WO2021108986A1 - 电池模组、电池组、装置及电池模组的制造方法 - Google Patents

电池模组、电池组、装置及电池模组的制造方法 Download PDF

Info

Publication number
WO2021108986A1
WO2021108986A1 PCT/CN2019/122711 CN2019122711W WO2021108986A1 WO 2021108986 A1 WO2021108986 A1 WO 2021108986A1 CN 2019122711 W CN2019122711 W CN 2019122711W WO 2021108986 A1 WO2021108986 A1 WO 2021108986A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting portion
output
battery
section
battery module
Prior art date
Application number
PCT/CN2019/122711
Other languages
English (en)
French (fr)
Inventor
游书兵
姚己华
张海东
曹根
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP19914713.3A priority Critical patent/EP3855560B1/en
Priority to CN201980069182.9A priority patent/CN113169426B/zh
Priority to KR1020227018438A priority patent/KR20220095217A/ko
Priority to ES19914713T priority patent/ES2930134T3/es
Priority to JP2022532570A priority patent/JP7395744B2/ja
Priority to PCT/CN2019/122711 priority patent/WO2021108986A1/zh
Priority to US16/976,138 priority patent/US20230123740A1/en
Priority to HUE19914713A priority patent/HUE060614T2/hu
Publication of WO2021108986A1 publication Critical patent/WO2021108986A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, and in particular to a method for manufacturing battery modules, battery packs, devices, and battery modules.
  • Battery modules are used to provide electrical energy for electric vehicles.
  • the total positive electrode and the total negative electrode of the battery module are usually arranged at opposite ends of the battery module, so that the total positive electrode and the total negative electrode are arranged on different sides. In this way, when a plurality of battery modules are connected to each other using a wire harness, there is a problem that the connecting wire harness is complicated and a larger installation space is required.
  • the wiring harness is complicated when multiple battery modules are connected to each other by the wiring harness, and a larger installation space is required.
  • an embodiment of the present application proposes a battery module, which includes:
  • the battery unit has a first total output pole and a second total output pole with opposite polarities.
  • the battery unit includes more than two battery assemblies arranged side by side, two adjacent battery assemblies are connected in series with each other, and each battery assembly includes at least one secondary battery ,
  • the two poles of each secondary battery are arranged to form two columns of pole groups, and there is a containing gap extending along the arrangement direction of the secondary batteries between the two columns of pole groups;
  • the first output pole piece includes the first connected in sequence The connecting portion, the intermediate connecting portion and the first output portion, the first connecting portion is connected to the first total output pole, the intermediate connecting portion is connected to the side of the first connecting portion close to the containing gap;
  • the second output pole piece includes the second connection Section and second output section, the second total output pole is located on the side of the first total output pole close to the second output section, the second connecting section is connected to the second total output pole;
  • the first output section and the second output section are arranged at The same side of the battery unit.
  • the intermediate connecting portion has more than two stretch buffer structures, and the two or more stretch buffer structures are arranged at intervals along the arrangement direction.
  • the tensile buffer structure is arc-shaped.
  • the secondary battery includes an explosion-proof valve
  • the explosion-proof valve is arranged between the two poles and is arranged corresponding to the containing gap
  • the intermediate connection part has a flow hole
  • the flow hole is arranged in the explosion-proof valve.
  • the intermediate connecting portion includes more than two mounting and fixing portions, and the intermediate connecting portion can be installed and fixed on the external member through the mounting and fixing portions.
  • the intermediate connecting portion includes a first extension section, a second extension section, and a third extension section successively distributed along the arrangement direction, and the first extension section and the third extension section intersect the second extension section respectively
  • the first extension section and the third extension section are arranged in a staggered manner, the first connecting portion is connected to the first extension section, and the second extension section extends away from the second output pole piece to give way to the second output pole piece, and the first output portion Connected with the third extension section.
  • the width direction of the intermediate connecting portion intersects the arrangement direction, and the width of at least part of the third extension section is smaller than the width of the first extension section; and/or, the first extension section extends along the arrangement direction, and The angle between the extension direction of the two extension sections and the arrangement direction is less than 45°.
  • the vertical distance between the edge of the first output portion away from the intermediate connecting portion and the edge of the intermediate connecting portion close to the first connecting portion is H1
  • the first connecting portion is away from the edge of the intermediate connecting portion.
  • the vertical distance from the edge of the middle connecting part close to the first connecting part is H2, where H1:H2 ⁇ 11:1, and/or H1+H2 ⁇ 400mm.
  • the battery module further includes a wire harness isolation plate, the intermediate connection portion is provided on the side of the wire harness isolation plate away from the secondary battery, the wire harness isolation plate has a receiving recess corresponding to the receiving gap, and the receiving recess faces The secondary battery is recessed, and at least a part of the intermediate connection part is arranged in the accommodating recess.
  • the first connecting portion is provided on one side of the intermediate connecting portion, and the first output pole piece further includes an adapter piece connecting the first connecting portion and the intermediate connecting portion .
  • the adapter sheet includes a first section, a buffer section, and a second section that are successively distributed along a direction intersecting the arrangement direction.
  • the first section is connected to the first connecting portion, and the second section is connected to the middle section.
  • the connecting part is connected.
  • the width of the buffer section is smaller than the first section and smaller than the second section
  • the buffer section is a curved structure, and there are gaps between the buffer section and the first section and between the buffer section and the second section.
  • the buffer section has an arc structure protruding toward or away from the secondary battery.
  • the first connecting portion includes two or more pole connecting sections and an arc-shaped buffer section connecting two adjacent pole connecting sections, and the two or more pole connecting sections are arranged along the arrangement direction ,
  • the middle connecting part is connected to the pole connecting section.
  • the intermediate connection portion and the first output portion are of separate structures, a part of the first output portion overlaps the intermediate connection portion to form a connection structure, and the thickness of the connection structure is greater than the maximum thickness of the intermediate connection portion.
  • the first output pole piece is an integrally formed structure; or, the first connection portion, the intermediate connection portion, and the first output portion are separate structures.
  • the first total output pole is located on one side of the battery cell
  • the second total output pole is located on the other side of the battery cell
  • the first total output pole and the second total output pole are both Located on the outermost side of the battery cell.
  • the battery module includes a battery unit, a first output pole piece and a second output pole piece.
  • the first output pole piece is connected to the first total output pole of the battery unit, and the second output pole piece is connected to the second total output pole of the battery unit.
  • the first output portion of the first output pole piece is connected to the first total output pole through the intermediate connection portion and the first connection portion, so that the first output portion of the first output pole piece can be connected to the second output portion of the second output pole piece.
  • the parts are arranged on the same side of the battery cell, so that the battery module realizes that the two electrodes with opposite polarities can output on the same side.
  • the connecting wire harness can be arranged on one side of the battery module, thereby reducing the complexity and space occupancy rate of the connecting wire harness arrangement, which is beneficial to improve the overall compactness of the battery module and reduce
  • the overall space occupancy rate of the battery module can increase the energy density of the battery pack.
  • a battery pack which includes the battery module as described above.
  • a device using a battery module as a power source which includes the above-mentioned battery module.
  • a method for manufacturing a battery module which includes:
  • Two or more battery assemblies are arranged side by side to form a battery unit, the battery unit has a first total output pole and a second total output pole, the battery assembly includes at least one secondary battery, and the two poles of each secondary battery respectively form two Column pole group, there is a containment gap between the two rows of pole groups;
  • a second output pole piece including a second connection part and a second output part, the second connection part is connected to the second total output pole, and the second output part is arranged on the second total output pole away from the first total output pole On one side, the first output part and the second output part are arranged on the same side of the battery unit.
  • an output pole piece which includes:
  • the middle connecting portion has a predetermined length and width
  • the middle connecting portion has two opposite ends along the length direction, along the width direction of the middle connecting portion
  • the first connecting portion is provided on one side of the middle connecting portion, and the first connecting portion Connected to one end, the first output part is connected to the other end
  • the middle connecting part has more than two tension buffer structures, and the two or more tension buffer structures are arranged between the two ends.
  • Fig. 1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application
  • FIG. 2 is a schematic diagram of an exploded structure of a battery pack disclosed in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a battery module disclosed in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a battery module disclosed in another embodiment of the present application.
  • FIG. 5 is a schematic diagram of an exploded structure of a battery module disclosed in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a top view structure of a battery module disclosed in an embodiment of the present application.
  • FIG. 7 is a schematic top view of a first output pole piece disclosed in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an axonometric structure of a first output pole piece disclosed in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an exploded structure of a first output pole piece disclosed in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a connection structure between a first connecting portion and an adapter piece disclosed in an embodiment of the present application
  • FIG. 11 is a schematic diagram of an axonometric structure of a first output pole piece disclosed in another embodiment of the present application.
  • FIG. 12 is a schematic diagram of an axonometric structure of a first output pole piece disclosed in yet another embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a method for manufacturing a battery module disclosed in an embodiment of the present application.
  • 21 Battery unit; 21a, first total output pole; 21b, second total output pole; 21c, battery assembly;
  • the first output unit
  • Adapter piece 341, first section; 342, buffer section; 342a, arc structure; 343, second section;
  • an embodiment of the present application provides a device that uses a secondary battery as a power source.
  • the device can be, but is not limited to, a vehicle, a ship, or an aircraft.
  • an embodiment of the present application provides a vehicle 1 including a vehicle body and a battery module.
  • the battery module is installed in the vehicle body.
  • the vehicle 1 may be a pure electric vehicle, a hybrid electric vehicle or an extended-range vehicle.
  • the vehicle body is provided with a drive motor electrically connected to the battery module.
  • the battery module provides power to the drive motor.
  • the drive motor is connected to the wheels on the vehicle body through a transmission mechanism to drive the vehicle to travel.
  • the battery module may be horizontally arranged at the bottom of the vehicle body.
  • the battery module may be a battery pack 10.
  • the battery pack 10 includes a box body and a battery module 20 disposed in the box body.
  • the number of battery modules 20 is one or more.
  • One or more battery modules 20 are arranged side by side in the box.
  • the type of cabinet is not limited.
  • the box can be a frame-shaped box, a disk-shaped box, or a box-shaped box.
  • the box may include a lower box for accommodating the battery module 20 and an upper box covered with the lower box.
  • the upper box body and the lower box body are closed to form a receiving portion for accommodating the battery module 20.
  • the battery module may also be the battery module 20, that is, the battery module 20 is directly arranged on the vehicle body.
  • the battery module 20 includes a plurality of secondary batteries 22.
  • the battery module 20 includes a receiving portion and a plurality of secondary batteries 22 located in the receiving portion.
  • a plurality of secondary batteries 22 are arranged side by side in the accommodating part.
  • the accommodating part includes a housing and a cover plate arranged at the housing; or, the accommodating part includes side plates and end plates that are successively enclosed and connected; or, the accommodating part includes end plates that are arranged oppositely. And a band around the end plate and the outside of the secondary battery 22.
  • the secondary battery 22 of the embodiment of the present application includes a casing, an electrode assembly arranged in the casing, and a top cover assembly that is hermetically connected with the casing.
  • the housing in the embodiment of the present application has a square structure or other shapes.
  • the case has an internal space for accommodating the electrode assembly and the electrolyte, and an opening communicating with the internal space.
  • the housing can be made of materials such as aluminum, aluminum alloy, or plastic.
  • the top cover assembly of the embodiment of the present application includes a top cover plate 221, a pole 222, and an explosion-proof valve 223.
  • the explosion-proof valve 223 is provided on the top cover plate 221.
  • the battery module 20 includes a battery unit 21 having a first total output pole 21a and a second total output pole 21b.
  • the battery unit 21 includes a plurality of battery assemblies 21c connected in series.
  • Each battery assembly 21c includes one secondary battery 22.
  • Two adjacent battery assemblies 21c are connected in series with each other through a bus bar 23.
  • Each secondary battery 22 includes two poles 222 drawn from the same side.
