WO2021108942A1 - 一种自动扩膜的方法、存储介质及装置 - Google Patents

一种自动扩膜的方法、存储介质及装置 Download PDF

Info

Publication number
WO2021108942A1
WO2021108942A1 PCT/CN2019/122298 CN2019122298W WO2021108942A1 WO 2021108942 A1 WO2021108942 A1 WO 2021108942A1 CN 2019122298 W CN2019122298 W CN 2019122298W WO 2021108942 A1 WO2021108942 A1 WO 2021108942A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
distance
expansion
stretching
local area
Prior art date
Application number
PCT/CN2019/122298
Other languages
English (en)
French (fr)
Inventor
江仁杰
钟光韦
伍凯义
杨然翔
沈佳辉
Original Assignee
重庆康佳光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆康佳光电技术研究院有限公司 filed Critical 重庆康佳光电技术研究院有限公司
Priority to PCT/CN2019/122298 priority Critical patent/WO2021108942A1/zh
Priority to US17/055,910 priority patent/US11594655B2/en
Priority to CN201980002908.7A priority patent/CN111373550B/zh
Publication of WO2021108942A1 publication Critical patent/WO2021108942A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • H01L2221/68336Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding involving stretching of the auxiliary support post dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68354Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination

Definitions

  • the invention relates to the field of film expansion, in particular to a method, storage medium and device for automatic film expansion.
  • chip packaging technology is also constantly improving, of which CSP packaging (Chip Scale Package) is the latest generation of chip packaging technology , Making the technical performance of semiconductor chips have a new improvement.
  • CSP packaging Chip Scale Package
  • the process flow of CSP packaging includes die bonding, film lamination, cutting, testing and other steps.
  • the product is diced into a number of matrix wafers by a precision dicing machine; after the die is diced, it needs to be tested and divided into bins. If the distance is too small, crosstalk is likely to occur during the test, which affects the parameters of the test lamp beads. In order to eliminate the influence, it is generally necessary to first stretch the blue film or white film with the wafer through a film stretching machine to expand the distance between the LED wafers on the film before testing.
  • the existing expansion technology can fix the periphery of the LED chip expansion film, and stretch the expansion machine outward to change the original spacing of the LED chips.
  • this single external stretching method cannot effectively make all LED chips.
  • the cell pitch reaches the required target pitch, so that some LED crystal cell pitches have a large error with the target pitch, which makes it impossible to meet the requirements of CSP production and use.
  • the purpose of the present invention is to provide a method, storage medium and device for automatic film expansion, which aims to solve the problem that the existing film expansion technology cannot achieve the required goal of the distance between all adjacent LED wafers.
  • the distance between the LED chips on the expansion film is not uniform.
  • An automatic film expansion method which includes the following steps:
  • the whole film stretching is stopped and a search is made on the expansion film for whether there is a distance between adjacent LED crystal elements and the preset target distance.
  • the local area is locally stretched until the absolute difference between the distances between all adjacent LED chips in the local area and the preset target distance is equal If it is less than or equal to the preset error threshold, the local stretching is stopped.
  • the step of performing whole-film stretching of an expanded film provided with LED crystal elements of equal spacing on the surface, and real-time monitoring of the distance between adjacent LED crystal elements on the expanded film comprises:
  • the CCD camera monitors the distance between adjacent LED crystal elements on the expansion film in real time, and compares the monitored distance between adjacent LED crystal elements with the preset target distance in real time.
  • the step of searching on the expansion film for whether there is a local area where the absolute difference between the distance between adjacent LED crystal elements and the preset target distance is greater than a preset error threshold includes:
  • the method for automatic film expansion further includes the following steps:
  • the expansion membrane ends.
  • the step of stopping local stretching includes:
  • the local area When the local area exists on the expansion film, the local area is locally stretched for the first time, and the distance between adjacent LED chips in the local area is monitored in real time;
  • the first local stretching is stopped, and the local area is searched for whether there is a distance between adjacent LED crystal elements and The target sub-region where the absolute difference of the preset target distance is greater than the preset error threshold;
  • the n-th local stretch is performed on the target sub-area by analogy, where n is an integer greater than or equal to 2, until all adjacent LEDs in the target sub-area If the absolute difference between the chip spacing and the preset target spacing is less than or equal to the preset error threshold, the local stretching is stopped.
  • the step of locally stretching a local area includes:
  • the local stretching jig is fixed on the opposite sides of the local area, and the fixed stretching jig and the local stretching jig are controlled to stretch at the same rate and in the same direction.
  • the whole film stretching and the partial stretching both include one or both of X-axis direction stretching and Y-axis direction stretching.
  • the preset error threshold is 1-5% of the preset target distance.
  • a storage medium includes a plurality of instructions stored therein, and the instructions are suitable for being loaded by a processor and specifically executing the steps of an automatic film expansion method of the present invention.
  • An automatic film expansion device which includes a fixed stretching jig, a local stretching jig, a CCD camera, a driving mechanism and a controller, the fixed stretching jig and the local stretching jig and the driving mechanism
  • the CCD camera is electrically connected to the drive mechanism and the controller, and the controller includes a processor, which is adapted to implement each instruction; and a storage medium, which is adapted to store a plurality of instructions.
