WO2021196667A1 - 连接组件、电池模块、装置以及连接组件的制造方法 - Google Patents

连接组件、电池模块、装置以及连接组件的制造方法 Download PDF

Info

Publication number
WO2021196667A1
WO2021196667A1 PCT/CN2020/130907 CN2020130907W WO2021196667A1 WO 2021196667 A1 WO2021196667 A1 WO 2021196667A1 CN 2020130907 W CN2020130907 W CN 2020130907W WO 2021196667 A1 WO2021196667 A1 WO 2021196667A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating plate
connecting piece
buffer
connection
battery module
Prior art date
Application number
PCT/CN2020/130907
Other languages
English (en)
French (fr)
Inventor
游书兵
Original Assignee
江苏时代新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏时代新能源科技有限公司 filed Critical 江苏时代新能源科技有限公司
Priority to KR1020227019667A priority Critical patent/KR20220101658A/ko
Priority to JP2022532694A priority patent/JP7541092B2/ja
Priority to EP20929038.6A priority patent/EP3940879B1/en
Publication of WO2021196667A1 publication Critical patent/WO2021196667A1/zh
Priority to US17/563,102 priority patent/US20220123439A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/526Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/579Devices or arrangements for the interruption of current in response to shock
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, and in particular to a connection assembly, a battery module, a device, and a manufacturing method of the connection assembly.
  • Battery modules are used to provide electrical energy for electric vehicles.
  • the battery module includes two or more secondary batteries, an insulating plate provided on one side of the secondary battery, and a connecting piece for electrically connecting the secondary battery.
  • the insulating plate can be used to isolate the wiring harness.
  • the connecting piece can be detachably connected to the insulating board. However, the connecting piece is easily separated from the insulating plate, resulting in that the connecting piece is not insulated from the insulating plate, which poses a safety risk.
  • the application provides a connection assembly, a battery module, a device, and a manufacturing method of the connection assembly.
  • the connecting component can ensure reliable and stable connection between the connecting piece and the insulating plate, and improve the safety of the connecting component.
  • this application proposes a connection assembly for a battery module, the battery module includes more than two secondary batteries, the connection assembly includes: a connecting piece for electrical connection with the secondary battery, and the connecting piece has a connecting portion;
  • the insulating plate, the insulating plate itself is an integral structure, the connecting part and the insulating plate are connected in a non-detachable manner to form an integral structure, and the insulating plate can restrict the movement of the connecting piece.
  • the connecting assembly includes an insulating plate and a connecting piece.
  • the insulating board itself is an integrally formed structure.
  • the connecting part of the connecting piece is buried in the insulating plate.
  • the connecting piece is embedded in the insulating plate through the connecting portion, so that the connecting piece and the insulating plate form an integral non-detachable structure.
  • the secondary battery may be electrically connected through the connecting piece. Since the connecting piece and the insulating plate are embedded and connected to each other to form an integral structure, the connection state of the two is reliable and stable, and the connection structure is strong. Therefore, when the battery module is used during vibration, the connecting piece is effectively restricted by the insulating plate. Therefore, the possibility of the connection piece being separated from the insulating plate due to vibration stress can be reduced, and the safety of the battery module during use can be ensured.
  • one of the connecting portion and the insulating plate has a protruding portion, and the other has a receiving portion, and the protruding portion and the receiving portion are embedded with each other.
  • the shape of the protruding portion and the receiving portion match; or, the connecting portion includes a first connecting section and a second connecting section that are connected, and the first connecting section and the second connecting section are mutually staggered.
  • the accommodating part has more than two extension sections, and the two or more extension sections are arranged along the recessed direction of the accommodating part, and the orthographic projection of one of the two adjacent extension sections is located in front of the other. Within the projection.
  • the receiving part is a hole or a groove.
  • the connecting portion has a receiving portion, and the receiving portion is an insertion hole extending along the thickness direction of the insulating plate.
  • the parts on the upper and lower sides are connected by protrusions.
  • the accommodating portion is provided in an edge area of the connecting portion.
  • the insulating plate has a first area and a second area, a part of the second area protrudes from the first area, and the connecting portion is buried inside the second area.
  • the number of connecting pieces is more than two
  • the insulating plate includes a first buffer portion
  • the first buffer portion is provided between two adjacent connecting pieces.
  • the first buffer portion includes an elongated through hole, and the length direction of the through hole intersects the arrangement direction of two adjacent connecting pieces; or, the first buffer portion includes more than two through holes. Two or more through holes are arranged at intervals along the direction that intersects the arrangement direction of two adjacent connecting pieces; or, the first buffer portion includes a long arc-shaped structure, and the length of the arc-shaped structure is the same as that of the two adjacent connecting pieces. The arrangement directions of the two connecting pieces intersect.
  • the connecting piece has a second buffer part, the second buffer part is spaced apart from the connection part, the insulating plate includes a third buffer part corresponding to the second buffer part, and a part of the second buffer part is buried Inside the third buffer.
  • the insulating plate further includes an elongated middle accommodating recess, and at least one of the opposite sides of the middle accommodating recess is provided with a connecting piece.
  • a battery module which includes: two or more secondary batteries; as in the above-mentioned connecting assembly, the connecting assembly is arranged above the secondary battery, and the secondary battery is electrically connected through a connecting piece.
  • a device using a battery module as a power source which includes the battery module as described above, and the battery module is used to provide electrical energy.
  • a method for manufacturing a connecting assembly which includes: placing a connecting piece with a connecting portion in a predetermined mold; and using a high-speed injection process to inject an integral insulating plate on the periphery of the connecting piece, and the connecting portion and The insulating plates are connected to each other in a non-detachable manner to form an integral structure, and the connecting piece and the insulating plate form a connecting assembly.
  • the manufacturing method of the embodiment of the present application before the step of placing the connecting piece with the connecting portion in a predetermined mold, the manufacturing method of the embodiment of the present application further includes a step of preparing an embedding hole on the connecting portion of the connecting piece.
  • the insulating plate in the step of integrally forming an insulating plate on the periphery of the connecting piece by using a high-speed injection molding process, is formed with a protrusion that penetrates the through hole, and the insulating plate is located on the upper and lower sides of the connecting portion.
  • the parts are connected by protrusions.
  • Fig. 1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application
  • FIG. 2 is a schematic diagram of an exploded structure of a battery pack disclosed in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an exploded structure of a battery module disclosed in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an exploded structure of a connecting assembly disclosed in an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a connecting piece disclosed in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the connection state of the connecting piece and the insulating plate of the embodiment shown in FIG. 5;
  • FIG. 7 is a schematic structural diagram of a connecting piece disclosed in another embodiment of the present application.
  • FIG. 8 is a schematic diagram of the connection state of the connecting piece and the insulating plate of the embodiment shown in FIG. 7; FIG.
  • FIG. 9 is a schematic structural diagram of a connecting piece disclosed in another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a connecting piece disclosed in another embodiment of the present application.
  • FIG. 11 is a schematic diagram of the connection state of the connecting piece and the insulating plate of the embodiment shown in FIG. 10;
  • FIG. 12 is a schematic structural diagram of a connecting piece disclosed in another embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a connecting piece disclosed in another embodiment of the present application.
  • FIG. 14 is a schematic diagram of the connection state of the connecting piece and the insulating plate of the embodiment shown in FIG. 13;
  • FIG. 15 is a schematic structural diagram of a connecting piece disclosed in another embodiment of the present application.
  • 16 is a schematic structural diagram of a connecting piece disclosed in another embodiment of the present application.
  • FIG. 17 is a schematic diagram of the connection state of the connecting piece and the insulating plate of the embodiment shown in FIG. 16;
  • FIG. 18 is a schematic diagram of a connection state between a connecting piece and an insulating board according to another embodiment of the present application.
  • Fig. 19 is a schematic flow chart of a manufacturing method of a connecting assembly disclosed in an embodiment of the present application.
  • 20 is a schematic structural diagram of an insulating board disclosed in an embodiment of the present application.
  • 21 is a schematic cross-sectional view of the embedding structure of a connecting piece and an insulating plate disclosed in an embodiment of the present application;
  • Figure 22 is an enlarged view of A in Figure 20;
  • FIG. 23 is a schematic diagram of a partial structure of an insulating board disclosed in an embodiment of the present application.
  • Figure 24 is an enlarged view of B in Figure 20;
  • 25 is a partial structural diagram of an insulating board disclosed in another embodiment of the present application.
  • FIG. 26 is a partial structural diagram of an insulating board disclosed in another embodiment of the present application.
  • FIG. 27 is a partial structural diagram of an insulating board disclosed in another embodiment of the present application.
  • FIG. 28 is a schematic structural diagram of an insulating board disclosed in another embodiment of the present application.
  • FIG. 29 is a schematic structural diagram of an insulating board disclosed in another embodiment of the present application.
  • connection between the connecting piece and the insulating plate is in a form of detachable connection.
  • the connection stability between the connecting piece and the insulating plate is poor.
  • the battery module may vibrate. After the battery module vibrates, the connecting piece will also be subjected to vibration stress, so that the connecting piece will loosen relative to the insulating plate, and then it will be easily separated from the insulating plate.
  • the embodiment of the present application provides a device that uses a battery module as a power source.
  • the device can be, but is not limited to, a vehicle, a ship, or an aircraft.
  • an embodiment of the present application provides a vehicle 1 including a vehicle body and a battery module.
  • the battery module is installed in the main body of the vehicle.
  • the vehicle 1 may be a pure electric vehicle, a hybrid electric vehicle or an extended-range vehicle.
  • the vehicle body is provided with a drive motor electrically connected to the battery module.
  • the battery module provides power to the drive motor.
  • the drive motor is connected to the wheels on the vehicle body through a transmission mechanism to drive the vehicle to travel.
  • the battery module may be horizontally arranged at the bottom of the vehicle body.
  • the battery module may be a battery pack 10.
  • the battery pack 10 includes a box body and a battery module 20 disposed in the box body.
  • the number of battery modules 20 is one or more.
  • One or more battery modules 20 are arranged side by side in the box.
  • the type of cabinet is not limited.
  • the box can be a frame-shaped box, a disk-shaped box, or a box-shaped box.
  • the box may include a lower box for accommodating the battery module 20 and an upper box covered with the lower box. The upper box body and the lower box body are closed to form an accommodating portion for accommodating the battery module 20.
  • the battery module may also be the battery module 20, that is, the battery module 20 is directly arranged on the vehicle body.
  • the battery module 20 of the embodiment of the present application includes a plurality of battery cells 30 and a connecting assembly 40 on the side where the battery cells 30 are provided.
  • the connection assembly 40 is disposed above the battery unit 30.
  • the connecting assembly 40 includes a connecting piece 41 and an insulating plate 42.
  • the insulating plate 42 itself is an integrally formed structure.
  • the integrally formed structure refers to a one-time processing and forming into a whole structure, rather than a structure formed by splicing two or more structural parts through hot pressing, welding or other mechanical connection methods.
  • the battery module 20 includes a receiving part and two or more battery cells 30 arranged side by side in the receiving part.
  • the accommodating component for example, the accommodating component includes side plates and end plates that are enclosed and connected one after another. In some other embodiments, the accommodating component includes a housing and a cover plate covering the housing.
  • each battery unit 30 includes two secondary batteries 31 arranged in parallel. Two adjacent battery cells 30 are connected in series with each other through a connecting piece 41 in the connecting assembly 40.
  • the number of secondary batteries 31 included in each battery unit 30 is not limited to two, and may also include one or more than three secondary batteries 31, which is not limited here.
  • the battery unit 30 located on the outermost side has a total output pole.
  • the battery module 20 includes an electrode output plate 99 connected to the total output electrode.
  • One connecting piece 41 in the connecting assembly 40 is connected to the total output electrode of the battery module 20, and the electrode output plate 99 is connected to the connecting piece 41.
  • the secondary battery 31 of the embodiment of the present application includes a casing, an electrode assembly arranged in the casing, a top cover plate hermetically connected to the casing, and two electrode terminals 311 arranged on the top cover plate and drawn from the same side.
  • the connection assembly 40 is provided on the side of the secondary battery 31 having the electrode terminal 311.
  • One of the two electrode terminals 311 serves as a positive electrode, and the other serves as a negative electrode.
  • the two electrode terminals 311 are arranged at intervals along the width direction Y of the insulating plate 42.
  • the two electrode terminals 311 of each secondary battery 31 are arranged to form two rows of electrode terminal groups, and there are two rows of electrode terminal groups extending along the length direction X.
  • the electrode terminal 311 of the secondary battery 31 is a columnar structure.
  • the connecting piece 41 of the embodiment of the present application includes a connecting portion 411 and a terminal connecting portion 412.
  • the terminal connection portion 412 is used for connection with the electrode terminal 311 of the secondary battery 31.
  • the insulating plate 42 includes a through hole 421 extending in the thickness direction Z of the insulating plate 42.
  • the position of the connecting piece 41 corresponds to the position of the through hole 421.
  • the connecting piece 41 is embedded into the insulating plate 42 through the connecting portion 411, so that the connecting portion 411 of the connecting piece 41 is buried in the insulating plate 42 so that the connecting piece 41 and the insulating plate 42 are embedded to form an integral structure.
  • the overall structure means that the connecting piece 41 and the insulating plate 42 are embedded and connected to form a non-detachable whole.
  • the insulating plate 42 can restrict the connection piece 41 from moving.
  • the connecting portion 411 of the connecting piece 41 is buried in the insulating plate 42, that is, the insulating plate 42 covers at least a part of the connecting portion 411 of the connecting piece 41.
  • the insulating plate 42 covers the connecting portion 411 of the connecting piece 41 so that the connecting portion 411 cannot be seen by naked eyes when the connecting assembly 40 is viewed from the outside.
  • the orthographic projection of the terminal connection portion 412 in the thickness direction Z is within the orthographic projection of the hole wall of the through hole 421 in the thickness direction Z, so that the terminal connection portion 412 is exposed to the external environment, and the terminal connection portion 412 is not shielded by the insulating plate 42 to facilitate The connection operation is performed with the electrode terminal 311.
  • the connection assembly 40 is placed on one side of the battery unit 30, and the terminal connection portion 412 and the electrode terminal 311 are arranged correspondingly in the thickness direction Z, and then the electrode terminal 311 and the terminal are connected ⁇ 412 Connected.
  • the electrode terminal 311 and the terminal connecting portion 412 are connected by welding.
  • the connecting assembly 40 of the embodiment of the present application includes an insulating plate 42 and a connecting piece 41.
  • the insulating plate 42 itself is an integrally formed structure.
  • the connecting portion of the connecting piece 41 is buried in the insulating plate 42.
  • the connecting piece 41 is embedded in the insulating plate 42 through the connecting portion 411, so that the connecting piece 41 and the insulating plate 42 form an integral and non-detachable structure.
  • the insulating plate 42 has a through hole 421, and the terminal connecting portion 412 of the connecting piece 41 is disposed corresponding to the through hole 421, so that the terminal connecting portion 412 is exposed to the external environment to facilitate connection and fixation with the electrode terminal 311 of the secondary battery 31.
  • Two adjacent battery cells 30 can be electrically connected by a connecting piece 41.
  • the connecting piece 41 and the insulating plate 42 are embedded and connected to each other to form an integral structure, the connection state of the two is reliable and stable, and the connection structure is strong. Therefore, when the battery module 20 is in use, the connecting piece 41 is affected by the insulating plate. 42 effectively restrains and restricts, therefore, the possibility of separation of the connecting piece 41 from the insulating plate 42 due to vibration stress can be reduced, and the safety of the battery module 20 during use can be ensured. In addition, during the transportation and transfer of the connecting assembly 40, the connecting piece 41 is not easy to fall off from the insulating plate 42, which reduces the possibility of the connecting piece 41 being lost or damaged.