  • the two poles 222 are arranged at intervals along the width direction of the battery cell 21. After the battery assemblies 21c are arranged side by side along the arrangement direction X, the two poles 222 of each secondary battery 22 are arranged to form two column pole groups, and there is a receiving gap 22a extending along the arrangement direction X between the two pole groups. .
  • the battery cell 21 has a first total output pole 21a and a second total output pole 21b with opposite polarities. Along the arrangement direction X, the battery cells 21 have opposite sides.
  • the first total output pole 21 a is located on one side of the battery cell 21, and the second total output pole 21 b is located on the other side of the battery cell 21.
  • the first total output pole 21a and the second total output pole 21b are both located on the outermost side of the battery cell 21.
  • One of the first total output pole 21a and the second total output pole 21b is used as a total positive electrode, and the other is used as a total negative electrode.
  • the positions where the first total output pole 21a and the second total output pole 21b are set are not limited to the outermost positions shown in the figure, and can also be that the first total output pole 21a is set at the outermost position shown in FIG. Outside, and the second total output pole 21b is close to the center of the battery cell 21, or the second total output pole 21b is arranged at the outermost position shown in the figure, and the first total output pole 21a is close to the center of the battery cell 21.
  • the number of secondary batteries 22 included in each battery assembly 21c is not limited to one and two as shown in FIG. 4, and may include three or more secondary batteries 22.
  • each battery assembly 21c includes two secondary batteries 22 arranged in parallel. Two adjacent battery assemblies 21c are connected in series with each other through a bus bar 23.
  • the battery module 20 further includes a first output pole piece 30 and a second output pole piece 40. One of the first output pole piece 30 and the second output pole piece 40 serves as a positive output, and the other serves as a negative output.
  • the first output pole piece 30 is connected to the first total output pole 21a, and both have the same polarity.
  • the second output pole piece 40 is connected to the second total output pole 21b, and both have the same polarity.
  • the first output pole piece 30 includes a first connecting portion 31, an intermediate connecting portion 32 and a first output portion 33 connected in sequence.
  • the first output pole piece 30 is connected to the first total output pole 21a through the first connecting portion 31.
  • the intermediate connecting portion 32 is connected to the side of the first connecting portion 31 close to the accommodating gap 22a.
  • the intermediate connecting portion 32 is arranged corresponding to the position of the containing gap 22a. At least part of the intermediate connecting portion 32 is located in the containing gap 22a.
  • the intermediate connecting portion 32 has a predetermined width and length.
  • the width direction of the battery cell 21 is the same as the width direction Y of the intermediate connecting portion 32.
  • the arrangement direction X of the secondary batteries 22 is the same as the longitudinal direction of the intermediate connection portion 32.
  • the intermediate connecting portion 32 has two opposite ends along its length.
  • the first connecting portion 31 is connected to one end of the intermediate connecting portion 32, and the first output portion 33 is connected to the other end of the intermediate connecting portion 32.
  • the first connecting portion 31 is connected to one end of the intermediate connecting portion 32, and the first output portion 33 is connected to the other end of the intermediate connecting portion 32.
  • the first connecting portion 31 is provided on one side of the intermediate connecting portion 32.
  • the first total output pole 21a and the intermediate connecting portion 32 are arranged at intervals along the width direction Y.
  • the second output pole piece 40 includes a second connecting portion 41 and a second output portion 42.
  • the second output pole piece 40 is connected to the second total output pole 21 b through the second connecting portion 41.
  • the second output portion 42 is located outside the second total output pole 21b.
  • the second total output pole 21b is located on the side of the first total output pole 21a close to the second output portion 42, that is, along the arrangement direction X, the second total output pole 21b is located between the first total output pole 21a and the second output portion 42 .
  • the first output unit 33 and the second output unit 42 are provided on the same side of the battery cell 21. Two adjacent battery modules 20 can be connected in series or in parallel with each other through respective first output part 33 and second output part 42.
  • the battery module 20 of the embodiment of the present application includes a battery unit 21, a first output pole piece 30 and a second output pole piece 40.
  • the first output pole piece 30 is connected to the first overall output pole 21 a of the battery cell 21, and the second output pole piece 40 is connected to the second overall output pole 21 b of the battery cell 21.
  • the first output portion 33 of the first output pole piece 30 is connected to the first total output pole 21a through the intermediate connection portion 32 and the first connection portion 31, so that the first output portion 33 of the first output pole piece 30 can be connected to the second output pole 21a.
  • the second output portion 42 of the output pole piece 40 is arranged on the same side of the battery unit 21, so that the battery module 20 realizes that the two electrodes with opposite polarities can output on the same side.
  • a connecting wire harness can be arranged on one side of the battery module 20, thereby reducing the complexity and space occupancy rate of the connecting wire harness arrangement, and improving the overall compact structure of the battery module 20 Therefore, the overall space occupancy rate of the battery module 20 is reduced, and the energy density of the battery pack can be improved.
  • a predetermined safety gap is maintained between the intermediate connecting portion 32 and each pole 222 and between the intermediate connecting portion 32 and the top cover 221, so that the intermediate connecting portion 32 and the pole 222 or the intermediate connecting portion 32 can be reduced.
  • the battery module 20 includes an end plate 24 and a side plate 25 that are connected to each other.
  • the two end plates 24 and the two side plates 25 are alternately arranged along the circumferential direction of the battery cell 21 to form a receiving portion, thereby restraining each secondary battery 22.
  • the end plate 24 and the secondary battery 22 are arranged side by side.
  • Both the first output portion 33 and the second output portion 42 are connected to one end plate 24 of the two end plates 24 through an insulating member.
  • the first output portion 33, the second output portion 42 and the insulating component are all provided with threaded holes for connecting the first output portion 33 and the second output portion 42 with the corresponding
  • the external connection harness is electrically connected.
  • the battery module 20 further includes a wiring harness isolation plate 26.
  • the wire harness isolation plate 26 is provided above the secondary battery 22.
  • the intermediate connection portion 32 is provided on the side of the harness isolation plate 26 away from the secondary battery 22.
  • the harness spacer 26 has a receiving recess 26a provided corresponding to the receiving gap 22a.
  • the accommodating recess 26 a is recessed toward the secondary battery 22.
  • the accommodating recess 26 a has a bottom wall that supports the intermediate connecting portion 32.
  • At least part of the intermediate connecting portion 32 is provided in the receiving recess 26a, so on the one hand, the harness isolating plate 26 can form a limit on the intermediate connecting portion 32, reducing the position of the intermediate connecting portion 32, which may cause the intermediate connecting portion 32 to communicate with each other.
  • the gap between the poles 222 and between the intermediate connecting portion 32 and the top cover plate 221 is smaller than a predetermined safety gap or the possibility of contact, thereby reducing the intermediate connecting portion 32 and the pole 222 or the intermediate connecting portion 32 and the top cover 221
  • the possibility of a short circuit caused by breakdown or contact; on the other hand, the harness isolation plate 26 can further isolate the intermediate connection portion 32 from each pole 222, as well as the intermediate connection portion 32 and the top cover plate 221, which is beneficial to improve the intermediate connection portion 32 and each pole 222 as well as the intermediate connecting portion 32 and the top cover plate 221 maintain the stability of the insulation state.
  • the bus bar 23 is disposed on the side of the harness isolation plate 26 away from the secondary battery 22.
  • the bus bar 23 and the harness isolation plate 26 are detachably connected.
  • a receiving frame for accommodating the bus bar 23 is provided on the wire harness isolating plate 26.
  • the pole 222 is inserted into the center hole of the receiving frame and is electrically connected to the bus bar 23.
  • Two rows of accommodating frames are provided on the wire harness isolation plate 26, and along the width direction Y, the accommodating recesses 26a are provided between the two rows of accommodating frames.
  • the material of the wire harness isolation plate 26 is plastic or rubber.
  • the second output portion 42 is connected to the side of the second connecting portion 41 close to the receiving gap 22a.
  • the second connecting portion 41 and the second output portion 42 are of separate structures.
  • the second connecting portion 41 has a connecting end 411 extending to the receiving gap 22 a, and the second output portion 42 is connected to the connecting end 411.
  • the intermediate connecting portion 32 includes a first extension section 32a, a second extension section 32b, and a third extension section 32c that are successively distributed along the arrangement direction X.
  • the first extension section 32a and the third extension section 32c are intersected with the second extension section 32b, respectively.
  • the first extension section 32a and the third extension section 32c are arranged in a staggered manner.
  • the first connecting portion 31 is connected to the first extension section 32a.
  • the first output portion 33 is connected to the third extension section 32c.
  • a part of the first output portion 33 extends beyond the edge of the third extension section 32c.
  • the second extension section 32 b extends away from the second output pole piece 40 to give way to the second output pole piece 40.
  • the second extension section 32b and the third extension section 32c jointly form a space for each other, so that the intermediate connection portion 32 and the second connection portion 41 do not interfere with each other in position and maintain a predetermined safety gap.
  • the width direction Y of the intermediate connecting portion 32 intersects the arrangement direction X.
  • the width of at least part of the third extension section 32c is smaller than the width of the first extension section 32a. Under the condition that the size of the accommodation gap 22a remains fixed, the third extension section 32c can avoid the second connecting portion 41 on one side and the bus bar 23 on the other side, so as to keep between the second connecting portion 41 and the bus bar 23.
  • a predetermined safety gap is used to make full use of the installation space of the accommodating gap 22a.
  • the width direction Y of the intermediate connecting portion 32 intersects the arrangement direction X.
  • At least part of the width of the second extension section 32b is smaller than the width of the first extension section 32a.
  • the width of at least part of the third extension section 32c is smaller than the width of the second extension section 32b.
  • the first extension section 32a extends along the arrangement direction X.
  • the angle ⁇ of the extension direction of the second extension section 32b deviating from the arrangement direction X is less than 45°, so that the angle ⁇ between the extension direction of the first extension section 32a and the extension direction of the second extension section 32b is less than 45°.
  • the first connecting portion 31 of the first output pole piece 30 is connected and fixed to the first total output pole 21 a, and the first output portion 33 is connected and fixed to the end plate 24.
  • the secondary battery 22 will expand in the arrangement direction X, thereby exerting a tensile stress along the arrangement direction X on the intermediate connecting portion 32.
  • the extension direction of the second extension section 32b deviates from the arrangement direction X by an angle ⁇ of less than 45°, when the first extension section 32a and the second extension section 32b bear tensile stress, the first extension section 32a and the second extension section 32b can be effectively reduced. Stress concentration occurs at the connection between the two extension sections 32b, thereby reducing the possibility of fracture of the first extension section 32a and the second extension section 32b at the connection point.
  • the third extension section 32c extends along the arrangement direction X.
  • the extension direction of the second extension section 32b deviates from the arrangement direction X by an angle ⁇ of less than 45°, so that the acute angle between the extension direction of the third extension section 32c and the extension direction of the second extension section 32b is less than 45°.
  • the stress concentration at the connection between the second extension section 32b and the third extension section 32c can be effectively reduced, thereby reducing the second extension section 32b and the third extension section 32b.
  • the extension section 32c may break at the junction of the two.
  • the vertical distance between the edge of the first output portion 33 away from the intermediate connecting portion 32 and the edge of the intermediate connecting portion 32 close to the first connecting portion 31 is H1.
  • a part of the first connecting portion 31 extends beyond the intermediate connecting portion 32.
  • the vertical distance between the edge of the first connecting portion 31 away from the intermediate connecting portion 32 and the edge of the intermediate connecting portion 32 close to the first connecting portion 31 is H2.
  • H1:H2>11:1 the length of the intermediate connecting portion 32 is too long, resulting in a decrease in the over-current capability of the first output pole piece 30, so that the temperature of the first output pole piece 30 is easy to pass during the charging and discharging of the battery module 20. High, which in turn will affect the sampling accuracy of the temperature sampling component.
  • H1+H2 ⁇ 400mm the overall length of the first output pole piece 30 is too long and the resistance is too high, so that the heat generation of the first output pole piece 30 is too large, which will also affect the sampling accuracy of the temperature sampling component.
  • the intermediate connecting portion 32 has more than two tensile buffer structures 321.
  • Two or more stretch buffer structures 321 are arranged at intervals along the arrangement direction X, and all the stretch buffer structures 321 are located between the two ends of the intermediate connecting portion 32.
  • the arc-shaped tensile buffer structure 321 will reduce its own bending degree under the tensile stress, and the corresponding curvature will be reduced, so that the tensile buffer will be reduced.