  • the present invention locally stretches the local area on the expansion film that satisfies the absolute difference between the distance between adjacent LED crystal elements and the preset target distance which is greater than the preset error threshold condition, so as to realize all the areas on the expansion film.
  • the absolute difference between the distance between adjacent LED chips and the preset target distance is less than or equal to the preset error threshold, which avoids that the absolute difference between the distance between adjacent LED chips and the preset target distance is too large.
  • Fig. 1 is a flow chart of an automatic film expansion method provided by an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of a whole film stretching provided by an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of partial stretching provided by an embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of an automatic film expansion device provided by an embodiment of the present invention.
  • FIG. 1 is a flowchart of a preferred embodiment of a method for changing the spacing of crystal elements provided by the present invention. As shown in the figure, it includes the following steps:
  • S100 Perform whole-film stretching of the expanded film provided with equal-spaced LED chips on the surface, and monitor the distance between adjacent LED chips on the expanded film in real time;
  • the expansion film is pre-arranged with LED crystal elements arranged at equal intervals.
  • the LED crystals produced by the stretching are different.
  • the rate of change of the cell spacing is different. Therefore, when the entire film is stretched, the LED die spacing on the expanded film only partially reaches the preset target spacing due to the different rate of change, while the remaining LED die spacing is different from the preset target spacing. The target distance will produce a certain difference.
  • the stretching of the entire film stops, by locally stretching the local area on the expansion film that meets the absolute difference between the distance between adjacent LED crystal elements and the preset target distance greater than the preset error threshold condition, it can be achieved that the The absolute difference between the distance between all adjacent LED chips on the expansion film and the preset target distance is less than or equal to the preset error threshold, which avoids the absolute difference between the distance between adjacent LED chips and the preset target distance It is too large to cause the problem that the CSP production and use requirements cannot be met.
  • the absolute difference between the distance between adjacent LED chips and the preset target distance refers to the absolute value of the difference between the distance between adjacent LED chips and the preset target distance.
  • the fixed stretching jig is fixed on the opposite sides of the expansion film to stretch the expansion film as a whole; the distance between adjacent LED chips on the expansion film is monitored in real time by a CCD camera , And compare the monitored distance between adjacent LED crystal elements with the preset target distance in real time.
  • the whole film stretching includes one or both of the X-axis direction stretching and the Y-axis direction stretching.
  • the expanded film can be expanded in the X direction first, and then The expansion in the Y direction is carried out so that the distance between adjacent LED crystal elements on the expansion film reaches the preset target distance in both the X-axis direction and the Y-axis direction, so as to meet the requirements of CSP production and use.
  • two fixed stretching jigs 10 are fixed on the left and right sides of the expansion film 20 in advance, and then The two fixed stretching jigs 10 are driven by a driving mechanism to be stretched at a constant speed in the opposite left and right directions, so as to realize that the distance between adjacent LED chips on the expansion film in the X-axis direction is changed; when it is necessary to perform the expansion on the expansion film
  • two fixed stretching jigs 10 are fixed in advance on the upper and lower sides of the expansion film 20, and then the two fixed stretching jigs are driven by driving electrodes 10 is stretched at a constant speed in opposite directions from top to bottom to achieve a change in the distance between adjacent LED chips on the expansion film in the Y axis direction.
  • the entire expansion film of the wafer is stretched by the fixed stretching jig.
  • the distance between adjacent LED wafers on the expansion film also increases.
  • the entire film stretching is stopped; all remaining adjacent LED crystals on the expanded film are calculated.
  • the absolute difference between the cell spacing and the preset target spacing; and the area on the expansion film that meets the absolute difference greater than the preset error threshold is recorded as a local area.
  • the whole film stretching is stopped, because the LED crystal elements located at different positions of the expansion film are being adjusted.
  • the gap change rate is different.
  • only part of the adjacent LED chips on the expanded film are the same as the preset target gap size, and the remaining part of the adjacent LED chips are located at different positions of the expanded film.
  • the preset target pitch cannot be achieved, so that the distance between adjacent LED crystal elements on the expansion film cannot be arranged at equal intervals after the entire film is stretched, which makes the distance between adjacent LED crystal elements on the expansion film uneven.
  • this embodiment continues to calculate the absolute difference between the distances between all adjacent LED crystal elements remaining on the expanded film and the preset target distance, and meets the requirement that the absolute difference is greater than the preset error threshold on the expanded film.
  • the area is recorded as a local area, so that the local area can be locally stretched later to realize that the distance between all adjacent LED crystal elements on the expansion film reaches the required preset target distance, so that the LED crystal element distance on the expansion film Evenly distributed.