  • the connecting piece 41 Since the connecting piece 41 is connected and fixed to the insulating plate 42 so that the position of the connecting piece 41 is fixed, the possibility that the connecting piece 41 is difficult to connect to the electrode terminal 311 due to the deviation of the connecting piece 41 from the predetermined assembly position can also be reduced, which is beneficial to improve Assembly quality and assembly efficiency.
  • the opposite sides of the terminal connecting portion 412 are respectively provided with a connecting portion 411, that is, two opposite ends of the connecting piece 41 Each part is provided with a connecting part 411.
  • the connecting piece 41 is embedded in the insulating plate 42 through the two connecting portions 411.
  • the connecting portion 411 has a flat plate-shaped structure. It can be understood that the provision of the connecting portion 411 on one of the two opposite sides of the terminal connecting portion 412 can also realize that the insulating plate 42 restricts the connecting piece 41.
  • the connecting portion 411 of the connecting piece 41 is provided with a receiving portion 50
  • the insulating plate 42 is provided with a protruding portion 60.
  • the protruding part 60 on the insulating plate 42 is embedded in the receiving part 50 on the connecting part 411, which is beneficial to further improve the connection strength of the connecting piece 41 and the insulating plate 42 and reduce the possibility of the connecting piece 41 and the insulating plate 42 being easily separated. sex.
  • the shape of the protruding portion 60 matches the shape of the receiving portion 50. When the secondary battery 31 swells, the connecting piece 41 will withstand the tensile stress along the length direction X of the insulating plate 42.
  • the connecting piece 41 When the secondary battery 31 vibrates in the longitudinal direction X of the insulating plate 42, the connecting piece 41 will bear tensile or compressive stress along the longitudinal direction X of the insulating plate 42.
  • the connecting piece 41 bears the tensile or compressive stress along the length direction X of the insulating plate 42, the protruding portion 60 can be well restrained by the accommodating portion 50 to limit the displacement of the connecting piece 41, so that the connecting piece 41 and the insulating plate 42 It is not easy to misplace the position between the two and cause cracking and separation of the joint surface between the two.
  • the number of the receiving parts 50 and the number of the protruding parts 60 are arranged in one-to-one correspondence.
  • the shape of the receiving portion 50 matches the shape of the protruding portion 60.
  • the two opposite sides of the terminal connecting portion 412 are respectively provided with a connecting portion 411, that is, the two opposite ends of the connecting piece 41 each have a connecting portion 411.
  • Two accommodating parts 50 are provided on each connecting part 411.
  • the two accommodating parts 50 are arranged at intervals along the width direction Y of the insulating plate 42. It is understandable that the number of receiving portions 50 provided on each connecting portion 411 is not limited to two, and may also be three or more.
  • the receiving portion 50 is an insertion hole extending in the thickness direction Z.
  • the protruding part 60 penetrates the receiving part 50, so that the parts of the insulating plate 42 located on the upper and lower sides of the connecting part 411 can be connected by the protruding part 60.
  • the connection can be reduced. There is a possibility that the sheet 41 may fall off the insulating plate 42 or the position may be shifted.
  • the receiving portion 50 is a groove extending in the thickness direction Z.
  • the connecting piece 41 has two end faces opposed to each other in the longitudinal direction X of the insulating plate 42.
  • the groove is recessed from the end surface toward the direction approaching the terminal connection portion 412. A part of the insulating plate 42 extends into the groove to form a protrusion 60.
  • the protruding portion 60 can be well restrained by the receiving portion 50 to restrict the connecting piece 41, so that the connecting piece 41 and the insulating plate 42 It is not easy to cause positional displacement along the width direction Y of the insulating plate 42 to cause cracks and separation of the joint surfaces of the two.
  • the receiving portion 50 has more than two extension sections 51. More than two extension sections 51 are arranged along the direction in which the receiving portion 50 is recessed. The orthographic projection of one of the two adjacent extension sections 51 is located within the orthographic projection of the other. There is a transition zone between two adjacent extension sections 51.
  • the receiving portion 50 is an insertion hole extending in the thickness direction Z.
  • the embedded hole is a stepped hole.
  • the insertion hole has two extension sections 51 arranged along the thickness direction Z.
  • the receiving portion 50 is a groove extending in the thickness direction Z.
  • the groove is a step groove (not shown in the figure), so that the groove also has two extension sections 51 arranged along the thickness direction Z.
  • the receiving portion 50 is disposed at the edge area of the connecting portion 411.
  • the edge area of the connecting portion 411 includes the side surface 411c of the connecting portion 411 and an area close to the side surface 411c.
  • the side surface 411c of the connecting portion 411 refers to a surface parallel to the thickness direction Z.
  • the connecting portion 411 of the connecting piece 41 is provided with a protruding portion 60, and the insulating plate 42 is provided with a receiving portion 50, which can also achieve the effect of improving the connection strength of the connecting piece 41 and the insulating plate 42.
  • the connecting portion 411 of the connecting piece 41 has a curved section 411a and a straight section 411b.
  • the straight section 411 b of the connecting portion 411 is connected to the terminal connecting portion 412.
  • the curved section 411a of the connecting portion 411 forms a recessed space, and a part of the insulating plate 42 extends into the recessed space, which is beneficial to further improve the connection strength between the connecting piece 41 and the insulating plate 42.
  • the connecting piece 41 bears along the length of the insulating plate 42.
  • the portion of the insulating plate 42 that extends into the recessed space can be well restrained and restricted by the bending section 411a, so that the connecting piece 41 and the insulating plate 42 are not easily along the line of the insulating plate 42.
  • the positional displacement in the longitudinal direction X causes cracks and separation of the joint surfaces of the two.
  • the number of curved sections 411a is one or more than two. When the number of the curved sections 411a is two or more, the two or more curved sections 411a may be arranged at intervals along the width direction Y of the insulating plate 42.
  • the curved section 411a has a circular arc structure.
  • a receiving portion 50 is provided on the curved section 411a, and a protruding portion 60 is correspondingly provided on the insulating plate 42, so that the connection strength and connection of the connecting piece 41 and the insulating plate 42 can be further improved.
  • the receiving portion 50 may be a straight hole or a stepped hole, or a groove. It is understandable that the convex portion 60 is provided on the bending section 411a, and the receiving portion 50 is provided on the insulating plate 42 correspondingly, so that the connection and fixing of the connecting piece 41 and the insulating plate 42 can also be realized.
  • the connecting portion 411 includes a first connecting section 4111, an intermediate transition section 4112, and a second connecting section 4113 that are connected, and the first connecting section 4111 and the second connecting section 4113 are connected.
  • the arrangement is staggered along the thickness direction Z, so that the connecting portion 411 has a stepped structure as a whole.
  • the connecting portion 411 is connected to the terminal connecting portion 412 through the second connecting section 4113.
  • the insulating plate 42 can be well restrained and restricted by the intermediate transition section 4112, so that the connecting piece 41 and the insulating plate 42 It is not easy to cause positional displacement along the longitudinal direction X of the insulating plate 42 to cause cracks and separation of the joint surfaces of the two.
  • the first connecting section 4111 and the second connecting section 4113 both extend along the length direction X of the insulating plate 42 and are arranged in parallel, while the intermediate transition section 4112 extends along the thickness direction Z of the insulating plate 42 and is connected to the first The connecting section 4111 is perpendicular to the second connecting section 4113.
  • the first connecting section 4111 is provided with a receiving portion 50, and the insulating plate 42 is correspondingly provided with a protruding portion 60, so that the connection strength and the connection between the connecting piece 41 and the insulating plate 42 can be further improved.
  • Connection stability may be a straight hole or a stepped hole, or a groove. It is understandable that the first connecting section 4111 is provided with a protruding part 60 and the insulating plate 42 is provided with a corresponding receiving part 50, which can also realize the connection and fixation of the connecting piece 41 and the insulating plate 42.
  • the opposite sides of the terminal connecting portion 412 are respectively provided with connecting portions 411, which can also realize the connection between the connecting piece 41 and the insulating board 42.
  • the integral structure is formed, and the connection strength between the connecting piece 41 and the insulating plate 42 is improved.
  • one of the two opposite sides of the terminal connecting portion 412 is provided with a connecting portion 411, which can also ensure that the insulating plate 42 restricts the connecting piece 41.
  • the connecting piece 41 has a rectangular structure.
  • the two opposite sides of the terminal connecting portion 412 are respectively provided with connecting portions 411, and along the length direction X of the insulating plate 42, the opposite sides of the terminal connecting portion 412 are also respectively provided with connecting portions.
  • the four connecting portions 411 are enclosed to form a ring structure, and the terminal connecting portion 412 is surrounded by the four connecting portions 411.
  • the terminal connecting portion 412 is disposed in the through hole 421, and the connecting portion 411 of the connecting piece 41 penetrates the wall of the through hole 421 and is inserted into the insulating plate 42 so that the insulating plate
  • the upper surface and the lower surface of 42 in the thickness direction Z protrude from the upper surface and the lower surface of the terminal connecting portion 412, respectively.
  • the lower surface of the terminal connection portion 412 is used for electrical connection with the electrode terminal 311 of the secondary battery 31.
  • the insulating plate 42 has a middle receiving recess 422.
  • the intermediate accommodating recess 422 extends along the length direction X of the insulating plate 42.
  • the electrode output plate 99 can be at least partially accommodated in the middle accommodating recess 422, thereby reducing the space occupancy rate of the electrode output plate 99 and improving the compact structure of the battery module 20 This improves the energy density of the secondary battery 31.
  • the middle receiving recess 422 is recessed toward the secondary battery 31.
  • through holes 421 are provided on opposite sides of the middle receiving recess 422.
  • Two or more through holes 421 are provided on each of the two opposite sides of the middle receiving recess 422. Two or more through holes 421 located on the same side are provided at intervals along the longitudinal direction X of the insulating plate 42. Each through hole 421 is correspondingly provided with a connecting piece 41. In other embodiments, one of the two opposite sides of the middle receiving recess 422 is provided with a through hole 421.
  • the connecting piece 41 includes a second buffer portion 413.
  • the second buffer part 413 can absorb external stress by deforming itself.
  • the number of terminal connection parts 412 is two or more.
  • a second buffer portion 413 is provided between two adjacent terminal connecting portions 412. After the terminal connection portion 412 and the electrode terminal 311 are connected and fixed, when the secondary battery 31 undergoes expansion and deformation, two adjacent terminal connection portions 412 tend to move away from each other, thereby applying tensile stress to the second buffer portion 413.
  • the second buffer portion 413 When the second buffer portion 413 is subjected to tensile stress, it is elongated to buffer the tensile stress, thereby reducing the tensile stress carried between the terminal connecting portion 412 and the electrode terminal 311, and reducing the terminal connecting portion 412 and the electrode terminal 311 The possibility of cracking and separation due to excessive tensile stress can also be reduced, and the joint between the connecting portion 411 of the connecting piece 41 and the insulating plate 42 due to excessive external stress can be reduced. Possibility of cracking and separation.
  • a second buffer portion 413 is also provided between the terminal connection portion 412 and the connection portion 411.
  • the second buffer portion 413 between 411 bears compressive stress.
  • the second buffer portion 413 is an arc structure protruding along the thickness direction Z of the insulating plate 42.
  • the second buffer portion 413 has a circular arc structure.
  • the insulating plate 42 has a first area 42a and a second area 42b.
  • a part of the second area 42b protrudes from the first area 42a, so that the stiffness of the first area 42a is less than the stiffness of the second area 42b, so that the elastic deformation ability of the first area 42a is better than that of the second area 42b.
  • the portion of the second area 42b protruding from the first area 42a forms a boss.
  • the connecting portion 411 is buried inside the second region 42b. Along the thickness direction Z, the connecting portion and the second area 42b are correspondingly arranged. In an example, the second area 42b is arranged around the through hole 421.
  • connection assembly 40 which includes:
  • the insulating plate 42 is integrally formed on the periphery of the connecting piece 41 by high-speed injection molding.
  • the connecting portion 411 and the insulating plate 42 are connected to each other in a non-detachable manner to form an integral structure.
  • the connecting piece 41 and the insulating plate 42 constitute the connecting assembly 40.
  • the connecting piece 41 and the insulating plate 42 are embedded with each other to form an integral structure.
  • the connecting piece 41 and the insulating plate 42 form a connecting assembly 40.
  • the area of the insulating plate 42 corresponding to the connecting piece 41 has a through hole 421, and the terminal
  • the orthographic projection of the connecting portion 412 in the thickness direction Z of the insulating plate 42 is located within the orthographic projection of the hole wall of the through hole 421 in the thickness direction Z.
  • the portion of the connecting piece 41 embedded in the insulating plate 42 forms the connecting portion 411.
  • the connecting piece 41 is an integrally formed structure.
  • the connecting piece 41 may be cast or stamped.
  • the material of the connecting piece 41 may be a conductive material such as aluminum or aluminum alloy.
  • the insulating plate 42 is an integrally formed structure.
  • the insulating plate 42 is an injection molded structure molded by a high-speed injection molding process. Through the high-speed injection molding process, the insulating plate 42 can be injection-molded on the outside of the connecting piece 41 at one time, so that the insulating plate 42 has a high rigidity and the structure of the insulating plate 42 is not easily damaged.
  • the thickness of the insulating plate 42 formed by the high-speed injection molding process can be controlled to be 0.1 mm to 0.8 mm, which is beneficial to improve the overall structure of the connecting assembly 40 and reduce the weight, and is beneficial to increase the energy density of the battery module 20.
  • the high-speed injection molding requirements are: the molding rate is greater than or equal to 200 m/s; the molding temperature is greater than or equal to 250°C, so that the plastic is heated to a fluid state.
  • the material of the insulating plate 42 may be polypropylene (PP), polycarbonate (PC), engineering plastic alloy (PC+ABS), etc. with high fluidity.
  • the manufacturing method of the embodiment of the present application further includes the step of preparing an insert hole on the connecting portion 411 of the connecting piece 41 .
  • the insulating plate 42 in the step of integrally molding the insulating plate 42 on the periphery of the connecting piece 41 by using a high-speed injection molding process, the insulating plate 42 forms a protrusion 60 penetrating the through hole, and the insulating plate 42 is located at the connecting portion 411 The parts on the upper and lower sides are connected by the protrusion 60.
  • the method of manufacturing the connecting assembly 40 of the embodiment of the present application uses a high-speed injection process to form an insulating plate 42 on the periphery of the connecting piece 41 at a time, and a part of the connecting piece 41 is embedded in the insulating plate 42 so that the connecting piece 41 and the insulating plate 42
  • the embedding forms an integral structure to ensure reliable and stable connection between the two, and the strength of the connection structure is high. Therefore, when the battery module 20 is in use, the connecting piece 41 is effectively restrained and restricted by the insulating plate 42, thereby reducing the bearing of the connecting piece 41.
  • the possibility of separation of excessive vibration stress from the insulating plate 42 ensures the safety of the battery module 20 during use.
  • the method of manufacturing the insulating plate 42 by a high-speed injection molding process can control the thickness of the insulating plate 42 to 0.4 mm to 0.8 mm on the premise that the rigidity requirements of the insulating plate 42 are met, which is beneficial to improve the overall structure of the connecting assembly 40 Lightweight is beneficial to increase the energy density of the battery module 20.
  • the number of connecting pieces 41 is more than two.
  • the insulating plate 42 includes a first buffer portion 424.
  • a first buffer portion 424 is provided between two adjacent connecting pieces 41.
  • the insulating plate 42 of the embodiment of the present application further includes a partition part 423 and a first buffer part 424.
  • Two adjacent through holes 421 can be divided into a group of through holes 421.
  • the partition 423 partitions two adjacent through holes 421.
  • the partition portion 423 is provided with a first buffer portion 424.
  • the connecting piece 41 Since the connecting piece 41 is embedded in the insulating plate 42, the connecting piece 41 can be manufactured first in the process of manufacturing the connecting assembly, and then the connecting piece 41 can be placed in a predetermined position, and the insulating plate 42 can be manufactured on the periphery of the connecting piece 41. In the finished connecting assembly, the connecting piece 41 itself cannot move, so the relative position of the connecting piece 41 with the insulating plate 42 cannot be adjusted by moving the position of the connecting piece 41 itself. In the process of manufacturing the connecting assembly, the position of the connecting piece 41 itself may deviate from the predetermined position, which will cause the position of the connecting piece 41 to deviate from the predetermined position after the connecting piece 41 and the insulating plate 42 form an integral structure.
