面図である。 本発明の第1実施形態に係り、評価関数に基づく回転再配置による最適化を行った後のウエハ上の欠陥分布の一例を示す平面図である。 本発明の第1実施形態に係り、評価関数に基づくXYシフトによる最適化を行った後のウエハ上の欠陥分布の一例を示す平面図である。 本発明の第1実施形態に係り、上部電極パターニング後の1素子分の平面図である。 本発明の第1実施形態に係り、上部電極パターニング後のウエハの部分断面図である。 本発明の第1実施形態に係り、圧電膜パターニング後の1素子分の平面図である。 本発明の第1実施形態に係り、圧電膜パターニング後のウエハの部分断面図である。 本発明の第1実施形態に係り、ウエハ基板パターニング後の1素子分の平面図である。 本発明の第1実施形態に係り、ウエハ基板パターニング後のウエハの部分断面図である。 本発明の第1実施形態に係り、裏面にノズル板を接合した後の1素子分の平面図である。 本発明の第1実施形態に係り、裏面にノズル板を接合した後のウエハの部分断面図である。 本発明の第1実施形態に係り、圧電体薄膜素子(インクジェットアクチュエータ)の部分断面図である。 本発明の第1実施形態に係り、圧電体薄膜素子(インクジェットアクチュエータ)が実装された様子を示す模式図である。
 以下に本発明の一実施形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。
〔第1実施形態〕
 第1実施形態の圧電体薄膜素子の製造方法につき説明する。インクジェットプリンターに使用するインクジェットアクチュエータを圧電体薄膜素子により構成する場合を例とする。
 まず、図1に示すようなウエハ基板11に対し成膜工程を実行する。ウエハ基板11としてはシリコン基板が一般的に用いられる。ウエハ基板11には、結晶方位をわかるようにするための目印として、オリフラ(オリエンテーション・フラット(orientation flat))、ノッチ等と呼ばれる切り欠き部12が設けられている。
 本成膜工程では、図2に示すようにウエハ基板11上に、下部電極膜(振動板)13、圧電膜14、上部電極膜15の順で成膜し積層する。
 圧電体材料の代表的なものは、ペロブスカイト型結晶構造の酸化物であるチタン酸ジルコン酸鉛(Pb(Zr,Ti)O3)(以下「PZT」という)や、このPZTにマグネシウム(Mg)、マンガン(Mn)、ニッケル(Ni)、ニオブ(Nb)などを添加したものなどがある。特に、ペロブスカイト型結晶構造の正方晶系PZTの場合には、<001>軸方向(C軸方向)に大きな圧電変位が得られ、      菱面体晶系PZTの場合には、<111>軸方向に大きな圧電変位が得られる。
 圧電膜(PZT膜)は、600℃以上の高温で厚み3μm程度成膜される。このとき成膜装置内部にもPZT膜が堆積するが、その一部が剥落してウエハに付着し欠陥となりやすい。装置内部は常に清浄に保つことが望ましいが、装置の清掃・部品交換等のメンテナンスコストや設備の稼働率とのバランスがあり、一定レベル以上に欠陥の発生率を抑制することは難しい。したがって圧電膜を成膜した後のウエハには一定レベルの欠陥の発生は許容せざるをえない。
 図3は、圧電膜14成膜後のウエハ基板11の圧電膜14成膜面に欠陥dが表出した様子を模式的に示す。
 ウエハ基板11に圧電膜14を成膜する成膜工程の後、ウエハ基板11の圧電膜14成膜面を検査する検査工程を実行する。本検査工程において、圧電膜14成膜面上の欠陥dの分布データを取得する。圧電膜14まで成膜したウエハ基板11を、ウエハ欠陥検査装置に掛け、切り欠き部12を基準にした欠陥dの位置座標を得る。なお、欠陥dの分布データの形式は問わない。ウエハ基板11の全面に亘って、どの位置が欠陥であるか否かがわかる情報であればよい。ウエハ欠陥検査装置としては、SEM式検査装置、明視野式検査装置、暗視野式検査装置その他、特に種類が限定されるものではない。
 図4は、ウエハ基板11上に配置する所定数分のパターンのレイアウト(以下「ウエハパターンレイアウト」という)16を示している。本例のウエハパターンレイアウト16は、1素子分のパターン17を28個分有する。
 1素子分のパターン17を図5に示す。
