WO2021107579A1 - Lng 탱크 제작용 스테인리스강 플럭스 코어드 와이어 - Google Patents

Lng 탱크 제작용 스테인리스강 플럭스 코어드 와이어 Download PDF

Info

Publication number
WO2021107579A1
WO2021107579A1 PCT/KR2020/016749 KR2020016749W WO2021107579A1 WO 2021107579 A1 WO2021107579 A1 WO 2021107579A1 KR 2020016749 W KR2020016749 W KR 2020016749W WO 2021107579 A1 WO2021107579 A1 WO 2021107579A1
Authority
WO
WIPO (PCT)
Prior art keywords
flux
cored wire
less
weight
stainless steel
Prior art date
Application number
PCT/KR2020/016749
Other languages
English (en)
French (fr)
Inventor
임희대
최창현
길웅
Original Assignee
주식회사 세아에삽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=74087579&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2021107579(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 세아에삽 filed Critical 주식회사 세아에삽
Priority to JP2022531395A priority Critical patent/JP2023503639A/ja
Priority to EP20891483.8A priority patent/EP4066984A1/en
Publication of WO2021107579A1 publication Critical patent/WO2021107579A1/ko
Priority to US17/752,930 priority patent/US20220281037A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a stainless steel flux-cored wire for manufacturing an LNG tank, and more particularly, to a stainless steel for manufacturing an LNG tank capable of obtaining weld metal having excellent strength and cryogenic impact toughness by adjusting the content of Mn, Cr, and Mo It relates to steel flux cored wire.
  • Liquefied gas such as LNG (Liquefied Natural Gas, boiling point: -164°C), liquid oxygen (Liquefied Oxygen, boiling point: -183°C), liquid nitrogen (Liquefied Nitrogen, boiling point: -196°C), etc. in need. Therefore, in order to store these gases, a structure such as a pressure vessel made of a material having sufficient toughness and strength at cryogenic temperatures is required.
  • a Cr-Ni-based stainless alloy, 9% Ni steel, and 5000-series aluminum alloy have been conventionally used.
  • the design thickness of the structure increases due to the high alloy cost and low strength, and the use is limited due to poor weldability.
  • Cr-Ni-based stainless steel and 9% Ni steel have overcome the low strength problem of aluminum, but have been a problem in application, such as an increase in manufacturing cost due to the inclusion of expensive nickel.
  • the conventional wire used to weld such structural steel has been developed to be selectively applicable to 9% Ni steel or stainless alloy or high manganese steel according to the physical properties of structural steel in order to satisfy the strength and impact value of the structure after welding. .
  • the conventional wire used to weld such structural steel has been developed to be selectively applicable to 9% Ni steel or stainless alloy or high manganese steel according to the physical properties of structural steel in order to satisfy the strength and impact value of the structure after welding. .
  • confusion may occur in the work process, and there is a disadvantage in terms of economics. Accordingly, there is a need to develop a welding material that can be welded without restriction of structural steel material and has excellent cryogenic toughness of the welded part.
  • an object of the present invention is to provide a stainless steel flux-cored wire for manufacturing an LNG tank having physical properties that can be used for an LNG tank.
  • the composition of the entire wire including the sheath component and the flux component contained in the sheath is % by weight based on the total flux-cored wire,
  • Ni 6.0 to 15.0 wt%, Cr: 13.0 to 25.0 wt%, Mn: 1.0 to 10.0 wt%, Mo: 5.0 wt% or less (except for 0 wt%), Si: 0.05 to 1.0 wt%, C: 0.5 wt% or less (except for 0 wt%), P+S: Limited to 0.1 wt% or less (except for 0 wt%), at least one of SiO 2 , TiO 2 and ZrO 2 : 5.0 ⁇ 18.0% by weight, at least one of Na 2 O and K 2 O: 0.1 to 1.0% by weight, the balance contains Fe and unavoidable impurities,
  • a stainless steel flux-cored wire for manufacturing an LNG tank satisfying the following [Relational Expression 1] is provided.
  • the composition of the entire wire including the sheath component and the flux component contained in the sheath is % by weight based on the total flux-cored wire,
  • a stainless steel flux-cored wire for manufacturing an LNG tank satisfying the following [Relational Expression 1] is provided.
  • the amount of the deposited metal component obtained by the flux-cored wire is, in weight %,
  • Ni 8.0 to 14.0 wt%, Cr: 15.0 to 23.0 wt%, Mn: 1.0 to 8.0 wt%, Mo: 4.0 wt% or less (except for 0 wt%), Si: 0.05 to 1.0 wt%, C + N: 0.01 ⁇ 0.5 wt %, P + S: limited to 0.1 wt % or less (except for 0 wt %), and the remainder contains Fe and unavoidable impurities,
  • a stainless steel flux-cored wire for manufacturing an LNG tank satisfying the following [Relational Expression 2] is provided.
  • the amount of the deposited metal component obtained by the flux-cored wire is, in weight %
  • Ni 8.0 to 14.0 wt%
  • Cr 15.0 to 23.0 wt%
  • Mn 1.0 to 8.0 wt%
  • Si 0.05 to 1.0 wt%
  • C+N 0.01 to 0.5 wt%
  • P+S 0.1 Limited to less than or equal to 0% by weight (except for 0% by weight);
  • a stainless steel flux-cored wire for manufacturing an LNG tank satisfying the following [Relational Equation 3] is provided.
  • the stainless steel flux-cored wire for manufacturing an LNG tank of the present invention is applicable to welding of 9% nickel steel, high manganese steel, and stainless steel materials by controlling the content relationship of Mo and Cr, and it is possible to obtain weld metal with excellent cryogenic toughness in the weld zone. can have an effect.
  • the flux-cored wire in this specification is a flux-cored wire which can be used for manufacturing an LNG tank, and the flux is filled in the alloy shell.
  • the weld metal refers to a metal transferred from a filler metal (wire), which is a metal material added during welding, to a weld zone.
  • a flux-cored wire in which flux is contained in an outer sheath, wherein the composition of the entire wire contains a predetermined amount of Mn, Mo, Cr, and Ni per the total weight of the wire. wire is provided.
  • the composition of the entire wire including the sheath component and the flux component contained in the sheath is in weight% based on the total flux cored wire, Ni: 6.0 to 15.0 wt%, Cr: 13.0 to 25.0 wt%, Mn: 1.0 to 10.0 wt%, Mo: 5.0 wt% or less (except for 0 wt%), Si: 0.05 to 1.0 wt%, C: 0.5 wt% or less (except for 0 wt%), P+S: Limited to 0.1 wt% or less (except for 0 wt%), at least one of SiO 2 , TiO 2 and ZrO 2 : 5.0 to 18.0 wt.
  • Nickel (Ni) is a component added to stabilize the austenite structure, and when the content is less than 6.0 wt%, the austenite structure is unstable and undesirable, and when it exceeds 15.0 wt%, it is preferable to deteriorate the high-temperature cracking resistance can't Therefore, the content of Ni is preferably limited to 6.0 to 15.0 wt%.
  • Chromium (Cr) is a component that improves the strength of the weld metal and stabilizes the austenite structure.
  • the content of Cr is preferably limited to 13.0 ⁇ 25.0% by weight.
  • Manganese (Mn) is a component that stabilizes the austenite structure and improves the deoxidation action and weldability.
  • the content is less than 1.0 wt%, it is not preferable because sufficient deoxidation effect is not obtained, and when it exceeds 10.0 wt%, the weld metal final The solidification segregation to the solidification region is accelerated, and the melting point of the melt is lowered, which deteriorates the high-temperature cracking resistance, which is undesirable. Therefore, the content of Mn is preferably limited to 1.0 to 10.0 wt%.
  • Molybdenum (Mo) has an effect of improving the strength of the weld metal.
  • Mo content is small, sufficient strength is not obtained, which is not preferable, and when it exceeds 5.0 wt%, the toughness of the weld metal deteriorates, and the solidification and segregation of Mo is promoted, which is not preferable because the high-temperature cracking resistance deteriorates. Therefore, the content of Mo is preferably limited to 5.0% by weight or less.
  • Silicon (Si) is a component that improves the deoxidation action and weldability. If the content is less than 0.05 wt %, the deoxidation role is insufficient, and if it exceeds 1.0 wt %, the crack susceptibility increases due to the generation of the Laves phase, which is undesirable. . Therefore, it is preferable to limit the Si content to 0.05 to 1.0 wt% or less.
  • Carbon (C) has an effect of improving the strength of the weld metal, but there is a problem of reducing toughness by forming carbides when added excessively. Therefore, the content of C is set to 0.5% or less based on the total weight of the wire. More preferably, it is preferably 0.1 wt% or less in order to prevent deterioration of the toughness of the weld metal.
  • P (phosphorus) and S (sulfur) are one of the main elements that affect high-temperature cracking, and can cause high-temperature cracking by generating low-melting-point compounds.
  • the total content of P+S is preferably less than 0.1% by weight.
  • At least one of SiO 2 , TiO 2 and ZrO 2 5.0 to 18.0 wt%
  • Oxides of Si, Ti, and Zr may be added to increase the melting point of the slag to improve the workability of full-fine welding. If the sum of Si, Ti, and Zr oxide addition amounts is less than 5.0 wt%, the amount of slag is insufficient and the slag enveloping property is deteriorated, and if it exceeds 18.0 wt%, slag peeling defects may occur, so it is limited to 5.0 to 18.0 wt% This is preferable.
  • At least one of Na 2 O and K 2 O 0.1 to 1.0 wt%
  • the alkali metal oxide should be added in an amount of 0.1 wt % or more to reduce the ionization potential of the arc during welding to facilitate arc generation, and to maintain a stable arc during welding. In addition, when it exceeds 1.0 wt%, it is preferable to limit the alkali metal oxide to 0.1 to 1.0 wt% because welding fume may be excessively generated due to high vapor pressure.
  • the alkali metal oxide may include one or more of Na 2 O and K 2 O.
  • K 2 SiF 6 , Bi 2 O 3 , Fe 2 O 3 , Al 2 O 3 and the like may be further included.
  • the remainder may be Fe and unavoidable impurities.
  • the stainless steel flux-cored wire of the present invention it is preferable to control the addition amount of each oxide to satisfy the following [Relational Expression 1]. Specifically, it is preferable to manage so that the value defined by [Relational Expression 1] is less than 0.5. If it is 0.5 or more, weldability may deteriorate due to deterioration of weldability and cracking properties.
  • the stainless steel flux-cored wire of the present invention may further include copper (Cu) in an amount of 0.5 wt% or less.
  • Cu is a precipitation hardening element and its content is preferably limited to 0.5 wt% or less. When it exceeds 0.5% by weight, hardenability increases, which is not preferable because low-temperature impact toughness is softened.
  • nitrogen (N) may be further included in an amount of 0.4 wt% or less.
  • N is a solid solution strengthening element, and it is preferable to limit the content to 0.4 wt% or less. When it exceeds 0.4% by weight, low-temperature impact toughness is deteriorated, and a complete austenite structure is generated, which is not preferable because high-temperature cracking resistance and porosity resistance are deteriorated.
  • the properties of the weld zone can be secured by controlling the content relationship of Mn, Cr, and Mo. Specifically, when ⁇ Cr+Mo ⁇ / ⁇ Ni+Mn+30(C+N) ⁇ > 1 is satisfied, the deposited metal obtained by the flux-cored wire has a yield strength of 350 MPa or more, a tensile strength of 600 MPa or more, and a tensile strength of 30% or more. It has an elongation and can have an impact value of 27J or more in the -196°C Charpy impact test.
  • the present invention relates to an alloy flux-cored wire in which a flux is filled in an alloy outer shell, wherein the composition of the entire wire obtained by combining the outer sheath component and the flux component contained in the outer sheath is % by weight, Ni: 6.0 ⁇ 15.0 wt%, Cr: 13.0 ⁇ 25.0 wt%, Mn: 1.0 ⁇ 10.0 wt%, Si: 0.05 ⁇ 1.0 wt%, C: 0.5 wt% or less (except for 0 wt%), P+S : Limited to 0.1 wt% or less (except for 0 wt%), at least one of SiO 2 , TiO 2 and ZrO 2 : 5.0 ⁇ 18.0 wt%, at least one of Na 2 O and K 2 O: 0.1 ⁇ Containing 1.0% by weight, containing 0.1 to 5.0% by weight of at least one selected from the group consisting of Mo, W, and Nb, the balance being Fe and unavoidable im
  • Mo, W, and Nb have an effect of improving the strength of the weld metal, and at least one may be selected and included. If at least one selected from the group consisting of Mo, W, and Nb is less than 0.1% by weight, sufficient strength is not obtained, which is not preferable, and when it exceeds 5.0% by weight, the toughness of the weld metal deteriorates, and high temperature cracking resistance It is undesirable because the sex is deteriorated. Therefore, it is preferable to limit it to 0.1 to 5.0 wt%.
  • the stainless steel flux-cored wire of the present invention may further include W in an amount of 2.0 wt % or less or replace Mo.
  • Tungsten (W) has the same effect as Mo to improve the strength of the weld metal.
  • the W content exceeds 2.0 wt%, the toughness of the weld metal may deteriorate. Therefore, the content of W is preferably limited to 2.0 wt% or less.
  • the stainless steel flux-cored wire of the present invention may further include Nb in an amount of 1.5 wt % or less, or may be included in place of Mo.
  • Niobium (Nb) can improve the strength of the weld metal in the same way as Mo. When the Nb content exceeds 1.5% by weight, the toughness of the weld metal may deteriorate. Therefore, the content of Nb is preferably limited to 1.5% by weight or less.
  • the amount of the deposited metal component obtained by the flux-cored wire is, in wt%, Ni: 8.0 to 14.0 wt%, Cr: 15.0 to 23.0 wt%, Mn: 1.0 to 8.0 wt%, Mo: 4.0 wt% or less (except for 0 wt%), Si: 0.05 to 1.0 wt%, C+N: 0.01 to 0.5 wt%, P+S: Limited to 0.1 wt% or less (except for 0 wt%), the balance contains Fe and unavoidable impurities, and provides a stainless steel flux-cored wire for manufacturing an LNG tank that satisfies the following [Relational Expression 2] do.
  • the properties of the welded metal obtained, in particular, for use in the manufacture of an LNG tank, are different, and the flux-cored wire according to the present invention is a welded metal having excellent strength, toughness, and impact value.
  • Each component may be added as metal powder and alloy powder from flux other than those included in the alloy shell.
  • Nickel (Ni) is a component added to stabilize the austenite structure.
  • the content is less than 8.0 wt%, the austenite structure is unstable and it is difficult to secure strength, and when it exceeds 14.0 wt%, high-temperature cracking resistance This decrease is undesirable. Therefore, the content of Ni is preferably limited to 8.0 to 14.0% by weight.
  • Chromium (Cr) is a component that improves the strength of the weld metal and stabilizes the austenite structure.
  • the content of Cr is preferably limited to 15.0 ⁇ 23.0% by weight.
  • Manganese (Mn) is a component that stabilizes the austenite structure and improves the deoxidation action and weldability.
  • the content is less than 1.0 wt%, sufficient deoxidation effect is not obtained, so it is undesirable, and when it exceeds 8.0 wt%, the weld metal solidifies As segregation is promoted, the high temperature cracking resistance deteriorates, which is not preferable. Therefore, the content of Mn is preferably limited to 1.0 ⁇ 8.0% by weight.
  • Molybdenum (Mo) has an effect of improving the strength of the weld metal.
  • Mo content is small, it is not preferable because sufficient strength cannot be obtained, and when it exceeds 4.0 wt%, the toughness of the weld metal is deteriorated, solidification segregation is promoted, and high temperature cracking resistance is reduced, which is not preferable. Therefore, the content of Mo is preferably limited to 4.0 wt% or less.
  • the content of silicon (Si) is less than 0.05% by weight, the deoxidation power is insufficient, and when it exceeds 1.0% by weight, the crack susceptibility increases according to the generation of the Laves phase, which is not preferable. Therefore, it is preferable to limit the Si content to 0.05 to 1.0 wt%.
  • Carbon (C) has an effect of improving the strength of the weld metal, but there is a problem in that when it is added excessively, carbide is generated and toughness is lowered.
  • Nitrogen (N) is undesirable because N is a solid solution strengthening element, and when it is excessively added, it deteriorates low-temperature impact toughness, and a complete austenite structure is generated to deteriorate high-temperature cracking resistance and porosity resistance. Therefore, the total content of C + N is preferably limited to 0.01 to 0.5% by weight.
  • P (phosphorus) and S (sulfur) are one of the main elements that affect high-temperature cracking, and can cause high-temperature cracking by generating low-melting-point compounds.
  • the total content of P+S is preferably less than 0.1% by weight.
  • the deposited metal obtained according to the flux-cored wire of the present invention may further contain copper (Cu) in an amount of 0.5 wt% or less.
  • Cu is a precipitation hardening component, and its content is preferably limited to 0.5 wt% or less. When it exceeds 0.5 wt%, the low-temperature impact toughness is softened as the hardenability increases, which is undesirable.
  • the content of each component is preferably controlled to satisfy the following [Relational Expression 2].
  • Relational Expression 2 is ⁇ Cr+Mo ⁇ / ⁇ Ni+Mn+30(C+N) ⁇ > 1. Specifically, it is preferable to make the composition so that the value defined by Relation 2 exceeds 1. If it is less than 1, it is difficult to secure strength, cryogenic toughness, that is, an impact value, and thus the quality of the weld may be deteriorated.
  • the amount of the deposited metal component obtained by the flux-cored wire is, by weight, Ni: 8.0 to 14.0 wt%, Cr: 15.0 to 23.0 wt%, Mn : 1.0 to 8.0 wt%, Si: 0.05 to 1.0 wt%, C+N: 0.01 to 0.5 wt%, P+S: limited to 0.1 wt% or less (except for 0 wt%), Mo,
  • a stainless steel flux core for manufacturing an LNG tank that contains 0.1 to 4.0% by weight of at least one selected from the group (Q) consisting of W and Nb, the balance being Fe and unavoidable impurities, and satisfying the following [Relational Expression 3] wire is provided.
  • Relation 3 may be any one of Mo, [Mo+W], [Mo+Nb], [Mo+W+Nb], W, Nb, and [W+Nb].
  • Relation 3 may more preferably be 1.5> ⁇ Cr+Q ⁇ / ⁇ Ni+Mn+30(C+N) ⁇ >1.
  • the value according to Relation 3 is 1.5 or more or 1 or less, it is difficult to secure strength, cryogenic toughness, that is, an impact value, and thus the quality of the weld may be deteriorated.
  • the weld metal deposited using the stainless steel flux-cored wire of the present invention may further include W in an amount of 2.0 wt % or less, or may be included in place of Mo.
  • Tungsten (W) has the same effect as Mo to improve the strength of the weld metal.
  • W content exceeds 2.0 wt%, the toughness of the weld metal may deteriorate. Therefore, the content of W is preferably limited to 2.0 wt% or less.
  • the weld metal deposited using the stainless steel flux-cored wire of the present invention may further contain Nb in an amount of 1.5 wt % or less or may be included in place of Mo.
  • Nb Niobium
  • the content of Nb is preferably limited to 1.5% by weight or less.
  • a stainless steel flux-cored arc welding wire having the components shown in Table 1 was prepared.
  • FCAW Flux Cored Arc Welding
  • a stainless steel flux-cored wire having the components shown in Table 4 was prepared in consideration of Equation 3 related to the content of Mo, W, or Nb. After performing welding, the results of the evaluation of the properties of the weld joint are shown in Table 5 below.
  • the stainless steel flux-cored wire according to the present invention is characterized in that it is possible to obtain a weld metal having excellent strength and cryogenic impact toughness by controlling the content of Mo and Cr while containing manganese in an amount of 10 wt% or less. It is applicable to welding of 9% nickel steel, high manganese steel, and stainless steel, and has an advantageous effect in that it is possible to obtain a weld metal having excellent cryogenic toughness of the weld zone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

본 발명은 LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어에 관한 것으로, 더욱 상세하게는 Mn, Mo, 및 Cr의 함량 조정으로 우수한 인장강도와 충격값을 갖는 용접 금속을 얻을 수 있는 LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어에 관한 것이다. 본 발명의 LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어는 Mn, Mo, Cr의 함량 관계를 조절하여 9% 니켈강, 고망간강, 스테인레스 계열 강재의 용접에 모두 적용가능하고, 용접부 극저온 인성이 우수한 용접 금속을 얻을 수 있는 효과가 있다.

Description

LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어
본 발명은 LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어에 관한 것으로, 더욱 상세하게는 Mn, Cr, 및 Mo의 함량 조정으로 우수한 강도와 극저온 충격 인성을 갖는 용접 금속을 얻을 수 있는 LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어에 관한 것이다.
액화천연가스(LNG, Liquefied Natural Gas, 비등점: -164℃), 액체산소(Liquefied Oxygen, 비등점: -183℃), 액체질소(Liquefied Nitrogen, 비등점: -196℃) 등과 같은 액화가스는 극저온 저장을 필요로 한다. 그러므로 이들 가스를 저장하기 위해서는 극저온에서 충분한 인성과 강도를 가지는 재료로 이루어지는 압력용기 등의 구조물이 필요하다.
액화가스 분위기의 저온에서 사용 가능한 재료로서 종래부터 Cr-Ni계 스테인레스 합금이나 9% Ni강 및 5000계열의 알루미늄 합금 등이 사용되어 왔다. 그러나 알루미늄 합금의 경우 합금 비용이 높고 낮은 강도로 인해 구조물의 설계 두께가 증가하게 되며 용접 시공성도 좋지 않아 사용이 제한적이라는 문제를 가진다. Cr-Ni계 스테인레스와 9% Ni강 등은 알루미늄의 낮은 강도 문제점은 극복하였으나 고가의 니켈 함유로 인해 제조 비용이 상승하는 등 적용에 문제가 되어 왔다.
또한 액화가스에 사용되는 구조용강에 관한 또 다른 기술로는 니켈을 완전히 배제한 소위 니켈-프리(Ni-free) 고망간강을 사용하여 왔다. 그러나, 이러한 기술들은 열처리 회수의 증가로 인해 비용 증가 및 열처리 설비 부하가 생기는 문제점이 있었다. 이에 대한민국 등록특허 제10-135843호와 같이 주조직을 페라이트가 아닌 오스테나이트로 하여 극저온 인성을 확보하는 기술이 개발되었다.
이와 같은 구조용강을 용접하기 위하여 사용된 종래의 와이어는 용접 후 구조물의 강도 및 충격값을 만족시키기 위하여 구조용강의 물성에 따라 9% Ni강 또는 스테인레스 합금 또는 고망간강에 선택적으로 적용가능하도록 개발되어 왔다. 그러나 구조용강의 소재에 따른 제약이 있을 경우 작업 과정에 혼선이 야기될 수 있고, 경제적인 측면에서도 불리한 문제가 있다. 이에 구조용강 소재의 제약 없이 용접이 가능하고 용접부의 극저온 인성이 우수한 용접재료를 개발할 필요가 요구되고 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여, LNG 탱크용으로 사용 가능한 물성을 가지는 LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여 본 발명은,
합금 외피에 플럭스가 충전된 합금 플럭스 코어드 와이어에 있어서, 외피 성분과 상기 외피에 내포되는 플럭스 성분을 합친 와이어 전체의 조성이 플럭스 코어드 와이어 전체에 대하여 중량%로,
Ni : 6.0 ~ 15.0 중량%, Cr : 13.0 ~ 25.0 중량%, Mn : 1.0 ~ 10.0 중량%, Mo : 5.0 중량% 이하(0 중량%인 경우 제외), Si : 0.05 ~ 1.0 중량%를 포함하고, C : 0.5 중량% 이하(0 중량%인 경우 제외), P+S : 0.1 중량% 이하(0 중량%인 경우 제외)로 제한하며, SiO2, TiO2 및 ZrO2 중 1종 이상 : 5.0 ~ 18.0 중량%, Na2O 및 K2O 중 1종 이상 : 0.1 ~ 1.0 중량%, 잔부 Fe 및 불가피한 불순물을 포함하며,
하기 [관계식 1]을 만족하는 LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어를 제공한다.
[관계식 1]
{4(Na2O+K2O)}/{0.5(TiO2+SiO2)+0.2(ZrO2)} < 0.5
또한, 상기 목적을 달성하기 위하여 본 발명은,
합금 외피에 플럭스가 충전된 합금 플럭스 코어드 와이어에 있어서, 외피 성분과 상기 외피에 내포되는 플럭스 성분을 합친 와이어 전체의 조성이 플럭스 코어드 와이어 전체에 대하여 중량%로,
Ni : 6.0 ~ 15.0 중량%, Cr : 13.0 ~ 25.0 중량%, Mn : 1.0 ~ 10.0 중량%, Si : 0.05 ~ 1.0 중량%를 포함하고, C : 0.5 중량% 이하(0 중량%인 경우 제외), P+S : 0.1 중량% 이하(0 중량%인 경우 제외)로 제한하며, SiO2, TiO2 및 ZrO2 중 1종 이상 : 5.0 ~ 18.0 중량%, Na2O 및 K2O 중 1종 이상 : 0.1 ~ 1.0 중량%을 포함하고,
Mo, W, 및 Nb로 이루어진 군에서 선택되는 1종 이상을 0.1 ~ 5.0 중량% 포함하며, 잔부는 Fe 및 불가피한 불순물이고,
하기 [관계식 1]을 만족하는 LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어를 제공한다.
[관계식 1]
{4(Na2O+K2O)}/{0.5(TiO2+SiO2)+0.2(ZrO2)} < 0.5
또한 합금 외피에 플럭스가 충전된 합금 플럭스 코어드 와이어에 있어서, 상기 플럭스 코어드 와이어에 의하여 얻어지는 용착 금속 성분이, 중량%로,
Ni : 8.0 ~ 14.0 중량%, Cr : 15.0 ~ 23.0 중량%, Mn : 1.0 ~ 8.0 중량%, Mo : 4.0 중량% 이하(0 중량%인 경우 제외), Si : 0.05 ~ 1.0 중량%를 포함하고, C+N : 0.01 ~ 0.5 중량%, P+S : 0.1 중량% 이하(0 중량%인 경우 제외)로 제한하고, 잔부는 Fe 및 불가피한 불순물을 포함하며,
하기 [관계식 2]를 만족하는 LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어를 제공한다.
[관계식 2]
{Cr+Mo}/{Ni+Mn+30(C+N)} > 1
또한 합금 외피에 플럭스가 충전된 합금 플럭스 코어드 와이어에 있어서, 상기 플럭스 코어드 와이어에 의하여 얻어지는 용착 금속 성분이, 중량%로,
Ni : 8.0 ~ 14.0 중량%, Cr : 15.0 ~ 23.0 중량%, Mn : 1.0 ~ 8.0 중량%, Si : 0.05 ~ 1.0 중량%를 포함하고, C+N : 0.01 ~ 0.5 중량%, P+S : 0.1 중량% 이하(0 중량%인 경우 제외)로 제한하고,
Mo, W, 및 Nb로 이루어진 군에서 선택되는 1종 이상(Q)을 0.1 ~ 4.0 중량% 포함하며, 잔부는 Fe 및 불가피한 불순물이고,
하기 [관계식 3]을 만족하는 LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어를 제공한다.
[관계식 3]
{Cr+Q}/{Ni+Mn+30(C+N)} > 1
본 발명의 LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어는 Mo, Cr의 함량 관계를 조절하여 9% 니켈강, 고망간강, 스테인레스 계열 강재의 용접에 모두 적용가능하고, 용접부 극저온 인성이 우수한 용접 금속을 얻을 수 있는 효과가 있다.
이하 본 발명에 대하여 보다 상세히 설명한다.
본 명세서에 있어서 플럭스 코어드 와이어는, LNG 탱크를 제조함에 이용가능하고, 합금 외피에 플럭스가 충전된 플럭스 코어드 와이어이다.
본 명세서에 있어서 용접 금속이란, 용접을 실시했을 때에 용접 중에 용착 금속과 용융 모재가 용융되어 응고된 금속을 말한다.
본 명세서에 있어서 용착 금속이란 용접 중에 부가되는 금속재료인 용가재(와이어)로부터 용접부로 이행된 금속을 말한다.
본 발명의 일 측면에 따르면, 플럭스가 외피에 내포되는 플럭스 코어드 와이어로서, 와이어 전체의 조성이 와이어 전체 중량당 Mn, Mo, Cr, Ni을 소정량 함유하는 LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어를 제공한다.
더 구체적으로는, 합금 외피에 플럭스가 충전된 합금 플럭스 코어드 와이어에 있어서, 외피 성분과 상기 외피에 내포되는 플럭스 성분을 합친 와이어 전체의 조성이 플럭스 코어드 와이어 전체에 대하여 중량%로, Ni : 6.0 ~ 15.0 중량%, Cr : 13.0 ~ 25.0 중량%, Mn : 1.0 ~ 10.0 중량%, Mo : 5.0 중량% 이하(0 중량%인 경우 제외), Si : 0.05 ~ 1.0 중량%를 포함하고, C : 0.5 중량% 이하(0 중량%인 경우 제외), P+S : 0.1 중량% 이하(0 중량%인 경우 제외)로 제한하며, SiO2, TiO2 및 ZrO2 중 1종 이상 : 5.0 ~ 18.0 중량%, Na2O 및 K2O 중 1종 이상 : 0.1 ~ 1.0 중량%, 잔부는 Fe 및 불가피한 불순물이며, 하기 [관계식 1]을 만족하는 LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어를 제공한다.
[관계식 1]은 {4(Na2O+K2O)}/{0.5(TiO2+SiO2)+0.2(ZrO2)} < 0.5 이다.
Ni : 6.0 ~ 15.0 중량%
니켈(Ni)은 오스테나이트 조직을 안정화 시키기 위하여 첨가하는 성분으로, 그 함량이 6.0 중량% 미만인 경우 오스테나이트 조직이 불안정하여 바람직하지 못하고, 15.0 중량%를 초과하는 경우 내고온균열성을 열화하여 바람직하지 못하다. 따라서 Ni의 함량은 6.0 ~ 15.0 중량%로 제한함이 바람직하다.
Cr : 13.0 ~ 25.0 중량%
크롬(Cr)은 용접금속의 강도를 향상시킴과 더불어 오스테나이트 조직을 안정화 시키는 성분으로, 그 함량이 13.0 중량% 미만인 경우 충분한 강도가 얻어지지 못하여 바람직하지 못하고, 25.0 중량%를 초과하는 경우 용접금속의 저온 충격인성이 열화하여 바람직하지 못하다. 따라서 Cr의 함량은 13.0 ~ 25.0 중량%로 제한함이 바람직하다.
Mn : 1.0 ~ 10.0 중량%
망간(Mn)은 오스테나이트 조직을 안정화 시키며 탈산 작용 및 용접성을 향상시키는 성분으로, 그 함량이 1.0 중량% 미만인 경우 충분한 탈산 효과가 얻어지지 않아 바람직하지 못하고, 10.0 중량%를 초과하는 경우 용접 금속 최종 응고역으로의 응고 편석이 촉진되어 융액의 융점을 저하시켜, 내고온균열성을 열화하여 바람직하지 못하다. 따라서 Mn의 함량은 1.0 ~ 10.0 중량%로 제한함이 바람직하다.
Mo : 5.0 중량% 이하(0 중량%인 경우 제외)
몰리브덴(Mo)은 용접 금속의 강도를 향상시키는 효과가 있다. Mo 함유량이 적으면 충분한 강도가 얻어지지 않아 바람직하지 못하고, 5.0 중량%를 초과하는 경우 용접 금속의 인성이 열화됨과 더불어, Mo의 응고 편석이 촉진되어 내고온균열성이 열화되어 바람직하지 못하다. 따라서 Mo의 함량은 5.0 중량% 이하로 제한함이 바람직하다.
Si : 0.05 ~ 1.0 중량%
실리콘(Si)은 탈산 작용 및 용접성을 향상시키는 성분으로, 그 함량이 0.05 중량% 미만이면 탈산 역할이 미비하고, 1.0 중량%를 초과하게 되면 라베스상 생성에 따라 균열감수성이 증가하여 바람직하지 못하다. 따라서 Si의 함량을 0.05 ~ 1.0 중량% 이하로 제한함이 바람직하다.
C : 0.5 중량% 이하(0 중량%인 경우 제외)
탄소(C)는 용접 금속의 강도를 향상하는 효과가 있지만, 과잉하게 첨가하면 탄화물을 생성하여 인성을 저하시키는 문제점이 있다. 따라서 C의 함량은 와이어 전체 중량당 0.5% 이하로 한다. 더욱 바람직하게는 용접 금속의 인성 저하를 방지하기 위하여 0.1 중량%이하인 것이 바람직하다.
P+S : 0.1 중량% 이하 (0 중량%인 경우 제외)
P(인) 및 S(황)은 고온균열에 영향을 미치는 주요 원소 중 하나로, 저융점 화합물을 발생시켜 고온균열을 발생시킬 수 있다. 본 발명의 경우 P+S의 총 함량은 0.1 중량% 미만인 것이 바람직하다.
SiO2, TiO2 및 ZrO2 중 1종 이상 : 5.0 ~ 18.0 중량%
Si, Ti, Zr 산화물은 슬래그의 융점을 높여 전자세 용접의 작업성을 양호하게 하기 위하여 첨가할 수 있다. Si, Ti, Zr 산화물 첨가량의 합이 5.0 중량% 미만이면 슬래그의 양이 충분하지 않아 슬래그 포피성이 열화되고, 18.0 중량%를 초과하면 슬래그 박리 결함이 발생할 수 있으므로 5.0 ~ 18.0 중량%로 제한함이 바람직하다.
Na2O 및 K2O 중 1종 이상 : 0.1 ~ 1.0 중량%
알칼리 금속 산화물은 0.1 중량% 이상 첨가되어야 용접 중 아크의 이온화 포텐셜을 저하시켜 아크의 발생을 용이하게 해주며, 용접 중 안정된 아크를 유지할 수 있다. 또한 1.0 중량%를 초과하는 경우 높은 증기압으로 인하여 용접 흄(fume)이 과다하게 발생할 수 있으므로 알칼리 금속 산화물은 0.1 ~ 1.0 중량%로 제한함이 바람직하다. 알칼리 금속 산화물은 Na2O 및 K2O 중 1종 이상을 포함할 수 있다.
나아가 K2SiF6, Bi2O3, Fe2O3, Al2O3 등을 더 포함할 수 있다. 잔부는 Fe 및 불가피한 불순물일 수 있다.
한편, 본 발명의 스테인리스강 플럭스 코어드 와이어는 하기 [관계식 1]을 만족하도록 각 산화물의 첨가량을 제어함이 바람직하다. 구체적으로 [관계식 1]에 의해 정의되는 값이 0.5 미만이 되도록 관리함이 바람직하다. 0.5 이상인 경우 용접성 및 균열성 저하로 인하여 용접부 품질이 저하될 수 있다.
[관계식 1] {4(Na2O+K2O)}/{0.5(TiO2+SiO2)+0.2(ZrO2)} < 0.5
본 발명의 스테인리스강 플럭스 코어드 와이어는 구리(Cu)를 0.5 중량% 이하로 더 포함할 수 있다. Cu는 석출 경화 원소이며 그 함량을 0.5 중량% 이하로 제한함이 바람직하다. 0.5 중량%를 초과하는 경우 경화능이 증가하여 저온 충격인성이 연화되어 바람직하지 못하다.
또한 질소(N)를 0.4 중량% 이하로 더 포함할 수 있다. 질소(N)은 N은 고용 강화 원소이며 그 함량을 0.4 중량% 이하로 제한함이 바람직하다. 0.4 중량%를 초과하는 경우 저온 충격 인성을 열화시키며, 완전 오스테나이트 조직이 발생하여 내고온균열성과 내기공성이 열화되기 때문에 바람직하지 못하다.
본 발명의 플럭스 코어드 와이어는 Mn, Cr 및 Mo의 함량 관계를 조절하여 용접부 물성을 확보할 수 있다. 구체적으로 {Cr+Mo}/{Ni+Mn+30(C+N)} > 1를 만족하는 경우 상기 플럭스 코어드 와이어에 의하여 얻어지는 용착 금속은 350MPa 이상의 항복강도, 600MPa 이상의 인장강도, 30% 이상의 연신율을 가지고, -196℃ 샤르피 충격시험에서 27J 이상의 충격값을 가질 수 있다.
또한 본 발명은 합금 외피에 플럭스가 충전된 합금 플럭스 코어드 와이어에 있어서, 외피 성분과 상기 외피에 내포되는 플럭스 성분을 합친 와이어 전체의 조성이 플럭스 코어드 와이어 전체에 대하여 중량%로, Ni : 6.0 ~ 15.0 중량%, Cr : 13.0 ~ 25.0 중량%, Mn : 1.0 ~ 10.0 중량%, Si : 0.05 ~ 1.0 중량%를 포함하고, C : 0.5 중량% 이하(0 중량%인 경우 제외), P+S : 0.1 중량% 이하(0 중량%인 경우 제외)로 제한하며, SiO2, TiO2 및 ZrO2 중 1종 이상 : 5.0 ~ 18.0 중량%, Na2O 및 K2O 중 1종 이상 : 0.1 ~ 1.0 중량%을 포함하고, Mo, W, 및 Nb로 이루어진 군에서 선택되는 1종 이상을 0.1 ~ 5.0 중량% 포함하며, 잔부는 Fe 및 불가피한 불순물이고, 하기 [관계식 1]을 만족하는 LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어를 제공한다.
[관계식 1]은 {4(Na2O+K2O)}/{0.5(TiO2+SiO2)+0.2(ZrO2)} < 0.5 이다.
Mo, W, 및 Nb는 용접 금속의 강도를 향상시키는 효과를 가지고, 1종 이상이 선택되어 포함될 수 있다. Mo, W, 및 Nb로 이루어지는 군에서 선택되는 1종 이상이 0.1 중량% 미만이면 충분한 강도가 얻어지지 않아 바람직하지 못하고, 5.0 중량%를 초과하는 경우 용접 금속의 인성이 열화됨과 더불어, 내고온균열성이 열화되어 바람직하지 못하다. 따라서 0.1 ~ 5.0 중량%로 제한함이 바람직하다.
구체적으로 본 발명의 스테인리스강 플럭스 코어드 와이어는 W를 2.0 중량% 이하로 더 포함하거나 Mo를 대체하여 포함될 수 있다. 텅스텐(W)은 Mo과 동일하게 용접 금속의 강도를 향상시키는 효과가 있다. W 함유량이 2.0 중량%를 초과하는 경우 용접 금속의 인성이 열화될 수 있다. 따라서 W의 함량은 2.0 중량% 이하로 제한함이 바람직하다.
또한 본 발명의 스테인리스강 플럭스 코어드 와이어는 Nb을 1.5 중량% 이하로 더 포함하거나 Mo를 대체하여 포함될 수 있다. 니오븀(Nb)은 Mo과 동일하게 용접 금속의 강도를 향상시킬 수 있다. Nb 함유량이 1.5 중량%를 초과하는 경우 용접 금속의 인성이 열화될 수 있다. 따라서 Nb의 함량은 1.5 중량% 이하로 제한함이 바람직하다.
본 발명의 다른 측면에 따르면, 합금 외피에 플럭스가 충전된 합금 플럭스 코어드 와이어에 있어서, 상기 플럭스 코어드 와이어에 의하여 얻어지는 용착 금속 성분이, 중량%로, Ni : 8.0 ~ 14.0 중량%, Cr : 15.0 ~ 23.0 중량%, Mn : 1.0 ~ 8.0 중량%, Mo : 4.0 중량% 이하(0 중량%인 경우 제외), Si : 0.05 ~ 1.0 중량%를 포함하고, C+N : 0.01 ~ 0.5 중량%, P+S : 0.1 중량% 이하(0 중량%인 경우 제외)로 제한하고, 잔부는 Fe 및 불가피한 불순물을 포함하며, 하기 [관계식 2]를 만족하는 LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어를 제공한다.
[관계식 2]은 {Cr+Mo}/{Ni+Mn+30(C+N)} > 1 이다.
플럭스 코어드 와이어 합금 조성에 따라 얻어지는 용착금속의 물성, 특히 LNG 탱크 제작에 사용하기 위한 물성 확보 여부가 상이하고, 본 발명에 따른 플럭스 코어드 와이어는 강도, 인성, 및 충격값이 우수한 용착 금속을 얻을 수 있다. 각 성분은 합금 외피에 포함되는 것 외, 플럭스로부터의 금속분 및 합금분으로 첨가될 수 있다.
니켈(Ni)은 오스테나이트 조직을 안정화 시키기 위하여 첨가하는 성분으로, 그 함량이 8.0 중량% 미만인 경우 오스테나이트 조직이 불안정하여 강도 확보가 어려워 바람직하지 못하고, 14.0 중량%를 초과하는 경우 내고온균열성이 감소하여 바람직하지 못하다. 따라서 Ni의 함량은 8.0 ~ 14.0 중량%로 제한함이 바람직하다.
크롬(Cr)은 용접금속의 강도를 향상시킴과 더불어 오스테나이트 조직을 안정화 시키는 성분으로, 그 함량이 15.0 중량% 미만인 경우 충분한 강도가 얻어지지 못하여 바람직하지 못하고, 23.0 중량%를 초과하는 경우 용접금속의 저온 충격인성이 열화하여 바람직하지 못하다. 따라서 Cr의 함량은 15.0 ~ 23.0 중량%로 제한함이 바람직하다.
망간(Mn)은 오스테나이트 조직을 안정화 시키며 탈산 작용 및 용접성을 향상시키는 성분으로, 그 함량이 1.0 중량% 미만인 경우 충분한 탈산 효과가 얻어지지 않아 바람직하지 못하고, 8.0 중량%를 초과하는 경우 용접 금속 응고 편석이 촉진됨에 따라 내고온균열성이 떨어져 바람직하지 못하다. 따라서 Mn의 함량은 1.0 ~ 8.0 중량%로 제한함이 바람직하다.
몰리브덴(Mo)은 용접 금속의 강도를 향상시키는 효과가 있다. Mo 함유량이 적으면 충분한 강도가 얻어지지 않아 바람직하지 못하고, 4.0 중량%를 초과하는 경우 용접 금속의 인성이 열화되고 응고 편석이 촉진되어 내고온균열성이 감소하여 바람직하지 못하다. 따라서 Mo의 함량은 4.0 중량% 이하로 제한함이 바람직하다.
실리콘(Si)은 그 함량이 0.05 중량% 미만이면 탈산력이 부족하고, 1.0 중량%를 초과하게 되면 라베스상 생성에 따라 균열감수성이 증가하여 바람직하지 못하다. 따라서 Si의 함량을 0.05 ~ 1.0 중량%로 제한함이 바람직하다.
탄소(C)는 용접 금속의 강도를 향상하는 효과가 있지만, 과잉하게 첨가하면 탄화물을 생성하여 인성이 저하되는 문제점이 있다. 질소(N)은 N은 고용 강화 원소이며 과잉 첨가하는 경우 저온 충격 인성을 열화시키며, 완전 오스테나이트 조직이 발생하여 내고온균열성과 내기공성이 열화되기 때문에 바람직하지 못하다. 따라서 C+N의 총 함량은 0.01 ~ 0.5 중량%로 제한함이 바람직하다.
P(인) 및 S(황)은 고온균열에 영향을 미치는 주요 원소 중 하나로, 저융점 화합물을 발생시켜 고온균열을 발생시킬 수 있다. 본 발명의 경우 P+S의 총 함량은 0.1 중량% 미만인 것이 바람직하다.
본 발명의 플럭스 코어드 와이어에 따라 얻어지는 용착금속은 구리(Cu)를 0.5 중량% 이하로 더 포함할 수 있다. Cu는 석출 경화 성분이며, 그 함량을 0.5 중량% 이하로 제한함이 바람직하다. 0.5 중량%를 초과하는 경우 경화능이 증가함에 따라 저온 충격인성이 연화되어 바람직하지 못하다.
한편 본 발명의 스테인리스강 플럭스 코어드 와이어 또는 이를 이용하여 얻어진 용착금속은 하기 [관계식 2]를 만족하도록 각 성분의 함량을 제어함이 바람직하다.
[관계식 2]는 {Cr+Mo}/{Ni+Mn+30(C+N)} > 1 이다. 구체적으로 관계식 2에 의하여 정의되는 값이 1을 초과하도록 조성함이 바람직하다. 1 이하인 경우 강도, 극저온 인성, 즉 충격값 확보가 어려워 용접부 품질이 저하될 수 있다.
또한 합금 외피에 플럭스가 충전된 합금 플럭스 코어드 와이어에 있어서, 상기 플럭스 코어드 와이어에 의하여 얻어지는 용착 금속 성분이, 중량%로, Ni : 8.0 ~ 14.0 중량%, Cr : 15.0 ~ 23.0 중량%, Mn : 1.0 ~ 8.0 중량%, Si : 0.05 ~ 1.0 중량%를 포함하고, C+N : 0.01 ~ 0.5 중량%, P+S : 0.1 중량% 이하(0 중량%인 경우 제외)로 제한하고, Mo, W, 및 Nb로 이루어진 군(Q)에서 선택되는 1종 이상을 0.1 ~ 4.0 중량% 포함하며, 잔부는 Fe 및 불가피한 불순물이고, 하기 [관계식 3]을 만족하는 LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어를 제공한다.
[관계식 3] {Cr+Q}/{Ni+Mn+30(C+N)} > 1
W 또는 Nb를 더 포함하거나 Mo를 대체하는 경우 본 발명의 스테인리스강 플럭스 코어드 와이어 또는 이를 이용하여 용착된 용착금속은 하기의 관계식 3을 만족함이 바람직하다. 상기 관계식 3에서 Q는 Mo, [Mo+W], [Mo+Nb], [Mo+W+Nb], W, Nb, [W+Nb] 중 어느 하나일 수 있다. 상기 관계식 3은 더욱 바람직하게는 1.5 > {Cr+Q}/{Ni+Mn+30(C+N)} > 1 일 수 있다. 관계식 3에 따른 값이 1.5 이상이거나 1 이하인 경우 강도, 극저온 인성, 즉 충격값 확보가 어려워 용접부 품질이 저하될 수 있다.
구체적으로 본 발명의 스테인리스강 플럭스 코어드 와이어를 이용하여 용착된 용착금속은 W를 2.0 중량% 이하로 더 포함하거나 Mo를 대체하여 포함될 수 있다. 텅스텐(W)은 Mo과 동일하게 용접 금속의 강도를 향상시키는 효과가 있다. W 함유량이 2.0 중량%를 초과하는 경우 용접 금속의 인성이 열화될 수 있다. 따라서 W의 함량은 2.0 중량% 이하로 제한함이 바람직하다.
또한 본 발명의 스테인리스강 플럭스 코어드 와이어를 이용하여 용착된 용착금속은 Nb을 1.5 중량% 이하로 더 포함하거나 Mo를 대체하여 포함될 수 있다. 니오븀(Nb)은 Mo과 동일하게 용접 금속의 강도를 향상시킬 수 있다. Nb 함유량이 1.5 중량%를 초과하는 경우 용접 금속의 인성이 열화될 수 있다. 따라서 Nb의 함량은 1.5 중량% 이하로 제한함이 바람직하다.
본 발명에 따른 스테인리스강 플럭스 코어드 와이어와 관련하여 Cr, Mo, Mn의 함량관계에 따른 용접부의 물성에 대하여는 이하 실시예 및 비교예를 들어 상세히 설명하기로 하나 본 발명의 권리범위가 하기 실시예에 의하여 한정되는 것은 아니다.
표 1에 나타난 바와 같은 성분을 가지는 스테인리스강 플럭스 코어드 아크용접 와이어를 준비하였다.
Ni Cr Mn Mo Cu Si C N P+S W Nb 식1 식2
1 7.61 16.47 5.69 1.95 0 0.83 0.015 0 0.03 0 0 0.28 1.34
2 7.60 16.57 8.14 1.93 0 0.81 0.015 0 0.03 0 0 0.28 1.14
3 7.95 19.07 6.75 1.25 0 0.80 0.015 0 0.03 0 0 0.31 1.14
4 8.04 16.14 6.79 1.05 0 0.79 0.015 0 0.03 0 0 0.40 1.13
5 7.61 16.47 5.69 1.73 0 0.83 0.015 0 0.03 0.57 0 0.28 1.32
6 7.72 16.24 6.07 0 0 0.79 0.015 0 0.03 1.95 0 0.33 1.14
7 7.69 16.43 5.71 1.69 0 0.81 0.015 0 0.03 0 0.59 0.42 1.31
8 7.88 16.02 5.76 0 0 0.85 0.015 0 0.03 0 1.07 0.39 1.14
9 7.61 15.93 5.63 1.63 0 0.79 0.015 0 0.03 0.39 0.27 0.29 1.28
10 7.60 15.93 6.23 0 0 0.86 0.015 0 0.04 1.37 0.54 0.39 1.12
11 7.49 17.18 5.19 1.41 0 0.78 0.015 0 0.03 0 0 0.75 1.42
12 7.29 11.68 6.67 1.25 0 0.79 0.015 0 0.04 0 0 0.32 0.90
13 7.61 16.17 6.19 7.00 0 0.80 0.015 0 0.04 0 0 0.34 1.63
14 15.37 15.97 6.93 1.25 0 0.79 0.015 0 0.03 0 0 0.37 0.76
15 7.61 16.19 6.94 1.25 0 0.77 0.107 0.26 0.03 0 0 0.32 0.68
16 6.17 18.19 5.95 3.91 0 0.84 0.015 0 0.03 0 0 0.44 1.76
17 7.94 16.21 9.08 1.13 0 0.85 0.015 0 0.04 0 0 0.33 0.99
18 7.67 16.00 10.75 5.17 0 0.79 0.015 0 0.04 0 0 0.40 1.12
19 7.11 12.19 6.75 6.64 0 0.80 0.015 0 0.03 0 0 0.31 1.32
20 7.86 25.73 10.61 1.25 0 0.83 0.015 0 0.03 0 0 0.33 1.43
21 7.56 16.41 5.53 1.89 0 0.83 0.015 0 0.03 2.91 0 0.27 1.35
22 7.66 16.57 5.58 0 0 0.83 0.015 0 0.03 2.23 0 0.28 1.21
23 7.59 16.51 5.67 1.94 0 0.83 0.015 0 0.03 0 1.67 0.28 1.35
24 7.69 16.69 5.71 0 0 0.83 0.015 0 0.03 0 1.93 0.29 1.21
25 7.19 17.01 10.18 1.93 0 0.79 0.015 0 0.03 2.19 0 0.28 1.06
26 7.59 16.37 10.09 0 0 0.80 0.015 0 0.03 2.86 0 0.35 0.90
27 7.64 16.97 10.91 1.94 0 0.81 0.015 0 0.02 0 1.56 0.29 1.00
28 6.91 17.54 10.05 0 0 0.81 0.015 0 0.03 0 1.97 0.31 1.01
각 용접재료에 대하여 플럭스 코어드 아크 용접(FCAW; Flux Cored Arc Welding)을 실시하였다. FCAW의 경우 100% CO2 보호 가스에서 입열량 8.0 ~ 12.0 KJ/cm로 용접을 실시하였다. FCAW용 와이어 직경은 1.2mm인 것을 사용하였다. 판 두께 20mm의 LNG 탱크 제작 모재 중 하나인 9% Ni 강판의 개선면에 개선각도가 22.5°가 되도록 사면을 형성하였다. 이후 모재끼리 루트 갭이 12mm가 되도록 배치하고, 개선이 좁아지는 측(루트부)에 모재와 동일한 강재를 배치하였다. 이 개선에 준하여 용접하고 용접 이음부를 제조하였다.
용접 과정에서 확인가능한 용접 이음부의 아크안정성, 슬래그 박리성과 용접 이음부의 내균열성, 비드 외관의 기공여부를 육안으로 비교하여 ◎(우수), ○(양호), △(미흡), ×(불량)의 4단계로 평가한 결과를 하기 표 2에 나타내었다.
내균열성 아크안정성 비드외관 슬래그박리성 크랙비율(%)
1 0
2 0
3 0
4 0
5 4
6 0
7 5
8 0
9 7
10 0
11 0
12 45
13 17
14 40
15 13
16 9
17 0
18 12
19 0
20 11
21 7
22 0
23 9
24 0
25 9
26 0
27 10
28 0
표 2를 참고하여 설명하면, 관계식 1을 불충족 하는 11번의 경우 아크 안정성과 비드 외관이 미흡하게 나타남을 확인할 수 있다. 또한 관계식 2를 불충족하는12, 14, 및 16번의 경우 크랙의 비율이 높게 나타남을 확인하였다. Mn의 범위에 따라 20, 27번의 경우도 크랙이 형성됨을 확인하였다.
이후 얻어진 용접 이음부의 항복강도(YS), 인장강도(TS), 연신율(EL), -196℃의 샤르피 충격흡수에너지를 측정한 결과를 하기 표 3에 나타내었다.
YS(MPa) TS(MPa) 연신율(%) CVM Impact
(J@-196℃)
1 452 707 40 39
2 426 701 39 38
3 435 651 40 45
4 427 647 40 44
5 468 729 38 37
6 451 697 38 37
7 461 723 39 38
8 439 689 39 38
9 487 731 38 36
10 437 702 39 37
11 430 657 40 42
12 370 530 43 45
13 549 767 30 24
14 364 614 41 44
15 394 637 43 43
16 504 727 37 29
17 405 626 40 43
18 461 694 31 23
19 394 627 34 26
20 483 741 29 22
21 467 729 37 34
22 449 703 39 37
23 471 738 35 33
24 457 699 40 38
25 461 709 34 27
26 428 667 36 31
27 459 710 35 29
28 419 671 36 32
표 3을 참고하여 설명하면, 관계식 2를 불충족 하는 12 내지 20의 경우 항복강도, 인장강도, 특히 충격값이 낮게 나타남을 확인할 수 있었다. 반면 본 발명의 조성 범위에 해당하는 1 내지 10의 경우 420MPa 이상의 항복강도, 650MPa 이상의 인장강도, 38% 이상의 연신율, 및 35J 이상의 충격값을 확보할 수 있었다.
또한 Mo, W, 또는 Nb의 함량과 관련한 관계식 3을 고려하여 표 4에 나타낸 바와 같은 성분을 가지는 스테인리스강 플럭스 코어드 와이어를 준비하였다. 이후 용접을 실시한 후 용접 이음부의 물성평가 결과를 하기 표 5에 나타내었다.
Ni Cr Mn Mo Cu Si C N P+S W Nb 식3
5 7.61 16.47 5.69 1.73 0 0.83 0.015 0 0.03 0.57 0 1.37
6 7.72 16.24 6.07 0 0 0.79 0.015 0 0.03 1.95 0 1.28
7 7.69 16.43 5.71 1.69 0 0.81 0.015 0 0.03 0 0.59 1.35
8 7.88 16.02 5.76 0 0 0.85 0.015 0 0.03 0 1.07 1.21
9 7.61 15.93 5.63 1.63 0 0.79 0.015 0 0.03 0.39 0.27 1.33
10 7.60 15.93 6.23 0 0 0.86 0.015 0 0.04 1.37 0.54 1.25
21 7.56 16.41 5.53 1.89 0 0.83 0.015 0 0.03 2.91 0 1.57
22 7.66 16.57 5.58 0 0 0.83 0.015 0 0.03 2.23 0 1.37
23 7.59 16.51 5.67 1.94 0 0.83 0.015 0 0.03 0 1.67 1.47
24 7.69 16.69 5.71 0 0 0.83 0.015 0 0.03 0 1.93 1.34
25 7.19 17.01 10.18 1.93 0 0.79 0.015 0 0.03 2.19 0 1.19
26 7.59 16.37 10.09 0 0 0.80 0.015 0 0.03 2.86 0 1.06
27 7.64 16.97 10.91 1.94 0 0.81 0.015 0 0.02 0 1.56 1.08
28 6.91 17.54 10.05 0 0 0.81 0.015 0 0.03 0 1.97 1.12
29 7.95 16.19 5.93 5.23 0 0.81 0.015 0 0.03 0.15 0 1.51
30 7.59 15.95 6.05 5.07 0 0.48 0.015 0 0.03 2.13 0 1.64
31 7.95 16.17 5.89 5.14 0 0.81 0.015 0 0.03 0 1.67 1.61
32 7.62 15.81 5.91 5.08 0 0.81 0.015 0 0.04 2.07 1.59 1.76
33 7.18 16.84 5.59 2.05 0 0.83 0.015 0 0.03 2.19 0 1.59
34 7.57 17.21 5.94 1.97 0 0.86 0.015 0 0.03 0 1.83 1.51
35 7.17 16.91 5.84 1.88 0 0.83 0.015 0 0.03 2.23 1.74 1.69
식3 항복강도(MPa) 인장강도(MPa) 연신율(%) CVM Impact
(J@-196℃)
5 1.37 468 729 38 37
6 1.28 451 697 38 37
7 1.35 461 723 39 38
8 1.21 439 689 39 38
9 1.33 487 731 38 36
10 1.25 437 702 39 37
21 1.57 467 729 37 34
22 1.37 449 703 39 37
23 1.47 471 738 35 33
24 1.34 457 699 40 38
25 1.19 461 709 34 27
26 1.06 428 667 36 31
27 1.08 459 710 35 29
28 1.12 419 671 36 32
29 1.51 479 747 32 24
30 1.64 484 759 30 25
31 1.61 481 755 31 26
32 1.76 493 763 29 22
33 1.59 461 721 36 33
34 1.51 457 741 34 31
35 1.69 462 732 34 30
표 4 및 표 5를 참고하여 설명하면, 추가 또는 대체된 W 또는 Nb가 Mn과의 관계에서 본 발명의 조성 범위를 벗어난 25 내지 28의 경우 충격값이 낮게 나타남을 확인하였다. 또한 관계식 3을 불충족하는 29 내지 35의 경우 역시 충격값이 낮게 나타남을 확인할 수 있었다. 이에 W, Nb를 추가하거나 Mo를 대체하여 부가하는 경우 관계식 5를 고려하여 성분함량을 조정함이 바람직함을 알 수 있다.
본 발명에 따른 스테인리스강 플럭스 코어드 와이어는 망간을 10 중량% 이하로 포함하면서 Mo, Cr의 함량을 조절하여 우수한 강도와 극저온 충격 인성을 갖는 용접 금속을 얻을 수 있는 특징이 있다. 9% 니켈강, 고망간강, 스테인레스 계열 강재의 용접에 모두 적용가능하고, 용접부 극저온 인성이 우수한 용접 금속을 얻을 수 있는 점에서 유리한 효과를 가진다.
전술한 내용은 후술할 발명의 청구범위를 더욱 잘 이해할 수 있도록 본 발명의 특징과 기술적 장점을 다소 폭넓게 상술하였다. 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (4)

  1. 합금 외피에 플럭스가 충전된 합금 플럭스 코어드 와이어에 있어서, 외피 성분과 상기 외피에 내포되는 플럭스 성분을 합친 와이어 전체의 조성이 플럭스 코어드 와이어 전체에 대하여 중량%로,
    Ni : 6.0 ~ 15.0 중량%, Cr : 13.0 ~ 25.0 중량%, Mn : 1.0 ~ 10.0 중량%, Mo : 5.0 중량% 이하(0 중량%인 경우 제외), Si : 0.05 ~ 1.0 중량%를 포함하고, C : 0.5 중량% 이하(0 중량%인 경우 제외), P+S : 0.1 중량% 이하(0 중량%인 경우 제외)로 제한하며, SiO2, TiO2 및 ZrO2 중 1종 이상 : 5.0 ~ 18.0 중량%, Na2O 및 K2O 중 1종 이상 : 0.1 ~ 1.0 중량%, 잔부 Fe 및 불가피한 불순물을 포함하고,
    하기 [관계식 1]을 만족하는 LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어:
    [관계식 1]
    {4(Na2O+K2O)}/{0.5(TiO2+SiO2)+0.2(ZrO2)} < 0.5
  2. 합금 외피에 플럭스가 충전된 합금 플럭스 코어드 와이어에 있어서, 외피 성분과 상기 외피에 내포되는 플럭스 성분을 합친 와이어 전체의 조성이 플럭스 코어드 와이어 전체에 대하여 중량%로,
    Ni : 6.0 ~ 15.0 중량%, Cr : 13.0 ~ 25.0 중량%, Mn : 1.0 ~ 10.0 중량%, Si : 0.05 ~ 1.0 중량%를 포함하고, C : 0.5 중량% 이하(0 중량%인 경우 제외), P+S : 0.1 중량% 이하(0 중량%인 경우 제외)로 제한하며, SiO2, TiO2 및 ZrO2 중 1종 이상 : 5.0 ~ 18.0 중량%, Na2O 및 K2O 중 1종 이상 : 0.1 ~ 1.0 중량%을 포함하고,
    Mo, W, 및 Nb로 이루어진 군에서 선택되는 1종 이상을 0.1 ~ 5.0 중량% 포함하며, 잔부는 Fe 및 불가피한 불순물이고,
    하기 [관계식 1]을 만족하는 LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어:
    [관계식 1]
    {4(Na2O+K2O)}/{0.5(TiO2+SiO2)+0.2(ZrO2)} < 0.5
  3. 합금 외피에 플럭스가 충전된 합금 플럭스 코어드 와이어에 있어서, 상기 플럭스 코어드 와이어에 의하여 얻어지는 용착 금속 성분이, 중량%로,
    Ni : 8.0 ~ 14.0 중량%, Cr : 15.0 ~ 23.0 중량%, Mn : 1.0 ~ 8.0 중량%, Mo : 4.0 중량% 이하(0 중량%인 경우 제외), Si : 0.05 ~ 1.0 중량%를 포함하고, C+N : 0.01 ~ 0.5 중량%, P+S : 0.1 중량% 이하(0 중량%인 경우 제외)로 제한하며, 잔부는 Fe 및 불가피한 불순물을 포함하고,
    하기 [관계식 2]를 만족하는 LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어:
    [관계식 2]
    {Cr+Mo}/{Ni+Mn+30(C+N)} > 1
  4. 합금 외피에 플럭스가 충전된 합금 플럭스 코어드 와이어에 있어서, 상기 플럭스 코어드 와이어에 의하여 얻어지는 용착 금속 성분이, 중량%로,
    Ni : 8.0 ~ 14.0 중량%, Cr : 15.0 ~ 23.0 중량%, Mn : 1.0 ~ 8.0 중량%, Si : 0.05 ~ 1.0 중량%를 포함하고, C+N : 0.01 ~ 0.5 중량%, P+S : 0.1 중량% 이하(0 중량%인 경우 제외)로 제한하며,
    Mo, W, 및 Nb로 이루어진 군에서 선택되는 1종 이상(Q)을 0.1 ~ 4.0 중량% 포함하고, 잔부는 Fe 및 불가피한 불순물이며,
    하기 [관계식 3]을 만족하는 LNG 탱크 제작용 스테인리스강 플럭스 코어드 와이어:
    [관계식 3]
    {Cr+Q}/{Ni+Mn+30(C+N)} > 1
PCT/KR2020/016749 2019-11-26 2020-11-25 Lng 탱크 제작용 스테인리스강 플럭스 코어드 와이어 WO2021107579A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022531395A JP2023503639A (ja) 2019-11-26 2020-11-25 Lngタンク製造用ステンレス鋼フラックス入りワイヤ
EP20891483.8A EP4066984A1 (en) 2019-11-26 2020-11-25 Stainless steel flux cored wire for manufacturing lng tank
US17/752,930 US20220281037A1 (en) 2019-11-26 2022-05-25 Stainless steel flux cored wire for manufacturing lng tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190153514A KR102197132B1 (ko) 2019-11-26 2019-11-26 Lng 탱크 제작용 스테인리스강 플럭스 코어드 와이어
KR10-2019-0153514 2019-11-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/752,930 Continuation US20220281037A1 (en) 2019-11-26 2022-05-25 Stainless steel flux cored wire for manufacturing lng tank

Publications (1)

Publication Number Publication Date
WO2021107579A1 true WO2021107579A1 (ko) 2021-06-03

Family

ID=74087579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016749 WO2021107579A1 (ko) 2019-11-26 2020-11-25 Lng 탱크 제작용 스테인리스강 플럭스 코어드 와이어

Country Status (5)

Country Link
US (1) US20220281037A1 (ko)
EP (1) EP4066984A1 (ko)
JP (1) JP2023503639A (ko)
KR (1) KR102197132B1 (ko)
WO (1) WO2021107579A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102509889B1 (ko) * 2021-03-25 2023-03-15 현대종합금속 주식회사 내균열성 및 극저온 충격인성이 우수한 전자세 용접 가능한 플럭스 코어드 와이어

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0135843B1 (ko) 1993-08-31 1998-04-24 윤종용 직열형 음극 구조체
JP2000343274A (ja) * 1999-06-04 2000-12-12 Nippon Steel Corp 高Cr鋼用被覆アーク溶接棒および高Cr鋼の溶接方法
KR100925321B1 (ko) * 2006-12-15 2009-11-04 가부시키가이샤 고베 세이코쇼 가스 실드 아크 용접용 플럭스 코어드 와이어
KR20150074937A (ko) * 2013-12-24 2015-07-02 주식회사 포스코 고강도 플럭스 코어드 용접 와이어
KR20160093821A (ko) * 2015-01-30 2016-08-09 동아대학교 산학협력단 듀플렉스 스테인리스강 용접봉 조성물
KR20180108730A (ko) * 2016-03-08 2018-10-04 신닛테츠스미킨 카부시키카이샤 플럭스 코어드 와이어, 용접 조인트의 제조 방법 및 용접 조인트

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127991A (ja) * 1983-01-12 1984-07-23 Kawasaki Steel Corp 耐塩化物応力腐食割れ性のすぐれたオ−ステナイトステンレス鋼溶着金属
JP2005279768A (ja) * 2004-03-30 2005-10-13 National Institute For Materials Science 溶接用フラックス入りワイヤと鋼構造物用溶接継手
JP4566899B2 (ja) * 2005-12-09 2010-10-20 日鐵住金溶接工業株式会社 高強度ステンレス鋼溶接用フラックス入りワイヤ
JP4849910B2 (ja) * 2006-03-02 2012-01-11 Jfeスチール株式会社 フラックス入りワイヤ
KR100774155B1 (ko) * 2006-10-20 2007-11-07 고려용접봉 주식회사 이상 스테인리스강 용접용 플럭스 코어드 와이어와 그제조방법
KR101065996B1 (ko) * 2008-05-27 2011-09-19 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 응고 결정립을 미세하게 하는 2상 스테인리스 강 용접용 플럭스 내장 와이어
TWI604912B (zh) * 2011-07-13 2017-11-11 Illinois Tool Works 藥芯焊絲、其生產方法及用途
KR101353843B1 (ko) 2011-12-27 2014-01-20 주식회사 포스코 용접 열영향부 극저온 인성이 우수한 오스테나이트 강재
JP6257193B2 (ja) * 2013-07-12 2018-01-10 株式会社神戸製鋼所 肉盛溶接用フラックス入りワイヤ
CN107838579A (zh) * 2016-09-18 2018-03-27 张宇 低温钢用纯氩气保焊接用药芯焊丝
JP6566928B2 (ja) * 2016-12-07 2019-08-28 日鉄溶接工業株式会社 ステンレス鋼溶接用フラックス入りワイヤ
CN106736032B (zh) * 2016-12-28 2018-10-19 北京工业大学 一种用于薄板焊接的309(l)不锈钢药芯焊丝
KR101965666B1 (ko) * 2017-08-11 2019-04-04 현대종합금속 주식회사 극저온용 전자세 용접 가능한 플럭스 코어드 와이어
JP7010675B2 (ja) * 2017-11-24 2022-01-26 株式会社神戸製鋼所 ガスシールドアーク溶接用フラックス入りワイヤ及び溶接方法
CN108453415B (zh) * 2017-12-22 2020-06-30 洛阳双瑞特种合金材料有限公司 一种焊丝药粉、不锈钢药芯焊丝及其制备方法与应用
JP7231477B2 (ja) * 2019-05-09 2023-03-01 株式会社神戸製鋼所 フラックス入りワイヤ、溶接方法及び溶接金属
US11772206B2 (en) * 2019-09-20 2023-10-03 Lincoln Global, Inc. High chromium creep resistant weld metal for arc welding of thin walled steel members
CN111112876B (zh) * 2019-11-28 2021-10-12 邯郸市永固冶金备件有限公司 一种药芯焊丝

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0135843B1 (ko) 1993-08-31 1998-04-24 윤종용 직열형 음극 구조체
JP2000343274A (ja) * 1999-06-04 2000-12-12 Nippon Steel Corp 高Cr鋼用被覆アーク溶接棒および高Cr鋼の溶接方法
KR100925321B1 (ko) * 2006-12-15 2009-11-04 가부시키가이샤 고베 세이코쇼 가스 실드 아크 용접용 플럭스 코어드 와이어
KR20150074937A (ko) * 2013-12-24 2015-07-02 주식회사 포스코 고강도 플럭스 코어드 용접 와이어
KR20160093821A (ko) * 2015-01-30 2016-08-09 동아대학교 산학협력단 듀플렉스 스테인리스강 용접봉 조성물
KR20180108730A (ko) * 2016-03-08 2018-10-04 신닛테츠스미킨 카부시키카이샤 플럭스 코어드 와이어, 용접 조인트의 제조 방법 및 용접 조인트

Also Published As

Publication number Publication date
US20220281037A1 (en) 2022-09-08
KR102197132B1 (ko) 2020-12-31
JP2023503639A (ja) 2023-01-31
EP4066984A1 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
JP3758040B2 (ja) 低合金耐熱鋼用ガスシールドアーク溶接用フラックス入りワイヤ
WO2014104731A1 (ko) 충격인성이 우수한 초고강도 플럭스 코어드 아크 용접이음부 및 이를 제조하기 위한 용접 와이어
WO2015083878A1 (ko) 극저온 충격 인성이 우수한 고강도 용접이음부 및 이를 위한 플럭스 코어드 아크 용접용 와이어
CN100574964C (zh) 一种气体保护焊用铬钼钢药芯焊丝
WO2015099218A1 (ko) 내열강용 용접재료
EP3838474A1 (en) Solid wire for gas metal arc welding
US20080093351A1 (en) Flux-cored wire for gas shielded arc welding for creep-resisting steels
KR20130127943A (ko) Ni기 합금 용접 금속, 대상 전극 및 용접 방법
JP3815984B2 (ja) 低合金耐熱鋼用ガスシールドアーク溶接用フラックス入りワイヤ
WO2021107580A1 (ko) Ni기 합금 플럭스 코어드 와이어
WO2021107579A1 (ko) Lng 탱크 제작용 스테인리스강 플럭스 코어드 와이어
JPH09168891A (ja) 高強度Cr−Mo鋼用低水素系被覆アーク溶接棒
WO2021107581A1 (ko) Lng 탱크 제작용 스테인리스강 용접 와이어
WO2018117464A1 (ko) 극저온 인성 및 강도가 우수한 용접이음부
US11958139B2 (en) Flux-cored wire for gas shield arc welding
KR100502571B1 (ko) 탄산가스 아크 용접용 티타니아계 플럭스 충전와이어
KR20160083355A (ko) 플럭스 코어드 아크 용접용 와이어
WO2021075777A1 (ko) 용접봉용 선재 및 이의 제조방법
WO2019009636A1 (ko) 플럭스 코어드 와이어용 냉연강판 및 그 제조방법
WO2022065648A1 (ko) 플럭스 코어드 와이어
KR20170082304A (ko) 내 균열성이 우수한 가스실드 아크 용접용 티타니아계 플럭스 충전 와이어
KR101853796B1 (ko) 우수한 저온 충격인성 및 균열성을 나타내는 염기성계 고강도 플럭스 충전 와이어
WO2018124591A1 (ko) 슬래그가 저감된 솔리드 와이어
KR20180109130A (ko) 플럭스 코어드 아크 용접 이음부
JPH03285793A (ja) 低水素系被覆アーク溶接棒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531395

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020891483

Country of ref document: EP

Effective date: 20220627