  • the connecting piece 41 and the electrode terminal 311 of the secondary battery 31 are subsequently connected, the connecting piece 41 will deviate from the predetermined position and the connecting position with the electrode terminal 311 will also deviate from the predetermined position.
  • the partition 423 of the embodiment of the present application is provided with the first buffer portion 424, during the connection process of the connecting piece 41 and the electrode terminal 311, the first buffer portion 424 can be stretched or compressed to connect two adjacent ones.
  • the pieces 41 are far away or close to each other, so as to realize the adjustment of the positions of the two adjacent connecting pieces 41, thereby compensating for the position error of the connecting piece 41 during the manufacturing process, and then the connecting piece 41 can be easily adjusted to a predetermined position and It is connected and fixed to the electrode terminal 311.
  • the position of the connecting piece 41 can be flexibly adjusted in the later stage. Therefore, in the process of manufacturing the connecting piece 41 and the insulating plate 42, the position accuracy of the connecting piece 41 and the position of the connecting piece 41 and the insulating plate 42 can be adjusted. The manufacturing tolerance requirements are reduced, thereby helping to reduce the difficulty of manufacturing the connection assembly.
  • the secondary battery 31 in the battery unit 30 may swell and deform.
  • the two adjacent connecting pieces 41 may be far away from each other, thereby applying tensile stress to the first buffer portion 424 between the two adjacent connecting pieces 41.
  • the first buffer portion 424 can absorb and buffer the tensile stress through its own deformation, thereby reducing the stress carried by the connection between the connecting piece 41 and the electrode terminal 311, and thereby reducing the excessive load on the connection between the connecting piece 41 and the electrode terminal 311
  • the stress caused by the connecting piece 41 and the electrode terminal 311 may be cracked and separated.
  • the first buffer portion 424 can absorb and buffer the compressive stress through its own deformation, thereby reducing the stress carried by the connection between the connecting piece 41 and the electrode terminal 311, and thereby reducing the excessive load on the connection between the connecting piece 41 and the electrode terminal 311.
  • the stress causes the possibility of cracking and separation at the connection between the connecting piece 41 and the electrode terminal 311, which improves the safety and reliability of the battery module 20.
  • the structural design of the first buffer portion 424 to absorb and buffer tensile or compressive stress by deforming itself can also reduce the stress carried by the connection between the connecting piece 41 and the insulating plate 42, thereby reducing the connection between the connecting piece 41 and the insulating plate 42. There is a possibility of cracking and separation due to large stress.
  • two rows of through holes 421 are provided on the insulating plate 42.
  • the two rows of through holes 421 are arranged at intervals along the width direction Y of the insulating plate 42.
  • a first buffer portion 424 is provided on the partition 423 between two adjacent through holes 421.
  • the arrangement direction of the two through holes 421 is the same as the longitudinal direction X of the insulating plate 42.
  • the arrangement direction of the battery cells 30 is the same as the longitudinal direction X of the insulating plate 42.
  • the secondary battery 31 will swell and deform in the longitudinal direction X.
  • the two connecting pieces 41 In the longitudinal direction X of the insulating plate 42, when two adjacent connecting pieces 41 are far away or close to each other, the two connecting pieces 41 will exert tensile or compressive stress on the first buffer portion 424.
  • the arrangement direction of two adjacent connecting pieces 41 is the same as the longitudinal direction X of the insulating plate 42.
  • the number of through holes 421 is seven.
  • the number of connecting pieces 41 is also seven.
  • the seven through holes 421 are arranged in two rows in the width direction Y of the insulating plate 42.
  • One column includes four through holes 421 spaced along the length direction X of the insulating plate 42, and the other column includes three through holes 421 spaced along the length direction X of the insulating plate 42.
  • the number of through holes 421 and the number of connecting pieces 41 are not limited to the above-mentioned number. Adaptable adjustments can be made according to actual product requirements.
  • the first buffer portion 424 includes an elongated through hole 424a.
  • the length direction of the through hole 424a intersects the arrangement direction of two adjacent connecting pieces 41.
  • the length direction of the through hole 424 a is the same as the width direction Y of the insulating plate 42.
  • the through hole 424a extends along the thickness direction Z of the insulating plate 42 so that the area of the through hole 424a forms a hollow structure.
  • the rigidity of the area where the through hole 424a is provided is smaller than the rigidity of the area surrounding the through hole 424a, so the area where the through hole 424a is provided is more flexible and easier to be deformed by force.
  • the first buffer portion 424 includes more than two through holes 424a.
  • Two or more through holes 424a are arranged at intervals along a direction intersecting the arrangement direction of two adjacent through holes 421.
  • the arrangement direction of the two through holes 421 is the same as the longitudinal direction X of the insulating plate 42.
  • the arrangement direction of two adjacent connecting pieces 41 is the same as the longitudinal direction X of the insulating plate 42.
  • two or more through holes 424a are arranged at intervals along the width direction Y of the insulating plate 42.
  • the cross-section of the through hole 424a is circular, oval, racetrack or regular polygon.
  • the inner wall of the through hole 424a has a smooth transition in each area, which reduces the possibility of stress concentration areas, thereby reducing the occurrence of local fractures or local fractures on the inner wall during the deformation process.
  • the possibility of cracks In the embodiment where the cross section of the through hole 424a is a regular polygon, the cross section of the through hole 424a is preferably a regular hexagon. In this embodiment, the cross section of the through hole 424a can be selected to be a racetrack shape or an oval shape.
  • the first buffer portion 424 includes an arc structure 424 b protruding along the thickness direction Z of the insulating plate 42.
  • the arc structure 424 b is elongated, and the length direction of the arc structure 424 b intersects the arrangement direction of two adjacent connecting pieces 41.
  • the connecting pieces 41 on both sides of the first buffer portion 424 are moved away from each other, the first buffer portion 424 will bear tensile stress.
  • the degree of bending of the arc structure 424b of the first buffer portion 424 will be reduced, so that the arc structure 424b will be elongated in the arrangement direction, so as to absorb and buffer the tensile stress.
  • the first buffer portion 424 when the connecting pieces 41 on both sides of the first buffer portion 424 move closer to each other, the first buffer portion 424 will bear compressive stress. Under the action of compressive stress, the degree of bending of the arc structure 424b of the first buffer portion 424 will increase, so that the arc structure 424b will be shortened in the arrangement direction, thereby absorbing and buffering the compressive stress.
  • the arc-shaped structure 424b and other parts of the partition 423 smoothly transition, reducing the possibility of stress concentration.
  • the arc structure 424b is a circular arc structure.
  • a through hole 424a is provided on the arc structure 424b, so that the overall rigidity of the first buffer portion 424 can be further reduced, which is beneficial to further improve the deformability and deformation ability of the first buffer portion 424. Buffer capacity.
  • four through holes 424a are provided on the arc-shaped structure 424b. The four through holes 424 a are arranged at intervals along the width direction Y of the insulating plate 42. Understandably, the number of through holes 424a is not limited to four, and the number can be flexibly adjusted according to product requirements.
  • a first buffer portion 424 is also provided between two rows of through holes 421.
  • the first buffer portion 424 can absorb the buffer connecting piece 41 to act on the first buffer Tensile or compressive stress on section 424.
  • the first buffer portion 424 extends through the entire insulating plate 42.
  • the first buffer portion 424 is an arc-shaped structure. The side of the arc-shaped structure away from the secondary battery 31 forms an accommodating space.
  • the electrode output plate 99 can be at least partially accommodated in the accommodating space, so that the structural compactness and space utilization of the battery module 20 can be improved, and the energy density of the battery module 20 can be improved.
  • the first buffer portion 424 includes one through hole 424a or more than two through holes 424a.
  • the connecting piece 41 includes more than two terminal connecting portions 412 and a second buffer portion 413.
  • a second buffer portion 413 is provided between two adjacent terminal connecting portions 412.
  • the second buffer part 413 can absorb and buffer external stress by deforming itself. After the terminal connection portion 412 and the electrode terminal 311 are connected and fixed, when the secondary battery 31 undergoes expansion and deformation, two adjacent terminal connection portions 412 may be far away from each other, thereby applying tensile stress to the second buffer portion 413.
  • the second buffer portion 413 When the second buffer portion 413 is subjected to tensile stress, it will be stretched and deformed to buffer the tensile stress, thereby reducing the tensile stress carried between the terminal connection portion 412 and the electrode terminal 311, thereby reducing the terminal connection portion 412 and the electrode.
  • the possibility of cracking and separation between the terminals 311 due to excessive tensile stress, and at the same time, can reduce the connection between the connecting portion 411 of the connecting piece 41 and the insulating plate 42 due to excessive external stress. There is a possibility of cracking and separation. In this way, the first buffer portion 424 and the second buffer portion 413 can cooperate with each other to further effectively improve the ability of the connecting piece 41 and the insulating plate 42 to absorb and buffer stress.
  • a second buffer portion 413 is also provided between the terminal connection portion 412 and the connection portion 411.
  • two adjacent terminal connecting portions 412 tend to move away from each other, and there is a tendency for the terminal connecting portion 412 and the connecting portion 411 to approach each other, so that the terminal connecting portion 412 and the connecting portion
  • the second buffer portion 413 between 411 bears compressive stress.
  • the second buffer portion 413 When the second buffer portion 413 is subjected to compressive stress, it will be compressed and deformed to buffer the compressive stress, thereby reducing the occurrence of cracks at the joint between the connecting portion 411 of the connecting piece 41 and the insulating plate 42 due to excessive external stress. , The possibility of separation.
  • the second buffer portion 413 is an arc structure protruding along the thickness direction Z of the insulating plate 42.
  • the second buffer portion 413 has a circular arc structure.
  • the insulating plate 42 further includes a third buffer portion 425 corresponding to the second buffer portion 413.
  • the third buffer portion 425 will also be deformed synchronously following the second buffer portion 413.
  • the second buffering portion 413 and the third buffering portion 425 can work in cooperation, which is beneficial to further improve the ability of buffering stress.
  • the second buffer portion 413 and the third buffer portion 425 have the same structure.
  • the second buffer portion 413 and the third buffer portion 425 are correspondingly disposed along the width direction Y of the insulating plate 42.
  • the second buffer portion 413 and the third buffer portion 425 are both arc-shaped structures.
  • the first buffer portion 424 and the third buffer portion 425 on the insulating plate 42 are correspondingly disposed.
  • the third buffer portion 425 will also be deformed synchronously following the first buffer portion 424.
  • the first buffer portion 424 and the third buffer portion 425 are both arc-shaped structures.
  • a first buffer portion 424 is provided on a partition 423.
  • the width of the orthographic projection of the first buffer portion 424 in the arrangement direction of the two adjacent through holes 421 is greater than or equal to the width of the orthographic projection of the connecting piece 41 in the arrangement direction, so that the first buffer portion 424 can cover in the width direction Y
  • the entire connection piece 41 When the connecting piece 41 exerts an external stress on the partition 423, the external stress will be completely transmitted to the first buffering part 424 and absorbed and buffered by the first buffering part 424, thereby reducing the transfer of external stress to the area outside the first buffering part 424 And the possibility of affecting the buffering effect.
  • two first buffer portions 424 are provided on one partition 423.
  • the two first buffer portions 424 are arranged at intervals along the arrangement direction of two adjacent through holes 421. In this way, the two first buffer portions 424 can absorb the external stress acting on the insulating plate 42 to a greater extent.
  • each of the two first buffer portions 424 includes a through hole 424a.
  • the through hole 424 a extends in the width direction Y of the insulating plate 42.
  • each of the two first buffer portions 424 includes more than two through holes 424a. Two or more through holes 424a are provided at intervals along the width direction Y of the insulating plate 42.
  • one of the two first buffer portions 424 may include one through hole 424a, and the other may include more than two through holes 424a.
  • the total width of the orthographic projection of the two first buffer portions 424 in the arrangement direction of the two adjacent through holes 421 is greater than or equal to the width of the orthographic projection of the connecting piece 41 in the arrangement direction. It can be understood that the number of the first buffer portions 424 provided on one partition 423 is not limited to two, and may be three or more.
  • the orthographic projections of the two adjacent first buffer portions 424 in the arrangement direction of the through holes 421 overlap each other.
  • the center of each through hole 424a included in one first buffer portion 424 is different from the center of each through hole 424a included in the other first buffer portion 424.
  • the centers of 424a are aligned along the arrangement direction.
  • the orthographic projections of two adjacent first buffer portions 424 in the arrangement direction are partially overlapped.
  • the center of each through hole 424a included in one first buffer portion 424 is different from the center of each through hole 424a included in the other first buffer portion 424.
  • the center of 424a is staggered along the arrangement direction.
  • two rows of through holes 421 are arranged at intervals along the width direction Y of the insulating plate 42.
  • the first buffer portion 424 is provided only between the two rows of through holes 421.
  • the first buffer portion 424 can absorb the buffer connecting piece 41 to act on the first buffer Tensile or compressive stress on section 424.
  • the number of through holes 421 in each row is two. It can be understood that the number of through holes 421 in each column is not limited to two, and may also be one or more than three.
  • two or more through holes 421 are arranged in a row along the length direction X of the insulating plate 42.
  • a first buffer portion 424 is provided on the partition 423 between two adjacent through holes 421. It can be understood that two or more through holes 421 are arranged in a row along the width direction Y of the insulating plate 42. The arrangement direction of the through holes 421 is the same as the width direction Y of the insulating plate 42.
  • a first buffer portion 424 is provided on the partition 423 between two adjacent through holes 421.
  • each through hole 421 may be provided with one or more than two connecting pieces 41. More than two connecting pieces 41 are distributed along the arrangement direction of the two through holes 421.
  • the terminal connecting portion 412 is disposed in the through hole 421, and the connecting portion 411 of the connecting piece 41 penetrates through the wall of the through hole 421 to insert the insulation
  • the plate 42 makes the upper surface and the lower surface of the insulating plate 42 in the thickness direction Z protrude from the upper surface and the lower surface of the terminal connecting portion 412, respectively.
  • the lower surface of the terminal connection portion 412 is used for electrical connection with the electrode terminal 311 of the secondary battery 31.
  • the connecting assembly of the embodiment of the present application includes an insulating plate 42 and a connecting piece 41.
  • the connecting assembly is applied to the battery module 20.
  • the insulating plate 42 is provided with a through hole 421, a partition portion 423 separating two adjacent through holes 421, and a first buffer portion 424 provided on the partition portion 423.
  • the connecting piece 41 is fitted into the insulating plate 42 through the connecting portion 411.
  • the connecting piece 41 is provided corresponding to the through hole 421.
  • the position of the connecting piece 41 needs to be adjusted during the process of assembling the connecting assembly and the battery unit 30. Due to the provision of the first buffer portion 424, when the connecting piece 41 is adjusted, the first buffer portion 424 will be stretched or compressed to compensate for the adjustment displacement of the connecting piece 41, so it is easy to adjust the connecting piece 41 to a predetermined position and be connected to the second
  • the electrode terminal 311 of the secondary battery 31 is connected and fixed; on the other hand, during the use of the battery module 20, the secondary battery 31 may swell and deform, which will stretch the connecting piece 41 connected to the secondary battery 31 stress.
  • the connecting piece 41 can apply external stress to the first buffer portion 424, and the first buffer portion 424 can absorb and buffer the external stress by deforming itself, thereby reducing the connection piece 41 and the electrode terminals.
  • the connection of 311 may be cracked and separated due to excessive stress at the connection of the connecting piece 41 and the electrode terminal 311, which can also reduce the stress carried by the connection of the connecting piece 41 and the insulating plate 42 and reduce the connecting piece.
  • the connection between 41 and the insulating plate 42 may be cracked or separated due to a relatively large stress, which improves the safety and reliability of the battery module 20.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请涉及一种连接组件、电池模块、装置以及连接组件的制造方法。连接组件用于电池模块,电池模块包括两个以上的二次电池,连接组件包括:连接片,用于与二次电池电连接,连接片具有连接部;绝缘板,绝缘板自身为一体成型结构,连接部与绝缘板以不可拆卸的方式相互连接形成整体结构,绝缘板能够限制连接片移动。本申请提供的连接组件能够保证连接片和绝缘板连接可靠、稳定,提升连接组件的使用安全性。