  • each stretch buffer structure 321 When the structure 321 bears tensile stress, it will be elongated in the arrangement direction X, thereby helping to reduce the tensile stress between the intermediate connecting portion 32 and the first connecting portion 31 and between the intermediate connecting portion 32 and the first output portion 33 , Thereby reducing the connection between the intermediate connection portion 32 and the first connection portion 31 and the connection between the intermediate connection portion 32 and the first output portion 33 due to excessive tensile stress, resulting in the intermediate connection portion 32 and the first
  • the connection portion 31 or the intermediate connection portion 32 and the first output portion 33 may be separated.
  • both sides of each stretch buffer structure 321 are flat sections.
  • the tensile buffer structure 321 is arc-shaped, thereby reducing the possibility of stress concentration when it bears tensile stress.
  • the stretch buffer structure 321 extends in the width direction Y. There is a smooth transition between the stretch buffer structure 321 and the adjacent flat section.
  • the tensile buffer structure 321 may protrude toward the secondary battery 22 or protrude away from the secondary battery 22.
  • a part of the middle connecting portion 32 may be stamped to manufacture the tensile buffer structure 321, so as to ensure that the middle connecting portion 32 is integrally formed and improve its own rigidity.
  • the first connecting portion 31 includes more than two pole connecting sections 31a and an arc-shaped buffer section 31b connecting two adjacent pole connecting sections 31a.
  • Two or more pole connecting sections 31a are arranged along the arrangement direction X.
  • the intermediate connecting portion 32 may be connected to one pole connecting section 31a.
  • the intermediate connecting portion 32 may also be connected to two or more pole connecting sections 31a.
  • the number of the pole connection sections 31a is the same as the number of the secondary batteries 22 arranged in parallel included in the battery assembly 21c. After two or more secondary batteries 22 are connected in parallel, the poles 222 in one row are connected to the corresponding pole connecting sections 31a.
  • the curvature of the arc-shaped buffer section 31b will decrease, and the corresponding curvature will decrease, so that the arc-shaped buffer section 31b will be pulled in the arrangement direction X Long, so as to help reduce the tensile stress between two adjacent pole connecting sections 31a, and reduce the excessive tensile stress carried by the first connecting portion 31, which causes the pole connecting section 31a and the pole 222 to disconnect from the connected state or There is a possibility that the first connecting portion 31 is pulled off. Since the arc-shaped buffer section 31b itself is an arc-shaped structure, the possibility of stress concentration due to the tensile stress is reduced.
  • the arc-shaped buffer section 31b extends in the width direction Y. There is a smooth transition between the arc-shaped buffer section 31b and the adjacent flat area.
  • the arc-shaped buffer section 31 b may protrude toward the secondary battery 22 or protrude away from the secondary battery 22.
  • a part of the first connecting portion 31 may be stamped to manufacture the arc-shaped buffer section 31b, so as to ensure that the first connecting portion 31 is integrally formed and improve its own rigidity.
  • the first connecting portion 31 is provided on one side of the intermediate connecting portion 32.
  • the first connecting portion 31 is connected to the first total output pole 21a.
  • the first output pole piece 30 also includes an adapter piece 34 connecting the first connecting portion 31 and the intermediate connecting portion 32.
  • the adapter piece 34 extends from the side of the first connecting portion 31 close to the accommodating gap 22a toward the accommodating gap 22a.
  • the first connecting portion 31 is connected and fixed to the intermediate connecting portion 32 through the adapter piece 34, which is beneficial to improve the convenience of connection between the first connecting portion 31 and the intermediate connecting portion 32.
  • the first connecting portion 31 and the adapter piece 34 are integrally formed, and the adapter piece 34 is connected to the intermediate connecting portion 32 by welding.
  • the integral structure formed by the first connecting portion 31 and the adapter piece 34 has high rigidity and good tensile deformation resistance.
  • the intermediate connection portion 32 exerts a force along the arrangement direction X on the adapter piece 34. Since the adapter piece 34 is welded to the middle connecting portion 32, the welded portion can absorb a part of the force.
  • the adapter piece 34 and the first connecting portion 31 are integrally formed, it is beneficial to reduce the displacement of the adapter piece 34 when the force is carried, thereby reducing the tearing of the adapter piece 34 and the first connecting portion 31. possibility.
  • the first connecting portion 31 and the adapter piece 34 are formed separately, so that the first connecting portion 31 and the adapter piece 34 can be manufactured separately, which is beneficial to reduce the processing difficulty.
  • the adapter piece 34 includes a first section 341, a buffer section 342, and a second section 343 that are successively distributed along the width direction Y intersecting the arrangement direction X.
  • the first segment 341 is connected to the first connecting portion 31, and the second segment 343 is connected to the intermediate connecting portion 32.
  • the adapter plate 34 bears the tensile stress along the width direction Y, the first section 341 and the second section 343 move away from each other, and the buffer section 342 can be elongated in the width direction Y to absorb the tensile stress.
  • the tensile stress reduces the possibility of the adapter plate 34 being broken or torn.
  • the width of the buffer section 342 is smaller than the first section 341 and smaller than the second section 343.
  • the buffer section 342 has a curved structure. There are gaps between the buffer section 342 and the first section 341 and between the buffer section 342 and the second section 343.
  • the buffer section 342 has two ends. One end of the two ends is connected to the first section 341, and the other end is connected to the second section 343.
  • the buffer section 342 has a first arc zone, an intermediate transition zone, and a second arc zone, so that the buffer section 342 is S-shaped, so that stress concentration areas are less likely to occur when the buffer section 342 bears external forces, and it has good tensile performance .
  • the buffer section 342 has an arc structure 342 a protruding toward the secondary battery 22.
  • the arc-shaped structure 342a may also protrude away from the secondary battery 22.
  • the first section 341 and the second section 343 may swing up and down in the vertical plane.
  • the arc structure 342a of the buffer section 342 can effectively buffer the impact on the buffer section 342 when the first section 341 or the second section 343 swings.
  • the stress reduces the possibility that the buffer section 342 will break due to excessive load.
  • the first section 341 and the second section 343 are connected by the buffer section 342, which can buffer the tensile stress in the width direction Y and the tensile stress generated when swinging up and down through the buffer section 342, and reduce the breakage of the adapter plate 34. This leads to the possibility of failure of the battery module 20.
  • the buffer section 342 has a first arc-shaped area, an intermediate transition area, and a second arc-shaped area, and the arc structure 342a is disposed on the intermediate transition area.
  • the number of arc-shaped structures 342a may be more than two.
  • the intermediate connecting portion 32 includes more than two mounting and fixing portions 322.
  • the intermediate connection portion 32 can be installed and fixed to an external member such as the wire harness separator 26 or the top cover plate 221 of the secondary battery 22 through the installation and fixing portion 322.
  • the installation fixing portion 322 and the tensile buffer structure 321 are arranged at intervals along the arrangement direction X.
  • the mounting and fixing portion 322 is a mounting and fixing hole.
  • the fixing portion 322 can be penetrated by rivets or screws and connected to the wire harness isolation plate 26 or the top cover plate 221.
  • the mounting and fixing holes are strip-shaped holes extending along the arrangement direction X, so as not to restrict the movement of the intermediate connecting portion 32 along the arrangement direction X.
  • the intermediate connecting portion 32 and the first output portion 33 are separate structures. A part of the first output portion 33 overlaps the intermediate connection portion 32 to form a connection structure.
  • the thickness of the connection structure is greater than the maximum thickness of the intermediate connection portion 32, so that the flow capacity of the first output pole piece 30 at the connection structure is enhanced, which is beneficial to reduce the temperature rise.
  • the first output portion 33 and the third extension section 32c of the intermediate connecting portion 32 overlap each other, and the width of the overlap portion between the first output portion 33 and the third extension section 32c is the same as the width of the third extension section 32c. equal.
  • the first connecting portion 31, the intermediate connecting portion 32, and the first output portion 33 are separated from each other, that is, the three are independently arranged.
  • the first connecting portion 31 and the intermediate connecting portion 32 are welded and connected.
  • the intermediate connecting portion 32 and the first output portion 33 are connected by welding.
  • the first connecting portion 31 is used for welding with the pole 222. Due to the need to meet the welding strength requirements, the thickness of the first connecting portion 31 is designed to be relatively thin.
  • the length of the intermediate connection portion 32 is longer than that of the first connection portion 31 and the first output portion 33, so its own resistance is large.
  • the first output portion 33 is an output end, and requires high heat dissipation, so the thickness is relatively thicker than that of the first connecting portion 31.
  • the thickness of the three meets the requirement that the first connecting portion 31 is smaller than the first output portion 33, and the first output portion 33 is less than or equal to the middle Connecting part 32.
  • the material of the first connecting portion 31 and the intermediate connecting portion 32 is aluminum, and the material of the first output portion 33 is copper, since copper has higher conductivity and good heat dissipation, when the thickness of the first output portion 33 itself is reduced accordingly Therefore, the thicknesses of the three components satisfy that the first connecting portion 31 is less than or equal to the first output portion 33, and the first output portion 33 is smaller than the intermediate connecting portion 32.
  • the explosion-proof valve 223 of the secondary battery 22 is arranged between the two poles 222 and corresponding to the containing gap 22a.
  • the intermediate connecting portion 32 has a flow hole 323.
  • the flow hole 323 is provided above the explosion-proof valve 223.
  • the airflow or substance ejected from the explosion-proof valve 223 can quickly diffuse through the flow hole 323, which increases the airflow or substance diffusion speed and reduces the pairing of the intermediate connecting portion 32.
  • the airflow or substances ejected from the explosion-proof valve 223 may block the safety of the secondary battery 22.
  • the number and positions of the flow holes 323 and the number and positions of the explosion-proof valve 223 are arranged in a one-to-one correspondence.
  • the first output pole piece 30 is an integrally formed structure.
  • the first output pole piece 30 can be manufactured by performing a stamping operation on the blank, which is beneficial to reduce the processing steps.
  • the battery module 20 of the embodiment of the present application includes battery assemblies 21c arranged in series with each other.
  • the battery modules 21c arranged in series with each other form a battery cell 21.
  • Two adjacent battery assemblies 21c are connected in series by a bus bar 23.
  • the battery cell 21 has a first total output pole 21a and a second total output pole 21b.
  • the battery module 20 further includes a first output pole piece 30 connected to the first overall output pole 21a and a second output pole piece 40 connected to the second overall output pole 21b.
  • the first output portion 33 of the first output pole piece 30 and the second output portion 42 of the second output pole piece 40 are arranged on the same side of the battery cell 21.
  • the intermediate connection portion 32 of the first output pole piece 30 is arranged above the battery unit 21 and is arranged corresponding to the accommodating gap 22a, so that the size of the entire battery module 20 in the width direction Y can be reduced, and the first output pole piece 30 can be reduced.
  • the installation space occupancy rate in the width direction Y is beneficial to increase the energy density of the battery module 20.
  • an embodiment of the present application also provides a manufacturing method of the battery module 20, which includes:
  • Two or more battery assemblies 21c are arranged side by side to form a battery unit 21.
  • the battery unit 21 has a first total output pole 21a and a second total output pole 21b.
  • the battery assembly 21c includes at least one secondary battery 22, each secondary battery 22
  • the two poles 222 of the two pole groups respectively form two rows of pole groups, and there is an accommodation gap 22a between the two rows of pole groups;
  • a first output pole piece 30 including a first connecting portion 31, an intermediate connecting portion 32 and a first output portion 33 is provided, the first connecting portion 31 is connected to the first total output pole 21a, and the intermediate connecting portion 32 is located at the first connecting portion 31 is close to the side of the containing gap 22a;
  • a second output pole piece 40 including a second connecting portion 41 and a second output portion 42 is provided, the second connecting portion 41 is connected to the second total output pole 21b, and the second output portion 42 is arranged on the second total output pole 21b On the side far away from the first total output pole 21a, the first output portion 33 and the second output portion 42 are arranged on the same side of the battery unit 21.
  • the battery module 20 manufactured by the above-mentioned manufacturing method of the battery module 20 can realize that the first output portion 33 of the first output pole piece 30 and the second output portion 42 of the second output pole piece 40 are arranged on the same battery unit 21. side. Since the first output portion 33 and the second output portion 42 are arranged on the same side of the battery unit 21, when the two battery modules 20 are connected to each other using a connecting wire harness, the wiring and arrangement of the connecting wire harness are relatively simple and occupy The space is small, and the connection process of connecting the wire harness and the first output portion 33 or connecting the wire harness and the second output portion 42 is easy to operate, and the connection difficulty is reduced.
  • the intermediate connection portion 32 of the first output pole piece 30 is arranged above the battery unit 21 and is arranged corresponding to the accommodating gap 22a, so that the size of the entire battery module 20 in the width direction Y can be reduced, and the first output pole piece 30 can be reduced.
  • the installation space occupancy rate in the width direction Y is also beneficial to increase the energy density of the battery module 20.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Container Filling Or Packaging Operations (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

