WO2021104509A1 - 芳香醇处理丝素蛋白的方法及其在制备含丝素蛋白材料中的应用 - Google Patents

芳香醇处理丝素蛋白的方法及其在制备含丝素蛋白材料中的应用 Download PDF

Info

Publication number
WO2021104509A1
WO2021104509A1 PCT/CN2020/132549 CN2020132549W WO2021104509A1 WO 2021104509 A1 WO2021104509 A1 WO 2021104509A1 CN 2020132549 W CN2020132549 W CN 2020132549W WO 2021104509 A1 WO2021104509 A1 WO 2021104509A1
Authority
WO
WIPO (PCT)
Prior art keywords
silk fibroin
water
group
aromatic alcohol
silk
Prior art date
Application number
PCT/CN2020/132549
Other languages
English (en)
French (fr)
Inventor
王晓沁
谢旭升
郑兆柱
Original Assignee
苏州丝美特生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州丝美特生物技术有限公司 filed Critical 苏州丝美特生物技术有限公司
Publication of WO2021104509A1 publication Critical patent/WO2021104509A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/13Monohydroxylic alcohols containing saturated rings
    • C07C31/133Monohydroxylic alcohols containing saturated rings monocyclic
    • C07C31/135Monohydroxylic alcohols containing saturated rings monocyclic with a five or six-membered rings; Naphthenic alcohols
    • C07C31/1355Monohydroxylic alcohols containing saturated rings monocyclic with a five or six-membered rings; Naphthenic alcohols with a six-membered ring
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/15Proteins or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43563Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
    • C07K14/43586Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects from silkworms
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • D01F4/02Monocomponent artificial filaments or the like of proteins; Manufacture thereof from fibroin
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2211/00Protein-based fibres, e.g. animal fibres
    • D10B2211/01Natural animal fibres, e.g. keratin fibres
    • D10B2211/04Silk

Definitions

  • the invention relates to the technical field of materials, in particular to a method for treating silk fibroin with aromatic alcohol and its application in preparing silk fibroin-containing materials.
  • Silk is composed of outer sericin (20-30%) and inner silk fibroin (70-80%).
  • Regenerated silk fibroin can be obtained through steps such as dissolution and desalination.
  • the regenerated silk fibroin can be used to prepare materials such as particles, fibers, films, gels, tubes and stents. These materials are widely used in the textile industry, light industry chemistry, drug delivery carriers, tissue engineering scaffolds and other research fields.
  • Water-insoluble silk fibroin materials are usually obtained by the following methods: physical methods such as pH, temperature, ultrasound, vortex vibration, chemical methods such as chemical reagent induction such as methanol, ethanol, and polyethylene glycol, and chemical methods such as genipin, HRP, etc.
  • Cross-linking method to achieve intra-molecular and inter-molecular cross-linking of free silk fibroin.
  • silk fibroin inducers such as water vapor, methanol, and ethanol
  • water vapor can achieve changes in the secondary structure of silk fibroin molecules in dry silk fibroin materials, and then achieve intra-molecular and inter-molecular cross-linking through physical forces , So that the material is insoluble in water, and has strong mechanical properties and chemical and biological stability.
  • the mechanical properties (rigidity and toughness) of the silk fibroin materials prepared on the one hand are weak and cannot meet the needs of the industry, especially when the silk fibroin is at a lower concentration It is difficult to form a stable shape underneath; on the other hand, for two or more dried silk fibroin materials that have been formed, they cannot bond with each other or with other substrate materials after treatment with the above-mentioned inducer.
  • silk fibroin-based materials such as nanoparticles, membranes, gels, scaffolds, etc.
  • firstly pass silk lysis, dialysis, concentration and other steps to obtain a regenerated recombinant silk fibroin solution.
  • the obtained regenerated and reorganized silk protein solution is induced by physical (temperature, ultrasound, stirring, pH and other conditions) or chemically induced (alcohol reagents, genipin, and horseradish peroxidase (HRP)) to achieve free Re-crosslink assembly within or between the silk fibroin molecules.