 圧電体薄膜素子の1素子分のパターン17は、図5に示すように圧力室領域17aと、配線領域17bと、給電パッド領域17cと、無機能領域17dとを有する。各領域分けのみを図6に示す。圧力室領域17aは、各々の圧電素子の上部電極を含む領域であり、圧電素子に駆動電圧が印加されることにより、圧電膜14の圧電効果によりインク吐出動作が駆動される部分であるため最重要である。配線領域17bと、給電パッド領域17cは、圧力室領域17aと同様に、上部電極膜15を所定形状に残した部分であり、その下地には圧電膜14は残る。無機能領域17dについては、上部電極膜15及び圧電膜14は除去される。
 以上の圧電体薄膜素子の領域17a,17b,17c,17dごとに設計的な欠陥dの影響度を示す欠陥影響係数を予め設定しておく。
 例えば、圧力室領域17aの欠陥影響係数Kaを、Ka=1とし、配線領域17bの欠陥影響係数Kbを、Kb=0.2とし、給電パッド領域17cの欠陥影響係数Kcを、Kc=0.3とし、無機能領域17dの欠陥影響係数Kdを、Kd=0とする。
 1枚のウエハ基板11上の欠陥dの個数をn、n番目の欠陥の面積をSnとし、n番目の欠陥dnが仮想的にレイアウトされる圧電体薄膜素子の領域の欠陥影響係数をKnとしたとき、評価関数を式(1)で定義する。欠陥dが異なる領域に跨る場合は、領域ごとに1個の欠陥として計算する。
Figure JPOXMLDOC01-appb-M000005
 検査工程で取得した欠陥の分布データを参照しつつ、ウエハパターンレイアウト16を全体として、ウエハ基板11に対し仮想的に回転又は/及びXYシフトさせたときの評価関数Lを計算する。そして、評価関数Lが最小となる当該回転の角度又は/及びXYシフト量の算出値を算出する。なお、XYシフトは、ウエハ基板11の表面に平行な2軸座標面上における当該2軸座標上の移動を指す。
 評価関数Lが最小となる回転の角度又は/及びXYシフト量の算出値を算出したら、実際にその算出値に従った回転の角度又は/及びXYシフト量にウエハパターンレイアウト16をウエハ基板11に対して配置して、パターニング工程及びダイシング工程を実行する。
 図7は、上記評価関数Lに基づく再配置を行う前のウエハ基板11上の欠陥分布の一例を示す。
 図7に示すように10個の欠陥d1~d10が検出されている。欠陥影響係数の高い圧力室領域17aに7個の欠陥d1,d3,d4,d5,d6,d8,d10が配置されている。また、これらの欠陥は、それぞれ別の7素子分のパターン17に分かれて存在しているため、7個の圧電体薄膜素子が不良となる可能性がある。
 図8は、図7と同じ欠陥の分布があった場合について、上記評価関数Lに基づく回転再配置による最適化を行った後のウエハ基板11上の欠陥分布の一例を示す。
 上記評価関数Lが最小となるように回転の角度を選択しているので、図8に示すように、圧力室領域17a、配線領域17b、給電パッド領域17cに存在する欠陥は減少した。特に欠陥影響係数を大きく設定している圧力室領域17aに存在する欠陥を顕著に減少させることができる。
 また、圧電膜14が圧電体薄膜素子として機能する領域17a,17b,17c中にある欠陥dの数としても、減少した。
 圧電膜14が圧電体薄膜素子として機能する領域17a,17b,17c中にある欠陥dの面積としても、減少した。
 当該領域17a,17b,17c中に欠陥がある素子数としても、減少した。
 以上により、全28素子が良品となる可能性が高いレイアウトにすることができる。
 また、回転による再配置ではなく、XYシフトによる例を示す。
 図9は、図7と同じ欠陥の分布があった場合について、上記評価関数Lに基づくXYシフトによる最適化を行った後のウエハ基板11上の欠陥分布の一例を示す。
 この場合も同様に、上記評価関数Lが最小となるようにXYシフト量を選択しているので、図9に示すように、圧力室領域17a、配線領域17b、給電パッド領域17cに存在する欠陥は減少した。特に欠陥影響係数を大きく設定している圧力室領域17aに存在する欠陥を顕著に減少させることができる。
 また、圧電膜14が圧電体薄膜素子として機能する領域17a,17b,17c中にある欠陥dの数としても、減少した。
 圧電膜14が圧電体薄膜素子として機能する領域17a,17b,17c中にある欠陥dの面積としても、減少した。