一种电池模组(20)、电池组(10)、装置及电池模组(20)的制造方法。电池模组(20)包括:电池单元(21),具有第一总输出极(21a)和第二总输出极(21b),电池单元(21)包括两个以上并排设置且相互串联的电池组件(21c),电池组件(21c)包括至少一个二次电池(22),各个二次电池(22)的两个极柱(222)排列形成两列极柱组,两列极柱组之间具有容纳间隙(22a);第一输出极片(30),包括连接于第一总输出极(21a)的第一连接部(31)、中间连接部(32)和第一输出部(33),中间连接部(32)连接于第一连接部(31)靠近容纳间隙(22a)的一侧;第二输出极片(40),包括连接于第二总输出极(21b)的第二连接部(41)和第二输出部(42),第二总输出极(21b)位于第一总输出极(21a)靠近第二输出部(42)的一侧;第一输出部(33)与第二输出部(42)设置于电池单元(21)的同侧。电池模组(20)能够降低连接线束布置的复杂度和空间占用率。

Description

电池模组、电池组、装置及电池模组的制造方法 技术领域
本申请涉及电池技术领域,特别是涉及一种电池模组、电池组、装置及电池模组的制造方法。
背景技术
随着科学技术的发展以及世界能源结构的转型,可持续发展的能源正逐渐取代传统化石燃料而成为主流能源。例如,电动汽车正在逐步取代传统燃油车。电动汽车中的核心部件之一是电池模组。电池模组用于为电动汽车提供电能。现有技术中,电池模组的总正极和总负极通常设置于电池模组的相对两端,从而总正极和总负极非同侧设置。这样,多个电池模组使用线束相互连接时存在连接线束复杂,并且需要设置较大安装空间的问题。
发明内容
为了解决现有技术中电池模组的总正极和总负极非同侧设置,因此导致多个电池模组使用线束相互连接时存在连接线束复杂,并且需要设置较大安装空间的技术问题。
一方面,本申请实施例提出了一种电池模组,其包括:
电池单元,具有极性相反的第一总输出极和第二总输出极,电池单元包括两个以上并排设置电池组件,相邻两个电池组件相互串联,每个电池组件包括至少一个二次电池,各个二次电池的两个极柱排列形成两列极柱组,两列极柱组之间具有沿二次电池的排列方向延伸的容纳间隙;第一输出极片,包括依次连接的第一连接部、中间连接部和第一输出部,第一连接部连接于第一总输出极,中间连接部连接于第一连接部靠近容纳间隙的一侧;第二输出极片,包括第二连接部和第二输出部,第二总输出极位于 第一总输出极靠近第二输出部的一侧,第二连接部连接于第二总输出极;第一输出部与第二输出部设置于电池单元的同侧。
根据本申请实施例的一个方面,中间连接部具有两个以上的拉伸缓冲结构,两个以上的拉伸缓冲结构沿排列方向间隔设置。
根据本申请实施例的一个方面,拉伸缓冲结构为弧形。
根据本申请实施例的一个方面,二次电池包括防爆阀,防爆阀设置于两个极柱之间并与容纳间隙相对应设置,中间连接部具有过流孔,过流孔设置于防爆阀的上方;和/或,中间连接部包括两个以上的安装固定部,中间连接部能够通过安装固定部安装固定于外部构件上。
根据本申请实施例的一个方面,中间连接部包括沿排列方向相继分布的第一延伸段、第二延伸段和第三延伸段,第一延伸段与第三延伸段分别与第二延伸段相交设置,第一延伸段和第三延伸段错位设置,第一连接部与第一延伸段相连接,第二延伸段远离第二输出极片延伸以让位第二输出极片,第一输出部与第三延伸段相连接。
根据本申请实施例的一个方面,中间连接部的宽度方向与排列方向相交,至少部分第三延伸段的宽度小于第一延伸段的宽度;和/或,第一延伸段沿排列方向延伸,第二延伸段的延伸方向偏离排列方向的角度小于45°。
根据本申请实施例的一个方面,沿排列方向,第一输出部远离中间连接部的边缘和中间连接部靠近第一连接部的边缘的垂直距离为H1,第一连接部远离中间连接部的边缘和中间连接部靠近第一连接部的边缘的垂直距离为H2,其中,H1:H2≤11:1,和/或,H1+H2≤400mm。
根据本申请实施例的一个方面,电池模组还包括线束隔离板,中间连接部设置于线束隔离板远离二次电池的一侧,线束隔离板具有与容纳间隙对应设置的容纳凹部,容纳凹部朝二次电池凹陷,至少部分中间连接部设置于容纳凹部内。
根据本申请实施例的一个方面,沿与排列方向相交的方向,第一连接部设置于中间连接部的一侧,第一输出极片还包括连接第一连接部和中间连接部的转接片。
根据本申请实施例的一个方面,转接片包括沿与排列方向相交的方向相继分布的第一段、缓冲段和第二段,第一段与第一连接部相连接,第二段与中间连接部相连接。
根据本申请实施例的一个方面,缓冲段的宽度小于第一段并且小于第二段,缓冲段为弯曲结构,缓冲段与第一段之间以及缓冲段与第二段之间具有间隙。
根据本申请实施例的一个方面,缓冲段具有朝向或远离二次电池凸出的弧形结构。
根据本申请实施例的一个方面,第一连接部包括两个以上的极柱连接段以及连接相邻两个极柱连接段的弧形缓冲段,两个以上的极柱连接段沿排列方向设置,中间连接部连接于极柱连接段。
根据本申请实施例的一个方面,中间连接部和第一输出部为分体结构,第一输出部的一部分搭接于中间连接部形成连接结构,连接结构的厚度大于中间连接部的最大厚度。
根据本申请实施例的一个方面,第一输出极片为一体成型结构;或者,第一连接部、中间连接部和第一输出部为分体结构。
根据本申请实施例的一个方面,沿排列方向,第一总输出极位于电池单元的一侧,第二总输出极位于电池单元的另一侧,第一总输出极和第二总输出极均位于电池单元的最外侧。
根据本申请实施例的电池模组包括电池单元、第一输出极片和第二输出极片。第一输出极片连接于电池单元的第一总输出极,而第二输出极片连接于电池单元的第二总输出极。第一输出极片的第一输出部通过中间连接部和第一连接部连接于第一总输出极,从而能够将第一输出极片的第一输出部与第二输出极片的第二输出部设置于电池单元的同一侧,使得电池模组实现极性相反的两个电极能够在同侧输出。这样,在两个电池模组串联或并联时,可以在电池模组的一侧布置连接线束,从而降低连接线束布置的复杂度和空间占用率,有利于提高电池模组整体结构紧凑性,降低电池模组整体的空间占用率,可以提高电池组的能量密度。
又一个方面,根据本申请实施例提供一种电池组,其包括如上述的电 池模组。
另一个方面,根据本申请实施例提供一种使用电池模组作为电源的装置,其包括如上述的电池模组。
另一个方面,根据本申请实施例提供一种电池模组的制造方法,其包括:
将两个以上的电池组件并排设置以形成电池单元,电池单元具有第一总输出极和第二总输出极,电池组件包括至少一个二次电池,各个二次电池的两个极柱分别形成两列极柱组,两列极柱组之间具有容纳间隙;
提供包括第一连接部、中间连接部和第一输出部的第一输出极片,将第一连接部连接于第一总输出极,中间连接部位于第一连接部靠近容纳间隙的一侧;
提供包括第二连接部和第二输出部的第二输出极片,将第二连接部连接于第二总输出极,将第二输出部设置于第二总输出极远离第一总输出极的一侧,第一输出部与第二输出部设置于电池单元的同侧。
再一个方面,根据本申请实施例提供一种输出极片,其包括:
第一连接部、中间连接部和第一输出部;
其中,中间连接部具有预定长度和宽度,中间连接部具有沿长度方向相对的两个端部,沿中间连接部的宽度方向,第一连接部设置于中间连接部的一侧,第一连接部连接于一个端部,第一输出部连接于另一个端部,中间连接部具有两个以上的拉伸缓冲结构,两个以上的拉伸缓冲结构设置于两个端部之间。
附图说明
下面将通过参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池组的分解结构示意图;
图3是本申请一实施例公开的一种电池模组的结构示意图;
图4是本申请另一实施例公开的一种电池模组的结构示意图;
图5是本申请一实施例公开的一种电池模组的分解结构示意图;
图6是本申请一实施例公开的一种电池模组的俯视结构示意图;
图7是本申请一实施例公开的一种第一输出极片的俯视结构示意图;
图8是本申请一实施例公开的一种第一输出极片的轴测结构示意图;
图9是本申请一实施例公开的一种第一输出极片的分解结构示意图;
图10是本申请一实施例公开的一种第一连接部和转接片的连接结构示意图;
图11是本申请另一实施例公开的一种第一输出极片的轴测结构示意图;
图12是本申请再一实施例公开的一种第一输出极片的轴测结构示意图;
图13是本申请一实施例公开的一种电池模组的制造方法的流程示意图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
1、车辆;
10、电池组;
20、电池模组;
21、电池单元;21a、第一总输出极;21b、第二总输出极;21c、电池组件;
22、二次电池;22a、容纳间隙;221、顶盖板;222、极柱;223、防爆阀;
23、汇流片;24、端板;25、侧板;26、线束隔离板;26a、容纳凹部;
30、第一输出极片;
31、第一连接部;31a、极柱连接段;31b、弧形缓冲段;
32、中间连接部;32a、第一延伸段;32b、第二延伸段;32c、第三延伸段;321、拉伸缓冲结构;322、安装固定部;323、过流孔;
33、第一输出部;
34、转接片;341、第一段;342、缓冲段;342a、弧形结构;343、第二段;
40、第二输出极片;41、第二连接部;411、连接端;42、第二输出部;
X、排列方向;Y、宽度方向。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
为了更好地理解本申请,下面结合图1至图13对本申请实施例进行描述。
本申请实施例提供一种使用二次电池作为电源的装置。该装置可以但不仅限于为车辆、船舶或飞行器等。参见图1所示,本申请的一个实施例提供一种车辆1,其包括车辆主体和电池模块。电池模块设置于车辆主体。其中,车辆1可以是纯电动汽车,也可以是混合动力汽车或增程式汽 车。车辆主体设置有与电池模块电连接的驱动电机。电池模块向驱动电机提供电能。驱动电机通过传动机构与车辆主体上的车轮连接,从而驱动汽车行进。可选地,电池模块可水平设置于车辆主体的底部。
参见图2所示,电池模块可以是电池组10。电池组10的设置方式有多种。在一些可选的实施例中,电池组10包括箱体和设置于箱体内的电池模组20。电池模组20的数量为一个或多个。一个或多个电池模组20排列布置于箱体内。箱体的类型不受限制。箱体可为框状箱体、盘状箱体或盒状箱体等。可选地,箱体可包括用于容纳电池模组20的下箱体和与下箱体盖合的上箱体。上箱体和下箱体盖合后形成容纳电池模组20的容纳部。可以理解地,电池模块也可以是电池模组20,即将电池模组20直接设置于车辆主体上。
参见图3所示,电池模组20包括多个二次电池22。电池模组20的设置方式有多种,在一个实施例中,电池模组20包括容纳部和位于容纳部内的多个二次电池22。多个二次电池22在容纳部内并排设置。容纳部的设置方式有多种,例如容纳部包括外壳和盖设于外壳处的盖板;或者,容纳部包括相继围合连接的侧板和端板;或者,容纳部包括相对设置的端板及环绕于端板和二次电池22外的箍带。