  • physical temperature, ultrasound, stirring, pH and other conditions
  • chemically induced alcohol reagents, genipin, and horseradish peroxidase (HRP)
  • the above process can be generally understood as going from top to bottom, that is, reducing the fiber diameter (that is, peeling) and the molecular weight of silk fibroin (that is, degradation) in the process of silk fibroin, so as to obtain free silk fibroin molecules, and then through induction and regulation Its secondary structure changes and intermolecular forces can achieve the required material properties and structure. Therefore, for regenerated silk fibroin materials, from silk to silk fibroin solutions, and then to silk fibroin materials, such as membranes, gels, and scaffolds, if the silk fibroin molecules are freed, the silk fibroin molecules can be released. Or the re-crosslinking and assembly between the two key processes of "dissolution” and "assembly" of silk.
  • low-crystalline silk fibroin can be completely dissolved in some organic solvents, such as hexafluoroisopropanol and HFIP, but the solid matter formed after the solvent volatilizes has a low ⁇ -sheet content and is easily soluble in water. It requires further use of methanol and ethanol. , Steam treatment and other methods induce the formation of high ⁇ -sheet structure. Although this type of material also has properties such as water insolubility, high mechanical properties, and adjustable degradation time, due to the large size and uneven distribution of crystals in the material, the prepared material is prone to deformation and hard and brittle.
  • organic solvents such as hexafluoroisopropanol and HFIP
  • the purpose of the present invention is to provide a method for treating silk fibroin with aromatic alcohol and its application in the preparation of silk fibroin-containing materials.
  • the present invention discloses the application of aromatic alcohol as a silk fibroin inducer. Reagents that induce changes in the secondary structure of silk fibroin provide a new direction.
  • the first objective of the present invention is to disclose the application of aromatic alcohol as a silk fibroin inducer.
  • aromatic alcohols include one or more compounds of the following structural formulas:
  • X is a methylene group or an oxygen atom
  • the structural formula of aromatic alcohol is
  • the aromatic alcohol is in a liquid or vapor state.
  • the aromatic alcohol is one or more of benzyl alcohol, phenethyl alcohol, phenylpropanol, phenylbutanol, phenylpentanol and phenoxyethanol.
  • the second objective of the present invention is to disclose a treatment method of water-insoluble silk fibroin, which includes the following steps:
  • the silk fibroin is contacted with steam or liquid containing aromatic alcohol to induce structural transformation of the silk fibroin to obtain the water-insoluble silk fibroin.
  • aromatic alcohols include one or more compounds of the following structural formulas:
  • X is a methylene group or an oxygen atom
  • the structural formula of aromatic alcohol is
  • the aromatic alcohol is one or more of benzyl alcohol, phenethyl alcohol, phenylpropanol, phenylbutanol, phenylpentanol and phenoxyethanol.
  • the silk fibroin is in a dry state, and its water content is not higher than 30%.
  • the processed silk fibroin has good viscosity and can improve its adhesion with other silk fibroin materials or substrates.
  • the silk fibroin is immersed in a liquid containing aromatic alcohol for processing or steam containing aromatic alcohol is used to fumigate the silk fibroin.
  • the treatment time is not less than 5 seconds; the treatment temperature is 20-200°C. Preferably, the treatment temperature is 20-120°C.
  • the treatment time is not less than 5 minutes, and the treatment temperature is 25-200°C.
  • the treatment temperature is 20-120°C.
  • the vapor or liquid containing aromatic alcohol also includes conventional alcohol inducers such as water, methanol, and ethanol.
  • using steam or liquid containing aromatic alcohol to induce treatment of silk fibroin can not only obtain water-insoluble pure silk fibroin material, but also bond silk fibroin with other materials.
  • Other materials include: inorganic metal materials such as ceramics, glass and cement; high-molecular materials (polymers) such as rubber, chemical fibers and plastics; structural and functional composite materials.
  • the resulting product can be applied to the fields of medicine, environment, textile, light industry and medical equipment.
  • inducing agent means a chemical reagent that can transform silk fibroin materials from water-soluble to water-insoluble.
  • the secondary structure of silk fibroin molecules in the former material is mainly disordered and random curls, and the latter material
  • the secondary structure of silk fibroin is dominated by ordered ⁇ -helix or ⁇ -sheet.