  • the local area when the local area exists on the expansion film, the local area is locally stretched until the distance between all adjacent LED die in the local area is less than the preset target distance. If the absolute difference is less than or equal to the preset error threshold, the local stretching is stopped; when the local area does not exist on the expanded film, the expansion of the film is ended.
  • the local stretching also includes one or both of X-axis direction stretching and Y-axis direction stretching.
  • X-axis direction stretching As shown in FIG. 3, when it is necessary to locally stretch the local area on the expansion film in the X-axis direction, fix the two fixed stretching jigs 10 on the left and right sides of the expansion film when the entire film is stretched. The position of the side remains unchanged, and two local stretching jigs 30 are fixed on the left and right sides of the local area 40 to control the fixed stretching jig 10 and the local stretching on the left side of the local area.
  • the jig 30 is stretched at the same speed to the left, and the fixed stretching jig 10 and the local stretching jig 30 on the right side of the local area are controlled to be stretched at the same speed to the right.
  • the stretching speed of the stretching jig 30 to the left is the same as the stretching speed to the right.
  • the local stretching method provided in this embodiment can realize that the distance between adjacent LED chips located in a local area can be increased without changing the distance between adjacent LED chips in other areas on the expansion film; and the method provided in this embodiment can also Avoid contact between LED chips located in a local area and LED chips in other areas on the expansion film.
  • the step of stopping the local stretching includes: when the local area exists on the expansion film, performing the first local stretch on the local area , And monitor the distance between adjacent LED crystal elements in the local area in real time; when it is monitored that the distance between adjacent LED crystal elements in the local area is greater than or equal to the preset target distance, the first local stretching is stopped, and Search on the local area whether there is a target sub-area that makes the absolute difference between the distance between adjacent LED crystal elements and the preset target distance greater than the preset error threshold; when the target sub-area exists in the local area, Then, by analogy, the target sub-region is locally stretched for the nth time, where n is an integer greater than or equal to 2, until the absolute difference between all adjacent LED die pitches in the target sub-region and the preset target pitch is equal to
  • the preset error threshold is 1-5% of the preset target distance. Taking the preset error threshold as 5% of the preset target pitch as an example, when the preset target pitch is 100 microns, the preset error threshold is 5 microns.
  • the preset error threshold is 15% of the preset target distance. Taking the preset error threshold as 5% of the preset target pitch as an example, when the preset target pitch is 100 microns, the preset error threshold is 5 microns.
  • the preset error threshold is 5 microns.
  • the newly divided second area is locally stretched.
  • Both the local stretching process and the whole film stretching process are real-time detected by the CCD camera of the crystal cell spacing during the stretching process.
  • the local stretching process it is only necessary to detect the cell spacing of the second region currently being locally stretched, and it is not necessary to detect the cell spacing on the entire film.
  • the local stretching process when it is detected that the distance between the crystal elements in the second region reaches the target distance, the local stretching is stopped. Detect the size of the distance between all the crystal elements in the second area where the stretching is stopped, and calculate a new error value of the distance from the target. Compare the new error value with the error threshold again.
  • the die spacing adjustment is completed and the stretching ends; if there is still a new error value greater than the error threshold, it means that the die spacing is still Further adjustment is needed to divide the area where the error value of the crystal element spacing is greater than the error threshold into a new second area, and then locally stretch the new second area.
  • a storage medium which stores a plurality of instructions, and the instructions are suitable for being loaded by a processor and specifically executing the steps of an automatic film expansion method of the present invention.
  • an automatic film expansion device is also provided, as shown in FIG. 4, which includes a fixed stretching jig 10, a local stretching jig 30, a CCD camera 50, a driving mechanism 60 and a controller 70, Both the fixed stretching jig 10 and the partial stretching jig 30 are electrically connected to the driving mechanism 60, and the CCD camera 50 and the driving mechanism 60 are both electrically connected to the controller 70, and the controller 70 includes a processor 71, which is adapted to implement various instructions; and a storage medium 72, which is adapted to store a plurality of instructions, and the instructions are adapted to be loaded by the processor 71 and execute the steps of the automatic film expansion method of the present invention. .
  • the controller 70 sends a monitoring instruction to the CCD camera to control the CCD camera to monitor the distance between adjacent LED chips on the expansion film in real time;
  • the mechanism 60 sends a driving instruction to control the activation of the driving mechanism 60, thereby driving the fixed stretching jig 10 to stretch the expansion film as a whole, and driving the local stretching jig 30 to perform the expansion film on the expansion film. Partial stretch.
  • the present invention locally stretches the local area on the expansion film that satisfies the absolute difference between the distance between adjacent LED crystal elements and the preset target distance greater than the preset error threshold condition to achieve the expansion of the film.
  • the absolute difference between all adjacent LED die spacing and the preset target spacing is less than or equal to the preset error threshold, which avoids the excessive absolute difference between the adjacent LED die spacing and the preset target spacing. Lead to the problem that the CSP production and use requirements cannot be met.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

一种自动扩膜的方法、存储介质及装置。所述方法包括步骤:对扩张膜(20)进行整膜拉伸,并实时监测所述扩张膜(20)上的相邻LED晶元间距;当监测到所述扩张膜(20)上的相邻LED晶元间距大于等于预设目标间距时,则停止整膜拉伸并在所述扩张膜(20)上搜索是否存在使相邻LED晶元间距与预设目标间距的绝对差值大于所述预设误差阈值的局部区域(40);当所述扩张膜(20)上存在所述局部区域(40)时,则对所述局部区域(40)进行局部拉伸,直至所述局部区域(40)内的所有相邻LED晶元间距与所述预设目标间距的绝对差值均小于等于所述预设误差阈值,则停止局部拉伸。所述装置包括固定拉伸治具(10)、局部拉伸治具(30)、CCD摄像头(50)、驱动机构(60)以及控制器(70),所述固定拉伸治具(10)与局部拉伸治具(30)与所述驱动机构(60)电连接,所述CCD摄像头(50)与所述驱动机构(60)与所述控制器(70)电连接,所述控制器(70)包括处理器(71),适于实现各指令。所述存储介质(72)存储有多条指令,所述指令适于由处理器(71)加载并具体执行所述自动扩膜的方法的步骤。

Description

一种自动扩膜的方法、存储介质及装置 技术领域
本发明涉及扩膜领域,尤其涉及一种自动扩膜的方法、存储介质及装置。
背景技术
为了适应现代半导体芯片工艺的高速发展,尤其是倒装芯片的逐渐成熟与荧光粉涂覆科技的多样化,芯片封装技术也在不断改进,其中CSP封装(Chip ScalePackage)作为最新一代的芯片封装技术,使得半导体芯片技术性能又有了新的提升。
CSP封装的工艺流程包括固晶、压膜、切割、测试等步骤,其中压膜后通过精密划片机将产品划切成若干矩阵晶片;晶元划切后需测试分bin,若晶元之间间距过小,测试时容易产生串扰(crosstalk)现象,影响测试灯珠的参数。为了消除影响,一般需要先将带有晶元的蓝膜或者白膜先通过拉膜机拉伸,使膜上的LED晶元间距扩大后再进行测试。
现有的扩张技术可通过固定LED晶元扩张膜的外围,由扩张机向外拉伸改变LED晶元原本的间距,然而,这种单一由外拉伸的变化方式无法有效的使所有LED晶元间距达到所需的目标间距,使得部分LED晶元间距与目标间距有较大误差,从而无法达到CSP生产使用要求。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种自动扩膜的方法、存储介质及装置,旨在解决现有扩膜技术无法实现使所有相邻LED晶元间距达到所需的目标间距,使得扩张膜上的LED晶元间距不均匀的问题。
本发明为解决上述技术问题所采用的技术方案如下:
一种自动扩膜的方法,其中,包括步骤:
对表面设置有等间距LED晶元的扩张膜进行整膜拉伸,并实时监测所述扩张膜上的相邻LED晶元间距;
当监测到所述扩张膜上的相邻LED晶元间距大于等于预设目标间距时,则停止整膜拉伸并在所述扩张膜上搜索是否存在使相邻LED晶元间距与预设目标间距的绝对差值大于所述预设误差阈值的局部区域;
当所述扩张膜上存在所述局部区域时,则对所述局部区域进行局部拉伸,直至所述局部区域内的所有相邻LED晶元间距与所述预设目标间距的绝对差值均小于等于所述预设误差阈值,则停止局部拉伸。
所述自动扩膜的方法,其中,所述对表面设置有等间距LED晶元的扩张膜进行整膜拉伸,并实时监测所述扩张膜上相邻LED晶元间距的步骤包括:
将固定拉伸治具固定在扩张膜的相对两侧边上对所述扩张膜进行整膜拉伸;
通过CCD摄像头实时监测所述扩张膜上的相邻LED晶元间距,并将监测到的相邻LED晶元间距与所述预设目标间距进行实时比较。
所述自动扩膜的方法,其中,所述在所述扩张膜上搜索是否存在使相邻LED晶元间距与预设目标间距的绝对差值大于预设误差阈值的局部区域的步骤包括:
计算所述扩张膜上剩下的所有相邻LED晶元间距与所述预设目标间距的绝对差值;
将所述扩张膜上满足绝对差值大于所述预设误差阈值的区域记录为局部区域。
所述自动扩膜的方法,其中,还包括步骤:
当所述扩张膜上不存在所述局部区域时,则结束扩膜。
所述自动扩膜的方法,其中,所述当所述扩张膜上存在所述局部区域时,则对所述局部区域进行局部拉伸,直至所述局部区域内的所有相邻LED晶元间距与预设目标间距的绝对差值均小于等于所述预设误差阈值,则停止局部拉伸的步骤包括:
当所述扩张膜上存在所述局部区域时,则对所述局部区域进行第一次局部拉伸,并实时监测所述局部区域中的相邻LED晶元间距;
当监测到所述局部区域中的相邻LED晶元间距大于等于预设目标间距时,则停止第一次局部拉伸,并在所述局部区域上搜索是否存在使相邻LED晶元间距与预设目标间距的绝对差值大于所述预设误差阈值的目标子区域;
当所述局部区域存在所述目标子区域时,则依次类推对所述目标子区域进行 第n次局部拉伸,n为大于等于2的整数,直至所述目标子区域内的所有相邻LED晶元间距与预设目标间距的绝对差值均小于等于所述预设误差阈值,则停止局部拉伸。
所述自动扩膜的方法,其中,所述对局部区域进行局部拉伸的步骤包括:
将局部拉伸治具固定在所述局部区域的相对两侧边,控制所述固定拉伸治具与所述局部拉伸治具以相同速率同方向拉伸。
所述自动扩膜的方法,其中,所述整膜拉伸和局部拉伸均包括X轴方向拉伸和Y轴方向拉伸中的一种或两种。
所述自动扩膜的方法,其中,所述预设误差阈值为所述预设目标间距的1-5%。
一种存储介质,其中,包括存储有多条指令,所述指令适于由处理器加载并具体执行本发明一种自动扩膜的方法的步骤。
一种自动扩膜的装置,其中,包括固定拉伸治具、局部拉伸治具、CCD摄像头、驱动机构以及控制器,所述固定拉伸治具与局部拉伸治具与所述驱动机构电连接,所述CCD摄像头与所述驱动机构与所述控制器电连接,所述控制器包括包括处理器,适于实现各指令;以及存储介质,适于存储多条指令,所述指令适于由处理器加载并执行本发明一种所述自动扩膜的方法的步骤。
有益效果:本发明通过对扩张膜上满足相邻LED晶元间距与预设目标间距的绝对差值大于所述预设误差阈值条件的局部区域进行局部拉伸,实现所述扩张膜上的所有相邻LED晶元间距与所述预设目标间距的绝对差值均小于等于所述预设误差阈值,避免了由于相邻LED晶元间距与预设目标间距的绝对差值过大而导致无法达到CSP生产使用要求的问题。
附图说明
图1是本发明实施例提供的一种自动扩膜的方法流程图。
图2为本发明实施例提供的整膜拉伸示意图。
图3为本发明实施例提供的局部拉伸示意图。
图4为本发明实施例提供的一种自动给扩膜的装置结构示意图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,图1为本发明提供的一种改变晶元间距的方法较佳实施例的流程图,如图所示,其包括以下步骤:
S100、对表面设置有等间距LED晶元的扩张膜进行整膜拉伸,并实时监测所述扩张膜上的相邻LED晶元间距;
S200、当监测到所述扩张膜上的相邻LED晶元间距大于等于预设目标间距时,则停止整膜拉伸并在所述扩张膜上搜索是否存在使相邻LED晶元间距与预设目标间距的绝对差值大于所述预设误差阈值的局部区域;
S300、当所述扩张膜上存在所述局部区域时,则对所述局部区域进行局部拉伸,直至所述局部区域内的所有相邻LED晶元间距与所述预设目标间距的绝对差值均小于等于所述预设误差阈值,则停止局部拉伸。
本实施例中,所述扩张膜上预先设置有等间距排列的LED晶元,在对所述扩张膜进行整膜拉伸的过程中,由于所在扩张膜的位置不同,拉伸产生的LED晶元间距变化速率不同,因此当停止整膜拉伸时,所述扩张膜上的LED晶元间距由于变化速率不同使得只有部分达到预设目标间距,而剩余的LED晶元间距与所述预设目标间距会产生一定的差值。
当整膜拉伸停止后,通过对扩张膜上满足相邻LED晶元间距与预设目标间距的绝对差值大于所述预设误差阈值条件的局部区域进行局部拉伸,可实现使得所述扩张膜上的所有相邻LED晶元间距与所述预设目标间距的绝对差值均小于等于所述预设误差阈值,避免了由于相邻LED晶元间距与预设目标间距的绝对差值过大而导致无法达到CSP生产使用要求的问题。本实施例中,所述相邻LED晶元间距与预设目标间距的绝对差值是指相邻LED晶元间距与预设目标间距的差值的绝对值。
在一些实施方式中,将固定拉伸治具固定在扩张膜的相对两侧边上对所述扩张膜进行整膜拉伸;通过CCD摄像头实时监测所述扩张膜上的相邻LED晶元间距,并将监测到的相邻LED晶元间距与所述预设目标间距进行实时比较。
本实施例中,所述整膜拉伸包括X轴方向拉伸和Y轴方向拉伸中的一种或 两种,如图2所示,可以对扩张膜先进行X方向上的扩张,再进行Y方向上的扩张,使扩张膜上的相邻LED晶元间距在X轴方向和Y轴方向均达到预设目标间距,从而满足CSP生产使用要求。
如图2所示,当需要对所述扩张膜进行沿X轴方向的整膜拉伸时,则预先将两块固定拉伸治具10固定在所述扩张膜20的左右两侧边,然后通过驱动机构驱动所述两块固定拉伸治具10沿左右相反方向匀速拉伸,以实现扩张膜上的相邻LED晶元在X轴方向的间距发生变化;当需要对所述扩张膜进行沿Y轴方向的整膜拉伸时,则预先将两块固定拉伸治具10固定在所述扩张膜20的上下两侧边,然后通过驱动电极驱动给所述两块固定拉伸治具10沿上下相反方向匀速拉伸,以实现扩张膜上的相邻LED晶元在Y轴方向的间距发生变化。
本实施例中,通过所述固定拉伸治具对所述晶元扩张膜进行整膜拉伸,随着拉伸时间的推移,所述扩张膜上的相邻LED晶元间距也随之增大,通过CCD摄像头实时监测所述扩张膜上的相邻LED晶元间距,并将监测到的相邻LED晶元间距与所述预设目标间距进行实时比较,根据比较结果判断是否停止整膜拉伸。
在一些实施方式中,当监测到所述扩张膜上的相邻LED晶元间距大于等于预设目标间距时,则停止整膜拉伸;计算所述扩张膜上剩下的所有相邻LED晶元间距与所述预设目标间距的绝对差值;将所述扩张膜上满足绝对差值大于所述预设误差阈值的区域记录为局部区域。