本申请实施例的二次电池22包括壳体、设置于壳体内的电极组件以及与壳体密封连接的顶盖组件。
本申请实施例的壳体为方形结构或其他形状。壳体具有容纳电极组件和电解液的内部空间以及与内部空间相连通的开口。壳体可以由例如铝、铝合金或塑料等材料制造。
本申请实施例的顶盖组件包括顶盖板221、极柱222以及防爆阀223。防爆阀223设置于顶盖板221上。
参见图3所示,电池模组20包括具有第一总输出极21a和第二总输出极21b的电池单元21。电池单元21包括多个依次串联的电池组件21c。每个电池组件21c包括一个二次电池22。相邻两个电池组件21c通过一个汇流片23相互串联。每个二次电池22包括同侧引出的两个极柱222。两个极柱222沿电池单元21的宽度方向间隔设置。在各个电池组件 21c沿排列方向X并排设置后,各个二次电池22的两个极柱222排列形成两列极柱组,并且两列极柱组之间具有沿排列方向X延伸的容纳间隙22a。电池单元21具有极性相反的第一总输出极21a和第二总输出极21b。沿排列方向X,电池单元21具有相对的两侧。第一总输出极21a位于电池单元21的一侧,而第二总输出极21b位于电池单元21的另一侧。第一总输出极21a和第二总输出极21b均位于电池单元21的最外侧。第一总输出极21a和第二总输出极21b中的一者作为总正极,另一者作为总负极。可选地,第一总输出极21a和第二总输出极21b设置的位置不局限于图中所示的最外侧位置,也可以是第一总输出极21a设置于图3中所示的最外侧,而第二总输出极21b靠近电池单元21的中央位置,或者第二总输出极21b设置于图中所示的最外侧,而第一总输出极21a靠近电池单元21的中央位置。每个电池组件21c包括的二次电池22的数量不局限于一个以及图4中所示的两个,也可以包括三个以上的二次电池22。
参见图4和图5所示,每个电池组件21c包括两个并联设置的二次电池22。相邻两个电池组件21c通过一个汇流片23相互串联。电池模组20还包括第一输出极片30和第二输出极片40。第一输出极片30和第二输出极片40中的一者作为正极输出,另一者作为负极输出。第一输出极片30连接于第一总输出极21a,并且两者极性相同。第二输出极片40连接于第二总输出极21b,并且两者极性相同。
第一输出极片30包括依次连接的第一连接部31、中间连接部32和第一输出部33。第一输出极片30通过第一连接部31连接于第一总输出极21a。中间连接部32连接于第一连接部31靠近容纳间隙22a的一侧。中间连接部32与容纳间隙22a位置相对应设置。至少部分中间连接部32位于容纳间隙22a内。在一个示例中,中间连接部32具有预定宽度和长度。电池单元21的宽度方向与中间连接部32的宽度方向Y相同。二次电池22的排列方向X与中间连接部32的长度方向相同。中间连接部32具有沿自身长度方向相对的两个端部。第一连接部31连接于中间连接部32的一个端部,第一输出部33连接于中间连接部32的另一个端部。第一连接部31连接于中间连接部32的一个端部,而第一输出部33连接于中间 连接部32的另一个端部。沿中间连接部32的宽度方向Y,第一连接部31设置于中间连接部32的一侧。第一总输出极21a与中间连接部32沿宽度方向Y间隔设置。
第二输出极片40包括第二连接部41和第二输出部42。第二输出极片40通过第二连接部41连接于第二总输出极21b。第二输出部42位于第二总输出极21b的外侧。第二总输出极21b位于第一总输出极21a靠近第二输出部42的一侧,即沿排列方向X,第二总输出极21b位于第一总输出极21a和第二输出部42之间。第一输出部33与第二输出部42设置于电池单元21的同侧。相邻两个电池模组20可以通过各自的第一输出部33和第二输出部42相互串联或并联。
本申请实施例的电池模组20包括电池单元21、第一输出极片30和第二输出极片40。第一输出极片30连接于电池单元21的第一总输出极21a,而第二输出极片40连接于电池单元21的第二总输出极21b。第一输出极片30的第一输出部33通过中间连接部32和第一连接部31连接于第一总输出极21a,从而能够将第一输出极片30的第一输出部33与第二输出极片40的第二输出部42设置于电池单元21的同一侧,使得电池模组20实现极性相反的两个电极能够在同侧输出。这样,在两个电池模组20串联或并联时,可以在电池模组20的一侧布置连接线束,从而降低连接线束布置的复杂度和空间占用率,有利于提高电池模组20整体结构紧凑性,降低电池模组20整体的空间占用率,可以提高电池组的能量密度。
在一个实施例中,中间连接部32与各个极柱222之间以及中间连接部32和顶盖板221之间保持预定安全间隙,从而能够降低中间连接部32和极柱222或者中间连接部32和顶盖板221发生击穿或接触而造成短路的可能性。另外,可以不需要在中间连接部32和极柱222之间或者中间连接部32和顶盖板221之间额外设置绝缘零部件,从而有利于减少零部件使用数量。
在一个实施例中,参见图4所示,电池模组20包括相互连接的端板24和侧板25。两个端板24和两个侧板25沿电池单元21的周向交替设置以形成容纳部,从而束缚各个二次电池22。沿排列方向X,端板24与二 次电池22并排设置。第一输出部33和第二输出部42均通过绝缘部件连接于两个端板24中的一个端板24。在一个示例中,参见图4所示,第一输出部33、第二输出部42和绝缘部件上均设置有螺纹孔,用于通过螺钉将第一输出部33和第二输出部42与相应的外部连接线束电连接。
在一个实施例中,参见图5所示,电池模组20还包括线束隔离板26。线束隔离板26设置于二次电池22的上方。中间连接部32设置于线束隔离板26远离二次电池22的一侧。线束隔离板26具有与容纳间隙22a对应设置的容纳凹部26a。容纳凹部26a朝向二次电池22凹陷。容纳凹部26a具有承托中间连接部32的底壁。至少部分中间连接部32设置于容纳凹部26a内,从而一方面,线束隔离板26可以对中间连接部32形成限位,降低中间连接部32因自身位置发生偏移而导致中间连接部32与各个极柱222之间以及中间连接部32和顶盖板221之间的间隙小于预定安全间隙或者发生接触的可能性,进而降低中间连接部32和极柱222或者中间连接部32与顶盖板221发生击穿或接触而造成短路的可能性;另一方面,线束隔离板26可以进一步绝缘隔离中间连接部32与各个极柱222以及中间连接部32和顶盖板221,有利于提高中间连接部32与各个极柱222以及中间连接部32和顶盖板221保持绝缘状态的稳定性。汇流片23设置于线束隔离板26远离二次电池22的一侧。汇流片23和线束隔离板26可拆卸连接。线束隔离板26上设置有容纳汇流片23的容纳框。极柱222插入容纳框的中心孔并与汇流片23电连接。容纳框与容纳凹部26a之间具有隔离凸台,以隔开汇流片23和中间连接部32,降低汇流片23和中间连接部32发生击穿或接触而造成短路的可能性。线束隔离板26上设置两列容纳框,而沿宽度方向Y,容纳凹部26a设置于两列容纳框之间。可选地,线束隔离板26的材料为塑料或橡胶。
在一个实施例中,参见图6所示,第二输出部42连接于第二连接部41靠近容纳间隙22a的一侧。第二连接部41与第二输出部42为分体结构。第二连接部41具有延伸至容纳间隙22a的连接端411,而第二输出部42连接于该连接端411。中间连接部32包括沿排列方向X相继分布的第一延伸段32a、第二延伸段32b和第三延伸段32c。第一延伸段32a与第 三延伸段32c分别与第二延伸段32b相交设置。第一延伸段32a和第三延伸段32c错位设置。第一连接部31与第一延伸段32a相连接。第一输出部33与第三延伸段32c相连接。沿宽度方向Y,第一输出部33的一部分超出第三延伸段32c的边缘。第二延伸段32b远离第二输出极片40延伸以让位第二输出极片40。第二延伸段32b和第三延伸段32c彼此共同形成让位空间,从而中间连接部32与第二连接部41不发生位置干涉并且保持预定安全间隙。在一个示例中,参见图7所示,中间连接部32的宽度方向Y与排列方向X相交。至少部分第三延伸段32c的宽度小于第一延伸段32a的宽度。在容纳间隙22a的尺寸保持固定的情况下,第三延伸段32c可以避让一侧的第二连接部41和另一侧的汇流片23,从而与第二连接部41和汇流片23之间保持预定安全间隙,充分利用容纳间隙22a的安装空间。在一个示例中,参见图7所示,中间连接部32的宽度方向Y与排列方向X相交。至少部分第二延伸段32b的宽度小于第一延伸段32a的宽度。至少部分第三延伸段32c的宽度小于第二延伸段32b的宽度。在一个示例中,第一延伸段32a沿排列方向X延伸。第二延伸段32b的延伸方向偏离排列方向X的角度α小于45°,从而第一延伸段32a的延伸方向与第二延伸段32b的延伸方向的角度α小于45°。第一输出极片30的第一连接部31连接固定于第一总输出极21a,而第一输出部33连接固定于端板24。在电池模组20使用过程中,二次电池22会在排列方向X上发生膨胀,从而会对中间连接部32施加沿排列方向X的拉伸应力。由于第二延伸段32b的延伸方向偏离排列方向X的角度α小于45°,因此在第一延伸段32a和第二延伸段32b承载拉伸应力时,可以有效降低第一延伸段32a和第二延伸段32b两者连接处出现应力集中的情况,从而降低第一延伸段32a和第二延伸段32b在两者连接处发生断裂的可能性。在一个示例中,参见图7所示,第三延伸段32c沿排列方向X延伸。第二延伸段32b的延伸方向偏离排列方向X的角度α小于45°,从而第三延伸段32c的延伸方向与第二延伸段32b的延伸方向之间的锐角角度小于45°。在第二延伸段32b和第三延伸段32c承载拉伸应力时,可以有效降低第二延伸段32b和第三延伸段32c两者连接处出现应力集中,从而降低第二延伸段32b和第 三延伸段32c在两者连接处发生断裂的可能性。
在一个实施例中,参见图7所示,沿排列方向X,第一输出部33远离中间连接部32的边缘和中间连接部32靠近第一连接部31的边缘的垂直距离为H1。沿排列方向X,第一连接部31的一部分超出中间连接部32。第一连接部31远离中间连接部32的边缘和中间连接部32靠近第一连接部31的边缘的垂直距离为H2。在一个示例中,H1:H2≤11:1。H1:H2>11:1时,中间连接部32的长度过长,导致第一输出极片30的过流能力降低,从而电池模组20在充放电时第一输出极片30的温度容易过高,进而会影响温度采样组件的采样精度。在一个示例中,H1+H2≤400mm。H1+H2>400mm时,第一输出极片30整体的长度过长,电阻过高,从而第一输出极片30的发热量过大,也会影响温度采样组件的采样精度。
