WO2018117464A1 - 극저온 인성 및 강도가 우수한 용접이음부 - Google Patents

극저온 인성 및 강도가 우수한 용접이음부 Download PDF

Info

Publication number
WO2018117464A1
WO2018117464A1 PCT/KR2017/013817 KR2017013817W WO2018117464A1 WO 2018117464 A1 WO2018117464 A1 WO 2018117464A1 KR 2017013817 W KR2017013817 W KR 2017013817W WO 2018117464 A1 WO2018117464 A1 WO 2018117464A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
nickel
steel
welding
content
Prior art date
Application number
PCT/KR2017/013817
Other languages
English (en)
French (fr)
Inventor
이봉근
한일욱
이상철
김극
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2018117464A1 publication Critical patent/WO2018117464A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a welded joint having excellent cryogenic toughness and strength, and more particularly, can be applied to nickel steel (Ni content: 4.8 to 9.2% by weight), and exhibits impact toughness of 27J or more at cryogenic temperatures (-196 ° C). It relates to a welded joint showing a yield strength of 360 MPa or more.
  • Inconel and Hastelloy-based welding materials are Ni-based alloys having a Ni content of 60% by weight or more.
  • Ni molybdenum (Mo) and tungsten (W) together with Ni in an amount of 60% by weight or more.
  • Solid solution and precipitation hardening alloys such as;
  • Patent Document 1 describes a method of flux cored arc welding of a 9% Ni steel base material by using a mixed Inconel-based and Hastelloy-based welding material.
  • the above welding materials are extremely expensive because they contain expensive Ni in a very high content.
  • the welding material is used to manufacture the LNG tank for the actual transport vessel, 1 to 3% of the total weight, so that the cost used for the welding material is more than 10% of the actual unit manufacturing cost.
  • Patent Document 1 Korean Unexamined Patent Publication No. 2001-0063589
  • the present invention is to provide a welded joint excellent in cryogenic toughness and yield strength by controlling the component composition and content of the welded joint obtained by welding nickel steel in order to solve this conventional problem.
  • the present invention is a welded joint obtained by welding nickel steel, the weld joint is (1) carbon (C): 0.1 ⁇ 0.5% by weight, silicon (Si): 0.1 ⁇ 2.0 Weight percent, manganese (Mn): 18-26.0 weight percent, nickel (Ni): 9 weight percent or less (excluding 0 weight percent), a first composition comprising residual Fe and other unavoidable impurities; And (2) carbon (C): 0.1 to 0.5% by weight, silicon (Si): 0.1 to 2.0% by weight, manganese (Mn): 0.5 to 12.0% by weight, nickel (Ni): 20 to 30% by weight, residual Fe And it provides a welded joint excellent in cryogenic toughness and strength composed of any one of the composition selected from the second composition containing other unavoidable impurities.
  • the welded joint is chromium (Cr): 0.1 to 3.0% by weight, molybdenum (Mo): 0.1 to 6.0% by weight, tungsten (W): 0.1 to 4.0% by weight, phosphorus (P): 0.01% by weight or less (0% by weight) %) And sulfur (S): 0.01% by weight or less (excluding 0% by weight) may further include at least one selected from the group consisting of.
  • the nickel steel may include 4.8 to 9.2% by weight of nickel.
  • Welding materials used for welding the nickel steel are carbon (C): 0.2 to 0.6% by weight, silicon (Si): 0.1 to 2.0% by weight, manganese (Mn): 25.0 to 35.0% by weight, nickel (Ni): 1.0 to 12.0 wt%, residual Fe and other unavoidable impurities, or carbon (C): 0.2-0.6 wt%, silicon (Si): 0.1-2.0 wt%, manganese (Mn): 0.5-14 wt%, nickel ( Ni): 25.0 to 40.0% by weight, may contain residual Fe and other unavoidable impurities.
  • the welding material may further include at least one selected from the group consisting of chromium (Cr): 0.01 to 3% by weight, molybdenum (Mo): 0.1 to 6.0% by weight, and tungsten (W): 0.1 to 4.0% by weight.
  • the present invention by controlling the composition and content of the welded joint obtained by welding nickel steel, it is possible to provide a welded joint that exhibits impact toughness of 27J or more at cryogenic temperatures (-196 ° C) and exhibits a yield strength of 360 MPa or more. .
  • cryogenic welding structures such as carrier ships and land tanks, such as liquefied LNG and liquefied CO 2 .
  • the welding material used to obtain a welded joint according to the present invention includes a significantly lower content of nickel than conventional Inconel and Hastelloy-based welding materials, thereby ensuring price competitiveness.
  • the welded joint having excellent cryogenic toughness and strength in the welded joint obtained by welding nickel steel, (1) carbon (C): 0.1 to 0.5% by weight, silicon (Si): 0.1 -2.0 wt% manganese (Mn): 18-26.0 wt%, nickel (Ni): 9 wt% or less (excluding 0 wt%), first composition comprising residual Fe and other unavoidable impurities; And (2) carbon (C): 0.1 to 0.5% by weight, silicon (Si): 0.1 to 2.0% by weight, manganese (Mn): 0.5 to 12.0% by weight, nickel (Ni): 20 to 30% by weight, residual Fe And a composition selected from any one of a second composition containing other unavoidable impurities.
  • the inventors of the present invention have conducted studies to secure cryogenic toughness and strength in the welding process of nickel steel, and as a result, carbon (C), silicon (Si), manganese (Mn), nickel (Ni), According to the present invention, when the content of iron (Fe) and other unavoidable impurities is properly controlled, a welded joint exhibiting impact toughness of 27J or more at cryogenic temperatures (-196 ° C) and a yield strength of 360 MPa or more can be obtained. Was completed.
  • the welded joint having excellent cryogenic toughness and strength of the present invention includes (1) carbon (C): 0.1 to 0.5% by weight, silicon (Si): 0.1 to 2.0% by weight, manganese (Mn): 18.0 to 26.0% %, Nickel (Ni): 1st composition which contains 9.0 weight% or less (excluding 0 weight%), residual Fe and other unavoidable impurities; And (2) carbon (C): 0.1 to 0.5% by weight, silicon (Si): 0.1 to 2.0% by weight, manganese (Mn): 0.5 to 12.0% by weight, nickel (Ni): 20.0 to 30.0% by weight, residual Fe And it is characterized by consisting of any one of the composition selected from the second composition containing other unavoidable impurities.
  • Carbon is the most powerful austenite forming element that can secure the strength and cryogenic toughness of welded joints. If the carbon content is less than 0.1% by weight, it is impossible to secure high-temperature strength, whereas if the carbon content exceeds 0.5% by weight, the process compound is excessively formed during welding to promote high temperature cracking and welding fume and spatter generation. Therefore, in the present invention, the content of the carbon is limited to 0.1 to 0.5% by weight.
  • Silicon is added to maximize composite deoxidation effect with manganese during welding, and it is preferable to include at least 0.1%.
  • the content of the silicon exceeds 2.0% by weight excessively precipitated the process compound is lowered crack resistance. Therefore, in the present invention, the content of the silicon is limited to 0.1 to 2.0% by weight.
  • Welding joint according to the present invention is composed of the first composition and the second composition according to the content of manganese and nickel.
  • the content of nickel which is an austenite stabilizing element
  • the content of manganese is 18.0% by weight or more in order to increase austenite stabilization. Should be adjusted.
  • the content of manganese exceeds 26.0% by weight, there is a price problem and difficulty in manufacturing the welding material.
  • the content of manganese included in the first composition is limited to 18.0 to 26.0% by weight.
  • the content of Ni which is an austenite stabilizing element
  • the amount of manganese must be adjusted to a range not exceeding 12.0 wt% to improve the strength of the welded joint.
  • austenite stabilization can be increased. Therefore, in the present invention, the content of manganese contained in the second composition is limited to 0.5 to 12.0% by weight.
  • the manganese content is limited to 18.0 to 26.0 wt%, and the nickel content is 20 wt% or more.
  • the content of manganese is limited to 0.5 to 12.0% by weight.
  • Nickel is a strong austenite forming element.
  • the welded joint according to the present invention is composed of the first composition and the second composition according to the content of manganese and nickel.
  • the content of nickel contained in the first composition is limited to 9% by weight or less (excluding 0% by weight).
  • the content of nickel was adjusted to 20.0% by weight or more in order to form a complete austenite structure and to secure cryogenic toughness.
  • the content of nickel exceeds 30.0% by weight, the problem of strength reduction and price increase of the welded joint occurs, so it was limited to 30.0% by weight or less.
  • the content of Mn is limited to the range not to exceed 12%.
  • the nickel content is limited to 9.0 wt% or less (excluding 0 wt%), and the manganese content is 12.0 wt% or less.
  • the nickel content is limited to 20.0 to 30.0% by weight.
  • the welded joint having excellent cryogenic toughness and strength according to the present invention includes the remainder of iron (Fe) and unavoidable impurities in addition to the above-described component composition.
  • the impurities are unavoidably mixed in the unintentional state from the raw material or the surrounding environment in the normal steel manufacturing process, and this cannot be excluded. Since these impurities are known to those skilled in the art of ordinary steel manufacturing, not all of them are specifically mentioned herein.
  • the welded joint according to the present invention is chromium (Cr): 0.1 to 3.0% by weight, molybdenum (Mo): 0.1 to 6.0% by weight, tungsten (W): 0.1 to 4.0% by weight, phosphorus (P): 0.01 It may further include one or more selected from the group consisting of less than or equal to 0% by weight (excluding 0% by weight) and 0.01% by weight (excluding 0% by weight).
  • Cr chromium
  • Mo molybdenum
  • W tungsten
  • P phosphorus
  • Chromium is a ferrite forming element, but may be included in the chromium more than 0.1% by weight to ensure the corrosion characteristics. However, when the content of chromium exceeds 3.0% by weight, the toughness of the welded joint may decrease due to the formation of excess ferrite and chromium carbide. Therefore, the content of chromium is preferably 0.1 to 3.0% by weight.
  • Molybdenum is an element that increases the strength by finely depositing the molybdenum-based carbide, and may be added by 0.1% by weight or more to improve the strength. However, such a precipitate may cause a drop in impact toughness at low and high temperatures, and when the content of molybdenum exceeds 6.0% by weight, ductility may be reduced. Therefore, the content of molybdenum is preferably 0.1 to 6.0% by weight.
  • Tungsten is an element that increases the strength at room temperature and high temperature by finely depositing tungsten series similarly to the molybdenum, and may be added in an amount of 0.1 wt% or more to improve high temperature strength and oxidation resistance.
  • tungsten is preferably 0.1 to 4.0% by weight.
  • Phosphorus (P) 0.01 wt% or less (excluding 0 wt%)
  • Phosphorus is an impurity that is inevitably contained in the welded joint, and a low melting point compound is easily produced even by a small amount of addition, thereby lowering the melting point of the material to increase the hot cracking susceptibility.
  • Sulfur is an impurity inevitably contained in the welded joint, and it is preferable that it is not included because it is easy to produce a low melting point compound even by the addition of a small amount, thereby lowering the melting point of the material and increasing the hot cracking susceptibility. When included inevitably, it is preferable not to exceed 0.01% by weight.
  • the welded joint according to the present invention is obtained by welding nickel steel
  • the nickel steel may be a cryogenic steel containing 4.8 ⁇ 9.2% by weight of nickel.
  • the welding material used for welding the nickel steel is carbon (C): 0.2 to 0.6% by weight, silicon (Si): 0.1 to 2.0% by weight, manganese (Mn): 25.0 to 35.0% by weight, nickel (Ni): 1.0 to 12.0 wt%, residual Fe and other unavoidable impurities, or carbon (C): 0.2 to 0.6 wt%, silicon (Si): 0.1 to 2.0 wt%, manganese (Mn): 0.5 to 14 wt%, Nickel (Ni): 25.0 to 40.0% by weight, may contain residual Fe and other unavoidable impurities.
  • the welding material may further include at least one selected from the group consisting of chromium (Cr): 0.01 to 3.0% by weight, molybdenum (Mo): 0.1 to 6.0% by weight, tungsten (W): 0.1 to 4.0% by weight. have.
  • Component content of the above-described welding material is a numerical value obtained by intensive studies to obtain the composition of the welded joint to be obtained in the present invention, when the content of each alloy component is out of the above range, the desired component composition and content It is difficult to obtain a welded joint having.
  • the present invention by welding the nickel steel containing 4.8 ⁇ 9.2% by weight of nickel using the welding material having the composition and content of the component can be obtained a welded joint having the desired composition and content, thus obtained
  • the welded joint is preferable because it shows an impact toughness of 27J or more at cryogenic temperatures (-196 ° C) and a yield strength of 360 MPa or more.
  • a nickel steel (base material) having a thickness of 20 mm was prepared.
  • flux cored wires (welding materials) 1 to 23 having a diameter of 1.2 mm were prepared, satisfying the composition and content ranges shown in Table 2 below. At this time, the unit of the numerical value described in the following table is a weight%.
  • FCAW flux cored arc welding
  • cryogenic impact toughness of the welded joints obtained according to Examples 1 to 16 and Comparative Examples 1 to 30 was subjected to a Charpy impact test (CVN) at -196 ° C using a KS standard (KS B ISO 9016) VWT 0 / b test piece. It was evaluated and the results are shown in Table 3 below.
  • Example 1 5% Ni steel One 0.368 0.688 0.83 - 26.0 - - 50.4 371.5
  • Example 2 5% Ni steel 2 0.221 0.548 6.50 1.40 21.1 - - 63.7 416.3
  • Example 3 5% Ni steel 3 0.221 1.318 4.40 0.70 26.0 - - 29.4 432.4
  • Example 4 5% Ni steel 4 0.151 0.618 4.40 - 25.3 1.72 0.80 37.1 515.2
  • Example 5 5% Ni steel 5 0.431 0.688 5.80 - 28.8 - - 28.7 449.7
  • Example 6 5% Ni steel 6 0.431 0.688 4.40 - 23.9 0.82 0.92 53.9 572.7
  • Example 7 5% Ni steel 7 0.221 0.548 21.20 1.75 4.6 1.75 - 32.1 482.0
  • Example 8 5% Ni steel 8 0.151 0.478 21.90 0.04 7.8 1.25 - 29.5 45
  • cryogenic impact toughness of 27J or more at the target temperature (-196 ° C) and the yield strength of 360 MPa or more can be obtained. can confirm.
  • the impact toughness at -196 ° C is less than 27 J or the yield strength is 360 MPa.
  • the bar indicates a less than LNG liquefaction and liquefied CO 2, such as a carrier or land tanks it was impossible to apply a cryogenic material to produce.
  • Embodiments of the present invention can provide a welded joint for Ni steel excellent in cryogenic impact toughness and yield strength at a lower price than conventional materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)

Abstract

본 발명의 니켈강을 용접하여 얻어지는 용접이음부는 (1) 탄소(C): 0.1 ~ 0.5중량%, 실리콘(Si): 0.1 ~ 2.0중량%, 망간(Mn): 18.0 ~ 26.0중량%, 니켈(Ni): 9중량% 이하(0중량%는 제외), 잔여 Fe 및 기타 불가피한 불순물을 포함하는 제1조성; 및 (2) 탄소(C): 0.1 ~ 0.5중량%, 실리콘(Si): 0.1 ~ 2.0중량%, 망간(Mn): 0.5 ~ 12.0중량%, 니켈(Ni): 20 ~ 30중량%, 잔여 Fe 및 기타 불가피한 불순물을 포함하는 제2조성 중 선택된 어느 하나의 조성으로 구성된다. 본 발명에 따르면, 니켈강(Ni 함량: 4.8~9.2중량%)에 적용 가능하며 극저온(-196℃)에서 27J 이상의 충격인성을 나타냄과 동시에 360MPa 이상의 항복강도를 나타내는 용접이음부를 제공할 수 있다.

Description

극저온 인성 및 강도가 우수한 용접이음부
본 발명은 극저온 인성 및 강도가 우수한 용접이음부에 관한 것으로서, 더욱 상세하게는 니켈강(Ni 함량: 4.8~9.2중량%)에 적용 가능하며 극저온(-196℃)에서 27J 이상의 충격인성을 나타냄과 동시에 360MPa 이상의 항복강도를 나타내는 용접이음부에 관한 것이다.
기존, 4.8~9.2중량%의 니켈(Ni)을 포함하는 니켈강은 -110 ~ -196℃에서 충격인성이 27J 이상을 나타내는 극저온용 강재로, 실제 액화 LNG 및 액화 CO2 등의 운반선 및 육상 탱크를 제작하는 소재로 활용되고 있다.
상기한 바와 같은 극저온 영역에서 27J 이상의 충격인성을 나타내는 니켈강을 이용하여 용접구조물을 제조할 경우, 용접구조물의 안정성을 확보하기 위해서는 동일 수준의 극저온 충격 인성을 나타내는 용접이음부 확보가 필수적이며, 또한 구조체를 제조하기 위해서는 상온 항복강도가 360MPa 이상인 용접이음부가 필요하다.
이를 해결하기 위한 수단으로, 기존에는 인코넬 혹은 하스텔로이 계열의 용접재료가 널리 사용되고 있다. 이러한 인코넬 및 하스텔로이 계열의 용접재료는 Ni함량이 60중량% 이상인 Ni계합금이며, 예컨대 하스텔로이계 용접재료의 경우 60중량% 이상의 Ni와 함께 강도 향상을 위하여 몰리브덴(Mo), 텅스텐(W) 등과 같은 고용 및 석출강화형 합금을 포함한다.
예컨대, 특허문헌 1에는 인코넬계 및 하스텔로이계 용접재료를 혼합 사용하여 9% Ni강 모재를 플럭스 코어드 아크 용접하는 방법이 기재되어 있다.
그러나, 상기한 용접재료는 고가의 Ni을 매우 높은 함량으로 포함하기 때문에 극히 고가이다. 실제 수송선용 LNG 탱크를 제작하기 위해서는 총 중량의 1 ~ 3%까지 용접재료가 사용되는 예도 있으며, 이로 인해서 용접재료에 사용되는 비용이 실 구조물 제작단가의 10%를 상회하는 경우가 일반적인 실정이다.
이에, 상기한 고가의 인코넬 및 하스텔로이 계열의 용접재료가 아닌 저렴한 소재로 니켈강의 용접을 진행하게 되면, 실제 구조물의 제작에 가격 경쟁력이 생기게 된다. 즉, 용접재료의 단가를 낮추는 것만으로 최대 5% 이상의 구조물 제작단가를 낮출 수 있는 여력이 발생하게 된다.
따라서, 합금원소의 구성성분 및 함량을 조절하여 기존 소재인 인코넬 및 하스텔로이계 용접재료 대비 저가의 소재를 개발하고, 이를 니켈강에 적용하여 얻을 수 있는 극저온 인성 및 항복강도가 우수한 용접이음부에 대한 개발이 필요한 실정이다.
(특허문헌 1) 대한민국 공개특허공보 제2001-0063589호
본 발명은 이러한 종래의 문제점을 해결하기 위해, 니켈강을 용접하여 얻어지는 용접이음부의 성분 조성 및 함량을 제어함으로써 극저온 인성 및 항복강도가 우수한 용접이음부를 제공하는데 그 목적이 있다.
상기와 같은 과제를 해결하기 위하여, 본 발명은 니켈강을 용접하여 얻어지는 용접이음부에 있어서, 상기 용접이음부는 (1) 탄소(C): 0.1 ~ 0.5중량%, 실리콘(Si): 0.1 ~ 2.0중량%, 망간(Mn): 18 ~ 26.0중량%, 니켈(Ni): 9중량% 이하(0중량%는 제외), 잔여 Fe 및 기타 불가피한 불순물을 포함하는 제1조성; 및 (2) 탄소(C): 0.1 ~ 0.5중량%, 실리콘(Si): 0.1 ~ 2.0중량%, 망간(Mn): 0.5 ~ 12.0중량%, 니켈(Ni): 20 ~ 30중량%, 잔여 Fe 및 기타 불가피한 불순물을 포함하는 제2조성 중 선택된 어느 하나의 조성으로 구성되는 극저온 인성 및 강도가 우수한 용접이음부를 제공한다.
상기 용접이음부는 크롬(Cr): 0.1 ~ 3.0중량%, 몰리브덴(Mo): 0.1 ~ 6.0중량%, 텅스텐(W): 0.1 ~ 4.0중량%, 인(P): 0.01중량% 이하(0중량%는 제외) 및 황(S): 0.01중량% 이하(0중량%는 제외)로 이루어진 군에서 선택된 일종 이상을 더 포함할 수 있다.
상기 니켈강은 4.8 ~ 9.2중량%의 니켈을 포함할 수 있다.
상기 니켈강의 용접에 사용되는 용접재료는 탄소(C): 0.2 ~ 0.6중량%, 실리콘(Si): 0.1 ~ 2.0중량%, 망간(Mn): 25.0 ~ 35.0중량%, 니켈(Ni): 1.0 ~ 12.0중량%, 잔여 Fe 및 기타 불가피한 불순물을 포함하거나, 또는 탄소(C): 0.2 ~ 0.6중량%, 실리콘(Si): 0.1 ~ 2.0중량%, 망간(Mn): 0.5 ~ 14중량%, 니켈(Ni): 25.0 ~ 40.0중량%, 잔여 Fe 및 기타 불가피한 불순물을 포함할 수 있다.
상기 용접재료는 크롬(Cr): 0.01 ~ 3중량%, 몰리브덴(Mo): 0.1 ~ 6.0중량%, 텅스텐(W): 0.1 ~ 4.0중량%로 이루어진 군에서 선택된 일종 이상을 더 포함할 수 있다.
본 발명에 따르면, 니켈강을 용접하여 얻어지는 용접이음부의 성분 조성 및 함량을 제어함으로써 극저온(-196℃)에서 27J 이상의 충격인성을 나타냄과 동시에 360MPa 이상의 항복강도를 나타내는 용접이음부를 제공할 수 있다.
따라서, 본 발명에 따른 용접이음부는 액화 LNG 및 액화 CO2 등의 운반선이나 육상 탱크 등과 같은 극저온용 용접구조물에 효과적으로 적용 가능하다.
또한, 본 발명에 따른 용접이음부를 얻기 위해 사용되는 용접재료는 종래의 인코넬 및 하스텔로이 계열의 용접재료 대비 현저히 낮은 함량의 니켈을 포함하는바, 가격경쟁력을 확보할 수 있다.
본 발명의 일 실시예에 따른 극저온 인성 및 강도가 우수한 용접이음부는, 니켈강을 용접하여 얻어지는 용접이음부에 있어서, (1) 탄소(C): 0.1 ~ 0.5중량%, 실리콘(Si): 0.1 ~ 2.0중량%, 망간(Mn): 18 ~ 26.0중량%, 니켈(Ni): 9중량% 이하(0중량%는 제외), 잔여 Fe 및 기타 불가피한 불순물을 포함하는 제1조성; 및 (2) 탄소(C): 0.1 ~ 0.5중량%, 실리콘(Si): 0.1 ~ 2.0중량%, 망간(Mn): 0.5 ~ 12.0중량%, 니켈(Ni): 20 ~ 30중량%, 잔여 Fe 및 기타 불가피한 불순물을 포함하는 제2조성 중 선택된 어느 하나의 조성으로 구성된다.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
본 발명자들은 니켈강의 용접공정에 있어서 극저온 인성 및 강도를 확보하고자 연구를 거듭한 결과, 용접이음부의 성분 조성인 탄소(C), 실리콘(Si), 망간(Mn), 니켈(Ni) 및 잔부의 철(Fe)과 기타 불가피한 불순물의 함량을 적절하게 제어할 경우 극저온(-196℃)에서 27J 이상의 충격인성을 나타냄과 동시에 360MPa 이상의 항복강도를 나타내는 용접이음부를 얻을 수 있음을 확인하고 본 발명을 완성하였다.
구체적으로, 본 발명의 극저온 인성 및 강도가 우수한 용접이음부는 (1) 탄소(C): 0.1 ~ 0.5중량%, 실리콘(Si): 0.1 ~ 2.0중량%, 망간(Mn): 18.0 ~ 26.0중량%, 니켈(Ni): 9.0중량% 이하(0중량%는 제외), 잔여 Fe 및 기타 불가피한 불순물을 포함하는 제1조성; 및 (2) 탄소(C): 0.1 ~ 0.5중량%, 실리콘(Si): 0.1 ~ 2.0중량%, 망간(Mn): 0.5 ~ 12.0중량%, 니켈(Ni): 20.0 ~ 30.0중량%, 잔여 Fe 및 기타 불가피한 불순물을 포함하는 제2조성 중 선택된 어느 하나의 조성으로 구성되는 것을 특징으로 한다.
먼저, 본 발명의 용접이음부를 구성하는 각 성분의 첨가 이유와 이들의 함량범위 수치한정 이유에 대하여 상세히 설명한다.
탄소(C): 0.1 ~ 0.5중량%
탄소는 용접이음부의 강도 및 극저온 인성을 확보할 수 있는 가장 강력한 오스테나이트 형성원소이다. 상기 탄소의 함량이 0.1중량% 미만이면 고온강도 확보가 불가능하고, 반면 0.5중량%를 초과하게 되면 용접 중 공정 화합물을 과다하게 형성해 고온균열과 용접 퓸(Fume) 및 스패터 발생을 조장한다. 따라서, 본 발명에서는 상기 탄소의 함량을 0.1 ~ 0.5중량%로 제한한다.
실리콘(Si): 0.1 ~ 2.0중량%
실리콘은 용접시 망간과 함께 복합 탈산효과를 극대화하기 위해 첨가하는 것으로, 최소 0.1% 이상 포함시키는 것이 바람직하다. 반면, 상기 실리콘의 함량이 2.0중량%를 초과하면 공정화합물이 과다하게 석출되어 내균열성이 저하된다. 따라서, 본 발명에서는 상기 실리콘의 함량을 0.1 ~ 2.0중량%로 제한한다.
망간(Mn): 18.0 ~ 26.0중량%(제1조성), 0.5 ~ 12.0중량%(제2조성)
망간은 용접 중 산소, 황과 반응하여 탈산, 탈황을 수행하는 역할을 하므로 0.5% 이상 함유시켜 주어야 한다. 본 발명에 따른 용접이음부는 망간과 니켈의 함량에 따라 제1조성 및 제2조성으로 구성된다.
먼저, 제1조성의 경우는, 오스테나이트 안정화 원소인 니켈의 함량이 9.0중량% 이하(0중량%는 제외)인 경우로, 이때에는 오스테나이트 안정화도를 높이기 위해서 망간의 함량을 18.0중량% 이상으로 조절하여야 한다. 다만, 상기 망간의 함량이 26.0중량%를 초과할 경우 가격적인 문제 및 용접재료의 제조에 어려움이 있으므로, 본 발명에서는 제1조성에 포함되는 망간의 함량을 18.0 ~ 26.0중량%로 제한한다.
그리고, 제2조성의 경우는, 오스테나이트 안정화 원소인 Ni의 함량이 20.0중량% 이상인 경우로, 이때 망간의 첨가량은 12.0중량%를 초과하지 않는 범위로 조절하여야 용접이음부의 강도를 향상시킬 수 있으며, 오스테나이트 안정화도를 높일 수 있다. 따라서, 본 발명에서는 제2조성에 포함되는 망간의 함량을 0.5 ~ 12.0중량%으로 제한한다.
즉, 본 발명에 따르면, 니켈의 함량이 9.0중량% 이하(0중량%는 제외)인 제1조성의 경우 망간의 함량은 18.0 ~ 26.0중량%로 제한하고, 니켈의 함량이 20중량% 이상인 제2조성의 경우 망간의 함량은 0.5 ~ 12.0중량%로 제한한다.
니켈(Ni): 9.0중량% 이하(0중량%는 제외)(제1조성), 20 ~ 30중량%(제2조성)
니켈은 강력한 오스테나이트 형성원소이다. 상술한 바와 같이 본 발명에 따른 용접이음부는 망간과 니켈의 함량에 따라 제1조성 및 제2조성으로 구성된다.
먼저, 제1조성의 경우는, 18.0중량% 이상의 망간과 함께 니켈이 첨가되는 경우로, 니켈의 함량을 9.0중량% 이하로 조절하더라도 오스테나이트 안정도가 증가될 수 있고, 따라서 낮은 니켈함량으로 인한 강도저하가 방지될 수 있으며, 가격경쟁력을 확보할 수 있다. 따라서, 본 발명에서는 제1조성에 포함되는 니켈의 함량을 9중량% 이하(0중량%는 제외)로 제한한다.
그리고, 제2조성의 경우, 완전 오스테나이트 조직을 형성하고, 극저온 인성을 확보하기 위하여 니켈의 함량을 20.0중량% 이상으로 조절하였다. 다만, 니켈의 함량이 30.0중량%를 초과하는 경우에는 용접이음부의 강도 저하 및 가격 상승의 문제가 발생하므로 30.0중량%이하로 제한하였다. 이 경우, Mn의 함량은 12%를 초과하지 않는 범위로 제한한다.
즉, 본 발명에 따르면, 망간의 함량이 18.0중량% 이상인 제1조성의 경우 니켈의 함량은 함량을 9.0중량% 이하(0중량%는 제외)로 제한하고, 망간의 함량이 12.0중량% 이하인 제2조성의 경우 니켈의 함량은 20.0 ~ 30.0중량%로 제한한다.
한편, 본 발명에 따른 극저온 인성 및 강도가 우수한 용접 이음부는 상술한 성분조성 이외에 잔부의 철(Fe) 및 불가피한 불순물을 포함한다. 다만, 상기 불순물은 통상의 철강 제조과정에서 원료 또는 주위 환경으로부터 의도되지 않은 상태에서 불가피하게 혼입되는 것으로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 철강 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
이 밖에도, 본 발명에 따른 용접이음부는 크롬(Cr): 0.1 ~ 3.0중량%, 몰리브덴(Mo): 0.1 ~ 6.0중량%, 텅스텐(W): 0.1 ~ 4.0중량%, 인(P): 0.01중량% 이하(0중량%는 제외) 및 황(S): 0.01중량% 이하(0중량%는 제외)로 이루어진 군에서 선택된 일종 이상을 더 포함할 수 있다. 이하, 이들 성분의 함량에 대한 수치한정 이유에 대하여 설명한다.
크롬(Cr): 0.1 ~ 3.0중량%
크롬은 페라이트 형성원소이지만, 부식특성 확보를 위해 0.1중량% 이상의 크롬이 포함될 수 있다. 그러나, 상기 크롬의 함량이 3.0중량%를 초과하면 과량의 페라이트 및 크롬 탄화물 형성으로 인해 용접이음부의 인성이 저하될 수 있다. 따라서 상기 크롬의 함량은 0.1 ~ 3.0중량%인 것이 바람직하다.
몰리브덴(Mo): 0.1 ~ 6.0중량%
몰리브덴은 몰리브덴 계열의 탄화물을 미세하게 석출시켜 강도를 증가시켜주는 원소이며, 강도 향상을 위해서 0.1중량% 이상이 추가될 수 있다. 그러나, 이러한 석출물은 저온 및 고온에서의 충격인성 저하를 유발할 수 있고, 상기 몰리브덴의 함량이 6.0중량%를 초과할 경우에는 연성이 저하될 우려가 있다. 따라서, 상기 몰리브덴의 함량은 0.1 ~ 6.0중량%인 것이 바람직하다.
텅스텐(W): 0.1 ~ 4.0중량%
텅스텐은 상기 몰리브덴과 유사하게 텅스텐 계열의 미세하게 석출시켜 상온 및 고온에서 강도를 증가시키는 원소이며, 고온강도와 내산화성 향상을 위해서 0.1중량% 이상이 추가될 수 있다. 그러나, 이러한 석출물은 저온 및 고온에서의 충격인성 저하를 유발할 수 있고, 상기 텅스텐의 함량이 4.0중량%를 초과하면, 연성이 저하될 우려가 있다. 따라서, 상기 텅스텐의 함량은 0.1 ~ 4.0중량%인 것이 바람직하다.
인(P): 0.01중량% 이하(0중량%는 제외)
인은 용접이음부에 불가피하게 함유되는 불순물로서, 미량 첨가에 의해서도 저융점 화합물을 쉽게 생성하여 재료의 융점을 저하시켜 고온 균열 감수성이 증가하므로, 가급적 포함되지 않는 것이 바람직하다. 불가피하게 포함되는 경우에는 0.01중량%를 넘지 않는 것이 바람직하다.
황(S): 0.01중량% 이하(0중량%는 제외)
황은 용접이음부에 불가피하게 함유되는 불순물로서, 미량 첨가에 의해서도 저융점 화합물을 쉽게 생성하여 재료의 융점을 저하시켜 고온 균열 감수성이 증가하므로, 가급적 포함되지 않는 것이 바람직하다. 불가피하게 포함되는 경우에는 0.01중량%를 넘지 않는 것이 바람직하다.
한편, 본 발명에 따른 용접이음부는 니켈강을 용접하여 얻어지는 것으로, 상기 니켈강은 4.8 ~ 9.2중량%의 니켈을 포함하는 극저온용 강재일 수 있다.
또한, 상기 니켈강의 용접에 사용되는 용접재료는 탄소(C): 0.2 ~ 0.6중량%, 실리콘(Si): 0.1 ~ 2.0중량%, 망간(Mn): 25.0 ~ 35.0중량%, 니켈(Ni): 1.0 ~ 12.0중량%, 잔여 Fe 및 기타 불가피한 불순물을 포함하거나, 또는 탄소(C): 0.2 ~ 0.6중량%, 실리콘(Si): 0.1 ~ 2.0중량%, 망간(Mn): 0.5 ~ 14중량%, 니켈(Ni): 25.0 ~ 40.0중량%, 잔여 Fe 및 기타 불가피한 불순물을 포함할 수 있다. 이때, 상기 용접재료는 크롬(Cr): 0.01 ~ 3.0중량%, 몰리브덴(Mo): 0.1 ~ 6.0중량%, 텅스텐(W): 0.1 ~ 4.0중량%로 이루어진 군에서 선택된 일종 이상을 더 포함할 수 있다.
상술한 용접재료의 성분 함량은 본 발명에서 얻고자 하는 용접이음부의 조성을 얻기 위하여 예의 연구를 거듭한 결과 얻어진 수치로서, 각 합금성분의 함량이 상기한 범위를 벗어날 경우에는 원하는 성분 조성 및 함량을 갖는 용접이음부를 얻기에 어려움이 있다.
즉, 본 발명에 따르면, 상기 성분 조성 및 함량을 갖는 용접재료를 이용하여 4.8 ~ 9.2중량%의 니켈을 포함하는 니켈강을 용접함으로써 원하는 성분 조성 및 함량을 갖는 용접이음부를 얻을 수 있고, 이렇게 얻어진 용접이음부는 극저온(-196℃)에서 27J 이상의 충격인성을 나타냄과 동시에 360MPa 이상의 항복강도를 나타낼 수 있어 바람직하다.
이하, 실시예들을 들어 본 발명에 관하여 더욱 상세히 설명하지만, 본 발명이 이러한 실시예들에 한정되는 것은 아니다.
실시예 1 내지 16 및 비교예 1 내지 30
먼저, 하기 표 1에 기재되어 있는 성분 조성 및 함량 범위를 만족하며, 20㎜의 두께를 가지는 니켈강(모재)를 준비하였다.
모재 합금성분(중량%) 보증온도
C Ni Si Mn P S
9%Ni강 0.045 9.07 0.196 0.648 0.005 0.003 -196℃
5%Ni강 0.035 4.99 0.194 0.663 0.005 0.003 -110℃
이어서, 하기 표 2에 기재되어 있는 성분 조성 및 함량범위를 만족하며, 1.2mm의 직경을 가지는 플럭스 코어드 와이어(용접재료) 1 ~ 23을 준비하였다. 이때, 하기의 표에 기재된 수치의 단위는 중량%이다.
No C Si Mn Cr Ni Mo W
1 0.51 0.9 0.9 - 35 - -
2 0.3 0.7 9 2 28 - -
3 0.3 1.8 6 1 35 - -
4 0.2 0.8 6 - 34 2 1
5 0.6 0.9 8 - 39 - -
6 0.6 0.9 6 - 32 1 1
7 0.3 0.7 30 2.5 4.5 2.5 0
8 0.2 0.6 31 0.05 9 1.5 0
9 0.08 0.4 1 - 31 - -
10 0.05 2.2 0.9 - 35 - -
11 0.05 0.9 0.9 - 43 - -
12 0.8 2.5 9 - 28 - -
13 1.2 0.9 8 14 34 2 -
14 0.8 0.8 10 5 35 10 5
15 0.9 1.3 35 - 40 4 1
16 1.5 0.7 10 - 45 1 0.5
17 1.3 0.3 3 - 48 1 -
18 0.6 0.4 15 0.05 0 1.5 0
19 0.1 0.7 30 2 5 2 4.5
20 0.6 0.6 19 2 0 1.5 2.5
21 0.3 0.2 20 0.02 5.5 1.5 1.5
22 0.3 0.6 20 6.5 5.5 2.5 0
23 0.6 0.6 20 1.9 0 2 0
이어서, 상기와 같이 준비된 각각의 모재(니켈강)에 대하여 각각의 용접재료를 이용하여 플럭스 코어드 아크 용접(Flux Cored Arc Welding, FCAW)을 실시하였다. 이때, 용접은 Ar: CO2의 중량비가 8:2인 보호가스를 적용하여 1.5kJ/mm의 입열량으로 맞대기 용접을 진행하였다. 상기 FCAW시 전류: 180~220A, 전압: 25~28V, 용접속도: 20~35cm/min, 보호가스 100% CO2, 극성 DC+, 층간온도: 150℃ 이하의 조건으로 실시하였다.
그리고, 상기 모재 및 용접재료의 조합에 따라 얻어진 용접이음부의 성분 조성 및 함량을 하기의 표 3에 나타내었고, 이때, 하기의 표 3에 기재된 수치의 단위는 중량%이다.
<평가방법>
1. 극저온 충격인성(CVN@-196, J)
실시예 1 내지 16 및 비교예 1 내지 30에 따라 얻어진 용접이음부의 극저온 충격인성은 KS규격(KS B ISO 9016) VWT 0/b 시험편을 이용하여 -196℃에서 샤르피 충격시험(CVN)을 통해 평가하였고, 그 결과를 하기의 표 3에 나타내었다.
2. 항복강도(MPa)
실시예 1 내지 16 및 비교예 1 내지 30에 따라 얻어진 용접이음부의 항복강도는 만능시험기를 이용한 인장실험법으로 측정하였고. 그 결과를 하기의 표 3에 나타내었다.
모재 용접재료 C Si Mn Cr Ni Mo W CVN@-196℃(J) 항복강도(MPa)
실시예1 5%Ni강 1 0.368 0.688 0.83 - 26.0 - - 50.4 371.5
실시예2 5%Ni강 2 0.221 0.548 6.50 1.40 21.1 - - 63.7 416.3
실시예3 5%Ni강 3 0.221 1.318 4.40 0.70 26.0 - - 29.4 432.4
실시예4 5%Ni강 4 0.151 0.618 4.40 - 25.3 1.72 0.80 37.1 515.2
실시예5 5%Ni강 5 0.431 0.688 5.80 - 28.8 - - 28.7 449.7
실시예6 5%Ni강 6 0.431 0.688 4.40 - 23.9 0.82 0.92 53.9 572.7
실시예7 5%Ni강 7 0.221 0.548 21.20 1.75 4.6 1.75 - 32.1 482.0
실시예8 5%Ni강 8 0.151 0.478 21.90 0.04 7.8 1.25 - 29.5 455.5
실시예9 9%Ni강 1 0.380 0.760 0.78 - 26.5 - - 57.6 362.1
실시예10 9%Ni강 2 0.210 0.570 4.72 1.50 23.4 - - 72.8 398.2
실시예11 9%Ni강 3 0.220 1.420 3.27 0.80 28.2 - - 33.6 413.6
실시예12 9%Ni강 4 0.154 0.720 3.27 - 28.4 1.62 0.84 42.4 492.8
실시예13 9%Ni강 5 0.420 0.710 4.25 - 29.3 - - 32.8 430.1
실시예14 9%Ni강 6 0.450 0.710 3.27 - 25.1 0.75 0.62 61.6 547.8
실시예15 9%Ni강 7 0.224 0.548 21.20 1.75 5.9 2.01 - 28.0 570.2
실시예16 9%Ni강 8 0.154 0.478 21.90 0.04 9.0 1.23 - 31.2 435.7
비교예1 5%Ni강 9 0.067 0.338 0.90 - 23.2 - - 72.1 339.3
비교예2 5%Ni강 10 0.046 1.598 0.83 - 26.0 - - 60.9 320.9
비교예3 5%Ni강 11 0.046 0.688 0.83 - 31.6 - - 65.8 295.6
비교예4 5%Ni강 12 0.571 1.808 6.50 - 21.1 - - 25.2 489.9
비교예5 5%Ni강 13 0.851 0.688 5.80 9.80 25.3 1.40 - 13.3 659.0
비교예6 5%Ni강 14 0.571 0.618 7.20 3.50 26.0 7.00 4.05 16.1 571.6
비교예7 5%Ni강 15 0.641 0.968 24.70 - 29.5 2.80 0.70 10.5 568.1
비교예8 5%Ni강 16 1.061 0.548 7.20 - 33.0 0.70 0.35 21.7 627.9
비교예9 5%Ni강 17 0.921 0.268 2.30 - 35.1 0.70 - 23.1 599.2
비교예10 5%Ni강 18 0.431 0.338 10.70 0.04 1.5 1.05 - 21.7 491.6
비교예11 5%Ni강 19 0.081 0.548 21.20 1.40 5.0 1.40 3.65 18.9 600.9
비교예12 5%Ni강 20 0.431 0.478 13.50 1.40 1.5 1.05 2.03 20.3 553.1
비교예13 5%Ni강 21 0.221 0.198 14.20 0.01 5.3 1.05 1.22 22.4 515.9
비교예14 5%Ni강 22 0.221 0.478 14.20 4.55 5.3 1.75 - 9.8 652.9
비교예15 5%Ni강 23 0.431 0.478 14.20 1.33 1.5 1.40 - 16.8 553.0
비교예16 9%Ni강 9 0.070 0.350 0.80 - 24.4 - - 82.4 324.5
비교예17 9%Ni강 10 0.060 1.580 0.75 - 26.2 - - 69.6 306.9
비교예18 9%Ni강 11 0.049 0.720 0.76 - 32.9 - - 75.2 282.7
비교예19 9%Ni강 12 0.580 1.820 4.92 - 23.0 - - 26.5 468.6
비교예20 9%Ni강 13 0.870 0.710 4.35 10.10 26.7 1.30 - 15.2 630.3
비교예21 9%Ni강 14 0.540 0.650 5.73 3.50 29.0 7.50 3.52 18.4 546.7
비교예22 9%Ni강 15 0.620 1.100 17.62 - 30.1 1.40 0.72 12.0 543.4
비교예23 9%Ni강 16 1.000 0.650 5.43 - 34.1 0.80 0.45 24.8 600.6
비교예24 9%Ni강 17 0.910 0.280 1.80 - 36.5 0.78 - 26.4 573.1
비교예25 9%Ni강 18 0.434 0.338 10.70 0.04 2.7 1.05 - 24.8 470.2
비교예26 9%Ni강 19 0.084 0.548 21.20 1.40 6.2 1.40 3.65 21.6 574.8
비교예27 9%Ni강 20 0.434 0.478 13.50 1.40 2.7 1.05 2.03 23.2 362.1
비교예28 9%Ni강 21 0.224 0.198 14.20 0.01 6.6 1.05 1.22 26.5 493.5
비교예29 9%Ni강 22 0.224 0.478 14.20 4.55 6.6 1.75 - 11.2 624.5
비교예30 9%Ni강 23 0.434 0.478 14.20 1.33 2.7 1.40 - 19.2 528.9
상기 표 1을 살펴보면, 본 발명의 실시예 1 내지 16에 따라 얻어진 용접이음부의 경우, 목표하는 온도(-196℃)에서 27J 이상의 극저온 충격인성을 나타냄과 동시에 항복강도 360MPa 이상의 결과를 얻을 수 있음을 확인할 수 있다.
반면, 탄소함량이 0.1 ~ 0.5중량%를 벗어나는 비교예 1 ~ 9, 11, 16 ~ 24 및 26에 따라 제공되는 용접이음부의 경우, -196℃에서의 충격인성이 27J 미만이거나 항복강도가 360MPa 미만을 나타내는바, 액화 LNG 및 액화 CO2 등의 운반선이나 육상 탱크등을 제작하는 극저온 소재로 적용하기에 불가능하였다.
또한, 망간 10.7중량% 및 니켈 1.5중량%를 포함하는 비교예 10 및 25, 그리고 망간 함량이 13 ~ 17중량%인 비교예 12 ~ 15 및 27 ~ 30에 따라 제공되는 용접이음부의 경우, 극저온 충격인성이 열악하게 나타나는 것을 확인할 수 있고, 따라서 이들 또한 극저온 소재로서의 적용이 불가능함을 알 수 있다.
이상, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것으로서, 본 발명의 권리범위는 아래의 특허청구범위에 의하여 해석되어야 하며 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명의 실시예들은 기존 재료 대비 저렴한 가격으로 극저온 충격인성 및 항복강도가 우수한 Ni강용 용접이음부를 제공할 수 있다.

Claims (5)

  1. 니켈강을 용접하여 얻어지는 용접이음부에 있어서,
    상기 용접이음부는 (1) 탄소(C): 0.1 ~ 0.5중량%, 실리콘(Si): 0.1 ~ 2.0중량%, 망간(Mn): 18.0 ~ 26.0중량%, 니켈(Ni): 9.0중량% 이하(0중량%는 제외), 잔여 Fe 및 기타 불가피한 불순물을 포함하는 제1 조성; 및 (2) 탄소(C): 0.1 ~ 0.5중량%, 실리콘(Si): 0.1 ~ 2.0중량%, 망간(Mn): 0.5 ~ 12.0중량%, 니켈(Ni): 20.0 ~ 30.0중량%, 잔여 Fe 및 기타 불가피한 불순물을 포함하는 제2 조성 중 선택된 어느 하나의 조성으로 구성되는 극저온 인성 및 강도가 우수한 용접이음부.
  2. 제1항에 있어서,
    상기 용접이음부는 크롬(Cr): 0.1 ~ 3.0중량%, 몰리브덴(Mo): 0.1 ~ 6.0중량%, 텅스텐(W): 0.1 ~ 4.0중량%, 인(P): 0.01중량% 이하(0중량%는 제외) 및 황(S): 0.01중량% 이하(0중량%는 제외)로 이루어진 군에서 선택된 일종 이상을 더 포함하는 극저온 인성 및 강도가 우수한 용접이음부.
  3. 제1항에 있어서,
    상기 니켈강은 4.8 ~ 9.2중량%의 니켈(Ni)을 포함하는 극저온 인성 및 강도가 우수한 용접이음부.
  4. 제1항에 있어서,
    상기 니켈강의 용접에 사용되는 용접재료는 탄소(C): 0.2 ~ 0.6중량%, 실리콘(Si): 0.1 ~ 2.0중량%, 망간(Mn): 25.0 ~ 35.0중량%, 니켈(Ni): 1.0 ~ 12.0중량%, 잔여 Fe 및 기타 불가피한 불순물을 포함하거나, 또는 탄소(C): 0.2 ~ 0.6중량%, 실리콘(Si): 0.1 ~ 2.0중량%, 망간(Mn): 0.5 ~ 14.0중량%, 니켈(Ni): 25.0 ~ 40.0중량%, 잔여 Fe 및 기타 불가피한 불순물을 포함하는 극저온 인성 및 강도가 우수한 용접이음부.
  5. 제4항에 있어서,
    상기 용접재료는 크롬(Cr): 0.01 ~ 3.0중량%, 몰리브덴(Mo): 0.1 ~ 6.0중량%, 텅스텐(W): 0.1 ~ 4.0중량%로 이루어진 군에서 선택된 일종 이상을 더 포함하는 극저온 인성 및 강도가 우수한 용접이음부.
PCT/KR2017/013817 2016-12-23 2017-11-29 극저온 인성 및 강도가 우수한 용접이음부 WO2018117464A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160177824A KR20180074860A (ko) 2016-12-23 2016-12-23 극저온 인성 및 강도가 우수한 용접이음부
KR10-2016-0177824 2016-12-23

Publications (1)

Publication Number Publication Date
WO2018117464A1 true WO2018117464A1 (ko) 2018-06-28

Family

ID=62627481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013817 WO2018117464A1 (ko) 2016-12-23 2017-11-29 극저온 인성 및 강도가 우수한 용접이음부

Country Status (2)

Country Link
KR (1) KR20180074860A (ko)
WO (1) WO2018117464A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4046743A4 (en) * 2019-10-16 2023-04-19 Posco WIRE ROD FOR WELDING RODS AND METHOD OF MAKING IT

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115679209B (zh) * 2022-10-14 2024-02-09 成都先进金属材料产业技术研究院股份有限公司 一种低合金含钨超高强钢及其生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018593A (ja) * 2000-07-07 2002-01-22 Sumitomo Metal Ind Ltd 低合金耐熱鋼用溶接材料および溶接金属
JP2007021570A (ja) * 2005-07-21 2007-02-01 Nippon Welding Rod Kk 鋳鉄とステンレス鋼との溶接に用いる溶接ワイヤ
KR20140067803A (ko) * 2012-11-27 2014-06-05 주식회사 포스코 극저온강의 용접이음부
US20150076130A1 (en) * 2013-09-16 2015-03-19 Lincoln Global, Inc. Flux cored welding electrode for 5-9% nickel steel
KR20150066372A (ko) * 2013-12-06 2015-06-16 주식회사 포스코 내충격성 및 내마모성이 우수한 서브머지드아크용접 및 가스금속아크용접용 용접재료

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018593A (ja) * 2000-07-07 2002-01-22 Sumitomo Metal Ind Ltd 低合金耐熱鋼用溶接材料および溶接金属
JP2007021570A (ja) * 2005-07-21 2007-02-01 Nippon Welding Rod Kk 鋳鉄とステンレス鋼との溶接に用いる溶接ワイヤ
KR20140067803A (ko) * 2012-11-27 2014-06-05 주식회사 포스코 극저온강의 용접이음부
US20150076130A1 (en) * 2013-09-16 2015-03-19 Lincoln Global, Inc. Flux cored welding electrode for 5-9% nickel steel
KR20150066372A (ko) * 2013-12-06 2015-06-16 주식회사 포스코 내충격성 및 내마모성이 우수한 서브머지드아크용접 및 가스금속아크용접용 용접재료

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4046743A4 (en) * 2019-10-16 2023-04-19 Posco WIRE ROD FOR WELDING RODS AND METHOD OF MAKING IT

Also Published As

Publication number Publication date
KR20180074860A (ko) 2018-07-04

Similar Documents

Publication Publication Date Title
KR101544260B1 (ko) Ni기 합금 용접 금속, 대상 전극 및 용접 방법
US20080099455A1 (en) Flux-cored wire for gas shielded arc welding for creep-resisting steels
KR20010013551A (ko) 저 질소 함량의 코어 용접 와이어
WO2015083930A1 (ko) 내충격성 및 내마모성이 우수한 플럭스코어드 아크 용접재료
WO2015099218A1 (ko) 내열강용 용접재료
KR101869423B1 (ko) 고망간강용 플럭스 코어드 아크 용접 재료
KR20150103250A (ko) 고강도 2.25Cr-1Mo-V강용 서브머지드 아크 용접 와이어 및 용접 금속
WO2017104969A1 (ko) 용접 후 열처리 저항성이 우수한 압력용기 강판 및 그 제조방법
WO2018117464A1 (ko) 극저온 인성 및 강도가 우수한 용접이음부
JPH09168891A (ja) 高強度Cr−Mo鋼用低水素系被覆アーク溶接棒
CN105014261A (zh) 一种铬钼钢用无缝金属粉芯型药芯焊丝
WO2017111251A1 (ko) 내크립 특성 및 인장강도가 향상된 오스테나이트계 스테인리스강 및 이의 제조 방법
WO2021107580A1 (ko) Ni기 합금 플럭스 코어드 와이어
US8932415B2 (en) Welding metal having excellent low-temperature toughness and drop-weight characteristics
WO2021107581A1 (ko) Lng 탱크 제작용 스테인리스강 용접 와이어
KR101657836B1 (ko) 극저온 인성, 내열성 및 내균열성이 우수한 플럭스 코어드 아크 용접 재료
KR100502571B1 (ko) 탄산가스 아크 용접용 티타니아계 플럭스 충전와이어
KR20180002791A (ko) 용접 금속 및 용접 구조체
WO2021107579A1 (ko) Lng 탱크 제작용 스테인리스강 플럭스 코어드 와이어
KR20160083355A (ko) 플럭스 코어드 아크 용접용 와이어
KR20180074863A (ko) 고온균열 저항성이 우수한 고망간강 용접이음부
KR101647148B1 (ko) 고장력강용 플럭스 코어드 아크 용접 와이어 및 이를 이용한 플럭스 코어드 아크 용접 금속부
WO2020085861A1 (ko) 형상이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법
KR20180109130A (ko) 플럭스 코어드 아크 용접 이음부
KR20170082304A (ko) 내 균열성이 우수한 가스실드 아크 용접용 티타니아계 플럭스 충전 와이어

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885235

Country of ref document: EP

Kind code of ref document: A1