 当該領域17a,17b,17c中に欠陥がある素子数としても、減少した。
 以上により、全28素子が良品となる可能性が高いレイアウトにすることができる。
 さらに、以上の回転又はXYシフトのみならず、回転とXYシフトの双方を操作量として、ウエハ基板11に対するウエハパターンレイアウト16の配置の最適化を行ってもよい。
 なお、ウエハ基板11の結晶方位に由来する特定の角度を忌避して、回転の角度を算出することがよい。ウエハ基板は特定の結晶方位が割れやすいからである。割れについては、シリコンウエハの取り扱い時のみでなく、素子の切断時・空洞部18のための裏面からのエッチング時・ノズルとの接合時などの衝撃や応力が割れを誘発する可能性があり、特定の工程において結晶の劈開方向が一致すると割れる可能性がある。
 また、ウエハ基板11の切り欠き部12がウエハパターンレイアウト16に掛かる特定の角度を忌避して、回転の角度を算出する。切り欠き部12がウエハパターンレイアウト16に掛かると、切り欠き部12が配置されたパターン17については製品にならず、歩留まりが低下するからである。
 無論、XYシフト量についても、切り欠き部12がウエハパターンレイアウト16に掛かる場合を忌避する。(なお、当然にウエハパターンレイアウト16がウエハ基板11内に収まっていることを条件とする。)
 以上のように、何らかの要請により選択できない角度、XYシフト量を忌避する。
 したがって、評価関数Lが最小となる回転の角度、XYシフト量を選択できないときは、可及的に最小に近い値を選択する。
 検査工程の後、以上のレイアウトも決定すれば、圧電膜14の一部を含む素子構造を有した圧電体薄膜素子の所定数分(本実施形態では28個分)のパターンを、圧電膜14成膜面上にレイアウトして形成するパターニング工程を実行する。
 パターニング工程においては、図10及び図11に示すように上部電極膜15をエッチングして所定のパターンに形成する。
 次に、図12及び図13に示すように、上部電極膜15の下の圧電膜14をエッチングして所定のパターンに形成する。
 次に、図14及び図15に示すように、ウエハ基板11を裏面からエッチングして所定のパターンの空洞部18を形成する。空洞部18は、圧力室18a、圧力室18aへのインク供給路を有したパターンである。なお、17Aは表面側、17Bを裏面側とする。
 次に、図16及び図17に示すように、ウエハ基板11の裏面にノズル孔19aを有したノズル板19を接合して、各ノズル孔19aを各圧力室18aに接続する。
 以上のパターニング工程の後、上記パターニング工程におけるウエハパターンレイアウト16に従ってウエハ基板11を切断して圧電体薄膜素子27を個片に分離するダイシング工程を実行する。
 1素子分のパターン17部分が切り出され、1個の圧電体薄膜素子27となる。
 圧電体薄膜素子27は、駆動回路(不図示)に接続されて、図18に示すように上部電極膜15と下部電極膜13との間に駆動電圧が印加されて、圧電膜14が変形させられて振動板を兼ねる下部電極膜13が振動する。
 インクジェットヘッドとして使用される際には、図19に示すようにインクタンク28に接続され、圧力室18aにインク29が供給され、上記の振動板の振動によりインク滴30がノズル孔19aから吐出される。
 以上のように第1実施形態の圧電体薄膜素子の製造方法によれば、一枚のウエハ基板11から所定数の圧電体薄膜素子27を製造するにあたり、ウエハ基板11上に成膜した圧電膜14に生じた欠陥dを、素子の機能に影響のない領域又は影響の少ない領域に退避させるので、圧電体薄膜素子を歩留まり良好に製造することができる。
 ウエハパターンレイアウト16を、全体として回転又は/及びXYシフト移動させるので、ウエハパターンレイアウト16中の1素子分のパターン同士の相対的位置関係は不変である。したがって、パターニング工程と、ダイシング工程は、ウエハパターンレイアウト16の全体として回転又は/及びXYシフトした移動量を同じ量だけ移動した基準により実行すればよく、生産効率を落とすことがない。
 以上のようにして、ウエハ基板11上に成膜した膜(14)に欠陥dがあっても、所定数分のパターンのレイアウト16を全体として回転又は/及びXYシフトして可及的に欠陥dを避けてパターニング工程及びダイシング工程を実行するため、生産効率を低下させることなく、歩留まりを向上することができる。