本实施例中,当监测到所述扩张膜上存在某一相邻LED晶元间距大于等于预设目标间距的情况时,停止整膜拉伸,由于位于扩张膜不同位置的LED晶元在整膜拉伸过程中产生间距变化速率不同,此时扩张膜上只有部分相邻LED晶元间与预设目标间距大小一致,而剩下的部分相邻LED晶元由于所在扩张膜的位置不同,无法达到预设目标间距,从而导致扩张膜上的相邻LED晶元间距在经过整膜拉伸后无法实现等间距排列,使得扩张膜上的相邻LED晶元间距不均匀。因此本实施例继续计算所述扩张膜上剩下的所有相邻LED晶元间距与所述预设目标间距的绝对差值,将所述扩张膜上满足绝对差值大于所述预设误差阈值的区域记录为局部区域,便于后期对局部区域进行局部拉伸,以实现所述扩张膜上所有相邻LED晶元间距均达到所需的预设目标间距,使得扩张膜上的LED晶元间距均匀分布。
在一些实施方式中,当所述扩张膜上存在所述局部区域时,则对所述局部区域进行局部拉伸,直至所述局部区域内的所有相邻LED晶元间距与预设目标间距的绝对差值均小于等于所述预设误差阈值,则停止局部拉伸;当所述扩张膜上不存在所述局部区域时,则结束扩膜。
本实施例中,所述局部拉伸同样包括X轴方向拉伸和Y轴方向拉伸中的一种或两种。如图3所示,当需要对扩张膜上的局部区域进行X轴方向的局部拉伸时,将所述两块固定拉伸治具10固定在扩张膜进行整膜拉伸时的左右两侧边位置不变,将两块局部拉伸治具30固定在所述局部区域40的左右两侧边,控制位于所述局部区域左侧的所述固定拉伸治具10与所述局部拉伸治具30向左以相同的速度匀速拉伸,控制位于所述局部区域右侧的固定拉伸治具10与所述局部拉伸治具30向右以相同的速度匀速拉伸,所述局部拉伸治具30向左的拉伸速度与向右的拉伸速度相同。本实施例提供的局部拉伸方法可实现将位于局部区域的相邻LED晶元间距变大,而不改变扩张膜上其它区域的相邻LED晶元间距;且本实施例提供的方法还可以避免位于局部区域的LED晶元与扩张膜上其它区域的LED晶元发生碰触。
在一些实施方式中,所述当所述扩张膜上存在所述局部区域时,则对所述局部区域进行局部拉伸,直至所述局部区域内的所有相邻LED晶元间距与预设目标间距的绝对差值均小于等于所述预设误差阈值,则停止局部拉伸的步骤包括:当所述扩张膜上存在所述局部区域时,则对所述局部区域进行第一次局部拉伸,并实时监测所述局部区域中的相邻LED晶元间距;当监测到所述局部区域中的相邻LED晶元间距大于等于预设目标间距时,则停止第一次局部拉伸,并在所述局部区域上搜索是否存在使相邻LED晶元间距与预设目标间距的绝对差值大于所述预设误差阈值的目标子区域;当所述局部区域存在所述目标子区域时,则依次类推对所述目标子区域进行第n次局部拉伸,n为大于等于2的整数,直至所述目标子区域内的所有相邻LED晶元间距与预设目标间距的绝对差值均小于等于所述预设误差阈值,则停止局部拉伸。
在一些实施方式中,所述预设误差阈值为所述预设目标间距的1-5%。以所述预设误差阈值为所述预设目标间距的5%为例,当所述预设目标间距为100微米时,则所述预设误差阈值为5微米。本实施例中,当所述扩张膜经过整膜拉伸 后,若仍然存在相邻LED晶元间距小于95微米的区域,则将所述扩张膜中所有存在相邻LED晶元间距小于95微米的区域记录为局部区域,接着对所述局部区域进行至少一次局部拉伸,使得所述局部区域中的所有相邻LED晶元间距均大于95微米,则结束局部拉伸。
本实施例中,对新划分的第二区域进行局部拉伸。局部拉伸过程与整膜拉伸过程都是由CCD摄像头实时检测拉伸过程中的晶元间距。但在局部拉伸过程中,只需要对当前进行局部拉伸的第二区域的晶元间距进行检测,而不需对整张膜上的晶元间距进行检测。局部拉伸过程中,当所检测到第二区域内有晶元间距达到目标间距时,停止局部拉伸。检测停止拉伸的第二区域内所有晶元间距的大小,并计算得到与目标间距的新的误差值。将新的误差值重新与误差阈值进行对比,若所有新的误差值均小于误差阈值,代表晶元间距调整完成,结束拉伸;若依然有新的误差值大于误差阈值,代表晶元间距还需要进一步调整,将晶元间距误差值大于误差阈值的区域划分为新的第二区域,再对新的第二区域进行局部拉伸。
在一些实施方式中,还提供一种存储介质,存储有多条指令,所述指令适于由处理器加载并具体执行本发明一种自动扩膜的方法的步骤。
在一些实施方式中,还提供一种自动扩膜的装置,如图4所示,其包括固定拉伸治具10、局部拉伸治具30、CCD摄像头50、驱动机构60以及控制器70,所述固定拉伸治具10和局部拉伸治具30均与所述驱动机构60电连接,所述CCD摄像头50和所述驱动机构60均与所述控制器70电连接,所述控制器70包括包括处理器71,适于实现各指令;以及存储介质72,适于存储多条指令,所述指令适于由处理器71加载并执行本发明一种所述自动扩膜的方法的步骤。
本实施例中,通过所述控制器70向所述CCD摄像头发送监测指令,控制所述CCD摄像头实时监测所述扩张膜上的相邻LED晶元间距;通过所述控制器70向所述驱动机构60发送驱动指令,控制所述驱动机构60启动,从而带动所述固定拉伸治具10对所述扩张膜进行整膜拉伸,带动所述局部拉伸治具30对所述扩张膜进行局部拉伸。
综上所述,本发明通过对扩张膜上满足相邻LED晶元间距与预设目标间距的绝对差值大于所述预设误差阈值条件的局部区域进行局部拉伸,实现所述扩张膜上的所有相邻LED晶元间距与所述预设目标间距的绝对差值均小于等于所述 预设误差阈值,避免了由于相邻LED晶元间距与预设目标间距的绝对差值过大而导致无法达到CSP生产使用要求的问题。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种自动扩膜的方法,其特征在于,包括步骤:
    对表面设置有等间距LED晶元的扩张膜进行整膜拉伸,并实时监测所述扩张膜上的相邻LED晶元间距;
    当监测到所述扩张膜上的相邻LED晶元间距大于等于预设目标间距时,则停止整膜拉伸并在所述扩张膜上搜索是否存在使相邻LED晶元间距与预设目标间距的绝对差值大于所述预设误差阈值的局部区域;
    当所述扩张膜上存在所述局部区域时,则对所述局部区域进行局部拉伸,直至所述局部区域内的所有相邻LED晶元间距与所述预设目标间距的绝对差值均小于等于所述预设误差阈值,则停止局部拉伸。
  2. 根据权利要求1所述自动扩膜的方法,其特征在于,所述对表面设置有等间距LED晶元的扩张膜进行整膜拉伸,并实时监测所述扩张膜上相邻LED晶元间距的步骤包括:
    将固定拉伸治具固定在扩张膜的相对两侧边上对所述扩张膜进行整膜拉伸;
    通过CCD摄像头实时监测所述扩张膜上的相邻LED晶元间距,并将监测到的相邻LED晶元间距与所述预设目标间距进行实时比较。
  3. 根据权利要求2所述自动扩膜的方法,其特征在于,所述在所述扩张膜上搜索是否存在使相邻LED晶元间距与预设目标间距的绝对差值大于预设误差阈值的局部区域的步骤包括:
    计算所述扩张膜上剩下的所有相邻LED晶元间距与所述预设目标间距的绝对差值;
    将所述扩张膜上满足绝对差值大于所述预设误差阈值的区域记录为局部区域。
  4. 根据权利要求1所述自动扩膜的方法,其特征在于,还包括步骤:
    当所述扩张膜上不存在所述局部区域时,则结束扩膜。
  5. 根据权利要求3所述自动扩膜的方法,其特征在于,所述当所述扩张膜上存在所述局部区域时,则对所述局部区域进行局部拉伸,直至所述局部区域内的所有相邻LED晶元间距与预设目标间距的绝对差值均小于等于所述预设误差阈值,则停止局部拉伸的步骤包括:
    当所述扩张膜上存在所述局部区域时,则对所述局部区域进行第一次局部 拉伸,并实时监测所述局部区域中的相邻LED晶元间距;
    当监测到所述局部区域中的相邻LED晶元间距大于等于预设目标间距时,则停止第一次局部拉伸,并在所述局部区域上搜索是否存在使相邻LED晶元间距与预设目标间距的绝对差值大于所述预设误差阈值的目标子区域;
    当所述局部区域存在所述目标子区域时,则依次类推对所述目标子区域进行第n次局部拉伸,n为大于等于2的整数,直至所述目标子区域内的所有相邻LED晶元间距与预设目标间距的绝对差值均小于等于所述预设误差阈值,则停止局部拉伸。
  6. 根据权利要求1所述自动扩膜的方法,其特征在于,所述对局部区域进行局部拉伸的步骤包括:
    将局部拉伸治具固定在所述局部区域的相对两侧边,控制所述固定拉伸治具与所述局部拉伸治具以相同速率同方向拉伸。
  7. 根据权利要求1所述自动扩膜的方法,其特征在于,所述整膜拉伸和局部拉伸均包括X轴方向拉伸和Y轴方向拉伸中的一种或两种。
  8. 根据权利要求1所述自动扩膜的方法,其特征在于,所述预设误差阈值为所述预设目标间距的1-5%。
  9. 一种存储介质,其特征在于,包括存储有多条指令,所述指令适于由处理器加载并具体执行权利要求1-8任意一种自动扩膜的方法的步骤。
  10. 一种自动扩膜的装置,其特征在于,包括固定拉伸治具、局部拉伸治具、CCD摄像头、驱动机构以及控制器,所述固定拉伸治具与局部拉伸治具与所述驱动机构电连接,所述CCD摄像头与所述驱动机构与所述控制器电连接,所述控制器包括包括处理器,适于实现各指令;以及存储介质,适于存储多条指令,所述指令适于由处理器加载并执行权利要求1-8任意一种所述自动扩膜的方法的步骤。
PCT/CN2019/122298 2019-12-02 2019-12-02 一种自动扩膜的方法、存储介质及装置 WO2021108942A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/122298 WO2021108942A1 (zh) 2019-12-02 2019-12-02 一种自动扩膜的方法、存储介质及装置
US17/055,910 US11594655B2 (en) 2019-12-02 2019-12-02 Method for automatic film expansion, storage medium, and device
CN201980002908.7A CN111373550B (zh) 2019-12-02 2019-12-02 一种自动扩膜的方法、存储介质及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/122298 WO2021108942A1 (zh) 2019-12-02 2019-12-02 一种自动扩膜的方法、存储介质及装置