在一个实施例中,参见图8所示,中间连接部32具有两个以上的拉伸缓冲结构321。两个以上的拉伸缓冲结构321沿排列方向X间隔设置,并且所有拉伸缓冲结构321位于中间连接部32的两个端部之间。在二次电池22发生膨胀导致中间连接部32承载拉伸应力时,弧形的拉伸缓冲结构321在拉伸应力作用下,自身的弯曲程度会降低,对应的曲率变小,从而拉伸缓冲结构321承载拉伸应力时会在排列方向X上被拉长,从而有利于降低中间连接部32与第一连接部31之间以及中间连接部32和第一输出部33之间的拉伸应力,进而降低中间连接部32和第一连接部31之间的连接处以及中间连接部32和第一输出部33之间的连接处因承载拉伸应力过大而导致中间连接部32和第一连接部31或者中间连接部32和第一输出部33发生分离的可能性。可选地,在排列方向X上,每个拉伸缓冲结构321的两侧均为平整段。在一个示例中,拉伸缓冲结构321为弧形,从而降低自身承载拉伸应力时出现应力集中的可能性。拉伸缓冲结构321沿宽度方向Y延伸。拉伸缓冲结构321与相邻的平整段之间圆滑过渡。拉伸缓冲结构321可以朝向二次电池22凸出或者远离二次电池22凸出。可选地,可以对中间连接部32的一部分采用冲压工艺制造拉伸缓冲结构321,保证中间连接部32一体成型,提高自身刚度。
在一个实施例中,参见图8所示,第一连接部31包括两个以上的极 柱连接段31a以及连接相邻两个极柱连接段31a的弧形缓冲段31b。两个以上的极柱连接段31a沿排列方向X设置。中间连接部32可以连接于一个极柱连接段31a。中间连接部32也可以连接于两个以上的极柱连接段31a。极柱连接段31a的数量与电池组件21c所包括的并联设置的二次电池22的数量相同。两个以上的二次电池22并联后,位于一列的极柱222连接于相对应的极柱连接段31a上。在二次电池22发生膨胀导致第一连接部31承载拉伸应力时,弧形缓冲段31b的弯曲程度会降低,对应的曲率变小,从而弧形缓冲段31b会在排列方向X上被拉长,从而有利于减小相邻两个极柱连接段31a之间的拉伸应力,降低第一连接部31承载过大拉伸应力而导致极柱连接段31a与极柱222脱离连接状态或者第一连接部31被拉断的可能性。由于弧形缓冲段31b自身为弧形结构,因此降低自身因承载拉伸应力而出现应力集中的可能性。弧形缓冲段31b沿宽度方向Y延伸。弧形缓冲段31b与相邻的平整区域之间圆滑过渡。弧形缓冲段31b可以朝向二次电池22凸出或者远离二次电池22凸出。可选地,可以对第一连接部31的一部分采用冲压工艺制造弧形缓冲段31b,保证第一连接部31一体成型,提高自身刚度。
在一个实施例中,参见图9所示,沿与排列方向X相交的宽度方向Y,第一连接部31设置于中间连接部32的一侧。第一连接部31连接于第一总输出极21a。第一输出极片30还包括连接第一连接部31和中间连接部32的转接片34。转接片34从第一连接部31靠近容纳间隙22a的一侧朝容纳间隙22a内延伸。第一连接部31通过转接片34连接固定于中间连接部32,有利于提高第一连接部31和中间连接部32的连接便利性。在一个示例中,第一连接部31与转接片34为一体成型结构,而转接片34通过焊接方式连接于中间连接部32。第一连接部31与转接片34形成的整体结构刚度高,具有良好抗拉伸变形能力。在二次电池22发生膨胀而导致中间连接部32沿排列方向X发生位移时,中间连接部32对转接片34会施加沿排列方向X的作用力。由于转接片34与中间连接部32焊接连接,因此焊接部位可以缓冲吸收一部分作用力。由于转接片34和第一连接部31为一体成型结构,因此有利于减小转接片34承载作用力时发生的位移 量,从而降低转接片34和第一连接部31发生撕裂的可能性。在一个示例中,第一连接部31与转接片34为分体成型结构,从而可以单独加工制造第一连接部31与转接片34,有利于降低加工难度。
在一个实施例中,参见图9所示,转接片34包括沿与排列方向X相交的宽度方向Y相继分布的第一段341、缓冲段342和第二段343。第一段341与第一连接部31相连接,而第二段343与中间连接部32相连接。在转接片34承载沿宽度方向Y的拉伸应力时,第一段341和第二段343两者远离对方发生移动,而缓冲段342在宽度方向Y上可以被拉长,以缓冲吸收拉伸应力,降低转接片34被拉断或撕裂的可能性。在一个示例中,参见图10所示,缓冲段342的宽度小于第一段341并且小于第二段343。缓冲段342为弯曲结构。缓冲段342与第一段341之间以及缓冲段342与第二段343之间具有间隙。缓冲段342具有两个端部。两个端部中的一个端部连接于第一段341,另一个端部连接于第二段343。可选地,缓冲段342具有第一弧形区、中间过渡区和第二弧形区,以使缓冲段342呈S形,从而自身承载外力时不易出现应力集中区域,具有良好抗拉伸性能。第一弧形区连接于第一段341,而第二弧形区连接于第二段343。在一个示例中,参见图10所示,缓冲段342具有朝向二次电池22凸出的弧形结构342a。可选地,弧形结构342a也可以远离二次电池22凸出。二次电池22发生膨胀或使用过程中出现振动时,第一段341和第二段343在竖直平面内可能会发生上下摆动。在第一段341和第二段343在竖直平面内发生上下摆动时,缓冲段342的弧形结构342a可以有效缓冲因第一段341或第二段343发生摆动时对缓冲段342施加的应力,降低缓冲段342承载过大而导致自身出现断裂的可能性。第一段341和第二段343通过缓冲段342相连接的方式,可以通过缓冲段342缓冲沿宽度方向Y的拉伸应力以及上下摆动时产生的拉伸应力,降低因转接片34发生断裂而导致电池模组20发生失效的可能性。可选地,缓冲段342具有第一弧形区、中间过渡区和第二弧形区,弧形结构342a设置于中间过渡区上。弧形结构342a的数量可以是两个以上。
在一个实施例中,参见图9所示,中间连接部32包括两个以上的安 装固定部322。中间连接部32能够通过安装固定部322安装固定于线束隔离板26或者二次电池22的顶盖板221等外部构件上。安装固定部322与拉伸缓冲结构321沿排列方向X间隔设置。在一个示例中,安装固定部322为安装固定孔。可以通过铆钉或者螺钉穿入安装固定部322并连接于线束隔离板26或顶盖板221。安装固定孔为沿排列方向X延伸的条形孔,从而不会限制中间连接部32沿排列方向X发生移动。
在一个实施例中,参见图8和图9所示,中间连接部32和第一输出部33为分体结构。第一输出部33的一部分搭接于中间连接部32形成连接结构。连接结构的厚度大于中间连接部32的最大厚度,从而第一输出极片30在连接结构处过流能力增强,有利于降低温升。在一个示例中,第一输出部33与中间连接部32的第三延伸段32c相互搭接,并且第一输出部33与第三延伸段32c搭接部分的宽度与第三延伸段32c的宽度相等。
在一个实施例中,参见图8和图9所示,第一连接部31、中间连接部32和第一输出部33三者彼此为分体结构,也即三者各自独立设置。第一连接部31和中间连接部32焊接连接。中间连接部32和第一输出部33焊接连接。第一连接部31用于与极柱222焊接。由于需要满足焊接强度要求,第一连接部31的厚度设计较薄。中间连接部32的长度相对于第一连接部31和第一输出部33较长,因此自身电阻大。第一输出部33为输出端,自身对散热要求高,因此厚度相比较于第一连接部31的厚度较厚。当第一连接部31、中间连接部32以及第一输出部33的材料均为铝时,三者的厚度满足第一连接部31小于第一输出部33,而第一输出部33小于等于中间连接部32。在第一连接部31和中间连接部32的材料为铝,而第一输出部33的材料为铜时,由于铜的导电率较高,散热好,因此当第一输出部33自身厚度相应减小,从而三者的厚度满足第一连接部31小于等于第一输出部33,而第一输出部33小于中间连接部32。
在一个实施例中,二次电池22的防爆阀223设置于两个极柱222之间并与容纳间隙22a相对应设置。参见图11所示,中间连接部32具有过流孔323。过流孔323设置于防爆阀223的上方。在二次电池22内部压力 过大而导致防爆阀223爆喷时,从防爆阀223喷出的气流或物质可以迅速通过过流孔323扩散,提高气流或物质扩散速度,降低中间连接部32对防爆阀223喷出的气流或物质形成阻挡而影响二次电池22安全性的可能性。优选地,过流孔323的数量和位置与防爆阀223的数量和位置一一对应设置。
在一个实施例中,参见图12所示,第一输出极片30为一体成型结构。第一输出极片30可以通过对坯料执行冲压操作制造形成,从而有利于减少加工工序。
本申请实施例的电池模组20包括相互串联设置的电池组件21c。相互串联设置的电池组件21c形成电池单元21。相邻两个电池组件21c通过一个汇流片23串联连接。电池单元21具有第一总输出极21a和第二总输出极21b。电池模组20还包括连接于第一总输出极21a的第一输出极片30以及连接于第二总输出极21b的第二输出极片40。第一输出极片30的第一输出部33和第二输出极片40的第二输出部42设置于电池单元21的同一侧。由于第一输出部33和第二输出部42设置于电池单元21的同一侧,因此在使用连接线束将两个电池模组20相互连接时,连接线束的走线方式和布置方式相对简单,占用空间少,同时连接线束和第一输出部33或连接线束和第二输出部42的连接过程易于操作,降低连接难度。第一输出极片30的中间连接部32设置于电池单元21的上方并且与容纳间隙22a对应设置,从而可以减小电池模组20整体在宽度方向Y上的尺寸,降低第一输出极片30在宽度方向Y上的安装空间占用率,有利于提高电池模组20的能量密度。
参见图13所示,本申请实施例还提供一种电池模组20的制造方法,其包括:
将两个以上的电池组件21c并排设置以形成电池单元21,电池单元21具有第一总输出极21a和第二总输出极21b,电池组件21c包括至少一个二次电池22,各个二次电池22的两个极柱222分别形成两列极柱组,两列极柱组之间具有容纳间隙22a;
提供包括第一连接部31、中间连接部32和第一输出部33的第一输出 极片30,将第一连接部31连接于第一总输出极21a,中间连接部32位于第一连接部31靠近容纳间隙22a的一侧;
提供包括第二连接部41和第二输出部42的第二输出极片40,将第二连接部41连接于第二总输出极21b,将第二输出部42设置于第二总输出极21b远离第一总输出极21a的一侧,第一输出部33与第二输出部42设置于电池单元21的同侧。
采用上述电池模组20的制造方法所制造的电池模组20可以实现第一输出极片30的第一输出部33和第二输出极片40的第二输出部42设置于电池单元21的同一侧。由于第一输出部33和第二输出部42设置于电池单元21的同一侧,因此在使用连接线束将两个电池模组20相互连接时,连接线束的走线方式和布置方式相对简单,占用空间少,同时连接线束和第一输出部33或连接线束和第二输出部42的连接过程易于操作,降低连接难度。第一输出极片30的中间连接部32设置于电池单元21的上方并且与容纳间隙22a对应设置,从而可以减小电池模组20整体在宽度方向Y上的尺寸,降低第一输出极片30在宽度方向Y上的安装空间占用率,也有利于提高电池模组20的能量密度。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (20)

  1. 一种电池模组,其中,包括:
    电池单元,具有极性相反的第一总输出极和第二总输出极,所述电池单元包括两个以上并排设置电池组件,相邻两个所述电池组件相互串联,每个所述电池组件包括至少一个二次电池,各个所述二次电池的两个极柱排列形成两列极柱组,两列所述极柱组之间具有沿所述二次电池的排列方向延伸的容纳间隙;
    第一输出极片,包括依次连接的第一连接部、中间连接部和第一输出部,所述第一连接部连接于所述第一总输出极,所述中间连接部连接于所述第一连接部靠近所述容纳间隙的一侧;
    第二输出极片,包括第二连接部和第二输出部,所述第二总输出极位于所述第一总输出极靠近所述第二输出部的一侧,所述第二连接部连接于所述第二总输出极;
    所述第一输出部与所述第二输出部设置于所述电池单元的同侧。
  2. 根据权利要求1所述的电池模组,其中,所述中间连接部具有两个以上的拉伸缓冲结构,两个以上的所述拉伸缓冲结构沿所述排列方向间隔设置。
  3. 根据权利要求2所述的电池模组,其中,所述拉伸缓冲结构为弧形。
  4. 根据权利要求1所述的电池模组,其中,所述二次电池包括防爆阀,所述防爆阀设置于两个所述极柱之间并与所述容纳间隙相对应设置,所述中间连接部具有过流孔,所述过流孔设置于所述防爆阀的上方;和/或,所述中间连接部包括两个以上的安装固定部,所述中间连接部能够通过所述安装固定部安装固定于外部构件上。
  5. 根据权利要求1所述的电池模组,其中,所述中间连接部包括沿所述排列方向相继分布的第一延伸段、第二延伸段和第三延伸段,所述第一延伸段与所述第三延伸段分别与所述第二延伸段相交设置,所述第一延伸段和所述第三延伸段错位设置,所述第一连接部与所述第一延伸段相连 接,所述第二延伸段远离所述第二输出极片延伸以让位所述第二输出极片,所述第一输出部与所述第三延伸段相连接。
  6. 根据权利要求5所述的电池模组,其中,所述中间连接部的宽度方向与所述排列方向相交,至少部分所述第三延伸段的宽度小于所述第一延伸段的宽度;和/或,所述第一延伸段沿所述排列方向延伸,所述第二延伸段的延伸方向偏离所述排列方向的角度小于45°。
  7. 根据权利要求1至6任一项所述的电池模组,其中,沿所述排列方向,所述第一输出部远离所述中间连接部的边缘和所述中间连接部靠近所述第一连接部的边缘的垂直距离为H1,所述第一连接部远离所述中间连接部的边缘和所述中间连接部靠近所述第一连接部的边缘的垂直距离为H2,其中,H1:H2≤11:1,和/或,H1+H2≤400mm。
  8. 根据权利要求1至6任一项所述的电池模组,其中,所述电池模组还包括线束隔离板,所述中间连接部设置于所述线束隔离板远离所述二次电池的一侧,所述线束隔离板具有与所述容纳间隙对应设置的容纳凹部,所述容纳凹部朝所述二次电池凹陷,至少部分所述中间连接部设置于所述容纳凹部内。
  9. 根据权利要求1所述的电池模组,其中,沿与所述排列方向相交的方向,所述第一连接部设置于所述中间连接部的一侧,所述第一输出极片还包括连接所述第一连接部和所述中间连接部的转接片。
  10. 根据权利要求9所述的电池模组,其中,所述转接片包括沿与所述排列方向相交的方向相继分布的第一段、缓冲段和第二段,所述第一段与所述第一连接部相连接,所述第二段与所述中间连接部相连接。
  11. 根据权利要求10所述的电池模组,其中,所述缓冲段的宽度小于所述第一段并且小于所述第二段,所述缓冲段为弯曲结构,所述缓冲段与所述第一段之间以及所述缓冲段与所述第二段之间具有间隙。
  12. 根据权利要求10或11所述的电池模组,其中,所述缓冲段具有朝向或远离所述二次电池凸出的弧形结构。
  13. 根据权利要求1至6或9至11任一项所述的电池模组,其中,所述第一连接部包括两个以上的极柱连接段以及连接相邻两个所述极柱连接 段的弧形缓冲段,两个以上的所述极柱连接段沿所述排列方向设置,所述中间连接部连接于所述极柱连接段。
  14. 根据权利要求1至6任一项所述的电池模组,其中,所述中间连接部和所述第一输出部为分体结构,所述第一输出部的一部分搭接于所述中间连接部形成连接结构,所述连接结构的厚度大于所述中间连接部的最大厚度。
  15. 根据权利要求1至6任一项所述的电池模组,其中,所述第一输出极片为一体成型结构;或者,所述第一连接部、所述中间连接部和所述第一输出部为分体结构。
  16. 根据权利要求1至6任一项所述的电池模组,其中,沿所述排列方向,所述第一总输出极位于所述电池单元的一侧,所述第二总输出极位于所述电池单元的另一侧,所述第一总输出极和所述第二总输出极均位于所述电池单元的最外侧。
  17. 一种电池组,其中,包括如权利要求1至16任一项所述的电池模组。
  18. 一种使用电池模组作为电源的装置,其中,包括如权利要求1至16任一项所述的电池模组。
  19. 一种电池模组的制造方法,其中,包括:
    将两个以上的电池组件并排设置以形成电池单元,所述电池单元具有第一总输出极和第二总输出极,所述电池组件包括至少一个二次电池,各个所述二次电池的两个极柱分别形成两列极柱组,两列所述极柱组之间具有容纳间隙;
    提供包括第一连接部、中间连接部和第一输出部的第一输出极片,将所述第一连接部连接于所述第一总输出极,所述中间连接部位于所述第一连接部靠近所述容纳间隙的一侧;
    提供包括第二连接部和第二输出部的第二输出极片,将所述第二连接部连接于所述第二总输出极,将所述第二输出部设置于所述第二总输出极远离所述第一总输出极的一侧,所述第一输出部与所述第二输出部设置于所述电池单元的同侧。
  20. 一种输出极片,其中,包括:
    第一连接部、中间连接部和第一输出部;
    其中,所述中间连接部具有预定长度和宽度,所述中间连接部具有沿长度方向相对的两个端部,沿所述中间连接部的宽度方向,所述第一连接部设置于所述中间连接部的一侧,所述第一连接部连接于一个所述端部,所述第一输出部连接于另一个所述端部,所述中间连接部具有两个以上的拉伸缓冲结构,两个以上的所述拉伸缓冲结构设置于两个所述端部之间。
PCT/CN2019/122711 2019-12-03 2019-12-03 电池模组、电池组、装置及电池模组的制造方法 WO2021108986A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP19914713.3A EP3855560B1 (en) 2019-12-03 2019-12-03 Battery module and device using the same
CN201980069182.9A CN113169426B (zh) 2019-12-03 2019-12-03 电池模组、电池组、装置及电池模组的制造方法
KR1020227018438A KR20220095217A (ko) 2019-12-03 2019-12-03 전지 모듈군, 전지 팩, 장치 및 전지 모듈군의 제조방법
ES19914713T ES2930134T3 (es) 2019-12-03 2019-12-03 Módulo de batería y dispositivo que utiliza el mismo
JP2022532570A JP7395744B2 (ja) 2019-12-03 2019-12-03 電池モジュール、電池パック、装置及び電池モジュールの製造方法
PCT/CN2019/122711 WO2021108986A1 (zh) 2019-12-03 2019-12-03 电池模组、电池组、装置及电池模组的制造方法
US16/976,138 US20230123740A1 (en) 2019-12-03 2019-12-03 Battery module, battery pack, device and manufacturing method of battery module
HUE19914713A HUE060614T2 (hu) 2019-12-03 2019-12-03 Akkumulátor modul és az eszköz annak használatára

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/122711 WO2021108986A1 (zh) 2019-12-03 2019-12-03 电池模组、电池组、装置及电池模组的制造方法

Publications (1)

Publication Number Publication Date
WO2021108986A1 true WO2021108986A1 (zh) 2021-06-10

Family

ID=76220944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122711 WO2021108986A1 (zh) 2019-12-03 2019-12-03 电池模组、电池组、装置及电池模组的制造方法

Country Status (8)

Country Link
US (1) US20230123740A1 (zh)
EP (1) EP3855560B1 (zh)
JP (1) JP7395744B2 (zh)
KR (1) KR20220095217A (zh)
CN (1) CN113169426B (zh)
ES (1) ES2930134T3 (zh)
HU (1) HUE060614T2 (zh)
WO (1) WO2021108986A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130596A1 (zh) * 2022-01-05 2023-07-13 宁德时代新能源科技股份有限公司 一种电池模组及用电装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023173146A (ja) * 2022-05-25 2023-12-07 株式会社オートネットワーク技術研究所 電池パック

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767178A (zh) * 2018-03-28 2018-11-06 北京普莱德新能源电池科技有限公司 印刷电路板pcb托盘及电池模组
CN208062147U (zh) * 2018-01-31 2018-11-06 长城汽车股份有限公司 用于电池模组的汇流排组件、电池包以及电动车辆
US20190198845A1 (en) * 2017-12-27 2019-06-27 Samsung Sdi Co., Ltd. Battery pack
CN209071468U (zh) * 2018-12-29 2019-07-05 蜂巢能源科技有限公司 电池包的电池模组以及电池包
CN209418623U (zh) * 2019-02-18 2019-09-20 江苏塔菲尔新能源科技股份有限公司 一种电池模组
CN209526152U (zh) * 2019-04-30 2019-10-22 宁德时代新能源科技股份有限公司 电池模组及电池包

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5702947B2 (ja) * 2010-04-22 2015-04-15 矢崎総業株式会社 配線材
JP6204320B2 (ja) * 2014-09-30 2017-09-27 トヨタ自動車株式会社 電池スタック
WO2017163995A1 (ja) * 2016-03-25 2017-09-28 株式会社オートネットワーク技術研究所 外部接続バスバー保持モジュールおよび電池接続モジュール
DE102016121265A1 (de) * 2016-11-07 2018-05-09 Elringklinger Ag Zellkontaktierungssystem für eine elektrochemische Vorrichtung
JP6781837B2 (ja) * 2017-06-14 2020-11-04 古野電気株式会社 タイミング信号生成装置、それを備える電子機器、及びタイミング信号生成方法
WO2019134699A1 (zh) * 2018-01-08 2019-07-11 比亚迪股份有限公司 电池模组及汽车
CN110911594A (zh) * 2018-09-14 2020-03-24 宁德时代新能源科技股份有限公司 电池模组及其汇流构件和汇流组件
CN208589484U (zh) * 2018-09-14 2019-03-08 宁德时代新能源科技股份有限公司 电池模组
CN111081961B (zh) * 2019-11-25 2022-04-22 中航光电科技股份有限公司 线束板组件及电池模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190198845A1 (en) * 2017-12-27 2019-06-27 Samsung Sdi Co., Ltd. Battery pack
CN208062147U (zh) * 2018-01-31 2018-11-06 长城汽车股份有限公司 用于电池模组的汇流排组件、电池包以及电动车辆
CN108767178A (zh) * 2018-03-28 2018-11-06 北京普莱德新能源电池科技有限公司 印刷电路板pcb托盘及电池模组
CN209071468U (zh) * 2018-12-29 2019-07-05 蜂巢能源科技有限公司 电池包的电池模组以及电池包
CN209418623U (zh) * 2019-02-18 2019-09-20 江苏塔菲尔新能源科技股份有限公司 一种电池模组
CN209526152U (zh) * 2019-04-30 2019-10-22 宁德时代新能源科技股份有限公司 电池模组及电池包

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3855560A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130596A1 (zh) * 2022-01-05 2023-07-13 宁德时代新能源科技股份有限公司 一种电池模组及用电装置

Also Published As

Publication number Publication date
CN113169426A (zh) 2021-07-23
JP7395744B2 (ja) 2023-12-11
HUE060614T2 (hu) 2023-03-28
KR20220095217A (ko) 2022-07-06
EP3855560B1 (en) 2022-10-19
EP3855560A1 (en) 2021-07-28
EP3855560A4 (en) 2021-07-28
US20230123740A1 (en) 2023-04-20
ES2930134T3 (es) 2022-12-07
JP2023504481A (ja) 2023-02-03
CN113169426B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
EP2738834B1 (en) Battery pack
KR101282519B1 (ko) 배터리 모듈
EP2738835B1 (en) Battery module
KR100696669B1 (ko) 이차 전지 모듈
WO2018207607A1 (ja) 電源装置及びこれを備える車両、蓄電装置並びに電源装置用セパレータ
JP2015225765A (ja) 蓄電装置の冷却構造
JP2012099477A (ja) バッテリモジュール
WO2021108986A1 (zh) 电池模组、电池组、装置及电池模组的制造方法
WO2021078006A1 (zh) 线束隔离板组件、电池模块、电池组及装置
WO2021196667A1 (zh) 连接组件、电池模块、装置以及连接组件的制造方法
WO2019058938A1 (ja) 電池モジュール
EP2797138B1 (en) Battery pack
CN219067027U (zh) 电池和用电设备
WO2023000234A1 (zh) 电池、用电设备、制备电池的方法和设备
EP4099351A1 (en) Electrical storage module
CN110832674A (zh) 二次电池
TWI511354B (zh) 鋰電池模組
CN116802889A (zh) 电池、用电设备、制备电池的方法和设备
KR20200002327U (ko) 전지 스택용 스페이서 및 전지 스택을 포함하는 전지 모듈
CN215732051U (zh) 电池模组及电池包
CN220984644U (zh) 电池和用电装置
WO2023240797A1 (zh) 电池和用电装置
CN217589323U (zh) 一种电池模组及电池
CN216311938U (zh) 电芯模块及电池包
CN218586100U (zh) 一种电池模组

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019914713

Country of ref document: EP

Effective date: 20200821

ENP Entry into the national phase

Ref document number: 2022532570

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20227018438

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE