WO2022222326A1 - 晶圆工作台平整度的监测方法、装置、系统及存储介质 - Google Patents

晶圆工作台平整度的监测方法、装置、系统及存储介质 Download PDF

Info

Publication number
WO2022222326A1
WO2022222326A1 PCT/CN2021/112884 CN2021112884W WO2022222326A1 WO 2022222326 A1 WO2022222326 A1 WO 2022222326A1 CN 2021112884 W CN2021112884 W CN 2021112884W WO 2022222326 A1 WO2022222326 A1 WO 2022222326A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
flatness
wafer table
focal length
yield
Prior art date
Application number
PCT/CN2021/112884
Other languages
English (en)
French (fr)
Inventor
蔡孟勋
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/677,168 priority Critical patent/US20220341732A1/en
Publication of WO2022222326A1 publication Critical patent/WO2022222326A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/30Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process

Definitions

  • the present application relates to the field of semiconductor technology, and in particular, to a method, device, system and storage medium for monitoring the flatness of a wafer table.
  • wafer carrier defect spots chuck spots
  • wafer yield reducing wafer yield.
  • the wafers need to be mounted on a wafer table when they are processed.
  • the wafer In the process of loading and unloading, due to factors such as gravity, the wafer has more contact with the edge of the wafer table, which causes the edge of the wafer table to wear faster, which in turn affects the production of the wafer edge process window. wafer edge process window), reducing the yield of the wafer portion at the edge of the wafer table.
  • the first is to use manufacturer's standard wafers to achieve in-line measurement of wafer table flatness, however, standard wafers have a short lifespan and are expensive.
  • the second method is to use controlled wafer measurement during shutdown. However, this method cannot be used for online measurement, and requires the workpiece to be stopped, which increases the tool up time and affects the wafer processing efficiency.
  • the present application provides a method for monitoring the flatness of a wafer table, including:
  • an edge flatness curve of the wafer table is obtained, and the edge flatness curve reflects the change of the edge flatness of the wafer table with respect to time;
  • a yield curve of the wafer is obtained, and the yield curve reflects the change of the yield of the wafer with respect to time;
  • the edge flatness value of the wafer table corresponding to the replacement of the wafer table is determined.
  • the present application provides a device for monitoring the flatness of a wafer table, including:
  • an acquisition module for acquiring the yield rate of the wafer and the original focal length data of the wafer detected by the focal length monitor in real time;
  • a processing module configured to obtain an edge flatness curve of the wafer table based on the original focal length data, where the edge flatness curve reflects the change of the edge flatness of the wafer table with respect to time;
  • yield curve of the wafer based on the yield of the wafer, and the yield curve reflects the change of the yield of the wafer with respect to time; it is also used to obtain a yield curve of the wafer based on the edge flatness curve and the yield curve to obtain a trend graph of the edge flatness and the yield with respect to time;
  • the flatness determination module is used for determining the edge flatness value of the wafer table corresponding to the replacement of the wafer table based on the trend graph.
  • the present application provides a system for monitoring the flatness of a wafer table, including a yield test device, a focal length monitor, and a controller;
  • the yield testing device is used for real-time detection of the yield of the wafer
  • the focal length monitor is used for real-time detection of the original focal length data of the wafer
  • the controller includes a memory and a processor
  • the memory stores a computer program that, when executed by the processor, implements the steps of the method as described in any of the above.
  • the present application provides a storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of any of the above methods.
  • the above-mentioned method, device, system and storage medium for monitoring the flatness of the wafer table obtain the original focal length data of the wafer in real time to obtain the change of the edge flatness of the wafer table with respect to time, and the wafers used are not limited to standard wafers.
  • the circle can also be an ordinary wafer, which can improve the applicability of the monitoring method and reduce the cost; and the focal length monitor can obtain the original focal length data of the wafer in real time without stopping, so as to realize the online monitoring of the flatness of the wafer table. At the same time, it will not affect the wafer processing efficiency.
  • the above-mentioned method for monitoring the flatness of the wafer table also obtains the yield rate of the wafer in real time to obtain the yield curve of the wafer, and obtains the edge flatness of the wafer table and the yield curve of the wafer according to the edge flatness curve and the yield curve.
  • the trend graph of yield versus time is used to determine the edge flatness of the corresponding wafer table when replacing the wafer table, which is helpful for the operator to know when to replace the wafer table and avoid the wear of the wafer table exceeding a certain level. As a result, the yield of the wafer is too low.
  • FIG. 1 is a flowchart of a method for monitoring the flatness of a wafer table provided in an embodiment of the application
  • FIG. 2 is a flowchart of a method for monitoring the flatness of a wafer table provided in another embodiment of the present application
  • FIG. 3 is a schematic diagram of a relationship curve between the focal length and the radius of each position on the wafer provided in an embodiment of the application;
  • FIG. 4 is a schematic diagram of an edge flatness curve of a wafer table provided in an embodiment of the application.
  • 5 is a trend diagram of the edge flatness of the wafer table and the yield rate of the wafer with respect to time according to an embodiment of the application;
  • FIG. 6 is a structural block diagram of a device for monitoring the flatness of a wafer table according to an embodiment of the present application.
  • a monitoring device for the flatness of the wafer table 60.
  • a monitoring device for the flatness of the wafer table 61.
  • An acquisition module 62.
  • a processing module 63.
  • a flatness determination module 63.
  • FIG. 1 is a flowchart of a method for monitoring the flatness of a wafer stage in an embodiment.
  • the monitoring methods for wafer table flatness include:
  • step S11 the yield rate of the wafer and the original focal length data of the wafer detected by the focal length monitor are acquired in real time.
  • a focal length monitor is used to monitor the focal length (focus) at each position on the wafer in real time.
  • the focal length monitor may be, for example, a phase shift focus monitor (PSFM, phase shift focus monitor) or the like.
  • PSFM phase shift focus monitor
  • the focal length monitor can monitor the focal length of all positions on the wafer at every moment.
  • the wafer is generally circular, so the original focal length data can be classified according to the different distances from the center point of the wafer along the radial direction on the wafer.
  • the radius here refers to the focal length at the focal distance from the wafer).
  • the focal length on the wafer at a distance of 100mm from the center point of the wafer is called the focal length corresponding to a radius of 100mm.
  • the wafers used in this embodiment are not limited to standard wafers, and may also be ordinary wafers.
  • the original focal length data of the wafer detected by the focal length monitor can be recorded in the process flow report of the lithography machine, and the original focal length data of the wafer can be obtained in real time through the report.