Publications (1)

Publication Number Publication Date
WO2021108942A1 true WO2021108942A1 (zh) 2021-06-10

Family

ID=71212384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122298 WO2021108942A1 (zh) 2019-12-02 2019-12-02 一种自动扩膜的方法、存储介质及装置

Country Status (3)

Country Link
US (1) US11594655B2 (zh)
CN (1) CN111373550B (zh)
WO (1) WO2021108942A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026544A (ja) * 2011-07-25 2013-02-04 Disco Abrasive Syst Ltd ウェーハ拡張装置
CN104112691A (zh) * 2014-07-26 2014-10-22 佛山市南海区联合广东新光源产业创新中心 均匀扩张的扩晶机
US20180240941A1 (en) * 2014-10-20 2018-08-23 PlayNitride Inc. Method for expanding spacings in light-emitting element array
CN109256350A (zh) * 2018-08-29 2019-01-22 华中科技大学 一种基于逐级均匀扩展的微器件巨量转移装置及方法
CN110429051A (zh) * 2019-08-12 2019-11-08 深圳市思坦科技有限公司 芯片转移方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872213B (zh) * 2014-02-14 2016-12-07 环视先进数字显示无锡有限公司 一种自动针击式贴片led制造方法
CN204946921U (zh) * 2015-09-18 2016-01-06 安徽三安光电有限公司 一种具有倒膜、扩膜功能的一体机
JP6204639B1 (ja) * 2016-03-30 2017-09-27 三井化学東セロ株式会社 半導体装置の製造方法
CN108807236A (zh) * 2018-06-23 2018-11-13 江苏罗化新材料有限公司 一种半自动扩膜机及扩膜工艺
CN109285802B (zh) * 2018-08-29 2021-01-05 华中科技大学 一种基于双向扩晶法的微器件巨量转移装置及方法
CN208986018U (zh) * 2018-11-28 2019-06-14 深圳市沐耐特光电科技有限公司 一种led生产用扩晶装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026544A (ja) * 2011-07-25 2013-02-04 Disco Abrasive Syst Ltd ウェーハ拡張装置
CN104112691A (zh) * 2014-07-26 2014-10-22 佛山市南海区联合广东新光源产业创新中心 均匀扩张的扩晶机
US20180240941A1 (en) * 2014-10-20 2018-08-23 PlayNitride Inc. Method for expanding spacings in light-emitting element array
CN109256350A (zh) * 2018-08-29 2019-01-22 华中科技大学 一种基于逐级均匀扩展的微器件巨量转移装置及方法
CN110429051A (zh) * 2019-08-12 2019-11-08 深圳市思坦科技有限公司 芯片转移方法

Also Published As

Publication number Publication date
US11594655B2 (en) 2023-02-28
CN111373550B (zh) 2021-11-02
US20210313484A1 (en) 2021-10-07
CN111373550A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
KR101923274B1 (ko) 다이 본더 및 본딩 방법
US20160332279A1 (en) Workpiece processing apparatus and workpiece processing method
US20130137196A1 (en) Method for monitoring devices in semiconductor process
WO2021108942A1 (zh) 一种自动扩膜的方法、存储介质及装置
KR20180109678A (ko) 다이 본딩 장치 및 반도체 장치의 제조 방법
JP3635168B2 (ja) リードフレームのテーピング装置
US11621187B2 (en) Systems and methods for controlling substrate approach toward a target horizontal plane
US7087457B2 (en) Die bonding method and apparatus
US20070255513A1 (en) Inspecting method, inspecting apparatus, and method of manufacturing semiconductor device
JPH11156694A (ja) ワイヤーソー切断方法および装置
JPH06232258A (ja) 半導体ウェーハのダイシング装置
CN115825689A (zh) 一种半导体芯片测试装备及测试方法
KR102375702B1 (ko) 테스트 장치 및 이를 이용한 웨이퍼 테스트 방법
US20240112929A1 (en) Processing device
CN107392492B (zh) 一种半导体智能化管理系统
TW202205483A (zh) 將半導體元件壓靠在引線接合機上的支撐結構上的夾持最佳化的方法、及相關方法
US6549822B1 (en) Method and apparatus for control of multi-cup semiconductor manufacturing tracks
JP2000269164A (ja) 半導体ウェーハのダイシング方法及び装置
WO2022222326A1 (zh) 晶圆工作台平整度的监测方法、装置、系统及存储介质
TWM589361U (zh) 用於半導體晶粒分選和測試處理器的系統
JPH07201780A (ja) ダイシング装置
US9147584B2 (en) Rotating curing
US20240120867A1 (en) Motor control method, transfer device, and storing medium
Qin et al. Smart wire bonding processes for smart factories
JP2020064441A (ja) 加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955158

Country of ref document: EP

Kind code of ref document: A1