Description

连接组件、电池模块、装置以及连接组件的制造方法
相关申请的交叉引用
本申请要求享有于2020年03月31日提交的名称为“连接组件、电池模块、装置以及连接组件的制造方法”的中国专利申请202010241356.X的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种连接组件、电池模块、装置以及连接组件的制造方法。
背景技术
随着科学技术的发展以及世界能源结构的转型,可持续发展的能源正逐渐取代传统化石燃料而成为主流能源。例如,电动汽车正在逐步取代传统燃油车。电动汽车中的核心部件之一是电池模组。电池模组用于为电动汽车提供电能。电池模组包括两个以上的二次电池、设置于二次电池一侧的绝缘板以及用于电连接二次电池的连接片。绝缘板可以用于隔离线束。连接片可拆卸连接于绝缘板上。然而,连接片易于与绝缘板分离,导致连接片不受绝缘板的绝缘隔离而存在安全风险。
发明内容
本申请提供一种连接组件、电池模块、装置以及连接组件的制造方法。连接组件能够保证连接片和绝缘板连接可靠、稳定,提升连接组件的使用安全性。
一方面,本申请提出了一种连接组件,用于电池模块,电池模块包括两个以上的二次电池,连接组件包括:连接片,用于与二次电池电连接,连接片具有连接部;绝缘板,绝缘板自身为一体成型结构,连接部与绝缘板以不可拆卸的方式相互连接形成整体结构,绝缘板能够限制连接片移动。
根据本申请提供的连接组件,其包括绝缘板和连接片。绝缘板自身为一体成型结构。连接片的连接部埋设于绝缘板。连接片通过连接部嵌接于绝缘板,从而连接片和绝缘板形成整体不可拆卸结构。二次电池可以通过连接片电连接。由于连接片和绝缘板相互嵌接连接形成整体结构,使得两者连接状态可靠稳定,连接结构强度大,因此在电池模组使用过程中出现振动情况时,由于连接片受到绝缘板有效约束限制,因 此可以降低连接片承受振动应力而与绝缘板发生分离的可能性,保证电池模块使用过程安全性。
根据本申请的一个实施例,连接部和绝缘板中的一者具有凸出部,另一者具有容纳部,凸出部和容纳部相互嵌接。
根据本申请的一个实施例,凸出部和容纳部形状相匹配;或者,连接部包括相连接的第一连接段和第二连接段,第一连接段和第二连接段相互错位设置。
根据本申请的一个实施例,容纳部具有两个以上的延伸段,两个以上的延伸段沿容纳部凹陷的方向设置,相邻两个延伸段中一者的正投影位于另一者的正投影内。
根据本申请的一个实施例,容纳部为孔或凹槽。
根据本申请的一个实施例,连接部具有容纳部,并且容纳部为沿绝缘板的厚度方向延伸的嵌接通孔,绝缘板具有凸出部,凸出部贯穿容纳部,绝缘板位于连接部上下两侧的部分通过凸出部连接。
根据本申请的一个实施例,容纳部设置于连接部的边缘区域。
根据本申请的一个实施例,绝缘板具有第一区域和第二区域,第二区域的一部分凸出第一区域设置,连接部埋设于第二区域内部。
根据本申请的一个实施例,连接片的数量为两个以上,绝缘板包括第一缓冲部,相邻两个连接片之间设置第一缓冲部。
根据本申请的一个实施例,第一缓冲部包括一个长条形的通孔,通孔的长度方向与相邻两个连接片的排列方向相交;或者,第一缓冲部包括两个以上的通孔,两个以上的通孔沿与相邻两个连接片的排列方向相交的方向间隔设置;或者,第一缓冲部包括长条形的弧形结构,弧形结构的长度方向与相邻两个连接片的排列方向相交。
根据本申请的一个实施例,连接片具有第二缓冲部,第二缓冲部与连接部间隔设置,绝缘板包括与第二缓冲部相对应设置的第三缓冲部,第二缓冲部的部分埋设于第三缓冲部内部。
根据本申请的一个实施例,绝缘板还包括长条形的中间容纳凹部,中间容纳凹部相对两侧中至少一侧设置连接片。
另一个方面,根据本申请提供一种电池模块,其包括:两个以上的二次电池;如上述的连接组件,连接组件设置于二次电池的上方,二次电池通过连接片电连接。
又一个方面,根据本申请提供一种使用电池模块作为电源的装置,其包括如上述的电池模块,电池模块用于提供电能。
再一个方面,根据本申请提供一种连接组件的制造方法,其包括:将具有连接部的连接片放置于预定模具内;利用高速注塑工艺注塑在连接片的外围一体成型绝缘板,连接部与绝缘板以不可拆卸的方式相互连接形成整体结构,连接片和绝缘板组成连接组件。
根据本申请的一个实施例,在将具有连接部的连接片放置于预定模具内的步骤之前,本申请实施例的制造方法还包括在连接片的连接部上制备嵌接通孔的步骤。
根据本申请的一个实施例,在利用高速注塑工艺注塑在连接片的外围一体成型绝缘板的步骤中,绝缘板形成贯穿嵌接通孔的凸出部,且使绝缘板位于连接部上下两 侧的部分通过凸出部连接。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池组的分解结构示意图;
图3是本申请一实施例公开的一种电池模组的分解结构示意图;
图4是本申请一实施例公开的一种连接组件的分解结构示意图;
图5是本申请一实施例公开的一种连接片的结构示意图;
图6是图5所示实施例的连接片与绝缘板连接状态示意图;
图7是本申请另一实施例公开的一种连接片的结构示意图;
图8是图7所示实施例的连接片与绝缘板连接状态示意图;
图9是本申请另一实施例公开的一种连接片的结构示意图;
图10是本申请另一实施例公开的一种连接片的结构示意图;
图11是图10所示实施例的连接片与绝缘板连接状态示意图;
图12是本申请另一实施例公开的一种连接片的结构示意图;
图13是本申请另一实施例公开的一种连接片的结构示意图;
图14是图13所示实施例的连接片与绝缘板连接状态示意图;
图15是本申请另一实施例公开的一种连接片的结构示意图;
图16是本申请又一实施例公开的一种连接片的结构示意图;
图17是图16所示实施例的连接片与绝缘板连接状态示意图;
图18是本申请另一实施例的连接片与绝缘板连接状态示意图;
图19是本申请一实施例公开的一种连接组件的制造方法流程示意 图;
图20是本申请一实施例公开的一种绝缘板的结构示意图;
图21是本申请一实施例公开的连接片和绝缘板嵌接结构剖视示意图;
图22是图20中A处放大图;
图23是本申请一实施例公开的一种绝缘板的局部结构示意图;
图24是图20中B处放大图;
图25是本申请另一实施例公开的一种绝缘板的局部结构示意图;
图26是本申请另一实施例公开的一种绝缘板的局部结构示意图;
图27是本申请又一实施例公开的一种绝缘板的局部结构示意图;
图28是本申请另一实施例公开的一种绝缘板的结构示意图;
图29是本申请又一实施例公开的一种绝缘板的结构示意图。
在附图中,附图并未按照实际的比例绘制。
标记说明:1、车辆;10、电池组;20、电池模组;30、电池单元;31、二次电池;311、电极端子;40、连接组件;41、连接片;411、连接部;411a、弯曲段;411b、平直段;411c、侧面;4111、第一连接段;4112、中间过渡段;4113、第二连接段;412、端子连接部;413、第二缓冲部;42、绝缘板;42a、第一区域;42b、第二区域;421、贯通孔;422、中间容纳凹部;423、分隔部;424、第一缓冲部;424a、通孔;424b、弧形结构;425、第三缓冲部;50、容纳部;51、延伸段;60、凸出部;99、电极输出极板;X、长度方向;Y、宽度方向;Z、厚度方向。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以 下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
申请人发现连接片容易与绝缘板发生分离的问题之后,对电池模组的结构进行研究分析。相关技术中,连接片和绝缘板之间为可拆卸连接的形式。连接片和绝缘板之间连接稳定性较差。在电池模组使用过程中,电池模组会出现振动情况。电池模组发生振动后,连接片也会承受振动应力,从而连接片会相对于绝缘板发生松动,进而会易于与绝缘板发生分离。
基于上述发现的技术问题,申请人对应用于电池模组的连接组件进行改进。
为了更好地理解本申请,下面结合图1至图29对本申请实施例进行描述。
本申请实施例提供一种使用电池模块作为电源的装置。该装置可以但不仅限于为车辆、船舶或飞行器等。参见图1所示,本申请的一个实施例提供一种车辆1,其包括车辆主体和电池模块。电池模块设置于车辆主 体。其中,车辆1可以是纯电动汽车,也可以是混合动力汽车或增程式汽车。车辆主体设置有与电池模块电连接的驱动电机。电池模块向驱动电机提供电能。驱动电机通过传动机构与车辆主体上的车轮连接,从而驱动汽车行进。示例性地,电池模块可水平设置于车辆主体的底部。
参见图2所示,电池模块可以是电池组10。电池组10的设置方式有多种。在一些可选的实施例中,电池组10包括箱体和设置于箱体内的电池模组20。电池模组20的数量为一个或多个。一个或多个电池模组20排列布置于箱体内。箱体的类型不受限制。箱体可为框状箱体、盘状箱体或盒状箱体等。示例性地,箱体可包括用于容纳电池模组20的下箱体以及与下箱体盖合的上箱体。上箱体和下箱体盖合后形成容纳电池模组20的容纳部。
可以理解地,电池模块也可以是电池模组20,即将电池模组20直接设置于车辆主体上。
参见图3所示,本申请实施例的电池模组20包括多个电池单元30以及设置电池单元30一侧的连接组件40。连接组件40设置于电池单元30的上方。连接组件40包括连接片41和绝缘板42。绝缘板42自身为一体成型结构。这里,一体成型结构指的是一次性加工成型为整体结构,而不是两个以上的结构件经过热压、焊接或其它机械连接方式等方式拼接形成的结构。电池模组20的设置方式有多种,在一个实施例中,电池模组20包括容纳部件和并排设置于容纳部件内的两个以上的电池单元30。容纳部件的设置方式有多种,例如容纳部件包括相继围合连接的侧板和端板。在其他一些实施例中,容纳部件包括外壳和盖设于外壳处的盖板。
继续参见图3所示,每个电池单元30包括两个并联设置的二次电池31。相邻两个电池单元30通过连接组件40中的一个连接片41相互串联。每个电池单元30包括的二次电池31的数量不局限于两个,也可以包括一个或三个以上的二次电池31,这里并不作限定。本实施例中,位于最外侧的电池单元30具有总输出极。电池模组20包括与总输出极相连接的电极输出极板99。连接组件40中的一个连接片41连接于电池模组20的总输出极,并且电极输出极板99连接于该连接片41。
本申请实施例的二次电池31包括壳体、设置于壳体内的电极组件、与壳体密封连接的顶盖板以及设置于顶盖板上并且同侧引出的两个电极端子311。连接组件40设置于二次电池31具有电极端子311的一侧。两个电极端子311中一者作为正极,另一者作为负极。两个电极端子311沿绝缘板42的宽度方向Y间隔设置。在各个电池单元30沿绝缘板42的长度方向X并排设置后,各个二次电池31的两个电极端子311排列形成两列电极端子组,并且两列电极端子组之间具有沿长度方向X延伸的容纳间隙。在一个示例中,二次电池31的电极端子311为柱状结构体。
参见图3至图6所示,本申请实施例的连接片41包括连接部411和端子连接部412。端子连接部412用于与二次电池31的电极端子311连接。绝缘板42包括沿自身厚度方向Z延伸的贯通孔421。连接片41的位置与贯通孔421的位置对应设置。连接片41通过连接部411嵌入绝缘板42,从而连接片41的连接部411埋设于绝缘板42内,以使连接片41与绝缘板42嵌接形成整体结构。这里,整体结构指的是连接片41和绝缘板42嵌接连接后形成一个不可拆卸的整体,在需要分离连接片41和绝缘板42时需要破坏其中一者的结构完整性。绝缘板42能够限制连接片41移动。连接片41的连接部411埋设于绝缘板42内,也即绝缘板42包覆连接片41的至少部分连接部411。优选地,绝缘板42包覆连接片41的连接部411,从而在外部观察连接组件40时,肉眼不能看到连接部411。端子连接部412沿厚度方向Z的正投影在贯通孔421的孔壁沿厚度方向Z的正投影内,从而端子连接部412暴露于外部环境,并且端子连接部412不受绝缘板42的遮挡,以便于与电极端子311进行连接操作。在组装连接组件40和电池单元30时,将连接组件40放置于电池单元30的一侧,并使得端子连接部412与电极端子311在厚度方向Z上对应设置,然后将电极端子311和端子连接部412连接。在一个示例中,电极端子311和端子连接部412焊接连接。
本申请实施例的连接组件40包括绝缘板42和连接片41。绝缘板42自身为一体成型结构。连接片41的连接部埋设于绝缘板42。连接片41通过连接部411嵌接于绝缘板42,从而连接片41和绝缘板42形成整体不 可拆卸结构。绝缘板42上具有贯通孔421,而连接片41的端子连接部412与贯通孔421相对应设置,从而端子连接部412暴露于外部环境,以便于与二次电池31的电极端子311连接固定。相邻的两个电池单元30可以通过连接片41电连接。由于连接片41和绝缘板42相互嵌接连接形成整体结构,使得两者连接状态可靠稳定,连接结构强度大,因此在电池模组20使用过程中出现振动情况时,由于连接片41受到绝缘板42有效约束限制,因此可以降低连接片41承受振动应力而与绝缘板42发生分离的可能性,保证电池模组20使用过程安全性。另外,在连接组件40运输转移过程中,连接片41也不易从绝缘板42上脱落,降低连接片41出现丢失或损坏的可能性。由于连接片41连接固定于绝缘板42,使得连接片41位置固定,因此也可以降低因连接片41偏移预定的装配位置而导致连接片41与电极端子311难于连接的可能性,有利于提高装配质量和装配效率。
在一个实施例中,参见图4至图6所示,沿绝缘板42的长度方向X,端子连接部412的相对的两侧各自设置连接部411,也即连接片41上相对的两个端部各自设有一个连接部411。连接片41通过两个连接部411嵌入绝缘板42。该连接部411为平整板状结构。可以理解地,端子连接部412的相对的两侧中的一者设置连接部411也可以实现绝缘板42对连接片41形成约束限位。
在一个实施例中,参见图7和图8所示,连接片41的连接部411上设置有容纳部50,而绝缘板42上设置有凸出部60。绝缘板42上的凸出部60嵌接于连接部411上的容纳部50,从而有利于进一步提高连接片41和绝缘板42的连接强度,降低连接片41与绝缘板42易于发生分离的可能性。凸出部60的形状与容纳部50的形状相匹配。当二次电池31发生膨胀情况时,连接片41会承受沿绝缘板42的长度方向X上的拉伸应力。当二次电池31在绝缘板42的长度方向X上发生振动时,连接片41会承受沿绝缘板42的长度方向X上的拉伸或压缩应力。在连接片41承受沿绝缘板42的长度方向X上的拉伸或压缩应力时,凸出部60可以通过容纳部50很好地约束限制连接片41发生位移,使得连接片41和绝缘板42 之间不易发生位置错移而导致两者接合面发生开裂、分离。容纳部50的数量和凸出部60的数量一一对应设置。容纳部50的形状与凸出部60的形状相匹配。在一个示例中,沿绝缘板42的长度方向X,端子连接部412相对的两侧各自设置连接部411,也即连接片41上相对的两个端部各自具有一个连接部411。每个连接部411上设置有两个容纳部50。两个容纳部50沿绝缘板42的宽度方向Y间隔设置。可以理解地,每个连接部411上设置的容纳部50数量不局限于两个,也可以是三个以上。
在一个实施例中,参见图8所示,容纳部50为沿厚度方向Z延伸的嵌接通孔。凸出部60贯穿容纳部50,从而绝缘板42位于连接部411上下两侧的部分可以通过凸出部60连接起来。在绝缘板42的厚度方向Z上,当连接片41的上表面和下表面分别与绝缘板42脱离连接时,由于凸出部60仍然可以通过容纳部50约束限制连接片41,因此可以降低连接片41从绝缘板42上脱落或者位置发生偏移的可能性。
在另一个实施例中,参见图9所示,容纳部50为沿厚度方向Z延伸的凹槽。连接片41具有在绝缘板42的长度方向X上相对的两个端面。凹槽从端面朝靠近端子连接部412的方向凹陷。绝缘板42的一部分伸入凹槽而形成凸出部60。在连接片41承受沿绝缘板42的宽度方向Y上的拉伸或压缩应力时,凸出部60可以通过容纳部50很好地约束限制连接片41,使得连接片41和绝缘板42之间不易沿绝缘板42的宽度方向Y发生位置错移而导致两者接合面发生开裂、分离。
在一个实施例中,容纳部50具有两个以上的延伸段51。两个以上的延伸段51沿容纳部50凹陷的方向设置。相邻两个延伸段51中一者的正投影位于另一者的正投影内。相邻两个延伸段51之间存在过渡区。在一个示例中,参见图8所示,容纳部50为沿厚度方向Z延伸的嵌接通孔。嵌接通孔为阶梯孔。嵌接通孔具有沿厚度方向Z设置的两个延伸段51。在另一个示例中,参见图9所示,容纳部50为沿厚度方向Z延伸的凹槽。示例性地,凹槽是阶梯槽(图中未示出),从而凹槽也具有沿厚度方向Z设置的两个延伸段51。
在一个实施例中,参见图9所示,容纳部50设置于连接部411的 边缘区域。连接部411的边缘区域包括连接部411的侧面411c以及靠近侧面411c的区域。连接部411的侧面411c指的是与厚度方向Z相平行的表面。
在一个实施例中,连接片41的连接部411上设置有凸出部60,而绝缘板42上设置有容纳部50,同样可以实现提高连接片41和绝缘板42的连接强度的作用。
在一个实施例中,参见图10和图11所示,连接片41的连接部411具有弯曲段411a和平直段411b。连接部411的平直段411b与端子连接部412相连接。连接部411的弯曲段411a形成凹陷空间,而绝缘板42的一部分伸入该凹陷空间内,从而有利于进一步提高连接片41和绝缘板42的连接强度在连接片41承受沿绝缘板42的长度方向X上的拉伸或压缩应力时,绝缘板42伸入凹陷空间的部分可以通过弯曲段411a很好地约束限制连接片41,使得连接片41和绝缘板42之间不易沿绝缘板42的长度方向X发生位置错移而导致两者接合面发生开裂、分离。在一个示例中,弯曲段411a的数量为一个或两个以上。弯曲段411a的数量为两个以上时,两个以上的弯曲段411a可以沿绝缘板42的宽度方向Y间隔设置。示例性地,弯曲段411a为圆弧形结构。在一个示例中,参见图12所示,在弯曲段411a上设置有容纳部50,而绝缘板42上对应设置凸出部60,从而可以进一步提高连接片41和绝缘板42的连接强度和连接稳定性。示例性地,容纳部50可以是直孔或阶梯孔,也可以是凹槽。可以理解地,在弯曲段411a上设置有凸出部60,而绝缘板42上对应设置容纳部50,也可以实现连接片41和绝缘板42的连接固定。
在一个实施例中,参见图13和图14所示,连接部411包括相连接的第一连接段4111、中间过渡段4112和第二连接段4113,第一连接段4111和第二连接段4113沿厚度方向Z错位设置,从而连接部411整体呈台阶状结构。连接部411通过第二连接段4113与端子连接部412相连接。在连接片41承受沿绝缘板42的长度方向X上的拉伸或压缩应力时,绝缘板42可以通过中间过渡段4112很好地约束限制连接片41,使得连接片41和绝缘板42之间不易沿绝缘板42的长度方向X发生位置错移而导 致两者接合面发生开裂、分离。在一个示例中,第一连接段4111和第二连接段4113均沿绝缘板42的长度方向X延伸并且两者平行设置,而中间过渡段4112沿绝缘板42的厚度方向Z延伸并且与第一连接段4111和第二连接段4113垂直。在一个示例中,参见图15所示,在第一连接段4111设置有容纳部50,而绝缘板42上对应设置凸出部60,从而可以进一步提高连接片41和绝缘板42的连接强度和连接稳定性。示例性地,容纳部50可以是直孔或阶梯孔,也可以是凹槽。可以理解地,在第一连接段4111上设置有凸出部60,而绝缘板42上对应设置容纳部50,也可以实现连接片41和绝缘板42的连接固定。
在一个实施例中,参见图16和图17所示,沿绝缘板42的宽度方向Y,端子连接部412相对的两侧分别设置有连接部411,同样可以实现连接片41和绝缘板42连接形成整体结构,提高连接片41和绝缘板42的连接强度。可以理解地,沿绝缘板42的宽度方向Y,端子连接部412的相对的两侧中的一者设置有连接部411,也可以保证绝缘板42对连接片41形成约束限位。示例性地,连接片41呈矩形结构。
在一个示例中,沿绝缘板42的宽度方向Y,端子连接部412相对的两侧分别设置连接部411,同时沿绝缘板42的长度方向X,端子连接部412相对的两侧也分别设置连接部411,从而四个连接部411围合形成环状结构,而端子连接部412被四个连接部411环绕。
在一个实施例中,沿绝缘板42的厚度方向Z,端子连接部412设置于贯通孔421内,而连接片41的连接部411穿过贯通孔421的孔壁嵌入绝缘板42,使得绝缘板42沿厚度方向Z的上表面和下表面分别凸出于端子连接部412的上表面和下表面。端子连接部412的下表面用于与二次电池31的电极端子311电连接。
在一个实施例中,参见图3所示,绝缘板42具有中间容纳凹部422。中间容纳凹部422沿绝缘板42的长度方向X延伸。在连接组件40应用于电池模组20时,电极输出极板99可以至少部分地容纳于中间容纳凹部422,从而降低电极输出极板99的空间占用率,有利于提高电池模组20的结构紧凑性,进而提高二次电池31的能量密度。在一个示例中,在 连接组件40应用于电池模组20时,中间容纳凹部422朝靠近二次电池31的方向凹陷。沿绝缘板42的宽度方向Y,中间容纳凹部422相对两侧均设置有贯通孔421。中间容纳凹部422相对两侧中的每一侧设置有两个以上的贯通孔421。位于同一侧的两个以上的贯通孔421沿绝缘板42的长度方向X间隔设置。每个贯通孔421对应设置一个连接片41。在其它实施例中,中间容纳凹部422相对两侧中的一侧设置有贯通孔421。
在一个实施例中,参见图5所示,连接片41包括第二缓冲部413。第二缓冲部413可以通过自身变形缓冲吸收外部应力。端子连接部412的数量为两个以上。相邻两个端子连接部412之间设置第二缓冲部413。端子连接部412与电极端子311连接固定后,在二次电池31发生膨胀变形时,相邻两个端子连接部412存在彼此远离的趋势,从而对第二缓冲部413施加拉伸应力。第二缓冲部413承受拉伸应力时,会被拉长以缓冲该拉伸应力,从而降低端子连接部412与电极端子311之间所承载的拉伸应力,降低端子连接部412与电极端子311之间因承载过大的拉伸应力而发生开裂、分离的可能性,同时也可以降低连接片41的连接部411与绝缘板42之间因承载过大的外部应力而导致两者接合处发生开裂、分离的可能性。在另一个实施例中,端子连接部412和连接部411之间也设置有第二缓冲部413。在二次电池31发生膨胀变形时,相邻两个端子连接部412存在彼此远离的趋势,而端子连接部412和连接部411之间存在彼此靠近的趋势,从而使得端子连接部412和连接部411之间的第二缓冲部413承载压缩应力。第二缓冲部413承受压缩应力时,会被压缩以缓冲该压缩应力,从而可以降低连接片41的连接部411与绝缘板42之间因承载过大的外部应力而导致两者接合处发生开裂、分离的可能性。在一个示例中,第二缓冲部413为沿绝缘板42的厚度方向Z凸出的弧形结构。优选地,第二缓冲部413为圆弧形结构。
在一个实施例中,参见图18所示,绝缘板42具有第一区域42a和第二区域42b。第二区域42b的一部分凸出第一区域42a设置,从而第一区域42a的刚度小于第二区域42b的刚度,使得第一区域42a的弹性变形能力优于第二区域42b的弹性变形能力。第二区域42b上凸出第一区域 42a的部分形成凸台。连接部411埋设于第二区域42b内部。沿厚度方向Z,连接部和第二区域42b对应设置。在一个示例中,第二区域42b环绕贯通孔421设置。
参见图19所示,本申请实施例还提供一种连接组件40的制造方法,其包括:
将具有端子连接部412的连接片41放置于预定模具内;
利用高速注塑工艺注塑在连接片41的外围一体成型绝缘板42,连接部411与绝缘板42以不可拆卸的方式相互连接形成整体结构,连接片41和绝缘板42组成连接组件40。
在一个实施例中,连接片41与绝缘板42相互嵌接形成整体结构,连接片41与绝缘板42组成连接组件40,绝缘板42上与连接片41相对应的区域具有贯通孔421,端子连接部412沿绝缘板42的厚度方向Z的正投影位于贯通孔421的孔壁沿厚度方向Z的正投影内。
在一个实施例中,连接片41嵌入绝缘板42内的部分形成连接部411。连接片41为一体成型结构。连接片41可以为铸造成型或冲压成型。连接片41的材料可以是铝或铝合金等导电材料。绝缘板42为一体成型结构。在一个示例中,绝缘板42为采用高速注塑工艺成型的注塑结构件。通过高速注塑工艺成型,可以在连接片41的外部一次性注塑成型绝缘板42,从而使得绝缘板42自身刚度大,自身结构不易发生损坏。高速注塑工艺成型的绝缘板42的厚度可以控制在0.1mm至0.8mm,从而有利于提高连接组件40整体的结构轻量化,有利于提高电池模组20的能量密度。加工制造绝缘板42的过程中,高速注塑工艺成型的要求是:成型速率大于等于200m/s;成型温度大于等于250℃,使得塑胶被加热呈流体状态。示例性地,绝缘板42的材料可以为高流动性的聚丙烯(PP)、聚碳酸酯(PC)、工程塑料合金(PC+ABS)等。
在一个实施例中,在将具有连接部411的连接片41放置于预定模具内的步骤之前,本申请实施例的制造方法还包括在连接片41的连接部411上制备嵌接通孔的步骤。
在一个实施例,在利用高速注塑工艺注塑在连接片41的外围一体 成型绝缘板42的步骤中,绝缘板42形成贯穿嵌接通孔的凸出部60,且使绝缘板42位于连接部411上下两侧的部分通过凸出部60连接。
本申请实施例的连接组件40的制造方法,利用高速注塑工艺在连接片41的外围一次性形成绝缘板42,并且使得连接片41的一部分嵌入绝缘板42内,从而连接片41与绝缘板42嵌接形成整体结构,保证两者连接状态可靠稳定,连接结构强度大,因此在电池模组20使用过程中出现振动情况时,连接片41受到绝缘板42有效约束限制,从而降低连接片41承受过大振动应力与绝缘板42发生分离的可能性,保证电池模组20使用过程安全性。
另外,利用高速注塑工艺制造绝缘板42的方式,可以在满足绝缘板42的刚度要求的前提下,将绝缘板42的厚度控制在0.4mm至0.8mm,从而有利于提高连接组件40整体的结构轻量化,有利于提高电池模组20的能量密度。
在一个实施例中,连接片41的数量为两个以上。绝缘板42包括第一缓冲部424。相邻两个连接片41之间设置第一缓冲部424。进一步地,参见图20所示,本申请实施例的绝缘板42还包括分隔部423以及第一缓冲部424。相邻两个贯通孔421可以划分为一组贯通孔421。分隔部423分隔相邻两个贯通孔421。分隔部423上设置有第一缓冲部424。第一缓冲部424承受外力作用时,可以被拉伸或压缩变形以用于缓冲外部应力。设置第一缓冲部424的区域的刚度有所下降,使得该区域的柔韧性更好,易于产生形变。由于连接片41是嵌接于绝缘板42,因此在制作连接组件的过程中可以先制造连接片41,然后将连接片41放置于预定位置,在连接片41的外围制造绝缘板42。制作完成的连接组件中,连接片41自身不能活动,因此不能通过移动连接片41本身的位置来调整与绝缘板42的相对位置。在制造连接组件的过程中,连接片41自身的位置会存在偏离预定位置的情况,这样会导致连接片41和绝缘板42形成整体结构后,连接片41的位置也偏离了预定位置。在后续将连接片41和二次电池31的电极端子311进行连接时,连接片41会因偏离预定位置而导致与电极端子311的连接位置也偏离预定位置。但由于本申请实施例的分隔部423设置 有第一缓冲部424,因此在连接片41和电极端子311的连接过程中,可以通过拉伸或压缩第一缓冲部424来使相邻两个连接片41相互远离或靠近,以此实现对相邻两个连接片41的位置进行调整,从而补偿连接片41在制造过程中产生的位置误差,进而可以容易地将连接片41调整至预定位置并与电极端子311进行连接固定。另外,由于设置第一缓冲部424,可以在后期灵活调整连接片41的位置,因此在制造连接片41和绝缘板42过程中,对连接片41的位置精度以及连接片41和绝缘板42的制造公差要求降低,从而有利于降低连接组件制造难度。
在一个实施例中,电池模组20在使用过程中,电池单元30内的二次电池31会存在膨胀变形的情况。在二次电池31发生膨胀变形时,相邻的两个连接片41存在彼此远离的情况,从而对相邻的两个连接片41之间的第一缓冲部424施加拉伸应力。第一缓冲部424可以通过自身变形来吸收、缓冲该拉伸应力,从而降低连接片41和电极端子311的连接处所承载的应力,进而降低连接片41和电极端子311的连接处因承载过大的应力而导致连接片41和电极端子311的连接处出现开裂、分离的可能性。同样地,相邻的两个连接片41出现彼此靠近的情况时,相邻的两个连接片41会对第一缓冲部424施加压缩应力。第一缓冲部424可以通过自身变形来吸收、缓冲该压缩应力,从而降低连接片41和电极端子311的连接处所承载的应力,进而降低连接片41和电极端子311的连接处因承载过大的应力而导致连接片41和电极端子311的连接处出现开裂、分离的可能性,提高电池模组20的安全性和可靠性。另外,第一缓冲部424通过自身变形来吸收缓冲拉伸或压缩应力的结构设计,也可以降低连接片41与绝缘板42的连接处所承载的应力,从而降低连接片41与绝缘板42的连接处因承载较大应力而出现开裂、分离的情况的可能性。
在一个实施例中,参见图20所示,绝缘板42上设置两列贯通孔421。两列贯通孔421沿绝缘板42的宽度方向Y间隔设置。对于每一列贯通孔421,相邻两个贯通孔421之间的分隔部423上设置一个第一缓冲部424。两个贯通孔421的排列方向与绝缘板42的长度方向X相同。电池单元30的排列方向与绝缘板42的长度方向X相同。在电池模组20使用过 程中,二次电池31会沿长度方向X发生膨胀变形。在绝缘板42的长度方向X上,相邻两个连接片41相互出现远离或靠近的情况时,两个连接片41会对第一缓冲部424施加拉伸或压缩应力。本实施例中,相邻两个连接片41的排列方向与绝缘板42的长度方向X相同。
在一个实施例中,贯通孔421的数量为七个。连接片41的数量也为七个。七个贯通孔421在绝缘板42的宽度方向Y上呈两列设置。其中一列包括沿绝缘板42的长度方向X间隔设置的四个贯通孔421,另一列包括沿绝缘板42的长度方向X间隔设置的三个贯通孔421。可以理解地,贯通孔421的数量以及连接片41的数量并不局限于上述的数量。可以根据实际产品需求进行适应性调整。
在一个实施例中,参见图22所示,第一缓冲部424包括一个长条形的通孔424a。通孔424a的长度方向与相邻两个连接片41的排列方向相交。本实施例中,通孔424a的长度方向与绝缘板42的宽度方向Y相同。通孔424a沿绝缘板42的厚度方向Z延伸,从而通孔424a区域形成镂空结构。在设置通孔424a的区域的刚度相对于环绕通孔424a的区域的刚度较小,从而设置通孔424a的区域柔韧性更好,更加易于受力变形。这样,在相邻的两个连接片41对分隔部423施加拉伸或压缩应力时,拉伸或压缩应力会挤压通孔424a区域,从而使得通孔424a在绝缘板42的长度方向X上变宽或收窄,以此易于通过形变的方式实现应力缓冲的作用。
在另一个实施例中,参见图23所示,第一缓冲部424包括两个以上的通孔424a。两个以上的通孔424a沿与相邻两个贯通孔421的排列方向相交的方向间隔设置。两个贯通孔421的排列方向与绝缘板42的长度方向X相同。相邻两个连接片41的排列方向与绝缘板42的长度方向X相同。本实施例中,两个以上的通孔424a沿绝缘板42的宽度方向Y间隔设置。在一个示例中,通孔424a的横截面为圆形、椭圆形、跑道形或正多边形。通孔424a的横截面为圆形、椭圆形、跑道形的实施例中,通孔424a的内壁各个区域过渡平滑,降低出现应力集中区域的可能性,从而降低在形变过程中内壁出现局部断裂或产生裂纹的可能性。通孔424a的横截面为正多边形的实施例中,通孔424a的横截面优选为正六边形。在本 实施例中,通孔424a的横截面可以选择为跑道形或椭圆形。
在一个实施例中,参见图24所示,第一缓冲部424包括沿绝缘板42的厚度方向Z凸出的弧形结构424b。弧形结构424b呈长条形,并且弧形结构424b的长度方向与相邻两个连接片41的排列方向相交。第一缓冲部424两侧的连接片41相互远离位移时,第一缓冲部424会承载拉伸应力。在拉伸应力作用下,第一缓冲部424的弧形结构424b弯曲程度会减小,从而弧形结构424b会在排列方向上被拉长,以此吸收缓冲拉伸应力。对应地,第一缓冲部424两侧的连接片41相互靠近位移时,第一缓冲部424会承载压缩应力。在压缩应力作用下,第一缓冲部424的弧形结构424b弯曲程度会增大,从而弧形结构424b会在排列方向上被缩短,以此吸收缓冲压缩应力。在一个示例中,弧形结构424b与分隔部423的其它部分圆滑过渡,降低出现应力集中的可能性。优选地,弧形结构424b为圆弧形结构。
在一个实施例中,参见图25所示,在弧形结构424b上设置有通孔424a,从而可以进一步降低第一缓冲部424的整体刚度,有利于进一步提升第一缓冲部424的变形能力和缓冲能力。示例性地,在弧形结构424b上设置四个通孔424a。四个通孔424a沿绝缘板42的宽度方向Y间隔设置。可以理解地,通孔424a的数量并不限于四个,可以根据产品要求,灵活调整数量。
在一个实施例中,参见图20所示,沿绝缘板42的宽度方向Y,在两列贯通孔421之间也设置有第一缓冲部424。沿绝缘板42的宽度方向Y,在一列中的连接片41与另一列中的连接片41相互远离移动或相互靠近移动时,该第一缓冲部424能够吸收缓冲连接片41作用于第一缓冲部424上的拉伸或压缩应力。在一个示例中,在绝缘板42的长度方向X上,第一缓冲部424延伸贯穿整个绝缘板42。在一个示例中,第一缓冲部424为弧形结构体。弧形结构体远离二次电池31的一侧形成容纳空间。电极输出极板99能够至少部分地容纳于该容纳空间内,从而可以提升电池模组20的结构紧凑性和空间利用率,有利于提高电池模组20的能量密度。在另一个示例中,第一缓冲部424包括一个通孔424a或者两个以上的通 孔424a。
在一个实施例中,参见图5所示,连接片41包括两个以上的端子连接部412以及第二缓冲部413。相邻两个端子连接部412之间设置第二缓冲部413。第二缓冲部413可以通过自身变形来吸收缓冲外部应力。端子连接部412与电极端子311连接固定后,在二次电池31发生膨胀变形时,相邻两个端子连接部412存在彼此远离的情况,从而对第二缓冲部413施加拉伸应力。第二缓冲部413承受拉伸应力时会被拉伸变形以缓冲该拉伸应力,从而可以降低端子连接部412与电极端子311之间所承载的拉伸应力,进而降低端子连接部412与电极端子311之间因承载过大的拉伸应力而发生开裂、分离的可能性,同时也可以降低连接片41的连接部411与绝缘板42之间因承载过大的外部应力而导致两者接合处发生开裂、分离的可能性。这样,第一缓冲部424和第二缓冲部413能够彼此协同配合工作,进一步地有效提升连接片41和绝缘板42的吸收缓冲应力的能力。
在另一个实施例中,参见图5所示,端子连接部412和连接部411之间也设置有第二缓冲部413。在二次电池31发生膨胀变形时,相邻两个端子连接部412存在彼此远离的趋势,而端子连接部412和连接部411之间存在彼此靠近的趋势,从而使得端子连接部412和连接部411之间的第二缓冲部413承载压缩应力。第二缓冲部413承受压缩应力时会被压缩变形以缓冲该压缩应力,从而可以降低连接片41的连接部411与绝缘板42之间因承载过大的外部应力而导致两者接合处发生开裂、分离的可能性。
在一个示例中,第二缓冲部413为沿绝缘板42的厚度方向Z凸出的弧形结构。优选地,第二缓冲部413为圆弧形结构。
在一个示例中,参见图20所示,绝缘板42还包括与第二缓冲部413相对应设置的第三缓冲部425。在第二缓冲部413承载应力发挥缓冲作用时,第三缓冲部425也会跟随第二缓冲部413同步变形。第二缓冲部413和第三缓冲部425可以协同配合工作,有利于进一步提升缓冲应力的能力。在一个示例中,第二缓冲部413和第三缓冲部425结构相同。第二缓冲部413和第三缓冲部425沿绝缘板42的宽度方向Y对应设置。示例 性地,第二缓冲部413和第三缓冲部425均为弧形结构。在一个示例中,沿绝缘板42的宽度方向Y,绝缘板42上的第一缓冲部424和第三缓冲部425对应设置。在第一缓冲部424承载应力发挥缓冲作用时,第三缓冲部425也会跟随第一缓冲部424同步变形。示例性地,第一缓冲部424和第三缓冲部425均为弧形结构。
在一个实施例中,参见图22至图25所示,一个分隔部423上设置一个第一缓冲部424。第一缓冲部424在相邻两个贯通孔421的排列方向上的正投影的宽度大于等于连接片41在排列方向上的正投影的宽度,从而第一缓冲部424能够在宽度方向Y上覆盖整个连接片41。在连接片41对分隔部423施加外部应力时,外部应力会全部地传递至第一缓冲部424并被第一缓冲部424吸收缓冲,从而降低外部应力传递至第一缓冲部424之外的区域而影响缓冲效果的可能性。
在一个实施例中,参见图26和图27所示,一个分隔部423上设置两个第一缓冲部424。两个第一缓冲部424沿相邻两个贯通孔421的排列方向间隔设置。这样,通过两个第一缓冲部424能够更大程度地吸收作用于绝缘板42上的外部应力。在一个示例中,参见图26所示,两个第一缓冲部424均包括一个通孔424a。通孔424a沿绝缘板42的宽度方向Y延伸。或者,参见图27所示,两个第一缓冲部424均包括两个以上的通孔424a。两个以上的通孔424a沿绝缘板42的宽度方向Y间隔设置。在其它一些示例中,两个第一缓冲部424中的一者可以包括一个通孔424a,另一者可以包括两个以上的通孔424a。在一个示例中,两个第一缓冲部424在相邻两个贯通孔421的排列方向上的正投影的总宽度大于等于连接片41在排列方向上的正投影的宽度。可以理解地,一个分隔部423上设置的第一缓冲部424的数量并不限定于两个,也可以是三个以上。
在一个示例中,相邻两个第一缓冲部424各自在贯通孔421的排列方向上的正投影相互重叠。示例性地,在第一缓冲部424包括通孔424a的实施例中,一个第一缓冲部424中所包括的各个通孔424a的中心与另一个第一缓冲部424中所包括的各个通孔424a的中心沿排列方向对齐设置。
在另一个示例中,参见图26和图27所示,相邻两个第一缓冲部424各自在排列方向上的正投影部分重叠。示例性地,在第一缓冲部424包括通孔424a的实施例中,一个第一缓冲部424中所包括的各个通孔424a的中心与另一个第一缓冲部424中所包括的各个通孔424a的中心沿排列方向错开设置。
在一个实施例中,参见图28所示,两列贯通孔421沿绝缘板42的宽度方向Y间隔设置。仅在两列贯通孔421之间设置有第一缓冲部424。沿绝缘板42的宽度方向Y,在一列中的连接片41与另一列中的连接片41相互远离移动或相互靠近移动时,该第一缓冲部424能够吸收缓冲连接片41作用于第一缓冲部424上的拉伸或压缩应力。每列贯通孔421的数量为两个。可以理解地,每列贯通孔421的数量不局限于两个,也可以是一个或三个以上。
在一个实施例中,参见图29所示,两个以上的贯通孔421沿绝缘板42的长度方向X并排成一列设置。相邻两个贯通孔421之间的分隔部423上设置第一缓冲部424。可以理解地,两个以上的贯通孔421沿绝缘板42的宽度方向Y并排成一列设置。贯通孔421的排列方向与绝缘板42的宽度方向Y相同。相邻两个贯通孔421之间的分隔部423上设置第一缓冲部424。
在一个实施例中,根据产品制造需求,每个贯通孔421中可以设置一个或两个以上的连接片41。两个以上的连接片41沿两个贯通孔421的排列方向分布设置。
在一个实施例中,参见图21所示,沿绝缘板42的厚度方向Z,端子连接部412设置于贯通孔421内,而连接片41的连接部411穿过贯通孔421的孔壁嵌入绝缘板42,使得绝缘板42沿厚度方向Z的上表面和下表面分别凸出于端子连接部412的上表面和下表面。端子连接部412的下表面用于与二次电池31的电极端子311电连接。
本申请实施例的连接组件包括绝缘板42和连接片41。连接组件应用于电池模组20。绝缘板42上设置有贯通孔421、分隔相邻两个贯通孔421的分隔部423以及设置于分隔部423上的第一缓冲部424。连接片41 通过连接部411嵌接于绝缘板42。连接片41与贯通孔421对应设置。在第一缓冲部424承载外部应力时,可以通过自身变形的方式吸收缓冲外部应力。这样,一方面,连接片41和绝缘板42在制造过程中出现位置误差时,需要在组装连接组件和电池单元30的过程中,对连接片41的位置进行调整。由于设置第一缓冲部424,从而在调整连接片41时,第一缓冲部424会被拉伸或压缩以补偿连接片41的调整位移量,因此易于将连接片41调整至预定位置并且与二次电池31的电极端子311连接固定;另一方面,在电池模组20使用过程中,二次电池31存在膨胀变形的情况,从而会对与二次电池31相连接的连接片41施加拉伸应力。由于设置第一缓冲部424,连接片41可以将外部应力作用于第一缓冲部424,而第一缓冲部424可以通过自身变形的方式吸收、缓冲该外部应力,从而降低连接片41和电极端子311的连接处因承载过大的应力而导致连接片41和电极端子311的连接处出现开裂、分离的可能性,也可以降低连接片41与绝缘板42的连接处所承载的应力,降低连接片41与绝缘板42的连接处因承载较大应力而出现开裂、分离的情况的可能性,提高电池模组20的安全性和可靠性。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (17)

  1. 一种连接组件,用于电池模块,所述电池模块包括两个以上的二次电池,其中,所述连接组件包括:
    连接片,用于与所述二次电池电连接,所述连接片具有连接部;
    绝缘板,所述绝缘板自身为一体成型结构,所述连接部与所述绝缘板以不可拆卸的方式相互连接形成整体结构,所述绝缘板能够限制所述连接片移动。
  2. 根据权利要求1所述的连接组件,其中,所述连接部和所述绝缘板中的一者具有凸出部,另一者具有容纳部,所述凸出部和所述容纳部相互嵌接。
  3. 根据权利要求2所述的连接组件,其中,
    所述凸出部和所述容纳部形状相匹配;或者,
    所述连接部包括相连接的第一连接段和第二连接段,所述第一连接段和所述第二连接段相互错位设置。
  4. 根据权利要求2或3所述的连接组件,其中,所述容纳部具有两个以上的延伸段,两个以上的所述延伸段沿所述容纳部凹陷的方向设置,相邻两个所述延伸段中一者的正投影位于另一者的正投影内。
  5. 根据权利要求2至4任一项所述的连接组件,其中,所述容纳部为孔或凹槽。
  6. 根据权利要求2至4任一项所述的连接组件,其中,所述连接部具有所述容纳部,并且所述容纳部为沿所述绝缘板的厚度方向延伸的嵌接通孔,所述绝缘板具有所述凸出部,所述凸出部贯穿所述容纳部,所述绝缘板位于所述连接部上下两侧的部分通过所述凸出部连接。
  7. 根据权利要求2至6任一项所述的连接组件,其中,所述容纳部设置于所述连接部的边缘区域。
  8. 根据权利要求1至7任一项所述的连接组件,其中,所述绝缘板具有第一区域和第二区域,所述第二区域的一部分凸出所述第一区域设置,所述连接部埋设于所述第二区域内部。
  9. 根据权利要求1至8任一项所述的连接组件,其中,所述连接片的数量为两个以上,所述绝缘板包括第一缓冲部,相邻两个所述连接片之间设置所述第一缓冲部。
  10. 根据权利要求9所述的连接组件,其中,
    所述第一缓冲部包括一个长条形的通孔,所述通孔的长度方向与相邻两个所述连接片的排列方向相交;或者,
    所述第一缓冲部包括两个以上的通孔,两个以上的所述通孔沿与相邻两个所述连接片的排列方向相交的方向间隔设置;或者,
    所述第一缓冲部包括长条形的弧形结构,所述弧形结构的长度方向与相邻两个所述连接片的排列方向相交。
  11. 根据权利要求1至10任一项所述的连接组件,其中,所述连接片具有第二缓冲部,所述第二缓冲部与所述连接部间隔设置,所述绝缘板包括与所述第二缓冲部相 对应设置的第三缓冲部,所述第二缓冲部的部分埋设于所述第三缓冲部内部。
  12. 根据权利要求1至11任一项所述的连接组件,其中,所述绝缘板还包括长条形的中间容纳凹部,所述中间容纳凹部相对两侧中至少一侧设置所述连接片。
  13. 一种电池模块,其中,包括:
    两个以上的二次电池;
    如权利要求1至12任一项所述的连接组件,所述连接组件设置于所述二次电池的上方,所述二次电池通过所述连接片电连接。
  14. 一种使用电池模块作为电源的装置,其中,包括如权利要求13所述的电池模块,所述电池模块用于提供电能。
  15. 一种电池模块的连接组件的制造方法,其中,包括:
    将具有连接部的连接片放置于预定模具内;
    利用高速注塑工艺注塑在所述连接片的外围一体成型绝缘板,所述连接部与所述绝缘板以不可拆卸的方式相互连接形成整体结构,所述连接片和所述绝缘板组成所述连接组件。
  16. 根据权利要求15所述的制造方法,其中,在所述将具有连接部的连接片放置于预定模具内的步骤之前,所述制造方法还包括在连接片的连接部上制备嵌接通孔的步骤。
  17. 根据权利要求16所述的制造方法,其中,在所述利用高速注塑工艺注塑在所述连接片的外围一体成型绝缘板的步骤中,所述绝缘板形成贯穿所述嵌接通孔的凸出部,且使所述绝缘板位于所述连接部上下两侧的部分通过所述凸出部连接。
PCT/CN2020/130907 2020-03-31 2020-11-23 连接组件、电池模块、装置以及连接组件的制造方法 WO2021196667A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227019667A KR20220101658A (ko) 2020-03-31 2020-11-23 연결 어셈블리, 전지 모듈, 장치 및 연결 어셈블리의 제조 방법
JP2022532694A JP7541092B2 (ja) 2020-03-31 2020-11-23 接続組立体、電池モジュール、装置及び接続組立体の製造方法
EP20929038.6A EP3940879B1 (en) 2020-03-31 2020-11-23 Connection assembly, battery module, apparatus, and manufacturing method for connection assembly
US17/563,102 US20220123439A1 (en) 2020-03-31 2021-12-28 Connecting assembly, battery module, apparatus, and method for manufacturing connecting assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010241356.X 2020-03-31
CN202010241356.XA CN111129412B (zh) 2020-03-31 2020-03-31 连接组件、电池模块、装置以及连接组件的制造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/563,102 Continuation US20220123439A1 (en) 2020-03-31 2021-12-28 Connecting assembly, battery module, apparatus, and method for manufacturing connecting assembly

Publications (1)

Publication Number Publication Date
WO2021196667A1 true WO2021196667A1 (zh) 2021-10-07

Family

ID=70493881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130907 WO2021196667A1 (zh) 2020-03-31 2020-11-23 连接组件、电池模块、装置以及连接组件的制造方法

Country Status (6)

Country Link
US (1) US20220123439A1 (zh)
EP (1) EP3940879B1 (zh)
JP (1) JP7541092B2 (zh)
KR (1) KR20220101658A (zh)
CN (1) CN111129412B (zh)
WO (1) WO2021196667A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116845491A (zh) * 2023-08-29 2023-10-03 深圳海辰储能控制技术有限公司 隔离板组件、储能装置、用电系统及储能系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129412B (zh) * 2020-03-31 2020-12-29 江苏时代新能源科技有限公司 连接组件、电池模块、装置以及连接组件的制造方法
CN115498346B (zh) * 2022-10-24 2023-09-15 厦门海辰储能科技股份有限公司 一种电池箱挂耳、电池箱及电池簇架
CN117680557B (zh) * 2024-01-19 2024-06-14 东莞市坤琦精密五金有限公司 一种电池零部件用五金模具

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1988589A1 (en) * 1999-05-18 2008-11-05 Yazaki Corporation Battery Connection Plate And A Manufacturing Method Therefor
CN102263301A (zh) * 2010-05-24 2011-11-30 Sb锂摩托有限公司 电池模块
CN205429047U (zh) * 2016-03-22 2016-08-03 宁德时代新能源科技股份有限公司 一种电池模组
CN105914319A (zh) * 2016-07-01 2016-08-31 上海星历新能源科技有限公司 圆柱形电池模块以及制造方法
CN107403899A (zh) * 2016-05-20 2017-11-28 莫列斯有限公司 电池连接模块
CN109792026A (zh) * 2016-09-30 2019-05-21 株式会社自动网络技术研究所 连接模块
CN209169276U (zh) * 2018-11-15 2019-07-26 上海蓝诺新能源技术有限公司 一体式电池汇流排及电池模组
CN210272511U (zh) * 2019-05-15 2020-04-07 欣旺达惠州动力新能源有限公司 一种电池模组汇流排
CN111129412A (zh) * 2020-03-31 2020-05-08 江苏时代新能源科技有限公司 连接组件、电池模块、装置以及连接组件的制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3707595B2 (ja) 1998-09-09 2005-10-19 矢崎総業株式会社 バッテリ接続プレート
JP3811348B2 (ja) 2000-11-27 2006-08-16 矢崎総業株式会社 バッテリ接続プレート
JP2010097722A (ja) 2008-10-14 2010-04-30 Toshiba Corp 電池モジュール
JP5885718B2 (ja) * 2013-09-09 2016-03-15 豊田合成株式会社 バスバー保持部材および電池パック
JP2015115275A (ja) 2013-12-13 2015-06-22 株式会社東芝 電池モジュール
CN203839445U (zh) * 2013-12-31 2014-09-17 上海比亚迪有限公司 动力电池模组
JP2017069047A (ja) 2015-09-30 2017-04-06 株式会社東芝 組電池の製造方法および組電池
JP2018181780A (ja) * 2017-04-21 2018-11-15 矢崎総業株式会社 積層バスバおよび電池モジュール

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1988589A1 (en) * 1999-05-18 2008-11-05 Yazaki Corporation Battery Connection Plate And A Manufacturing Method Therefor
CN102263301A (zh) * 2010-05-24 2011-11-30 Sb锂摩托有限公司 电池模块
CN205429047U (zh) * 2016-03-22 2016-08-03 宁德时代新能源科技股份有限公司 一种电池模组
CN107403899A (zh) * 2016-05-20 2017-11-28 莫列斯有限公司 电池连接模块
CN105914319A (zh) * 2016-07-01 2016-08-31 上海星历新能源科技有限公司 圆柱形电池模块以及制造方法
CN109792026A (zh) * 2016-09-30 2019-05-21 株式会社自动网络技术研究所 连接模块
CN209169276U (zh) * 2018-11-15 2019-07-26 上海蓝诺新能源技术有限公司 一体式电池汇流排及电池模组
CN210272511U (zh) * 2019-05-15 2020-04-07 欣旺达惠州动力新能源有限公司 一种电池模组汇流排
CN111129412A (zh) * 2020-03-31 2020-05-08 江苏时代新能源科技有限公司 连接组件、电池模块、装置以及连接组件的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3940879A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116845491A (zh) * 2023-08-29 2023-10-03 深圳海辰储能控制技术有限公司 隔离板组件、储能装置、用电系统及储能系统
CN116845491B (zh) * 2023-08-29 2023-12-22 深圳海辰储能控制技术有限公司 隔离板组件、储能装置、用电系统及储能系统

Also Published As

Publication number Publication date
EP3940879A1 (en) 2022-01-19
JP7541092B2 (ja) 2024-08-27
EP3940879C0 (en) 2023-12-06
US20220123439A1 (en) 2022-04-21
KR20220101658A (ko) 2022-07-19
CN111129412A (zh) 2020-05-08
EP3940879A4 (en) 2022-07-06
EP3940879B1 (en) 2023-12-06
CN111129412B (zh) 2020-12-29
JP2023505135A (ja) 2023-02-08

Similar Documents

Publication Publication Date Title
WO2021196667A1 (zh) 连接组件、电池模块、装置以及连接组件的制造方法
CN106663760B (zh) 电源装置
CN100446306C (zh) 可再充电电池组件
CN106856233B (zh) 一种电芯模组结构
US20150333305A1 (en) Storage battery module
US20200220126A1 (en) Electricity storage module and manufacturing method of electricity storage module
KR102236799B1 (ko) 축전 장치 및 축전 장치 유닛
WO2021078006A1 (zh) 线束隔离板组件、电池模块、电池组及装置
CN106848113B (zh) 一种收容箱体及包含该收容箱体的电芯模组结构
CN107230757B (zh) 一种具有防水性能的电池包
WO2021078078A1 (zh) 连接组件、电池模块、电池组以及使用电池模块作为电源的设备
CN214203832U (zh) 电池组和用电装置
CN106684300B (zh) 一种电连接托盘及包含该电连接托盘的电芯模组结构
WO2021078067A1 (zh) 连接组件、电池模块、电池组以及使用电池模块作为电源的设备
CN210092284U (zh) 一种锂离子电池大模组结构
WO2021108986A1 (zh) 电池模组、电池组、装置及电池模组的制造方法
CN105226213A (zh) 一种电池支架、电池模组及电池组
WO2024031418A1 (zh) 电池、用电装置以及电池的成型方法
CN106784443B (zh) 一种绝缘上盖及包含该绝缘上盖的电芯模组结构
US20220123414A1 (en) Partition plate, battery module, battery pack, and device
JP2015191770A (ja) セルホルダ
CN206312984U (zh) 电池模组
CN220821771U (zh) 电池壳体及电池模组
JP2017111913A (ja) 電池パック
CN218160594U (zh) 一种电池组及电池包

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020929038

Country of ref document: EP

Effective date: 20211014

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929038

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532694

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227019667

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE