WO2021106687A1 - 熱可塑性共重合体及び樹脂成形体 - Google Patents

熱可塑性共重合体及び樹脂成形体 Download PDF

Info

Publication number
WO2021106687A1
WO2021106687A1 PCT/JP2020/042843 JP2020042843W WO2021106687A1 WO 2021106687 A1 WO2021106687 A1 WO 2021106687A1 JP 2020042843 W JP2020042843 W JP 2020042843W WO 2021106687 A1 WO2021106687 A1 WO 2021106687A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
thermoplastic copolymer
reaction
compound
refractive index
Prior art date
Application number
PCT/JP2020/042843
Other languages
English (en)
French (fr)
Inventor
務 高嶋
南 昌樹
Original Assignee
Eneos株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos株式会社 filed Critical Eneos株式会社
Publication of WO2021106687A1 publication Critical patent/WO2021106687A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus

Definitions

  • the present invention relates to a thermoplastic copolymer and a resin molded product.
  • Non-Patent Document 1 the following formula:
  • Non-Patent Document 1 Even in such a homopolymer described in Non-Patent Document 1, the flame retardancy is not always sufficient, and the appearance of a polymer having higher flame retardancy is desired.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and is a thermoplastic copolymer capable of having a sufficiently high refractive index and transparency while having a higher flame retardancy, and a thermoplastic copolymer thereof.
  • An object of the present invention is to provide a resin molded product obtained by molding a thermoplastic copolymer.
  • monomer (II) which is at least one compound selected from the group consisting of mono-substituted ethylene and 1,1-disubstituted ethylene;
  • monomer (II) which is at least one compound selected from the group consisting of mono-substituted ethylene and 1,1-disubstituted ethylene
  • thermoplastic copolymer of the present invention is The following general formula (1):
  • the compound selected as the monomer (II) is a compound having a refractive index of 1.35 or more.
  • At least the monomer (II) is selected from the group consisting of styrenes, acrylic acid esters, methacrylic acid esters, N-vinylamides and acrylonitrile. It is preferably a kind of compound.
  • the resin molded product of the present invention is the molded product of the thermoplastic copolymer of the present invention.
  • thermoplastic copolymer capable of having a sufficiently high refractive index and transparency while having a higher flame retardancy, and a resin molded product obtained by molding the thermoplastic copolymer.
  • thermoplastic copolymer obtained in Example 1.
  • thermoplastic copolymer The thermoplastic copolymer of the present invention is The monomer (I) represented by the general formula (1) and A monomer (II) other than the monomer (I), which is at least one compound selected from the group consisting of mono-substituted ethylene and 1,1-disubstituted ethylene, It is a polymer (copolymer) of.
  • the monomer (I) used as the monomer (monomer) of the thermoplastic copolymer of the present invention is a compound represented by the above general formula (1).
  • a monomer (I) one kind of the compound represented by the above general formula (1) may be used alone or in combination of two or more kinds. Further, from the viewpoint that such a monomer (I) has higher radical polymerization property and heat resistance, the following formula (2):
  • Such a monomer (I) may be prepared by adopting the method described in the above-mentioned non-patent document 1.
  • X represents a halogen atom (more preferably a chlorine atom).
  • X represents a halogen atom (more preferably a chlorine atom).
  • a solvent for example, alcohols (for example, methanol, ethanol, etc.), ketones (for example, acetone, etc.), amides (for example, formamide, etc.) and the like can be appropriately used.
  • alkali metal alkoxides sodium methoxide, sodium ethoxide, lithium methoxide, lithium ethoxide, etc.
  • the reaction temperature of such an addition reaction is generally preferably about 10 to 60 ° C.
  • the monomer (II) used as the monomer (monomer) of the thermoplastic copolymer of the present invention is other than the monomer (I), and is monosubstituted ethylene and 1,1. -At least one compound selected from the group consisting of disubstituted ethylene.
  • Examples of the compound that can be used as such monosubstituted ethylene include styrenes, acrylic acid esters, vinylpyridines, vinylketones, acrylonitrile, acrylamides, and N-vinylamides.
  • Specific examples of such monosubstituted ethylene include styrene, 4-methylstyrene, methyl acrylate, butyl acrylate, acrylonitrile, and N-vinylpyrrolidone.
  • Examples of compounds that can be used as 1,1-disubstituted ethylene include methacrylic acid esters, methacrylamide, vinylidene halide, and ⁇ -substituted styrenes.
  • 1,1-disubstituted ethylene examples include methyl methacrylate, ethyl methacrylate, butyl methacrylate, phenyl methacrylate, 2-hydroxyethyl methacrylate, vinylidene chloride, and ⁇ -methylstyrene.
  • the compound selected as the monomer (II) is preferably a compound having a refractive index of 1.35 or more (more preferably 1.39 or more).
  • the high refractive index is such that the refractive index is 1.6 or more. It becomes possible to obtain the thermoplastic copolymer of the above more efficiently.
  • the "refractive index" of the compound selected as the monomer (II) is the refractive index (nD) with respect to light (D line) having a wavelength of 589 nm measured by the critical angle method (method: Abbe method).
  • a value obtained by measuring using a so-called Abbe refractometer (for example, "multi-wavelength Abbe refractometer DR-M2" manufactured by Atago Co., Ltd.) may be adopted.
  • the refractive index of the compound selected and used as such a monomer (II) is determined by, for example, preparing a film or plate-shaped molded product of the compound as a measurement sample and using the Abbe refractometer. It can be obtained by measuring the refractive index of light (D line) having a wavelength of 589 nm under a temperature condition of ° C.
  • the monomer (II) can have a higher flame retardancy, it is composed of styrenes, acrylic acid esters, methacrylic acid esters, N-vinylamides and acrylonitrile. It is preferably at least one compound selected from the group, and above all, at least one compound selected from the group consisting of styrene, butyl acrylate, 2-hydroxyethyl methacrylate, methyl methacrylate, N-vinylpyrrolidone and acrylonitrile. Is more preferable.
  • the compound that can be selected as the monomer (II) by utilizing it, it is possible to more efficiently achieve a higher flame retardancy such that the grade "V-0" is obtained in the UL94V test.
  • Styrene, butyl acrylate, methyl methacrylate, N-vinylpyrrolidone, and acrylonitrile are more preferable from the viewpoint of enabling the above, and styrene, butyl acrylate, and methyl methacrylate, from the viewpoint of being able to exhibit higher heat resistance.
  • N-vinylpyrrolidone is particularly preferred.
  • the compound that can be selected as such a monomer (II) may be used alone or in combination of two or more.
  • the compound selected as the monomer (II) is preferably a compound having a boiling point of 40 ° C. or higher (more preferably 60 ° C. or higher). If the boiling point is less than the lower limit, the polymer will be in a gaseous state under heating when the polymerization reaction is carried out, so that the reaction will be under pressure, and a special reactor will be required, making it difficult to efficiently produce the polymer. , The production cost of the polymer tends to increase.
  • the thermoplastic copolymer of the present invention is a polymer (copolymer) of the monomer (I) and the monomer (II).
  • the homopolymer of the above-mentioned monomer (I) is homopolymer.
  • the polymer obtained by combining the specific monomer (I) with the specific monomer (II) can be obtained.
  • Non-Patent Document 1 a homopolymer of the monomer described in the document is formed, the monomer described in the document is used as another simple polymer. No mention is made of copolymerizing with the monomer.
  • thermoplastic copolymer of the present invention is obtained by polymerizing the monomer (I) and the monomer (II).
  • the ratio of the monomer (I) to the monomer (II) used is not particularly limited, but in order to obtain higher flame retardancy and higher strength of the molded product.
  • the molar ratio ([monomer (I)] / [monomer (II)]) is 10/1 to 1/10 (more preferably 5/1 to 1/5, particularly preferably 3/1 to 1). It is more preferable to set the ratio so as to be / 3).
  • the thermoplastic copolymer may be a polymer (copolymer) of the monomer (I) and the monomer (II), and the type thereof is not particularly limited, for example. , Random copolymer, block copolymer, or alternating copolymer. From the viewpoint of facilitating preparation, such a thermoplastic copolymer is preferably a random copolymer of the monomer (I) and the monomer (II).
  • thermoplastic copolymer of the present invention two or more kinds of monomers are polymerized except that the monomer (I) and the monomer (II) are used as monomers.
  • a known method capable of obtaining a copolymer can be appropriately adopted.
  • the form of the polymerization reaction when preparing the thermoplastic copolymer of the present invention is not particularly limited, but both the monomer (I) and the monomer (II) have a radically polymerizable group. Therefore, it is preferable to carry out radical polymerization between these monomers. In the case of radical polymerization in this way, it is preferable to react the monomer (I) and the monomer (II) in the reaction solvent in the presence of a radical polymerization initiator.
  • the radical polymerization initiator is not particularly limited, and is, for example, azobisisobutyronitrile (AIBN), di-tert-butyl peroxide, tert-butyl hydroperoxide, benzoyl peroxide (BPO), methylethylketone peroxide, triethyl.
  • AIBN azobisisobutyronitrile
  • BPO benzoyl peroxide
  • methylethylketone peroxide triethyl.
  • Known radical polymerization initiators such as borane (Et 3 B) and diethyl zinc (Et 2 Zn) can be appropriately used.
  • reaction solvent is not particularly limited, and a known solvent that can be used for radical polymerization can be appropriately used.
  • a known solvent that can be used for radical polymerization can be appropriately used.
  • THF tetrahydrofuran
  • dioxane dioxolane
  • acetone chloroform
  • toluene dimethyl formamide
  • DMF dimethyl formamide
  • Glyme-based acetoamide DMAc
  • NMP N-methylpyrrolidone
  • DMSO dimethyl sulfoxide
  • ⁇ -butyrolactone cyclopentanone, cyclohexanone, tetramethylurea, 1,3-dimethyl-2-imidazolidinone, diglime, etc.
  • a solvent such as ethyl cellosolve, a glycol ester solvent such as propylene glycol monomethyl ether acetate, a glycol ether solvent such as propylene glycol monomethyl ether, and the like can be appropriately used.
  • a reaction solvent DMF, DMAc, NMP, and DMSO are particularly preferable from the viewpoint of solubility of the monomer (I).
  • the reaction conditions that can be adopted to promote radical polymerization (polymerization reaction) between the monomer (I) and the monomer (II) are not particularly limited, and are, for example, in an inert gas atmosphere (for example,).
  • the polymerization reaction may proceed with the reaction temperature (polymerization temperature) set to about room temperature (25 ° C.) to 150 ° C. (under a nitrogen atmosphere). It should be noted that such a polymerization temperature satisfies the conditions such as below the boiling point of the monomer (II), below the boiling point of the reaction solvent, and above the radical generation temperature of the radical polymerization initiator (for example, 10-hour half-life temperature). It is preferable to set (select).
  • the reaction time of such a polymerization reaction is not particularly limited, but for example, the reaction may be carried out for about 1 to 48 hours under the above reaction conditions.
  • the reaction temperature is set to 50 to 50 in an inert gas atmosphere. After reacting at 100 ° C. for 3 to 30 hours, the condition of further reacting at 80 to 150 ° C. for 1 to 15 hours may be adopted.
  • the amount of the radical polymerization initiator used in the radical polymerization is not particularly limited, and may be appropriately adjusted within a range in which the radical polymerization can be carried out.
  • thermoplastic copolymer of the present invention may contain various additives (antioxidants, antioxidants, etc.) depending on its use and the like, and further, the copolymer thereof. May contain repeating units derived from other monomers as long as the gist of the present invention is not impaired.
  • thermoplastic copolymer of the present invention can be prepared by polymerizing using the monomer (I) and the monomer (II) as monomers.
  • a thermoplastic copolymer of the present invention has a higher flame retardancy than the homopolymer described in Non-Patent Document 1 and maintains a sufficiently high level of refractive index and transparency. Will be possible.
  • the refractive index of such a thermoplastic copolymer is preferably 1.5 or more.
  • the refractive index of such a thermoplastic copolymer refers to the refractive index (nD) of light (D line) having a wavelength of 589 nm measured by the critical angle method (method: Abbe method) with respect to light, so-called Abbe.
  • nD refractive index
  • D line the refractive index of light
  • Abbe critical angle method
  • a value measured under a temperature condition of 23 ° C. can be adopted by using a refractometer (for example, "multi-wavelength Abbe refractometer DR-M2" manufactured by Atago Co., Ltd.).
  • the total light transmittance is 80% or more (more preferably 85% or more). Such total light transmittance can be obtained by performing a measurement in accordance with JIS K7361-1 (issued in 1997).
  • the resin molded product of the present invention is a molded product of the thermoplastic copolymer of the present invention.
  • Such a resin molded product is formed by molding the thermoplastic copolymer of the present invention, it has a sufficiently high refractive index and transparency while having a higher flame retardancy. It becomes a thing.
  • the method for preparing such a resin molded product is not particularly limited, and is a known method (for example, extrusion) capable of molding a thermoplastic resin other than using the thermoplastic copolymer of the present invention.
  • a molding method, an injection molding method, a calendar molding method, a blow molding method, a press molding method, etc.) can be appropriately adopted.
  • the form of such a resin molded body is not particularly limited, and it may be appropriately molded into various shapes according to the intended use, and may be in the form of a film, a plate, a sheet, a pellet, or the like.
  • HCA-MS a compound represented by (HCA-MS) (hereinafter, such a compound is sometimes simply referred to as "HCA-MS”. Characteristics of HCA-MS: molecular weight 332, melting point 128 ° C., homozygous Refractive index of 1.65 when made into a polymer (see Comparative Example 1 described later). The measurement result of 1 H-NMR of the obtained reaction product is shown below.
  • thermoplasticity is obtained by the following first and second steps. A copolymer was produced.
  • thermoplastic copolymer After dissolving the thermoplastic copolymer thus obtained in deuterated chloroform, 1 H-NMR measurement was carried out using an NMR measuring machine (trade name "AL-400” manufactured by JEOL Ltd.). The result (1 H-NMR spectrum of the compound) obtained by such NMR measurement is shown in FIG.
  • IR measurement ATR method was performed on the thermoplastic copolymer (powder) using an infrared absorption spectrum measuring machine (IR measuring machine: trade name "SI-50” manufactured by Thermo Fisher Co., Ltd.). .. The results obtained are shown below.
  • thermoplastic copolymer was HCA-MS. It was found to be a St copolymer (polymer).
  • GPC analysis for measurement, measuring device (high-speed GPC device): trade name "HLC” manufactured by Tosoh Corporation for the reaction solution obtained in the same manner as in the first step described above. -8420 GPC ”, eluent: THF, detector: differential refractometer and UV detector were used), and it was found that the conversion rate of HCA-MS was 87%.
  • thermoplastic copolymer was dissolved in DMAc and gel permeation chromatography analysis (GPC analysis: for measurement, a measuring device (high-speed GPC device): trade name "HLC-8320GPC” manufactured by Toso Co., Ltd. , Eluent: DMAc solution containing LiBr at a concentration of 0.1 mM, Detector: Using a differential refractometer)
  • GPC analysis for measurement, a measuring device (high-speed GPC device): trade name "HLC-8320GPC” manufactured by Toso Co., Ltd.
  • Eluent DMAc solution containing LiBr at a concentration of 0.1 mM
  • Detector Using a differential refractometer
  • Example 2 In the first step, the type of the monomer (II) was changed from St to the compound shown in Table 2 (listed by abbreviation), and in the first step, the amount of the monomer (I) used and the monomer (II) were changed. ), The amount of AIBN (radical polymerization initiator) used, the first reaction temperature, the retention time at the first reaction temperature, and the conditions regarding the amount of dehydrated DMAc (reaction solvent) used are as shown in Table 2. Thermoplastic copolymers were obtained in the same manner as in Example 1 except for the modification. In Examples 2 to 7, the conversion rate of HCA-MS and the number average molecular weight (Mn) of the thermoplastic copolymer were measured and obtained in the same manner as in the method adopted in Example 1, respectively. The results are shown in Table 2.
  • Example 8 to 14 and Comparative Example 2 Using the thermoplastic copolymers (copolymers) obtained in Examples 1 to 7 and the homopolymers (homopolymers) obtained in Comparative Example 1 as raw materials, the following using a vacuum heating press machine By adopting the conditions of press molding, press molding was performed to prepare resin plates (plate-shaped resin molded bodies). Table 3 shows the types of raw materials (materials) used in Examples 8 to 14 and Comparative Example 2, respectively.
  • Press molding conditions Amount of material used (amount of polymer (powder) used): 20 g Molding conditions: temperature 200 ° C., molding pressure 5 MPa, molding time: 20 minutes Dimensions of the mold used: length 130 mm, width 90 mm, thickness 1.5 mm.
  • the resin plate (plate-shaped resin molded body) obtained in each example was used as it was as a sample for measurement, and the "multi-wavelength Abbe refractometer DR-M2" manufactured by Atago Co., Ltd. was used as a measuring device.
  • the refractive index was determined by measuring the refractive index (nD) with respect to light (D line) having a wavelength of 589 nm under a temperature condition of 23 ° C. The results obtained are shown in Table 3.
  • a test piece (length: 120 mm, width: 13 mm, thickness: 1.5 mm) was prepared using the resin plate (plate-shaped resin molded product) obtained in each example, and UL94 standard (US Underwriter) was prepared.
  • a flame retardancy evaluation test (UL94V test) was conducted in accordance with the vertical combustion test (V test) of Laboratories Inc.). In this test, the size of the flame was set to 20 mm, the first flame contact was performed on the test piece for 10 seconds, and then the second flame contact was performed for 10 seconds at the same time as the fire was extinguished.
  • HCA is prepared by preparing a resin molded product using a copolymer of HCA-MS (monomer (I)) and the above-mentioned monomer (II) (Examples 1 to 7).
  • a resin molded product is prepared using a homopolymer of -MS, it is possible to obtain a resin molded product showing higher flame retardancy, and further, a homopolymer of HCA-MS can be obtained. It has been found that it is possible to obtain a resin polymer having a sufficiently high refractive index and sufficient transparency (based on the total light transmittance), which is comparable to that of the resin polymer obtained by using the resin.
  • thermoplastic copolymer capable of having a sufficiently high refractive index and transparency while having a higher flame retardancy and a thermoplastic copolymer thereof are molded. It becomes possible to provide a resin molded product made of.
  • the thermoplastic copolymer of the present invention has sufficiently high flame retardancy and excellent optical properties (high refractive index and high transparency based on total light transmittance).
  • it is useful as a material for a resin molded body used for optical applications such as lenses, building materials, coating materials, paints, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

下記一般式(1): で表される単量体(I)と、 該単量体(I)以外のものであって、一置換エチレン及び1,1-二置換エチレンからなる群から選択される少なくとも一種の化合物である単量体(II)と、 の重合体である、熱可塑性共重合体。

Description

熱可塑性共重合体及び樹脂成形体
 本発明は、熱可塑性共重合体並びに樹脂成形体に関する。
 近年、難燃性を示すポリマーの研究が着目されている。例えば、2012年発行のPolymer Degradation and Stability(vol.97)の2611頁-2618頁に記載されたA. Dumitrascu et al.の論文「Flame retardant polymeric materials achieved by incorporation of styrene monomers containing both nitrogen and phosphorus(非特許文献1)」には、下記式:
Figure JPOXMLDOC01-appb-C000002
で表されるホモポリマーが高い難燃性を示すことが報告されている。
A. Dumitrascu et al.,「Flame retardant polymeric materials achieved by incorporation of styrene monomers containing both nitrogen and phosphorus」,Polymer Degradation and Stability,vol.97,2012年,2611頁-2618頁
 しかしながら、このような非特許文献1に記載のホモポリマーにおいても難燃性は必ずしも十分なものではなく、より高い難燃性を有するポリマーの出現が望まれている。
 本発明は、前記従来技術の有する課題に鑑みてなされたものであり、より高い難燃性を有しながら十分に高い屈折率及び透明性を有することを可能とする熱可塑性共重合体並びにその熱可塑性共重合体を成形してなる樹脂成形体を提供することを目的とする。
 本発明者らは、前記目的を達成すべく鋭意研究を重ねた結果、下記一般式(1)で表される単量体(I)と;該単量体(I)以外のものであって、一置換エチレン及び1,1-二置換エチレンからなる群から選択される少なくとも一種の化合物である単量体(II)と;を共重合することにより、得られる重合体を、より高い難燃性を有しながら十分に高い屈折率及び透明性を有する熱可塑性共重合体とすることが可能となることを見出し、本発明を完成するに至った。
 すなわち、本発明の熱可塑性共重合体は、
 下記一般式(1):
Figure JPOXMLDOC01-appb-C000003
で表される単量体(I)と、
 該単量体(I)以外のものであって、一置換エチレン及び1,1-二置換エチレンからなる群から選択される少なくとも一種の化合物である単量体(II)と、
の重合体である。
 上記本発明の熱可塑性共重合体においては、前記単量体(II)として選択される前記化合物が、屈折率が1.35以上の化合物であることが好ましい。
 また、上記本発明の熱可塑性共重合体においては、前記単量体(II)が、スチレン類、アクリル酸エステル類、メタクリル酸エステル類、N-ビニルアミド類及びアクリロニトリルからなる群から選択される少なくとも一種の化合物であることが好ましい。
 また、本発明の樹脂成形体は、上記本発明の熱可塑性共重合体の成形体である。
 本発明によれば、より高い難燃性を有しながら十分に高い屈折率及び透明性を有することを可能とする熱可塑性共重合体並びにその熱可塑性共重合体を成形してなる樹脂成形体を提供することが可能となる。
実施例1で得られた熱可塑性共重合体のH-NMRスペクトルである。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 [熱可塑性共重合体]
 本発明の熱可塑性共重合体は、
 上記一般式(1)で表される単量体(I)と、
 該単量体(I)以外のものであって、一置換エチレン及び1,1-二置換エチレンからなる群から選択される少なくとも一種の化合物である単量体(II)と、
の重合体(共重合物)である。
 本発明の熱可塑性共重合体の単量体(モノマー)として利用される単量体(I)は、上記一般式(1)で表される化合物である。このような単量体(I)は、上記一般式(1)で表される化合物の1種を単独で或いは2種以上を組み合わせて利用してもよい。また、このような単量体(I)としては、ラジカル重合性および耐熱性がより高いものとなるといった観点から、下記式(2):
Figure JPOXMLDOC01-appb-C000004
 
で表される化合物、及び/又は、下記式(3):
Figure JPOXMLDOC01-appb-C000005
で表される化合物がより好ましい。なお、このような単量体(I)は、上記非特許文献1に記載されている方法を採用して調製してもよい。
 また、このような単量体(I)を製造するための方法としては、下記式:
Figure JPOXMLDOC01-appb-C000006
で表される化合物(9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド)と、下記一般式(4):
Figure JPOXMLDOC01-appb-C000007
(式中、Xはハロゲン原子(より好ましくは塩素原子)を示す。)
で表されるハロゲン化化合物とを溶媒及び反応試剤の存在下で付加反応させることにより単量体(I)を得る方法を採用することが好ましい。なお、このような溶媒としては、アルコール類(例えばメタノール、エタノール等)、ケトン類(例えばアセトン等)、アミド類(例えばホルムアミド等)等を適宜利用することができる。また、このような反応試剤としては、副反応を抑制して収率をより向上させることが可能となることから、アルカリ金属アルコキシド(ナトリウムメトキシド、ナトリウムエトキシド、リチウムメトキシド、リチウムエトキシド等)を利用することが好ましい。なお、このような付加反応の反応温度としては一般的に10~60℃程度とすることが好ましい。
 また、本発明の熱可塑性共重合体の単量体(モノマー)として利用される単量体(II)は、前記単量体(I)以外のものであって、一置換エチレン及び1,1-二置換エチレンからなる群から選択される少なくとも一種の化合物である。
 このような一置換エチレンとして利用し得る化合物としては、例えば、スチレン類、アクリル酸エステル類、ビニルピリジン類、ビニルケトン類、アクリロニトリル、アクリルアミド類、N-ビニルアミド類が挙げられる。また、このような一置換エチレンとして、具体的には、スチレン、4-メチルスチレン、メチルアクリレート、ブチルアクリレート、アクリロニトリル、N-ビニルピロリドンが挙げられる。また、1,1-二置換エチレンとして利用し得る化合物としては、例えば、メタクリル酸エステル類、メタクリルアミド、ハロゲン化ビニリデン、α-置換スチレン類が挙げられる。また、このような1,1-二置換エチレンとして、具体的には、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、フェニルメタクリレート、2-ヒドロキシエチルメタクリレート、塩化ビニリデン、α―メチルスチレンが挙げられる。
 また、本発明において、前記単量体(II)として選択される前記化合物は、屈折率が1.35以上(より好ましくは1.39以上)の化合物であることが好ましい。このように、単量体(II)として選択されて用いられる前記化合物がいずれも屈折率が1.35以上の化合物である場合には、屈折率が1.6以上となるような高屈折率の熱可塑性共重合体を、より効率よく得ることが可能となる。なお、前記単量体(II)として選択される前記化合物の「屈折率」は、臨界角法(方式:アッベ式)により測定される波長589nmの光(D線)に対する屈折率(nD)であり、いわゆるアッべ屈折計(例えば、株式会社アタゴ製の「多波長アッベ屈折計 DR-M2」等)を利用して測定することにより求められる値を採用してもよい。このような単量体(II)として選択されて用いられる前記化合物の屈折率は、例えば、測定試料として前記化合物のフィルムまたは、板状成形品を準備して、前記アッべ屈折計により、23℃の温度条件下において、波長589nmの光(D線)に対する屈折率を測定することにより求めることができる。
 また、前記単量体(II)は、難燃性をさらに高度なものとすることが可能であることから、スチレン類、アクリル酸エステル類、メタクリル酸エステル類、N-ビニルアミド類及びアクリロニトリルからなる群から選択される少なくとも一種の化合物であることが好ましく、中でも、スチレン、ブチルアクリレート、2-ヒドロキシエチルメタクリレート、メチルメタクリレート、N-ビニルピロリドン及びアクリロニトリルからなる群から選択される少なくとも一種の化合物であることがより好ましい。また、単量体(II)として選択され得る前記化合物としては、それを利用することにより、UL94V試験においてグレード「V-0」となるような、より高い難燃度をより効率よく達成することが可能となるといった観点から、スチレン、ブチルアクリレート、メチルメタクリレート、N-ビニルピロリドン、アクリロニトリルが更に好ましく、より高い耐熱性も発揮させることも可能となるといった観点から、スチレン、ブチルアクリレート、メチルメタクリレート、N-ビニルピロリドンが特に好ましい。なお、このような単量体(II)として選択され得る前記化合物は、1種を単独で或いは2種以上を組み合わせて利用してもよい。
 また、前記単量体(II)として選択される前記化合物は、沸点が40℃以上(より好ましくは60℃以上)の化合物であることが好ましい。このような沸点が前記下限未満では重合反応を行う加熱下では気体状態となるため、加圧下での反応となり、特殊な反応器が必要となるなど、効率よく重合体を製造することが困難となり、重合体の製造コストが増加してしまう傾向にある。
 本発明の熱可塑性共重合体は、前記単量体(I)と前記単量体(II)との重合体(共重合物)である。このように、熱可塑性共重合体を上記単量体(I)と上記単量体(II)を重合してなるものとすることで、上記単量体(I)の単独重合体(ホモポリマー)と対比して、より高い難燃性を発揮することを可能としつつ、高い水準の透明性及び屈折率を十分に維持することを可能としている。このように、本発明に熱可塑性共重合体においては、上記特定の単量体(I)に対して、上記特定の単量体(II)を組み合わせて得られる重合体とすることにより、より高い水準の難燃性を発揮させることを可能としている。これに対して、上記非特許文献1には、該文献に記載された単量体のホモポリマーを形成することは記載されているものの、そもそも該文献に記載された単量体を他の単量体と共重合させることなど何ら言及がなされていない。
 また、本発明の熱可塑性共重合体は、前記単量体(I)と前記単量体(II)とを重合してなるものである。このような重合に際して、前記単量体(I)と前記単量体(II)の使用割合は特に制限されるものではないが、より高い難燃性とより高い成形体の強度を得るには、モル比([単量体(I)]/[単量体(II)])が10/1~1/10(更に好ましくは5/1~1/5、特に好ましくは3/1~1/3)となるような割合とすることがより好ましい。
 なお、このような熱可塑性共重合体は、前記単量体(I)と前記単量体(II)との重合体(共重合物)であればよく、その種類は特に制限されず、例えば、ランダム共重合体、ブロック共重合体、又は、交互共重合体のいずれであってもよい。なお、このような熱可塑性共重合体は、調製がより容易となるといった観点からは、前記単量体(I)と前記単量体(II)とのランダム共重合体であることが好ましい。
 また、上記本発明の熱可塑性共重合体を調製するための方法としては、前記単量体(I)と前記単量体(II)をモノマーとして利用する以外は、2種以上のモノマーを重合して共重合体を得ることが可能な公知の方法を適宜採用することができる。ここにおいて、上記本発明の熱可塑性共重合体を調製する際の重合反応の形態は特に限定されないが、前記単量体(I)及び前記単量体(II)がいずれもラジカル重合性基を有することから、これらの単量体の間でラジカル重合させることが好ましい。このようにラジカル重合させる場合には、反応溶媒中、ラジカル重合開始剤の存在下において、前記単量体(I)及び前記単量体(II)を反応させることが好ましい。
 このようなラジカル重合開始剤としては特に制限されず、例えば、アゾビスイソブチロニトリル(AIBN)、ジ-tert-ブチルペルオキシド、tert-ブチルヒドロペルオキシド、過酸化ベンゾイル(BPO)、メチルエチルケトンペルオキシド、トリエチルボラン(EtB)、ジエチル亜鉛(EtZn)等の公知のラジカル重合開始剤を適宜利用可能である。
 また、前記反応溶媒としても特に制限されず、ラジカル重合に利用可能な公知の溶媒を適宜利用でき、例えば、テトラヒドロフラン(THF)、ジオキサン、ジオキソラン、アセトン、クロロホルム、トルエン、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)、γ-ブチロラクトン、シクロペンタノン、シクロヘキサノン、テトラメチルウレア、1,3-ジメチル-2-イミダゾリジノン、ジグライム等のグライム系溶剤、エチルセロソルブ等のセロソルブ系溶剤、プロピレングリコールモノメチルエーテルアセテート等のグリコールエステル系溶剤、プロピレングリコールモノメチルエーテル等のグリコールエーテル系溶剤等を適宜利用可能である。このような反応溶媒としては、単量体(I)の溶解性の観点から、特にDMF、DMAc、NMP、DMSOが好ましい。
 前記単量体(I)及び前記単量体(II)の間においてラジカル重合(重合反応)を進行せしめるために採用し得る反応条件としては特に限定されず、例えば、不活性ガス雰囲気下(例えば窒素雰囲気下)、反応温度(重合温度)を室温(25℃)~150℃程度として重合反応を進行させてもよい。なお、このような重合温度は、単量体(II)の沸点以下、反応溶媒の沸点以下、及び、ラジカル重合開始剤のラジカル発生温度(例えば10時間半減期温度)以上、といった条件を満たすようにして設定(選択)することが好ましい。また、このような重合反応の反応時間は特に制限されないが、例えば、前記反応条件で1~48時間程度反応させてもよい。なお、このようなラジカル重合に際しては、モノマーの転化率向上の観点から、例えば、ラジカル重合開始剤にアゾビスイソブチロニトリルを用いた場合には、不活性ガス雰囲気下、反応温度を50~100℃として3~30時間反応させた後に、更に、反応温度を80~150℃として1~15時間反応させる条件を採用してもよい。また、このようにラジカル重合を行う際のラジカル重合開始剤の使用量等も特に制限されず、ラジカル重合を行うことが可能な範囲で適宜調整すればよい。なお、このような重合に際しては、最終的に得られる重合体(共重合体)が本発明の趣旨を損なわない範囲のものとなる場合には、各種添加剤(老化防止剤、酸化防止剤等)や他の種類のモノマー等を適宜含有させてもよい。このように、本発明の熱可塑性共重合体は、その用途等に応じて、各種添加剤(老化防止剤、酸化防止剤等)等を含有するものとしてもよく、更には、その共重合体を本発明の趣旨を損なわない範囲において他のモノマーに由来する繰り返し単位を含むものとしてもよい。
 このように、前記単量体(I)と前記単量体(II)をモノマーとして利用して重合することで、上記本発明の熱可塑性共重合体を調製することができる。このような本発明の熱可塑性共重合体は、非特許文献1に記載のホモポリマーと比較して、より高い難燃性を有しながら屈折率及び透明性を十分に高い水準に維持することが可能なものとなる。ここで、このような熱可塑性共重合体の屈折率は1.5以上であることが好ましい。前記熱可塑性共重合体の屈折率が前記条件を満たすことで、例えば、レンズ等の光学用途等に好適に応用することも可能となる。なお、このような熱可塑性共重合体の屈折率は、臨界角法(方式:アッベ式)により測定される波長589nmの光(D線)の光に対する屈折率(nD)をいい、いわゆるアッべ屈折計(例えば、株式会社アタゴ製の「多波長アッベ屈折計 DR-M2」等)を利用して23℃の温度条件下において測定される値を採用できる。また、本発明の熱可塑性共重合体は、より高い透明性を達成することが可能となるため、全光線透過率が80%以上(更に好ましくは85%以上)のものがより好ましい。このような全光線透過率は、JIS K7361-1(1997年発行)に準拠した測定を行うことにより求めることができる。
 [樹脂成形体]
 本発明の樹脂成形体は、上記本発明の熱可塑性共重合体の成形体である。
 このような樹脂成形体は、上記本発明の熱可塑性共重合体を成形してなるものであることから、より高い難燃性を有するものでありながら、十分に高い屈折率及び透明性を有するものとなる。なお、このような樹脂成形体の調製方法としては、特に制限されず、上記本発明の熱可塑性共重合体を用いる以外は、熱可塑性樹脂を成形することが可能な公知の方法(例えば、押出成形法、射出成形法、カレンダー成形法、ブロー成形法、プレス成形法等)を適宜採用することができる。また、このような樹脂成形体の形態は特に制限されず、用途に応じて各種形状に適宜成形すればよく、例えば、フィルム状、板状、シート状、ペレット状等の形態としてもよい。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 (合成例1:単量体(I)の合成)
 各実施例等において単量体(I)として利用する化合物は、以下のようにして合成した。すなわち、先ず、50mlの反応容器に、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド(HCA、3g、0.0138mol)、メタノール(13.2g:HCAの質量の4.4倍)を加えて懸濁液を得た。次いで、氷浴下、得られた懸濁液に対して、メタノール中に28質量%の割合でナトリウムメトキシドを含む溶液(溶液中のNaOMeの総量:0.0145mol)を加えた後、同温の条件で4-(クロロメチル)スチレン(CMS、0.0131mol)を滴下することにより混合液を得た。その後、前記混合液を20℃で21時間静置することにより、該混合液中においてHCAとCMSとの反応を行って反応液を得た。
 次いで、前記反応終了後に得られた反応液に対して、水(1ml)、4-tert-ブチルカテコール(2.3mg)、及び、ヘキサン(30ml)を加えて撹拌することにより、有機層と水層の2層の懸濁液を得た。その後、得られた懸濁液を水(40~50ml)へ注ぎこみ、析出した固体をろ取した。その後、前記固体を水洗した後、ヘキサンで洗浄した。次いで、前記洗浄後の固体を40℃で終夜減圧乾燥し、反応生成物を得た。
 このようにして得られた反応生成物を重クロロホルムに溶解した後に、NMR測定機(JEOL社製の商品名「AL-400」)を用いてH-NMRの測定を行ったところ、得られた反応生成物のH-NMRの測定結果が、上記非特許文献1に記載されている「4-[(6-オキシド-6H-ジベンゾ[c,e][1,2]オキサホスホリン-6-イル)]メチルスチレン(M4)」のスペクトルデータの値とほとんど一致していたことから、得られた化合物は、下記式:
Figure JPOXMLDOC01-appb-C000008
で表される化合物(HCA-MS)であることが分かった(なお、かかる化合物を、以下、場合により単に「HCA-MS」と称する。HCA-MSの特性:分子量332、融点128℃、ホモポリマーとした際の屈折率1.65(後述の比較例1参照))。なお、得られた反応生成物のH-NMRの測定結果を以下に示す。
 [反応生成物のH-NMRスペクトルデータ]
1H NMR(400MHz,CDCl3,δ)3.4-3.41(m,2H,P-CH2),5.19-5.21(d,1H,CH=CH2),5.64-5.69(d,1H,CH=CH2),6.59-6.66(dd,1H,CH=CH2),7.00-7.02(m,2H,aromatic),7.16-7.23(m,4H,aromatic),7.34-7.46(m,2H,aromatic),7.65-7.74(m,2H,aromatic),7.83-7.91(m,2H,aromatic)。
 (単量体(II)について)
 下記の各実施例において単量体(II)として利用する化合物の名称、略称及びその化合物の特性を下記表1に示す。なお、以下の実施例等においては、単量体(II)として利用する化合物は略称で表記する。
Figure JPOXMLDOC01-appb-T000009
 (実施例1)
 単量体(I)としてHCA-MS(合成例1で得られた化合物)を利用し、かつ、単量体(II)としてStを利用して、下記第一工程及び第二工程により熱可塑性共重合体を製造した。
 (第一工程)
 HCA-MS(100g、0.30mol)、St(31g、0.30mol)、アゾビスイソブチロニトリル(AIBN:47mg、ラジカル重合開始剤として利用)を、脱水ジメチルアセトアミド(脱水DMAc:86g、反応溶媒として利用)に溶解して混合液を得た。次に、窒素雰囲気下、前記混合液を撹拌し続けながら加熱して90℃(第一反応温度)で13時間保持した後、110℃(第二反応温度)で13時間保持して反応液を得た(このように、混合液を加熱しながら撹拌することにより、HCA-MS(単量体(I))とSt(単量体(II))とを反応せしめた)。
 (第二工程)
 このように加熱撹拌して反応液を得た後、得られた反応液に対してDMAc(300ml)を追加した後、該反応液を水(2L)中に注入し、固形分を析出せしめた。次いで、析出した固形分をろ取した。次に、得られた固形分をメタノール(1.5L)中に分散せしめた後、再度、ろ取した。その後、得られた固形分を乾燥・粉砕して熱可塑性共重合体(126g:粉末状)を得た。
 このようにして得られた熱可塑性共重合体を重クロロホルムに溶解した後に、NMR測定機(JEOL社製の商品名「AL-400」)を用いてH-NMR測定を行った。このようなNMR測定により得られた結果(化合物のH-NMRスペクトル)を図1に示す。また、熱可塑性共重合体(粉末)に対して、赤外吸収スペクトル測定機(IR測定機:サーモフィッシャー社製の商品名「SI-50」)を用いてIR測定(ATR法)を行った。得られた結果を以下に示す。
[熱可塑性共重合体の赤外吸収スペクトルの測定結果]
 IR(cm-1):3024,2916,1595,1583,1510,1493,1476,1447,1430,1237,1204,1147,1117,1082,1044,906,840,750,715,700,615,595,515,483,429。
 このようなH-NMR測定の結果(図1)及びIR測定の結果から、オレフィン部の消失とリン化合物のピークが確認されたことから、得られた熱可塑性共重合体はHCA-MSとStの共重合体(重合物)であることが分かった。なお、前述の第一工程と同様にして得られる反応液に対してゲル浸透クロマトグラフィー分析(GPC分析:なお、測定には、測定装置(高速GPC装置):東ソー株式会社製の商品名「HLC-8420GPC」、溶離液:THF、検出器:示差屈折検出器およびUV検出器を使用した)を行った結果、HCA-MSの転化率は87%であることが分かった。また、得られた熱可塑性共重合体をDMAcに溶解し、ゲル浸透クロマトグラフィー分析(GPC分析:なお、測定には、測定装置(高速GPC装置):東ソー株式会社製の商品名「HLC-8320GPC」、溶離液:0.1mMの濃度でLiBrを含むDMAc溶液、検出器:示差屈折検出器を使用した)を行った結果、得られた熱可塑性共重合体の数平均分子量(Mn)は88400であることが確認された。
 (実施例2~7)
 第一工程において単量体(II)の種類をStから表2に示す化合物(略称で記載)に変更し、かつ、第一工程において単量体(I)の使用量、単量体(II)の使用量、AIBN(ラジカル重合開始剤)の使用量、第一反応温度、第一反応温度での保持時間、及び、脱水DMAc(反応溶媒)の使用量に関する条件を表2に示す条件に変更した以外は、実施例1と同様にして熱可塑性共重合体をそれぞれ得た。なお、実施例2~7においても、HCA-MSの転化率及び熱可塑性共重合体の数平均分子量(Mn)をそれぞれ実施例1で採用している方法と同様にして測定し、得られた結果を表2に示す。
 (比較例1)
 単量体(II)を利用せずに単量体(I)のみを利用し、第一工程において単量体(I)の使用量、AIBN(ラジカル重合開始剤)の使用量、第一反応温度、第一反応温度での保持時間、及び、脱水DMAc(反応溶媒)の使用量に関する条件を表2に示す条件に変更した以外は実施例1と同様にして、HCA-MSの単独重合体(ホモポリマー)を得た。
Figure JPOXMLDOC01-appb-T000010
 (実施例8~14及び比較例2)
 実施例1~7で得られた熱可塑性共重合体(コポリマー)及び比較例1で得られた単独重合体(ホモポリマー)をそれぞれ原料(材料)として用いて、真空加熱プレス機を用いて下記プレス成形の条件を採用することにより、プレス成形を行い、樹脂板(板状の樹脂成形体)をそれぞれ調製した。なお、実施例8~14及び比較例2でそれぞれ利用した原料(材料)の種類を表3に示す。
〔プレス成形の条件〕
 材料の使用量(利用した重合体(粉末)の量):20g
 成形条件:温度200℃、成型圧力5MPa、成形時間:20分
 利用した金型の寸法:縦130mm、横90mm、厚み1.5mm。
 [実施例8~14及び比較例2で得られた樹脂成形体の特性の評価]
 (全光線透過率の測定)
 各実施例等で得られた樹脂板(板状の樹脂成形体)をそのまま測定用の試料として用い、測定装置として日本電色工業株式会社製の「濁度計NDH-2000」を用いて、JIS K7361-1(1997年発行)に準拠した測定を行うことにより全光線透過率(単位:%)を求めた。得られた結果を表3に示す。
 (屈折率の測定)
 各実施例等で得られた樹脂板(板状の樹脂成形体)をそのまま測定用の試料として用い、測定装置として株式会社アタゴ製の「多波長アッベ屈折計 DR-M2」を利用して、23℃の温度条件下において、波長589nmの光(D線)に対する屈折率(nD)を測定することにより屈折率を求めた。得られた結果を表3に示す。
 (難燃性の評価試験)
 各実施例等で得られた樹脂板(板状の樹脂成形体)を用いて試験片(長さ:120mm、幅:13mm、厚さ:1.5mm)を作成し、UL94規格(米国のUnderwriter Laboratories Inc.で定められた規格)の垂直燃焼試験(V試験)に準拠した難燃性の評価試験(UL94V試験)を行った。なお、かかる試験においては、炎の大きさを20mmとし、試験片に対して1回目の接炎を10秒間行った後、火が消えると同時に2回目の接炎を10秒間行った。そして、2回目の接炎を行った後の試験片の状態や試験片からの滴下物による影響等を確認して、下記の評価基準により各樹脂板の難燃性を評価した。得られた結果を表3に示す。
[難燃性の評価基準]
A:試験片に着火せず、UL94規格のグレード「V-0」に適合するものである。
B:試験片に着火はしないものの、溶融滴下物により綿の着火が起こり、UL94規格のグレード「V-2」に相当するものである。
Figure JPOXMLDOC01-appb-T000011
 表3に示す結果からも明らかなように、実施例8~14で得られた樹脂板(実施例1~7で得られた単量体(I)と単量体(II)の共重合体を成形してなる成形体)は、比較例1で得られた樹脂板(HCA-MSの単独重合体を成形してなる成形体)と比較して、難燃性がより高度なものとなっていることが確認された。また、実施例8~14で得られた樹脂板はいずれも、比較例1で得られた樹脂板と同等程度の高い全光線透過率と高い屈折率を有していた。このような結果から、HCA-MS(単量体(I))と上記単量体(II)の共重合体(実施例1~7)を利用して樹脂成形体を調製することで、HCA-MSの単独重合体を利用して樹脂成形体を調製した場合と比較して、より高い難燃性を示す樹脂成形体を得ることが可能となり、更には、HCA-MSの単独重合体を利用して得られる樹脂成形体と同程度の十分に高い屈折率と十分な透明性(全光線透過率を基準)とを有する樹脂成形体を得ることが可能となることが分かった。
 以上説明したように、本発明によれば、より高い難燃性を有しながら十分に高い屈折率及び透明性を有することを可能とする熱可塑性共重合体並びにその熱可塑性共重合体を成形してなる樹脂成形体を提供することが可能となる。このように、本発明の熱可塑性共重合体は、十分に高い難燃性を有しつつ優れた光学特性(高い屈折率や、全光線透過率を基準とする高い透明性)を有するものとすることが可能であるため、特に、レンズ等の光学用途、建材、コーティング材、塗料等の用途に用いる樹脂成形体の材料等として有用である。

Claims (4)

  1.  下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    で表される単量体(I)と、
     該単量体(I)以外のものであって、一置換エチレン及び1,1-二置換エチレンからなる群から選択される少なくとも一種の化合物である単量体(II)と、
    の重合体である、熱可塑性共重合体。
  2.  前記単量体(II)として選択される前記化合物が、屈折率が1.35以上の化合物である、請求項1に記載の熱可塑性共重合体。
  3.  前記単量体(II)が、スチレン類、アクリル酸エステル類、メタクリル酸エステル類、N-ビニルアミド類及びアクリロニトリルからなる群から選択される少なくとも一種の化合物である、請求項1又は2に記載の熱可塑性共重合体。
  4.  請求項1~3のうちのいずれか一項に記載の熱可塑性共重合体の成形体である、樹脂成形体。
PCT/JP2020/042843 2019-11-29 2020-11-17 熱可塑性共重合体及び樹脂成形体 WO2021106687A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-216842 2019-11-29
JP2019216842A JP2021085006A (ja) 2019-11-29 2019-11-29 熱可塑性共重合体及び樹脂成形体

Publications (1)

Publication Number Publication Date
WO2021106687A1 true WO2021106687A1 (ja) 2021-06-03

Family

ID=76086929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042843 WO2021106687A1 (ja) 2019-11-29 2020-11-17 熱可塑性共重合体及び樹脂成形体

Country Status (3)

Country Link
JP (1) JP2021085006A (ja)
TW (1) TW202128794A (ja)
WO (1) WO2021106687A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341390A (ja) * 2005-06-07 2006-12-21 Fujifilm Holdings Corp 記録材料
JP2012177776A (ja) * 2011-02-25 2012-09-13 Fujifilm Corp 感光性組成物、感光性フィルム、感光性積層体、永久パターン形成方法、及びプリント基板
JP2020023651A (ja) * 2018-08-08 2020-02-13 Jxtgエネルギー株式会社 熱硬化性樹脂組成物、樹脂成型体、および繊維強化樹脂複合体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341390A (ja) * 2005-06-07 2006-12-21 Fujifilm Holdings Corp 記録材料
JP2012177776A (ja) * 2011-02-25 2012-09-13 Fujifilm Corp 感光性組成物、感光性フィルム、感光性積層体、永久パターン形成方法、及びプリント基板
JP2020023651A (ja) * 2018-08-08 2020-02-13 Jxtgエネルギー株式会社 熱硬化性樹脂組成物、樹脂成型体、および繊維強化樹脂複合体

Also Published As

Publication number Publication date
TW202128794A (zh) 2021-08-01
JP2021085006A (ja) 2021-06-03

Similar Documents

Publication Publication Date Title
JPH0440365B2 (ja)
KR20220038278A (ko) 소수성 고열 광학 아크릴 공중합체
CN112154185A (zh) 甲基丙烯酸系树脂组合物和成型体
JP5958533B2 (ja) 光拡散性樹脂組成物およびその成形品
JPH0463810A (ja) アクリル―ノルボルネン系共重合体およびその製造法
JP5349972B2 (ja) 新規な(メタ)アクリル酸エステルの共重合体、組成物、光学部材及び電気部材
WO2021106687A1 (ja) 熱可塑性共重合体及び樹脂成形体
JP6448215B2 (ja) 電子写真トナー用樹脂バインダーの製造方法及び電子写真トナー用樹脂バインダー
WO2015162609A1 (en) Process for the polymerization of pentabromobenzyl (meth) acrylate, the polymer obtained and uses thereof
US5162444A (en) Fluorine-containing AB-type block copolymer
JP2021070809A (ja) N−ビニルラクタム系共重合体の製造方法
KR101007097B1 (ko) 투명 내열 수지 조성물 및 그 제조방법
US20140296461A1 (en) Aromatic Vinyl Copolymer, Method for Preparing the Same, and Molded Article Including the Same
JPS62287201A (ja) 光学素子用樹脂
JP5590486B2 (ja) フマル酸エステル系ブロック重合体及びその製造方法
JP7440684B1 (ja) 熱硬化性樹脂、その硬化物及び熱硬化性組成物
JP2018188569A (ja) アクリル系ブロック共重合体、樹脂組成物、フィルム
KR100514412B1 (ko) 내열성이 우수한 이미드화 공중합 수지 및 그 제조방법
KR20130063455A (ko) 내열성이 우수한 아크릴계 공중합체 및 이의 제조방법
JPH07145138A (ja) アクリル酸誘導体
JP7440685B1 (ja) 熱硬化性樹脂、その硬化物及び熱硬化性組成物
Yamada et al. Preparation and polymerization behavior of 2‐[2, 2, 2‐tris‐(alkoxycarbonyl) ethyl] acrylic ester as a sterically congested monomer
JP3144055B2 (ja) スチレン系単量体の重合方法
JP2007023233A (ja) 側鎖に硫黄原子を有するグラフトポリマー及びその製造方法
JP6355408B2 (ja) 樹脂組成物の製造方法及び樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892356

Country of ref document: EP

Kind code of ref document: A1