  • the third object of the present invention is to provide a water-insoluble silk fibroin material.
  • the water-insoluble silk fibroin material includes a plurality of silk fibroin fibers, and there is at least one fusion point between two adjacent silk fibroin fibers.
  • the water-insoluble silk fibroin material is obtained by structural induction through aromatic alcohol.
  • the ⁇ -sheet structure content of the fusion point is 15-80%. Preferably it is 45-75%.
  • the particle size and distribution uniformity of ⁇ -sheet crystals are close to natural silk, and the particle size of ⁇ -sheet crystals induced by aromatic alcohol is more uniform and finer than other processing methods.
  • Silk fibroin before being treated with aromatic alcohol has a ⁇ -sheet content of 15%-40%.
  • silk fibroin has a low ⁇ -sheet content (15%-40%).
  • Area is dissolved, and the processed silk fibroin undergoes secondary reassembly, which promotes a certain transformation of the changed silk fibroin structure area, which greatly increases the content of ⁇ -sheets after transformation, and the content of ⁇ -sheets can be increased.
  • 45%-80% preferably 45%-75%
  • the ⁇ -sheet content increases, which promotes the increase of silk fibroin strength.
  • the fourth object of the present invention is to provide a filter membrane material comprising the above-mentioned water-insoluble silk fibroin material.
  • the water-insoluble silk fibroin material is obtained by structural induction through aromatic alcohol.
  • the ⁇ -sheet structure content of the fusion point is 15-80%. Preferably it is 45-75%.
  • the particle size and distribution uniformity of ⁇ -sheet crystals are close to natural silk, and the particle size of ⁇ -sheet crystals induced by aromatic alcohol is more uniform and finer than other processing methods.
  • fusion points are formed between the silk fibroin fibers in the obtained water-insoluble silk fibroin material.
  • the formation of these fusion points not only forms stable cross-links in the filter membrane material Therefore, it is not easily affected by external forces, and can reduce the size of the through holes in the membrane material, so that the filtering effect is strong. This is different from the filter material formed by traditional silk fibroin materials.
  • traditional filter materials only physical contact is formed between silk fibroin fibers and fibers, which is easy to occur under the action of external forces (such as air pressure, water pressure, and mechanical pressure). Mutual displacement, its mechanical strength is poor, and the filtration performance is unstable.
  • the fifth object of the present invention is to provide a composite material, including a matrix and a water-insoluble silk fibroin material connected to the matrix. There is at least one fusion point between the water-insoluble silk fibroin material and the matrix, and the matrix includes a polymer .
  • the composite material is obtained by structural induction through aromatic alcohol.
  • the ⁇ -sheet structure content of the fusion point is 15-80%. Preferably it is 45-75%.
  • the particle size and distribution uniformity of ⁇ -sheet crystals are close to natural silk, and the particle size of ⁇ -sheet crystals induced by aromatic alcohol is more uniform and finer than other processing methods.
  • high molecular polymers include natural high molecular materials and/or synthetic high molecular materials.
  • the fusion point there is at least one fusion point between the matrix and the water-insoluble silk fibroin material, and the fusion point can be distributed continuously or discontinuously along the interface formed by the matrix and the water-insoluble silk fibroin material. Due to the existence of the fusion point, the binding force between the silk fibroin material and the matrix is improved, that is, the viscosity between the silk fibroin and the matrix is improved.
  • the sixth object of the present invention is to provide a coated fiber, including the fiber and the water-insoluble silk fibroin film on the surface of the fiber, the fiber and the water-insoluble silk fibroin film have at least one fusion point, and the water-insoluble silk fibroin film There is at least one fusion point between two adjacent silk fibroin fibers in.
  • the water-insoluble silk fibroin film on the fiber surface is obtained by structural induction by aromatic alcohol.
  • the ⁇ -sheet structure content of the fusion point is 15-80%. Preferably it is 45-75%.
  • the particle size and distribution uniformity of ⁇ -sheet crystals are close to natural silk, and the particle size of ⁇ -sheet crystals induced by aromatic alcohol is more uniform and finer than other processing methods.