また本実施例ではパターニングの後、ウエハ基板の切断を実行したが、ウエハ基板を所定の大きさに切断し、切断された各ウエハ基板に対してパターニングを行い、圧電体薄膜素子を個片に分離しても本発明の効果は同様である。
〔他の実施形態〕
 他の実施形態を開示する。
(A)以上の第1実施形態では、式(1)で定義される評価関数Lが最小又は可及的に最小に近い値となる回転の角度又は/及びXYシフト量の算出値を算出し、当該算出値に従ってパターニング工程及びダイシング工程を実行した。
 第1実施形態における評価関数Lを以下のパラメーターに置き換えた方法も実施できる。
(A1)圧電膜が圧電体薄膜素子として機能する領域中にある欠陥の数が最小又は可及的に最小に近い値となる回転の角度又は/及びXYシフト量を算出する。
 第1実施形態において、1枚のウエハ基板上の欠陥dの個数をnとしたが、そのうち圧電膜14が圧電体薄膜素子として機能する領域17a,17b,17c中にある欠陥dの数をmとする。
 ウエハパターンレイアウト16を、ウエハ基板11に対し仮想的に回転又は/及びXYシフトさせたとき、欠陥の数mが最小又は可及的に最小に近い値となる当該回転の角度又は/及びXYシフト量の算出値を算出する。
 同様に、当該算出値に従ってパターニング工程及びダイシング工程を実行する。
 これにより、圧電膜14が圧電体薄膜素子として機能する領域17a,17b,17c中にある欠陥dの数mは減少するので、圧電体薄膜素子を歩留まり良好に製造することができる。
(A2)圧電膜が圧電体薄膜素子として機能する領域中にある欠陥の面積が最小又は可及的に最小に近い値となる回転の角度又は/及びXYシフト量を算出する。
 圧電膜14が圧電体薄膜素子として機能する領域17a,17b,17c中にある欠陥dの面積をDSとする。
 ウエハパターンレイアウト16を、ウエハ基板11に対し仮想的に回転又は/及びXYシフトさせたとき、面積DSが最小又は可及的に最小に近い値となる回転の角度又は/及びXYシフト量の算出値を算出する。
 同様に、当該算出値に従ってパターニング工程及びダイシング工程を実行する。
 これにより、圧電膜14が圧電体薄膜素子として機能する領域17a,17b,17c中にある欠陥dの面積DSは減少するので、圧電体薄膜素子を歩留まり良好に製造することができる。
(A3)圧電膜が前記圧電体薄膜素子として機能する領域中に欠陥がある素子数が最小又は可及的に最小に近い値となる回転の角度又は/及びXYシフト量を算出する。
 圧電膜14が圧電体薄膜素子として機能する領域17a,17b,17c中に欠陥dがある素子数をNとする。
 ウエハパターンレイアウト16を、ウエハ基板11に対し仮想的に回転又は/及びXYシフトさせたとき、欠陥のある素子数Nが最小又は可及的に最小に近い値となる当該回転の角度又は/及びXYシフト量の算出値を算出する。
 同様に、当該算出値に従ってパターニング工程及びダイシング工程を実行する。
 これにより、圧電膜14が圧電体薄膜素子として機能する領域17a,17b,17c中に欠陥dがある素子数Nは減少するので、圧電体薄膜素子を歩留まり良好に製造することができる。
(B)以上の第1実施形態では、製造対象を圧電体薄膜素子としたが、その他の電子素子一般にも適用できる。その場合、欠陥を検査する対象膜は、電子素子の作用膜とする。圧電体薄膜素子の圧電変換作用膜は、上記の圧電膜14である。そのほかの電気―力学間の変換作用膜、光学―電気間の変換作用膜、電気-温度間変換作用膜、電気的作用膜等を奏する半導体その他の材料の膜を有したデバイスの製造に、本発明を適用することができる。
 本発明は、圧電体薄膜素子及びその他の電子素子の製造方法に利用することができる。
11  ウエハ基板
12  切り欠き部
13  下部電極膜(振動板)
14  圧電膜
15  上部電極膜
16  ウエハパターンレイアウト
17  1素子分のパターン
18a      圧力室
19  ノズル板
19a      ノズル孔
27  圧電体薄膜素子
28  インクタンク
29  インク
30  インク滴
d    欠陥

Claims (8)

  1. 一枚のウエハ基板から所定数の圧電体薄膜素子を製造する方法であって、
    ウエハ基板に圧電膜を成膜する成膜工程と、
    前記成膜工程の後、前記ウエハ基板の前記圧電膜成膜面を検査する検査工程と、
    前記検査工程の後、前記圧電膜の一部を含む素子構造を有した前記圧電体薄膜素子の所定数分のパターンを、前記圧電膜成膜面上にレイアウトして形成するパターニング工程と、
    前記パターニング工程の後、前記パターニング工程における所定数分のパターンのレイアウトに従って前記圧電体薄膜素子を個片に分離するダイシング工程と、を有し、
    前記検査工程において、前記圧電膜成膜面上の欠陥の分布データを取得し、
    前記欠陥の分布データを参照しつつ、前記所定数分のパターンのレイアウトを全体として、前記ウエハ基板に対し仮想的に回転又は/及びXYシフトさせたとき、前記圧電膜が前記圧電体薄膜素子として機能する領域中にある欠陥の数若しくは面積又は当該領域中に欠陥がある素子数が、最小又は可及的に最小に近い値となる当該回転の角度又は/及びXYシフト量の算出値を算出し、
    前記算出値に従って前記パターニング工程及びダイシング工程を実行する圧電体薄膜素子の製造方法。
  2. 一枚のウエハ基板から所定数の圧電体薄膜素子を製造する方法であって、
    ウエハ基板に圧電膜を形成する成膜工程と、
    前記成膜工程の後、前記ウエハ基板の前記圧電膜成膜面を検査する検査工程と、
    前記検査工程の後、前記圧電膜の一部を含む素子構造を有した前記圧電体薄膜素子の所定数分のパターンを、前記圧電膜成膜面上にレイアウトして形成するパターニング工程と、
    前記パターニング工程の後、前記パターニング工程における所定数分のパターンのレイアウトに従って前記圧電体薄膜素子を個片に分離するダイシング工程と、を有し、
    前記検査工程において、前記圧電膜成膜面上の欠陥の分布データを取得し、
    圧電体薄膜素子の領域ごとに欠陥の影響度を示す欠陥影響係数を予め設定しておき、1枚のウエハ基板上の欠陥の個数をn、n番目の欠陥の面積をSnとし、n番目の欠陥が仮想的にレイアウトされる圧電体薄膜素子の領域の欠陥影響係数をKnとしたとき、評価関数Lを式(1)で定義し、
    Figure JPOXMLDOC01-appb-M000001
    前記欠陥の分布データを参照しつつ、前記所定数分のパターンのレイアウトを全体として、前記ウエハ基板に対し仮想的に回転又は/及びXYシフトさせたとき、前記評価関数Lが最小又は可及的に最小に近い値となる当該回転の角度又は/及びXYシフト量の算出値を算出し、
    前記算出値に従って前記パターニング工程及びダイシング工程を実行する圧電体薄膜素子の製造方法。
  3. 前記ウエハ基板の結晶方位に由来する特定の角度を忌避して、前記回転の角度を算出する請求項1又は請求項2に記載の圧電体薄膜素子の製造方法。
  4. 前記ウエハ基板の切り欠き部が前記所定数分のパターンのレイアウトに掛かる特定の角度を忌避して、前記回転の角度を算出する請求項1から請求項3のうちいずれか一に記載の圧電体薄膜素子の製造方法。
  5. 一枚のウエハ基板から所定数の電子素子を製造する方法であって、
    ウエハ基板に前記電子素子の作用膜を形成する成膜工程と、
    前記成膜工程の後、前記ウエハ基板の前記作用膜を検査する検査工程と、
    前記検査工程の後、前記作用膜の一部を含む素子構造を有した前記電子素子の所定数分のパターンを、前記作用膜成膜面上にレイアウトして形成するパターニング工程と、
    前記パターニング工程の後、前記パターニング工程における所定数分のパターンのレイアウトに従って前記電子素子を個片に分離するダイシング工程と、を有し、
    前記検査工程において、前記作用膜上の欠陥の分布データを取得し、
    前記欠陥の分布データを参照しつつ、前記所定数分のパターンのレイアウトを全体として、前記ウエハ基板に対し仮想的に回転又は/及びXYシフトさせたとき、前記作用膜が前記電子素子として機能する領域中にある欠陥の数若しくは面積又は当該領域中に欠陥がある素子数が、最小又は可及的に最小に近い値となる当該回転の角度又は/及びXYシフト量の算出値を算出し、
    前記算出値に従って前記パターニング工程及びダイシング工程を実行する電子素子の製造方法。
  6. 一枚のウエハ基板から所定数の電子素子を製造する方法であって、
    ウエハ基板に前記電子素子の作用膜を形成する成膜工程と、
    前記成膜工程の後、前記ウエハ基板の前記作用膜を検査する検査工程と、
    前記検査工程の後、前記作用膜の一部を含む素子構造を有した前記電子素子の所定数分のパターンを、前記作用膜成膜面上にレイアウトして形成するパターニング工程と、
    前記パターニング工程の後、前記パターニング工程における所定数分のパターンのレイアウトに従って前記電子素子を個片に分離するダイシング工程と、を有し、
    前記検査工程において、前記作用膜上の欠陥の分布データを取得し、
    電子素子の領域ごとに欠陥の影響度を示す欠陥影響係数を予め設定しておき、1枚のウエハ基板上の欠陥の個数をn、n番目の欠陥の面積をSnとし、n番目の欠陥が仮想的にレイアウトされる電子素子の領域の欠陥影響係数をKnとしたとき、評価関数Lを式(1)で定義し、
    Figure JPOXMLDOC01-appb-M000002
    前記欠陥の分布データを参照しつつ、前記所定数分のパターンのレイアウトを全体として、前記ウエハ基板に対し仮想的に回転又は/及びXYシフトさせたとき、前記評価関数Lが最小又は可及的に最小に近い値となる当該回転の角度又は/及びXYシフト量の算出値を算出し、
    前記算出値に従って前記パターニング工程及びダイシング工程を実行する電子素子の製造方法。
  7. 前記ウエハ基板の結晶方位に由来する特定の角度を忌避して、前記回転の角度を算出する請求項5又は請求項6に記載の電子素子の製造方法。
  8. 前記ウエハ基板の切り欠き部が前記所定数分のパターンのレイアウトに掛かる特定の角度を忌避して、前記回転の角度を算出する請求項5から請求項7のうちいずれか一に記載の電子素子の製造方法。
PCT/JP2019/047792 2019-12-06 2019-12-06 圧電体薄膜素子の製造方法及び電子素子の製造方法 WO2021111612A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/047792 WO2021111612A1 (ja) 2019-12-06 2019-12-06 圧電体薄膜素子の製造方法及び電子素子の製造方法
JP2021562414A JP7464061B2 (ja) 2019-12-06 2019-12-06 圧電体薄膜素子の製造方法及び電子素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/047792 WO2021111612A1 (ja) 2019-12-06 2019-12-06 圧電体薄膜素子の製造方法及び電子素子の製造方法

Publications (1)

Publication Number Publication Date
WO2021111612A1 true WO2021111612A1 (ja) 2021-06-10

Family

ID=76222504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047792 WO2021111612A1 (ja) 2019-12-06 2019-12-06 圧電体薄膜素子の製造方法及び電子素子の製造方法

Country Status (2)

Country Link
JP (1) JP7464061B2 (ja)
WO (1) WO2021111612A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003215060A (ja) * 2002-01-22 2003-07-30 Tokyo Seimitsu Co Ltd パターン検査方法及び検査装置
JP2006253331A (ja) * 2005-03-09 2006-09-21 Sharp Corp 製造検査解析システム、解析装置、解析装置制御プログラム、解析装置制御プログラムを記録した記録媒体、および製造検査解析方法
JP2010043330A (ja) * 2008-08-13 2010-02-25 Fujifilm Corp 成膜装置、成膜方法、圧電膜、および、液体吐出装置
JP2011007648A (ja) * 2009-06-26 2011-01-13 Hitachi High-Technologies Corp 基板検査装置および基板検査方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003215060A (ja) * 2002-01-22 2003-07-30 Tokyo Seimitsu Co Ltd パターン検査方法及び検査装置
JP2006253331A (ja) * 2005-03-09 2006-09-21 Sharp Corp 製造検査解析システム、解析装置、解析装置制御プログラム、解析装置制御プログラムを記録した記録媒体、および製造検査解析方法
JP2010043330A (ja) * 2008-08-13 2010-02-25 Fujifilm Corp 成膜装置、成膜方法、圧電膜、および、液体吐出装置
JP2011007648A (ja) * 2009-06-26 2011-01-13 Hitachi High-Technologies Corp 基板検査装置および基板検査方法

Also Published As

Publication number Publication date
JP7464061B2 (ja) 2024-04-09
JPWO2021111612A1 (ja) 2021-06-10

Similar Documents

Publication Publication Date Title
JP5164052B2 (ja) 圧電体素子、液体吐出ヘッド及び液体吐出装置
JP4361102B2 (ja) 圧電素子の製造方法
CN105826460B (zh) 压电薄膜元件、压电致动器、压电传感器、硬盘驱动器以及喷墨打印装置
US9166142B2 (en) Manufacturing method of piezoelectric film element, piezoelectric film element and piezoelectric device
US7560854B2 (en) Piezoelectric element and its manufacturing method
JP5472549B1 (ja) 圧電素子、圧電デバイス、インクジェットヘッドおよびインクジェットプリンタ
EP1815538A1 (en) Microelectromechanical device having piezoelectric blocks and method of fabrication same
US20010024217A1 (en) Ink jet head having a plurality of units and its manufacturing method
CN102468423A (zh) 压电元件的制造方法
JP5886723B2 (ja) 高密度プリントヘッドに関する結合シリコン構造体
WO2021111612A1 (ja) 圧電体薄膜素子の製造方法及び電子素子の製造方法
JP5194463B2 (ja) 圧電体薄膜素子の製造方法
US8807711B2 (en) Ink jet print head with piezoelectric actuator
JP2009206329A (ja) 圧電素子およびその製造方法、圧電アクチュエータ、並びに、液体噴射ヘッド
JP2008305821A (ja) 圧電体薄膜素子、圧電体薄膜素子の製造方法、インクジェットヘッド、およびインクジェット式記録装置
JP2018056335A (ja) 圧電素子、圧電アクチュエーター、圧電モーター、ロボット、電子部品搬送装置、プリンター、超音波トランスデューサーおよび圧電素子の製造方法
JP2005219243A (ja) 液体噴射ヘッドの製造方法及び液体噴射ヘッド
JP2007245660A (ja) 金属配線基板の製造方法及び液体噴射ヘッドの製造方法
JP2019071361A (ja) 電気機械変換素子、液体吐出ヘッド、液体吐出ユニット、液体を吐出する装置、超音波発生装置及び電気機械変換素子の製造方法
JP4058966B2 (ja) 強誘電体素子の形成方法
WO2023238680A1 (ja) ダイ、ダイの製造方法、液滴吐出ヘッド及び液滴吐出装置
JP4457687B2 (ja) 圧電薄膜素子の製造方法
JPWO2004052651A1 (ja) インクジェットヘッドの製造方法、及びインクジェット式記録装置
JP2004214275A (ja) 圧電素子
JP2016043447A (ja) Mems構造体の製造方法、mems構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562414

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955032

Country of ref document: EP

Kind code of ref document: A1