  • the yield test device can be configured to detect the yield of the wafer in real time.
  • the yield of the detected wafer at different times can be recorded in the lithography machine process report, and the yield of the wafer can be obtained in real time through the report.
  • step S12 based on the original focal length data, an edge flatness curve of the wafer table is obtained, and the edge flatness curve reflects the change of the edge flatness of the wafer table with respect to time.
  • the inventor creatively found that as the use time of the wafer table increases, the wear of the edge of the wafer table will gradually increase, that is, the flatness of the edge of the wafer table will change, so that the fixed edge of the wafer table will change. Wafer effects cause different wafers to have different focal lengths at the same location at different times. Therefore, based on the raw focal length data acquired in real time, an edge flatness curve of the wafer table that reflects the change of the edge flatness of the wafer table with respect to time can be obtained.
  • step S13 based on the yield of the wafer, a yield curve of the wafer is obtained, and the yield curve reflects the change of the yield of the wafer with respect to time.
  • the yield rate of the wafer at different times can be obtained through the process flow report of the lithography machine, so as to obtain the yield curve of the wafer reflecting the change of the yield rate of the wafer with respect to time.
  • Step S14 based on the edge flatness curve and the yield curve, obtain a trend graph of the edge flatness and yield with respect to time.
  • the edge flatness curve and the yield curve can be integrated into a trend graph.
  • the abscissa of the edge flatness curve and the yield curve is time
  • the ordinate of the edge flatness curve can represent the edge flatness.
  • the ordinate of the curve can represent yield, thereby representing edge flatness and yield over time in the same coordinate system.
  • the ordinate of the coordinate system may also be expressed as time
  • the abscissa of the edge flatness curve may be expressed as edge flatness
  • the abscissa of the yield curve may be expressed as yield.
  • Step S15 based on the trend graph, determine the edge flatness value of the corresponding wafer table when the wafer table is replaced.
  • the trend graph includes the edge flatness curve of the wafer table and the yield curve of the wafer. According to the edge flatness curve and the yield curve of the wafer satisfying a certain preset relationship, the edge flatness curve on the edge can be determined. A certain edge flatness value is used as the edge flatness value of the corresponding wafer table when the wafer table is replaced.
  • the above-mentioned method for monitoring the flatness of the wafer table obtains the original focal length data of the wafer in real time to obtain the change of the edge flatness of the wafer table with respect to time, and the wafers used are not limited to standard wafers but also ordinary wafers. , so that the applicability of the monitoring method can be improved and the cost can be reduced; and the focal length monitor can obtain the original focal length data of the wafer in real time without shutting down, so that the flatness of the wafer table can be monitored online without affecting the wafer. processing efficiency.
  • the above-mentioned method for monitoring the flatness of the wafer table also obtains the yield rate of the wafer in real time to obtain the yield curve of the wafer, and obtains the edge flatness of the wafer table and the yield curve of the wafer according to the edge flatness curve and the yield curve.
  • the trend graph of yield versus time is used to determine the edge flatness of the corresponding wafer table when replacing the wafer table, which is helpful for the operator to know when to replace the wafer table and avoid the wear of the wafer table exceeding a certain level. As a result, the yield of the wafer is too low.
  • the raw focal length data includes focal length data corresponding to different radii of the wafer.
  • step S12 obtaining the edge flatness curve of the wafer table based on the original focal length data includes steps S121 to S122 .
  • Step S121 intercepting focal length data with a preset radius in the original focal length data.
  • the relationship curve between the focal length and the radius of each position on the wafer can be obtained according to the original focal length data, the abscissa of the relationship curve represents the radius, the ordinate of the relationship curve represents the focal length, and a part of the curve is intercepted , specifically, a curve with a preset radius may be intercepted according to the value of the abscissa (the curve in the box in FIG. 3 is the intercepted part).
  • the relationship curve between the focal length and the radius of each position on the wafer may not be formed, and the preset radius and its corresponding focal length data may be directly intercepted from the original focal length data.
  • the predetermined radius range is 0-10 mm from the wafer edge along the wafer radius, that is, the focal length data corresponding to each position within the predetermined range of the wafer edge is captured.
  • the predetermined radius range is the position where the radius of the wafer is 140-150 mm.
  • the preset radius range may be 0 to 5 mm from the edge of the wafer along the wafer radius.
  • the preset radius range is 145 to 150 mm in the radius of the wafer. s position.
  • the preset radius range may be 3 to 5 mm from the edge of the wafer along the wafer radius.
  • the preset radius range is 145 to 147 mm in the radius of the wafer. s position.
  • Step S122 obtaining a variation curve of the standard deviation of the focal length with respect to time based on the intercepted focal length data of the preset radius, and the variation curve of the standard deviation of the focal length with respect to time is an edge flatness curve.
  • the standard deviation (Focus STD) of the focal length at each preset radius on the wafer at each moment calculates the standard deviation (Focus STD) of the focal length at each preset radius on the wafer at each moment, and establish a coordinate system, the abscissa of the coordinate system is time (date), and the coordinate system
  • the ordinate of is the standard deviation of the focal length at each preset radius
  • the change curve of the standard deviation of the focal length with respect to time that is, the edge flatness curve
  • the size of the standard deviation of the focal length at each moment can reflect the overall flatness of the wafer table at that moment.
  • the average value of the focal lengths at positions with the same radius on the wafer may be taken as the focal length corresponding to the radius.
  • Each radius corresponds to a focal length.
  • Step S122 calculates the standard deviation of the focal length corresponding to each preset radius on the wafer at each moment.
  • the average value of the focal lengths at the position on the wafer in contact with the wafer table may be taken as the focal length corresponding to the radius.
  • Each radius corresponds to a focal length.
  • Step S122 calculates the standard deviation of the focal length corresponding to each preset radius on the wafer at each moment.
  • step S122 may calculate the standard deviation of the focal lengths of all positions on the wafer at each preset radius at each moment. Each radius corresponds to multiple focal lengths.
  • step S122 may calculate the standard deviation of the focal lengths of all positions on the wafer at each preset radius where the wafer may be worn away at each moment. Each radius corresponds to multiple focal lengths.
  • step S15 based on the trend graph, determining the edge flatness value of the corresponding wafer stage when the wafer stage is replaced includes steps S151 to S152 .
  • Step S151 determining the time point for replacing the wafer table based on the time point when the slope of the yield and the time in the trend graph reaches the preset slope.
  • the time point at which the slope of the yield versus time on the yield curve reaches the preset slope is determined as the time point t for replacing the worktable.
  • the value of the preset slope can be based on comprehensive consideration of cost and benefit, etc., and can also be adjusted according to the process technology or characteristics of the wafer processing process.
  • the slope of yield and time reaches the preset slope, it means that the decline rate of the yield reaches the preset slope.
  • the yield rate of the wafer is low, and this time point is determined as the time to replace the worktable.
  • the time point at which the yield rate reaches the preset yield rate in the trend graph can also be used to determine the time point for replacing the wafer table.
  • the preset slope ranges from 0.1 to 0.5.
  • the preset slope is 0.1, 0.2, 0.3, 0.4 or 0.5.
  • Step S152 determining the edge flatness value on the edge flatness curve based on the time point of replacing the wafer table.
  • the abscissa on the edge flatness curve is the ordinate corresponding to the time point t when the wafer table is replaced, and the ordinate is the determined edge flatness value Y of the wafer table when the wafer table is replaced. .
  • the edge flatness of the wafer table reaches this value Y, the wafer table can be replaced.
  • the ordinates of the standard deviation of the yield and the focal length can be reasonably set, so that the yield curve and the edge are flattened
  • the starting position of the degree curve is determined, and the edge flatness value corresponding to the intersection of the yield curve and the edge flatness curve is determined as the edge flatness value of the wafer table when the wafer table is replaced.
  • the method of monitoring the flatness of the wafer table also includes:
  • step S16 the replacement time point of the subsequent batch of wafer tables is determined according to the edge flatness value of the corresponding wafer table when the wafer table is replaced.
  • the yield rate of the wafer in real time to obtain the yield curve.
  • the yield curve and the flatness curve a trend graph of edge flatness and yield with respect to time is obtained. Based on the trend graph, it is determined when the wafer table is replaced.
  • the edge flatness value Y of the corresponding wafer table In the follow-up, it is no longer necessary to obtain the yield rate of the wafer in real time. It is only necessary to obtain the original focal length data of the wafer detected by the focal length monitor in real time, and obtain the edge flatness curve of the wafer table based on the original focal length data, and find the edge flatness curve.
  • the time corresponding to the edge flatness value Y is the time to replace the wafer table.
  • FIGS. 1-2 are shown in sequence according to the arrows, these steps are not necessarily executed in the sequence shown by the arrows. Unless explicitly stated herein, the execution of these steps is not strictly limited to the order, and these steps may be performed in other orders. Moreover, at least a part of the steps in FIGS. 1-2 may include multiple steps or multiple stages. These steps or stages are not necessarily executed at the same time, but may be executed at different times. The execution of these steps or stages The order is also not necessarily sequential, but may be performed alternately or alternately with other steps or at least a portion of the steps or phases within the other steps.
  • FIG. 6 is a monitoring device for the flatness of the wafer stage in an embodiment.
  • the device 60 for monitoring the flatness of the wafer table includes an acquisition module 61 , a processing module 62 and a flatness determination module 63 .
  • the acquisition module 61 is used to acquire the yield rate of the wafer and the original focal length data of the wafer detected by the focal length monitor in real time.
  • the processing module 62 is used to obtain the edge flatness curve of the wafer table based on the original focal length data, and the edge flatness curve reflects the change of the flatness of the edge of the wafer table with respect to time; it is also used for the yield rate based on the wafer, The yield curve of the wafer is obtained, and the yield curve reflects the change of the yield of the wafer with respect to time; it is also used to obtain a trend graph of edge flatness and yield with respect to time based on the edge flatness curve and the yield curve.
  • the flatness determination module 63 is configured to determine, based on the trend graph, the edge flatness value of the wafer table corresponding to the replacement wafer table.
  • the raw focal length data includes focal length data corresponding to different radii of the wafer.
  • the processing module 62 includes a truncation unit and a standard deviation processing unit.
  • the intercepting unit is used for intercepting focal length data of a preset radius in the original focal length data.
  • the standard deviation processing unit is configured to obtain a variation curve of the standard deviation of the focal length with respect to time based on the intercepted focal length data of the preset radius, and the variation curve of the standard deviation of the focal length with respect to time is an edge flatness curve.
  • the preset radius ranges from 0 to 10 mm from the edge of the wafer along the wafer radius.
  • the flatness determination module 63 further includes a replacement time determination unit and a flatness determination unit.
  • the replacement time determination module is configured to determine the time point for replacing the wafer table based on the time point at which the slope of yield and time reaches the preset slope in the trend graph.
  • the flatness determination unit is used to determine the edge flatness value on the edge flatness curve based on the time point of changing the wafer table.
  • the flatness determination module 63 is further configured to determine the replacement time point of the subsequent batch of wafer tables based on the edge flatness value of the corresponding wafer table when the wafer table is replaced.
  • the preset slope ranges from 0.1 to 0.5.
  • the preset slope is 0.1, 0.2, 0.3, 0.4 or 0.5.
  • All or part of the modules in the device 60 for monitoring the flatness of the wafer table can be implemented by software, hardware, or a combination thereof.
  • the above modules can be embedded in or independent of the processor in the computer device in the form of hardware, or stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • the present application also provides a monitoring system for the flatness of the wafer table.
  • the monitoring system for the flatness of the wafer table includes a yield test device, a focus monitor and a controller.
  • Yield testing equipment is used to test the yield of wafers in real time.
  • the focal length monitor is used to inspect the raw focal length data of the wafer in real time.
  • the controller includes a memory and a processor.
  • the memory stores a computer program, and when the processor executes the computer program, the steps of the method for monitoring the flatness of the wafer table in any one of the foregoing embodiments are implemented.
  • the focus monitor includes a phase shift focus monitor.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps in the above method embodiments.
  • Non-volatile memory may include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory, or optical memory, and the like.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • the RAM may be in various forms, such as Static Random Access Memory (SRAM) or Dynamic Random Access Memory (DRAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本申请涉及一种晶圆工作台平整度的监测方法、装置、系统及存储介质,包括:实时获取晶圆的良率及原始焦距数据;基于原始焦距数据得到晶圆工作台的边缘平整度曲线;基于晶圆的良率得到晶圆的良率曲线;基于边缘平整度曲线和良率曲线得到边缘平整度和良率关于时间的趋势图;基于趋势图确定更换晶圆工作台时对应的晶圆工作台的边缘平整度值。上述晶圆工作台平整度的监测方法可以提高监测方法的适用性且降低成本;并且在实现对晶圆工作台平整度的在线监测的同时还不会影响晶圆处理效率。并且,有利于操作人员知晓何时更换晶圆工作台,避免晶圆工作台磨损超过一定程度而造成晶圆的良率过低。

Description

晶圆工作台平整度的监测方法、装置、系统及存储介质
本申请要求于2021年04月23日提交中国专利局,申请号为2021104432216,申请名称为“晶圆工作台平整度的监测方法、装置、系统及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体技术领域,特别是涉及一种晶圆工作台平整度的监测方法、装置、系统及存储介质。
背景技术
在晶圆的生产过程中,晶圆工作台(wafer table)的平整度直接影响曝光结果,造成晶圆载具缺陷点(chuck spot),降低晶圆良率。目前,在对晶圆进行处理时需要将晶圆安装在晶圆工作台上。在装载和卸载的过程中,由于重力等因素,使得晶圆与晶圆工作台边缘(edge)的接触比较多,造成晶圆工作台边缘磨损较快,进而影响生产晶圆边缘工艺窗口(production wafe edge process window),降低处于晶圆工作台边缘的晶圆部分的良率。
传统技术中常用的对晶圆工作台平整度的监测方法有两种。第一种是使用厂商标准晶圆(wafer)以实现对晶圆工作台平整度的在线(in line)量测,然而,标准晶圆使用寿命短且价格昂贵。第二种是停机使用控片量测,然而这种方式不能在线量测,而需要让工件停止运行,使得增加了工件启动时间(tool up time),从而影响晶圆处理效率。
发明内容
一方面,本申请提供了一种晶圆工作台平整度的监测方法,包括:
实时获取晶圆的良率及焦距监控器检测的所述晶圆的原始焦距数据;
基于所述原始焦距数据,得到晶圆工作台的边缘平整度曲线,所述边缘平整度曲线反映所述晶圆工作台的边缘平整度关于时间的变化;
基于所述晶圆的良率,得到所述晶圆的良率曲线,所述良率曲线反映所述晶圆的良率关于时间的变化;
基于所述边缘平整度曲线和所述良率曲线,得到所述边缘平整度和所述良率关于时 间的趋势图;
基于所述趋势图,确定更换所述晶圆工作台时对应的所述晶圆工作台的边缘平整度值。
另一方面,本申请提供一种晶圆工作台平整度的监测装置,包括:
获取模块,用于实时获取晶圆的良率及焦距监控器检测的所述晶圆的原始焦距数据;
处理模块,用于基于所述原始焦距数据,得到晶圆工作台的边缘平整度曲线,所述边缘平整度曲线反映所述晶圆工作台的边缘平整度关于时间的变化;
还用于基于所述晶圆的良率,得到所述晶圆的良率曲线,所述良率曲线反映所述晶圆的良率关于时间的变化;还用于基于所述边缘平整度曲线和所述良率曲线,得到所述边缘平整度和所述良率关于时间的趋势图;及
平整度确定模块,用于基于所述趋势图,确定更换晶圆工作台时对应的所述晶圆工作台的边缘平整度值。
再一方面,本申请提供一种晶圆工作台平整度的监测系统,包括良率测试装置、焦距监控器及控制器;
所述良率测试装置用于实时检测晶圆的良率;
所述焦距监控器用于实时检测所述晶圆的原始焦距数据;
所述控制器包括存储器及处理器;
所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现如上任一项所述的方法的步骤。
又一方面,本申请提供一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上任一项所述的方法的步骤。
上述晶圆工作台平整度的监测方法、装置、系统及存储介质实时获取晶圆的原始焦距数据以得到晶圆工作台的边缘平整度关于时间的变化,所采用的晶圆并不限于标准晶圆也可以是普通晶圆,从而可以提高监测方法的适用性且降低成本;并且焦距监控器实时获取晶圆的原始焦距数据不需要停机,从而在实现对晶圆工作台平整度的在线监测的同时还不会影响晶圆处理效率。并且,上述晶圆工作台平整度的监测方法还实时获取晶圆的良率以得到晶圆的良率曲线,根据边缘平整度曲线和良率曲线得到晶圆工作台的边缘平整度和晶圆的良率关于时间的趋势图,以确定更换晶圆工作台时对应的晶圆工作台的边缘平整度,使得有利于操作人员知晓何时更换晶圆工作台,避免晶圆工作台磨损超过一定程度而造成晶圆的良率过低。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例中提供的晶圆工作台平整度的监测方法的流程图;
图2为本申请另一实施例中提供的晶圆工作台平整度的监测方法的流程图;
图3为本申请一实施例中提供的晶圆上各位置的焦距与半径的关系曲线的示意图;
图4为本申请一实施例中提供的晶圆工作台的边缘平整度曲线的示意图;
图5为本申请一实施例中提供的晶圆工作台的边缘平整度和晶圆的良率关于时间的趋势图;
图6为本申请一实施例中提供的晶圆工作台平整度的监测装置的结构框图。
附图标记说明:
60、晶圆工作台平整度的监测装置;61、获取模块;62、处理模块;63、平整度确定模块。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的首选实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容更加透彻全面。
图1为一实施例中的晶圆工作台平整度的监测方法的流程图。请参阅图1,晶圆工作台平整度的监测方法包括:
步骤S11,实时获取晶圆的良率及焦距监控器检测到的晶圆的原始焦距数据。
具体的,利用焦距监控器对晶圆上各位置处的焦距(focus)进行实时监控,焦距监控器譬如可以是相位移焦距监控器(PSFM,phase shift focus monitor)等等。每个时刻,晶圆的不同位置处均对应有一个焦距值。焦距监控器可以在每个时刻对晶圆上的所有位置的焦距进行监控。晶圆一般为圆形,因此,可以根据晶圆上沿半径方向与晶圆的中心点相距不同距离处对原始焦距数据进行分类,晶圆各位置处的焦距也可以称为不同半径(radius,此处的半径指的是距离晶圆的焦点距离)处的焦距。譬如,将晶圆上与晶圆的中心点相距 100mm处的焦距称为半径100mm所对应的焦距。本实施例中所采用的晶圆并不限于标准晶圆,也可以是普通的晶圆。焦距监控器检测的晶圆的原始焦距数据可以记录在光刻机工艺流程报表中,通过该报表实时获取晶圆的原始焦距数据。
随着晶圆工作台使用时间的增加,晶圆工作台的边缘磨损会逐渐加重,从而晶圆的良率(yield)会逐渐下降。可以配置良率测试装置用于实时检测晶圆的良率,所检测的晶圆在不同时间的良率可以记录在光刻机工艺流程报表中,通过该报表实时获取晶圆的良率。
步骤S12,基于原始焦距数据,得到晶圆工作台的边缘平整度曲线,边缘平整度曲线反映晶圆工作台的边缘平整度关于时间的变化。
具体的,发明人创造性的发现随着晶圆工作台使用时间的增加,晶圆工作台的边缘磨损会逐渐加重,也即晶圆工作台边缘的平整度发生变化,从而会对其上固定的晶圆产生影响,造成不同晶圆的同一位置处在不同的时间可能具有不同的焦距。因此,基于实时获取的原始焦距数据可以得到反应晶圆工作台的边缘平整度关于时间的变化的晶圆工作台的边缘平整度曲线。
步骤S13,基于晶圆的良率,得到晶圆的良率曲线,良率曲线反映晶圆的良率关于时间的变化。
具体的,可以通过光刻机工艺流程报表得到不同时间晶圆的良率,从而得到反映晶圆的良率关于时间的变化的晶圆的良率曲线。
步骤S14,基于边缘平整度曲线和良率曲线,得到边缘平整度和良率关于时间的趋势图。
具体的,可以将边缘平整度曲线和良率曲线整合到一张趋势图中,边缘平整度曲线和良率曲线的横坐标均为时间,对于边缘平整度曲线纵坐标可以表示边缘平整度,对于良率曲线纵坐标可以表示良率,从而在同一个坐标系中表示边缘平整度和良率关于时间的趋势。当然,在其他示例中,也可以将坐标系的纵坐标表示为时间,对于边缘平整度曲线横坐标表示为边缘平整度,对于良率曲线横坐标表示为良率。
步骤S15,基于趋势图,确定更换晶圆工作台时对应的晶圆工作台的边缘平整度值。
具体的,趋势图中包括晶圆工作台的边缘平整度曲线和晶圆的良率曲线,根据边缘平整度曲线和晶圆的良率曲线满足一定的预设关系可以确定边缘平整度曲线上的某个边缘平整度值作为更换晶圆工作台时对应的晶圆工作台的边缘平整度值。
上述晶圆工作台平整度的监测方法实时获取晶圆的原始焦距数据以得到晶圆工作台的边缘平整度关于时间的变化,所采用的晶圆并不限于标准晶圆也可以是普通晶圆,从而 可以提高监测方法的适用性且降低成本;并且焦距监控器实时获取晶圆的原始焦距数据不需要停机,从而在实现对晶圆工作台平整度的在线监测的同时还不会影响晶圆处理效率。并且,上述晶圆工作台平整度的监测方法还实时获取晶圆的良率以得到晶圆的良率曲线,根据边缘平整度曲线和良率曲线得到晶圆工作台的边缘平整度和晶圆的良率关于时间的趋势图,以确定更换晶圆工作台时对应的晶圆工作台的边缘平整度,使得有利于操作人员知晓何时更换晶圆工作台,避免晶圆工作台磨损超过一定程度而造成晶圆的良率过低。
在一些示例中,原始焦距数据包括晶圆的不同半径处所对应的焦距数据。请参阅图2,步骤S12,基于原始焦距数据,得到晶圆工作台的边缘平整度曲线包括步骤S121至步骤S122。
步骤S121,截取原始焦距数据中预设半径的焦距数据。
在一些示例中,请参阅图3,可以根据原始焦距数据得到晶圆上各位置的焦距与半径的关系曲线,关系曲线的横坐标表示半径,关系曲线的纵坐标表示焦距,截取该曲线的一部分,具体可以根据横坐标的取值截取预设半径的曲线(图3中方框内的曲线为截取的部分)。
在另一些示例中,也可以不形成晶圆上各位置的焦距与半径的关系曲线,而直接从原始焦距数据中截取预设半径及其对应的焦距数据。
在一些示例中,预设半径范围为沿晶圆半径距离晶圆边缘位置0~10mm处,也就是截取晶圆边缘的预设范围内的各位置处所对应的焦距数据。譬如,当晶圆的直径为300mm时,预设半径范围则为晶圆的半径为140~150mm处的位置。可选的,预设半径范围可以为沿晶圆半径距离晶圆边缘位置0~5mm处,譬如,当晶圆的直径为300mm时,预设半径范围则为晶圆的半径为145~150mm处的位置。可选的,预设半径范围可以为沿晶圆半径距离晶圆边缘位置3~5mm处,譬如,当晶圆的直径为300mm时,预设半径范围则为晶圆的半径为145~147mm处的位置。
步骤S122,基于截取的预设半径的焦距数据,得到焦距的标准差关于时间的变化曲线,焦距的标准差关于时间的变化曲线为边缘平整度曲线。
具体的,请参阅图4,分别计算每个时刻的晶圆上各预设半径处的焦距的标准差(Focus STD),并建立坐标系,坐标系的横坐标为时间(date),坐标系的纵坐标为各预设半径处的焦距的标准差,针对不同的时间点绘制焦距的标准差关于时间的变化曲线即边缘平整度曲线。在边缘平整度曲线上,每个时刻的焦距的标准差的大小可以反映该时刻晶圆工作台整体的平整度。
在一些示例中,可以取晶圆上各个半径相同的位置处的焦距的平均值作为该半径所对应的焦距。每个半径对应有一个焦距。步骤S122分别计算每个时刻的晶圆上各预设半径对应的焦距的标准差。
在另一些示例中,可以取晶圆上与晶圆工作台接触的位置处即晶圆可能被磨损处各个半径相同的位置处的焦距的平均值作为该半径所对应的焦距。每个半径对应有一个焦距。步骤S122分别计算每个时刻的晶圆上各预设半径对应的焦距的标准差。
在又一些示例中,步骤S122可以计算每个时刻的晶圆上各预设半径处所有位置的焦距的标准差。每个半径对应有多个焦距。
在再一些示例中,步骤S122可以计算每个时刻的晶圆上各预设半径处晶圆可能被磨损的所有位置的焦距的标准差。每个半径对应有多个焦距。
在一些示例中,请参阅图2,步骤S15,基于趋势图,确定更换晶圆工作台时对应的晶圆工作台的边缘平整度值包括步骤S151至步骤S152。
步骤S151,基于趋势图中良率与时间的斜率达到预设斜率的时间点确定更换晶圆工作台的时间点。
具体的,请参阅图5,在趋势图中,将良率曲线上良率与时间的斜率达到预设斜率的时间点确定为更换工作台的时间点t。预设斜率的值可以根据成本与收益等综合考量,也可根据晶圆处理过程的工艺技术或特性等等调整。良率与时间的斜率达到预设斜率表示良率的下降速率达到预设斜率,在预设斜率所对应的时间点t晶圆的良率都较低,将该时间点确定为更换工作台的时间点t,能够避免后续再使用磨损严重的晶圆工作台导致晶圆良率过低。在其他示例中,也可以将趋势图中良率达到预设良率的时间点确定更换晶圆工作台的时间点。
在一些示例中,预设斜率的范围为0.1~0.5。可选的,预设斜率为0.1、0.2、0.3、0.4或0.5。
步骤S152,基于更换晶圆工作台的时间点确定边缘平整度曲线上的边缘平整度值。
具体的,找到边缘平整度曲线上横坐标为更换晶圆工作台的时间点t所对应的纵坐标,该纵坐标即为确定的更换晶圆工作台时晶圆工作台的边缘平整度值Y。当晶圆工作台的边缘平整度达到该值Y时,可以更换晶圆工作台。
在另一些示例中,在根据良率曲线和边缘平整度曲线得到边缘平整度和良率关于时间的趋势图时,可以合理设置良率和焦距的标准差的纵坐标,使得良率曲线和边缘平整度曲线的起始位置确定,将良率曲线和边缘平整度曲线的交点所对应的边缘平整度值确定为更 换晶圆工作台时晶圆工作台的边缘平整度值。
在一些示例中,请参阅图2,晶圆工作台平整度的监测方法还包括:
步骤S16,根据更换晶圆工作台时对应的晶圆工作台的边缘平整度值确定后批晶圆工作台的更换时间点。
具体的,第一次需要实时获取晶圆的良率以得到良率曲线,根据良率曲线和平整度曲线得到边缘平整度和良率关于时间的趋势图,基于趋势图确定更换晶圆工作台时对应的晶圆工作台的边缘平整度值Y。而后续不再需要实时获取晶圆的良率,只需要实时获取焦距监控器检测的晶圆的原始焦距数据,基于原始焦距数据得到晶圆工作台的边缘平整度曲线,找到边缘平整度曲线上边缘平整度值Y所对应的时间即为更换晶圆工作台的时间点。
应该理解的是,虽然图1-2的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1-2中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
图6为一实施例中的晶圆工作台平整度的监测装置。请参阅图6,晶圆工作台平整度的监测装置60包括获取模块61、处理模块62及平整度确定模块63。获取模块61用于实时获取晶圆的良率及焦距监控器检测的晶圆的原始焦距数据。处理模块62用于基于原始焦距数据,得到晶圆工作台的边缘平整度曲线,边缘平整度曲线反映晶圆工作台的边缘的平整度关于时间的变化;还用于基于晶圆的良率,得到晶圆的良率曲线,良率曲线反映晶圆的良率关于时间的变化;还用于基于边缘平整度曲线和良率曲线,得到边缘平整度和良率关于时间的趋势图。平整度确定模块63用于基于趋势图,确定更换晶圆工作台是对应的晶圆工作台的边缘平整度值。
在一些示例中,原始焦距数据包括晶圆的不同半径处所对应的焦距数据。处理模块62包括截取单元和标准差处理单元。截取单元用于截取原始焦距数据中预设半径的焦距数据。标准差处理单元用于基于截取的预设半径的焦距数据,得到焦距的标准差关于时间的变化曲线,焦距的标准差关于时间的变化曲线为边缘平整度曲线。
在一些示例中,预设半径的范围为沿晶圆半径距离晶圆边缘位置0~10mm处。
在一些示例中,平整度确定模块63还包括更换时间确定单元及平整度确定单元。更换时间确定模块用于基于趋势图中良率与时间的斜率达到预设斜率的时间点确定更换晶 圆工作台的时间点。平整度确定单元用于基于更换晶圆工作台的时间点确定边缘平整度曲线上的边缘平整度值。
在一些示例中,平整度确定模块63还用于基于更换晶圆工作台时对应的晶圆工作台的边缘平整度值确定后批晶圆工作台的更换时间点。
在一些示例中,预设斜率的范围为0.1~0.5。可选的,预设斜率为0.1、0.2、0.3、0.4或0.5。
关于晶圆工作台平整度的监测装置60的具体限定可以参见上文中对于晶圆工作台平整度的监测方法的限定,在此不再赘述。上述晶圆工作台平整度的监测装置60中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
本申请还提供一种晶圆工作台平整度的监测系统。晶圆工作台平整度的监测系统包括良率测试装置、焦距监控器及控制器。良率测试装置用于实时检测晶圆的良率。焦距监控器用于实时检测晶圆的原始焦距数据。控制器包括存储器及处理器。存储器存储有计算机程序,处理器执行计算机程序时实现上述任意一个实施例中的晶圆工作台平整度的监测方法的步骤。
在一些示例中,焦距监控器包括相位移焦距监控器。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都 应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种晶圆工作台平整度的监测方法,包括:
    实时获取晶圆的良率及焦距监控器检测的所述晶圆的原始焦距数据;
    基于所述原始焦距数据,得到晶圆工作台的边缘平整度曲线,所述边缘平整度曲线反映所述晶圆工作台的边缘平整度关于时间的变化;
    基于所述晶圆的良率,得到所述晶圆的良率曲线,所述良率曲线反映所述晶圆的良率关于时间的变化;
    基于所述边缘平整度曲线和所述良率曲线,得到所述边缘平整度和所述良率关于时间的趋势图;
    基于所述趋势图,确定更换所述晶圆工作台时对应的所述晶圆工作台的边缘平整度值。
  2. 根据权利要求1所述的晶圆工作台平整度的监测方法,其中,所述原始焦距数据包括晶圆的不同半径处所对应的焦距数据;
    所述基于所述原始焦距数据,得到晶圆工作台的边缘平整度曲线,包括:
    截取所述原始焦距数据中预设半径的焦距数据;
    基于截取的预设半径的焦距数据,得到焦距的标准差关于时间的变化曲线;所述焦距的标准差关于时间的变化曲线为所述边缘平整度曲线。
  3. 根据权利要求2所述的晶圆工作台平整度的监测方法,其中,所述预设半径范围为沿所述晶圆半径距离所述晶圆边缘位置0~10mm处。
  4. 根据权利要求1所述的晶圆工作台平整度的监测方法,其中,所述基于所述趋势图,确定更换所述晶圆工作台时对应的所述晶圆工作台的边缘平整度值,包括:
    基于所述趋势图中所述良率与时间的斜率达到预设斜率的时间点确定更换所述晶圆工作台的时间点;
    基于更换所述晶圆工作台的所述时间点确定所述边缘平整度曲线上的所述边缘平整度值。
  5. 根据权利要求1所述的晶圆工作台平整度的监测方法,还包括:
    根据更换所述晶圆工作台时对应的所述晶圆工作台的边缘平整度值确定后批晶圆工作台的更换时间点。
  6. 根据权利要求4所述的晶圆工作台平整度的监测方法,其中,所述预设斜率的范围为0.1~0.5。
  7. 一种晶圆工作台平整度的监测装置,包括:
    获取模块,用于实时获取晶圆的良率及焦距监控器检测的所述晶圆的原始焦距数据;
    处理模块,用于基于所述原始焦距数据,得到晶圆工作台的边缘平整度曲线,所述边缘平整度曲线反映所述晶圆工作台的边缘平整度关于时间的变化;还用于基于所述晶圆的良率,得到所述晶圆的良率曲线,所述良率曲线反映所述晶圆的良率关于时间的变化;还用于基于所述边缘平整度曲线和所述良率曲线,得到所述边缘平整度和所述良率关于时间的趋势图;及
    平整度确定模块,用于基于所述趋势图,确定更换晶圆工作台时对应的所述晶圆工作台的边缘平整度值。
  8. 根据权利要求7所述的晶圆工作台平整度的监测装置,其中,所述原始焦距数据包括晶圆的不同半径处所对应的焦距数据;
    所述处理模块包括:
    截取单元,用于截取所述原始焦距数据中预设半径的焦距数据;
    标准差处理单元,用于基于截取的预设半径的焦距数据,得到焦距的标准差关于时间的变化曲线,所述焦距的标准差关于时间的变化曲线为所述边缘平整度曲线。
  9. 根据权利要求8所述的晶圆工作台平整度的监测装置,其中,所述预设半径范围为沿晶圆半径距离晶圆边缘位置0~10mm处。
  10. 根据权利要求7所述的晶圆工作台平整度的监测装置,其中,所述平整度确定模块包括:
    置换时间确定单元,用于基于所述趋势图中所述良率与时间的斜率达到预设斜率的时间点确定更换所述晶圆工作台的时间点;
    平整度确定单元,用于基于更换所述晶圆工作台的所述时间点确定所述边缘平整度曲线上的所述边缘平整度值。
  11. 根据权利要求7所述的晶圆工作台平整度的监测装置,其中,所述平整度确定模块还用于基于更换所述晶圆工作台时对应的所述晶圆工作台的边缘平整度值确定后批晶圆工作台的更换时间点。
  12. 根据权利要求10所述的晶圆工作台平整度的监测装置,其中,所述预设斜率的范围为0.1~0.5。
  13. 一种晶圆工作台平整度的监测系统,包括良率测试装置、焦距监控器及控制器;
    所述良率测试装置用于实时检测晶圆的良率;
    所述焦距监控器用于实时检测所述晶圆的原始焦距数据;
    所述控制器包括存储器及处理器;
    所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现如权利要求1~6任一项所述的方法的步骤。
  14. 根据权利要求13所述的晶圆工作台平整度的监测系统,其中,所述焦距监控器包括相位移焦距监控器。
  15. 一种存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1~6任一项所述的方法的步骤。
PCT/CN2021/112884 2021-04-23 2021-08-17 晶圆工作台平整度的监测方法、装置、系统及存储介质 WO2022222326A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/677,168 US20220341732A1 (en) 2021-04-23 2022-02-22 Method, device and system for monitoring flatness of wafer table, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110443221.6 2021-04-23
CN202110443221.6A CN115235409A (zh) 2021-04-23 2021-04-23 晶圆工作台平整度的监测方法、装置、系统及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/677,168 Continuation US20220341732A1 (en) 2021-04-23 2022-02-22 Method, device and system for monitoring flatness of wafer table, and storage medium

Publications (1)

Publication Number Publication Date
WO2022222326A1 true WO2022222326A1 (zh) 2022-10-27

Family

ID=83666826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112884 WO2022222326A1 (zh) 2021-04-23 2021-08-17 晶圆工作台平整度的监测方法、装置、系统及存储介质

Country Status (2)

Country Link
CN (1) CN115235409A (zh)
WO (1) WO2022222326A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233398A (ja) * 1998-02-16 1999-08-27 Nikon Corp 露光装置及び露光方法
CN101650534A (zh) * 2009-07-24 2010-02-17 上海宏力半导体制造有限公司 测量曝光机台焦平面均匀度的方法
CN110618585A (zh) * 2019-10-17 2019-12-27 上海华力集成电路制造有限公司 监控光刻机晶圆移载台平整度的方法
CN110631518A (zh) * 2019-09-25 2019-12-31 上海华力集成电路制造有限公司 晶圆表面平整度检测及不完整曝光单元平整度检测补偿方法
CN112346305A (zh) * 2019-08-09 2021-02-09 长鑫存储技术有限公司 水平测量装置、光刻设备及测量晶圆表面平整情况的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233398A (ja) * 1998-02-16 1999-08-27 Nikon Corp 露光装置及び露光方法
CN101650534A (zh) * 2009-07-24 2010-02-17 上海宏力半导体制造有限公司 测量曝光机台焦平面均匀度的方法
CN112346305A (zh) * 2019-08-09 2021-02-09 长鑫存储技术有限公司 水平测量装置、光刻设备及测量晶圆表面平整情况的方法
CN110631518A (zh) * 2019-09-25 2019-12-31 上海华力集成电路制造有限公司 晶圆表面平整度检测及不完整曝光单元平整度检测补偿方法
CN110618585A (zh) * 2019-10-17 2019-12-27 上海华力集成电路制造有限公司 监控光刻机晶圆移载台平整度的方法

Also Published As

Publication number Publication date
CN115235409A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
KR100934627B1 (ko) 제조 특성을 측정하는 컴퓨터 구현 방법, 컴퓨터 구현 시스템, 컴퓨터 프로그램 및 컴퓨터 구현 프로그램
JP5548287B2 (ja) 基板を位置決めして検査するためのオフセット補正方法および装置
JP2013062508A5 (zh)
US20180144460A1 (en) Inspection system and inspection method
TW201805618A (zh) 結合修補及基於設計之缺陷偵測
TWI803412B (zh) 矽片方位調準裝置及矽片缺陷檢測設備
WO2022222326A1 (zh) 晶圆工作台平整度的监测方法、装置、系统及存储介质
US8321048B1 (en) Associating data with workpieces and correlating the data with yield data
TWI724182B (zh) 用於化學機械研磨的自動配方的產生的方法、電腦可讀式儲存媒體及系統
TW201907156A (zh) 光學檢驗結果之計量導引檢驗樣品成形
US20080275587A1 (en) Fault detection on a multivariate sub-model
US20080126014A1 (en) Statistical method and automated system for detection of particulate matter on wafer processing chucks
US7348187B2 (en) Method, device, computer-readable storage medium and computer program element for the monitoring of a manufacturing process of a plurality of physical objects
US20220341732A1 (en) Method, device and system for monitoring flatness of wafer table, and storage medium
CN113325004B (zh) 一种半导体晶片表面缺陷检测方法以及检测装置
US10957608B2 (en) Guided scanning electron microscopy metrology based on wafer topography
US20060261268A1 (en) Pattern measuring system and semiconductor device manufacturing method
US10133263B1 (en) Process condition based dynamic defect inspection
US20050248756A1 (en) Method of defect inspection
US8359494B2 (en) Parallel fault detection
WO2015129157A1 (ja) 半導体ウェーハの製造方法及び工程異常の検出方法
US20230043696A1 (en) Method and apparatus for manufacturing semiconductor device and method and system for exposing semiconductor
US11594655B2 (en) Method for automatic film expansion, storage medium, and device
US20200365472A1 (en) Method of evaluating silicon wafer manufacturing process and method of manufacturing silicon wafer
CN117635528A (zh) 一种晶圆缺陷的精准检测方法、装置、设备及可读介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937550

Country of ref document: EP

Kind code of ref document: A1