  • the surface of the fiber has a water-insoluble silk fibroin film containing evenly distributed fine ⁇ -sheet structures.
  • the water-insoluble silk fibroin film is induced by aromatic alcohol and accelerated by temperature and pressure. Complete the even distribution of fine ⁇ -sheet structures.
  • the seventh object of the present invention is to provide a fiber modification liquid, including silk fibroin, the mass fraction of silk fibroin in the fiber modification liquid is 0.01-30%, and the molecular weight of the silk fibroin is 3500 Da or more, preferably 10000 Da the above.
  • the fiber modification liquid also includes aromatic alcohol.
  • the aromatic alcohol accounts for 0.1%-1% of the mass fraction of silk fibroin.
  • the aromatic alcohol is in a liquid or gas state.
  • the fiber to be treated can be directly immersed in the modified liquid containing the aromatic alcohol; when the aromatic alcohol is in the gaseous state, the fiber to be treated can be fumigated with the gaseous aromatic alcohol to induce the silk in the modified liquid.
  • the protein protein undergoes a crystallization transition.
  • the eighth object of the present invention is to provide a simulated silk fabric, the fiber surface of the fabric has a water-insoluble silk fibroin film, the fiber in the fabric and the water-insoluble silk fibroin film have at least one fusion point, and the water-insoluble silk fibroin film has at least one fusion point.
  • the fibroin membrane has at least one fusion point between the silk fibroin fiber and the silk fibroin fiber.
  • the water-insoluble silk fibroin film on the fiber surface in the fabric is obtained by structural induction by aromatic alcohol.
  • the ⁇ -sheet structure content of the fusion point is 15-80%. Preferably it is 45-75%.
  • the particle size and distribution uniformity of ⁇ -sheet crystals are close to natural silk, and the particle size of ⁇ -sheet crystals induced by aromatic alcohol is more uniform and finer than other processing methods.
  • the induction conditions for "structural induction by aromatic alcohol” include:
  • the temperature is 50-250°C, the pressure is 0.01-0.1MPa, and the induction time is 0.5-300min.
  • the temperature is 90-150°C, the pressure is 0.05-0.1 MPa, and the induction time is 15-180 min.
  • the fusion point in the water-insoluble silk fibroin material is: 1. The structure similar to the welding point; 2. The material at this position is continuous, without phase separation, and the structure is uniform; 3. The fusion point is the fusion of crisscross fibers and the contact position. , Not only the point-like fusion at the intersection of the fibers, but also the linear fusion at the side-by-side of the fibers.
  • the above-mentioned fusion points are all formed by the one-step method of dissolving and assembling silk fibroin materials by aromatic alcohol.
  • the steps of the one-step method for dissolving and assembling silk fibroin-based materials include:
  • the silk fibroin-based material is contacted with aromatic alcohol to complete the dissolution and reassembly of the silk fibroin.
  • the use of aromatic alcohol to realize the dissolution and assembly of silk fibroin at the same time provides a new type of assembly form for silk fibroin-based materials.
  • the content of ⁇ -sheet structure of silk fibroin-based materials after "welding" can be increased, reaching close to or even beyond the natural The effect of the ⁇ -sheet structure content of silk.
  • the induction is performed under the conditions of 50-250°C and 0.01-0.1 MPa.
  • the induction time is 0.5-300 min.
  • aromatic alcohol accounts for 0.1%-1% of the mass fraction of the silk fibroin-based material.
  • aromatic alcohols mentioned in the present invention include one or more compounds containing the following structural formulas:
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently selected from hydrogen, benzene ring, hydroxyl group, carboxyl group, and aldehyde group , Keto group, ester bond, ether bond, amino group, nitro group, nitrile group, amide group, azo, amidino group, oxime, hydrazone, halogen atom, acyl halide sulfonate group, disulfide bond, mercaptophosphine group or phosphate base.
  • Aromatic alcohol can be in vapor or liquid form, and the processing form is not limited to soaking and fumigation.
  • Aromatic alcohol can also be blended with conventional alcohol inducers such as water, methanol, ethanol, hexafluoroisopropanol, or acid-base salt reagents (such as formic acid, lithium bromide, and calcium chloride) to treat silk fibroin-based materials.
  • the one-step method for dissolving and assembling silk fibroin-based materials is similar to the "welding" process of metal materials.
  • the silk fibroin-based materials undergo a one-step process to complete the dissolution and assembly, silk fibroin and silk fibroin Fusion phenomenon occurs between them, forming an effect similar to "welding".
  • the silk fibroin-based material has a transition process from liquid (dissolution process) to solid (assembly process). This process is accompanied by the mid-to-low crystal structure region of silk fibroin material ( ⁇ -sheet structure content is 15%).
  • the pressure giving method is not limited to mechanical pressure, vapor pressure, and liquid pressure.
  • the reaction time and temperature can be shortened to cause the silk fibroin nanofiber membrane to be in a partially dissolved state. Convenient for subsequent "welding".
  • the reaction time can be appropriately extended and the reaction temperature can be increased.
  • the aromatic alcohol in the water-insoluble silk fibroin material after induction can be volatilized naturally or removed by drying at high temperature.
  • the present invention has at least the following advantages:
  • the invention discloses a new use of aromatic alcohol as a silk fibroin inducer, and provides a new direction for the development of a new silk fibroin inducer.
  • the invention also discloses a treatment method for water-insoluble silk fibroin.
  • Steam or liquid containing aromatic alcohol is used for treatment.
  • the process is simple.
  • the treated silk fibroin is insoluble in water and has better mechanical strength than traditional treatment methods.
  • the mechanical strength of the product is high, and the mechanical properties of the silk fibroin material itself and the bonding strength between the silk fibroin material and the substrate material after the inducer and treatment method of the present invention are beyond the traditional treatment method (using methanol, ethanol and water) Steam induction treatment) more than 50%.
  • the present invention provides a series of silk fibroin-based materials with fusion points formed between silk fibroin and silk fibroin or between silk fibroin and other substrates, which expands the modification of silk fibroin
  • the materials provide a new direction for the development of silk fibroin-based products, specifically:
  • the present invention provides a water-insoluble silk fibroin material.
  • the water-insoluble silk fibroin material has improved resistance to damage by external forces, improved hydrophobicity, and improved physical and chemical stability.
  • the invention provides a filtering membrane material, which improves the hydrophobic effect, the filtering efficiency and the oil-water separation ability.
  • the present invention also provides a composite material, which has a water-insoluble silk fibroin film, which can be firmly bonded to the surface of the substrate, and imparts the advantages of the silk fibroin material to the substrate.
  • the invention provides a coated fiber, which has strong mechanical properties and washing fastness.
  • the present invention provides a fiber modification liquid, which can realize the fusion between silk fibroin fibers or between silk fibroin fibers and other fibers.
  • the present invention provides an artificial silk fabric, which has gloss and silky feel similar to natural silk, and can conceal the dazzling and dazzling luster produced by the chemical fiber itself due to the total reflection phenomenon, that is, the aurora feel.
  • Figure 1 illustrates the chemical formulas, molecular weights, saturated vapor pressures, and structural formulas of different reagents
  • Figure 2 shows the fluorescence characterization results of the treatment of silk fibroin materials by aromatic alcohol, ethanol and methanol;
  • Figure 3 illustrates the weight change of silk fibroin membrane after soaking with different reagents;
  • A Water,
  • B Methanol,
  • C Benzyl alcohol,
  • D Etanol,
  • E 2 -Phenethyl alcohol,
  • F phenoxyethanol 2-Phenoxyethanol,
  • G 3-phenylpropanol 3-Phenyl-1-propanol,
  • H 4-phenyl-1-butanol 4-Phenylbutanol, (I ) 1,3-Butanediol 1,3-Butanediol;
  • Figure 4 illustrates the weight change of silk fibroin membrane after soaking or fumigating with different reagents;
  • A Water,
  • B Methanol,
  • C Benzyl alcohol,
  • D Etanol,
  • E Phenethyl alcohol,
  • F Phenoxyethanol,
  • G 3-Phenyl-1-propanol,
  • H 4-Phenylbutanol,
  • I 1,3-Butanediol 1,3-Butanediol;
  • Figure 5 illustrates the changes in the secondary structure of silk fibroin membranes after soaking and fumigating with different reagents;
  • A Water
  • B Methanol
  • C Benzyl alcohol
  • D Etanol
  • E 2-Phenethyl alcohol
  • F Phenoxyethanol 2-Phenoxyethanol
  • G 3-Phenyl-1-propanol
  • H 4-phenyl-1-butanol 4 -Phenylbutanol
  • I 1,3-Butanediol 1,3-Butanediol;
  • Figure 6 illustrates the breaking strength of silk fibroin film after fumigation with different reagents at 25, 60 and 90°C;
  • A Water,
  • B Methanol,
  • C Benzyl Alcohol,
  • D Etanol,
  • E 2-Phenethyl alcohol,
  • F 2-Phenoxyethanol,
  • G 3-Phenyl-1-propanol,
  • H 4-phenyl-1- 4-Phenylbutanol,
  • I 1,3-Butanediol 1,3-Butanediol;
  • Figure 7 shows the surface morphology of silk fibroin membranes treated with different steam at 25°C;
  • A Water,
  • B Methanol,
  • C Benzyl alcohol,
  • D Etanol,
  • E Phenethyl alcohol,
  • F Phenoxyethanol,
  • G 3-Phenyl-1-propanol,
  • H 4-Phenylbutanol,
  • I 1,3-Butanediol 1,3-Butanediol;
  • Figure 8 shows the surface morphology of silk fibroin membranes treated with different steam at 60°C;
  • A Water,
  • B Methanol,
  • C Benzyl alcohol,
  • D Etanol,
  • E Phenethyl alcohol,
  • F Phenoxyethanol,
  • G 3-Phenyl-1-propanol,
  • H 4-Phenylbutanol,
  • I 1,3-Butanediol 1,3-Butanediol;
  • Figure 9 shows the surface morphology of silk fibroin membranes treated with different steam at 90°C;
  • A Water,
  • B Methanol,
  • C Benzyl alcohol,
  • D Etanol,
  • E Phenethyl alcohol,
  • F Phenoxyethanol,
  • G 3-Phenyl-1-propanol,
  • H 4-Phenylbutanol,
  • I 1,3-Butanediol 1,3-Butanediol;
  • Figure 10 shows the adhesion strength test results between silk fibroin membranes after soaking or fumigating with different reagents;
  • A Water,
  • B Methanol,
  • C Benzyl alcohol,
  • D Etanol,
  • E 2-Phenethyl alcohol,
  • F 2-Phenoxyethanol,
  • G 3-Phenyl-1-propanol,
  • H 4-phenyl-1-butanol 4- Phenylbutanol, (I) 1,3-Butanediol 1,3-Butanediol;
  • Figure 11 shows the adhesion strength of the silk fibroin film after being fumigated at 60°C for 1, 3, 6, and 12 hours with ethanol and 2-phenylethanol reagent;
  • Figure 12 shows the adhesion strength of silk fibroin film and smooth, frosted glass after being fumigated at 60°C with ethanol and 2-phenylethanol for 3 hours;
  • Figure 13 shows the morphology of silk fibroin nanofiber membranes and the results of microscopic morphology characterization after welding
  • Figure 14 shows the infrared test results of different silk fibroin samples
  • Figure 15 shows the test results of the secondary structure content of different silk fibroin samples
  • Figure 16 shows the surface morphology characterization results of cooked silk treated with aromatic alcohol for different time
  • Figure 17 is a schematic diagram of the morphological changes of cooked silk during aromatic alcohol treatment
  • Figure 18 shows the surface morphology test results of the cooked silk in the process of "welding" with aromatic alcohol
  • Figure 19 shows the oil-water separation process and separation effect data of soybean oil by silk fibroin filtration membrane material
  • Figure 20 is the separation process and separation effect data of silk fibroin filtration membrane materials for different oil-water mixtures
  • Figure 21 is the smoke adsorption experiment and corresponding results of different filter materials
  • Figure 22 is the comparison result of the adsorption effect of silk fibroin filter membrane material compared with different masks
  • Figure 23 is a schematic diagram of a fully enclosed evaporating dish used to hang chemical fiber fabrics
  • Figure 24 is a photo of the surface morphology of chemical fiber fabrics after being soaked and fumigated with silk fibroin solution for 1, 3 and 5 hours respectively; (a) untreated chemical fiber fabric; (b) chemical fiber fabric after mass fraction It is 5% silk fibroin solution soaking treatment; (c)(f)(i) After chemical fiber fabric is soaked with 5% silk fibroin solution, it is fumigated with 2-phenylethanol for 1h, 3h and 5h; ( d)(g)(j) After the chemical fiber fabric is infiltrated with 1% silk fibroin solution by mass fraction, it is fumigated with 2-phenylethanol for 1h, 3h and 5h; (e)(h)(k) chemical fiber fabric passes through After soaking the silk fibroin solution with a mass fraction of 0.1%, fumigate with 2-phenylethanol for 1h, 3h and 5h;
  • Figure 25 shows the results of the fabric air permeability change after the chemical fiber fabric is soaked and fumigated by the silk fibroin solution for 1, 3 and 5 hours respectively;
  • ( d)(g)(j) After the chemical fiber fabric is infiltrated with 1% silk fibroin solution by mass fraction, it is fumigated with 2-phenylethanol for 1h, 3h and 5h;
  • Figure 26 shows the results of fabric thickness changes after the chemical fiber fabric is soaked and fumigated by the silk fibroin solution for 1, 3 and 5 hours respectively;
  • (b) The mass fraction of chemical fiber fabric is 5% silk fibroin solution soaking treatment;
  • (d) )(g)(j) After the chemical fiber fabric is infiltrated with 1% silk fibroin solution by mass fraction, it is fumigated with 2-phenylethanol for 1h, 3h and 5h;
  • Figure 27 shows the results of the change in moisture regain of the chemical fiber fabric after being soaked and fumigated by the silk fibroin solution for 1, 3 and 5 hours respectively;
  • ( d)(g)(j) After the chemical fiber fabric is infiltrated with 1% silk fibroin solution by mass fraction, it is fumigated with 2-phenylethanol for 1h, 3h and 5h;
  • Figure 28 is a photograph of a fiber fabric textile coated with water-insoluble silk fibroin.
  • Figure 1 illustrates the chemical formulas, molecular weights, saturated vapor pressures, and structural formulas of different reagents.
  • the saturated vapor pressures in the figure are all vapor pressures under the conditions of a 760mm Hg column.
  • Example 1 Dilute the silk fibroin solution obtained in Example 1 to a mass fraction of 4%, take the above solution with a volume of 2 mL and add it to a plastic petri dish with a diameter of 3.5 cm, and let it stand for more than 3 hours to make it completely Remove the internal air bubbles. Place it in a fume hood at room temperature and air dry overnight to form a film.
  • the weight loss method measures the water content of silk fibroin membrane W%.
  • W% (W 1 -W 2 )/W 1 *100% (1)
  • W 1 represents the initial dry weight of the newly prepared silk fibroin membrane
  • W 2 represents the weight of the silk fibroin membrane after thorough drying (12 hours at 120°C). The experiment was repeated 5 times to improve the reliability of the experiment.
  • the silk fibroin solution prepared in Example 1 was added to deionized water successively according to the calculated mass fraction after drying, and the mass fraction of the solution was diluted to 4%. Put the above-mentioned silk fibroin solution with a mass fraction of 4% in a plastic petri dish with a diameter of 3.5 cm and let it stand for more than 3 hours until the internal air bubbles are completely removed. Place it in a fume hood at room temperature and air dry overnight to form a film.
  • Phenylethanol belongs to the induced conversion of silk fibroin at the micro-nano level. Therefore, the degree of induction of phenylethyl alcohol on silk fibroin materials is smaller and more uniform, which can well explain the degree of secondary structure transformation (the percentage of ⁇ -sheet structure content increased) when silk fibroin materials are treated with the same content of phenylethyl alcohol. Higher than ethanol and methanol.
  • Example 4 Use liquid or steam containing different reagents to treat silk fibroin membranes and characterize changes in their mechanical properties
  • the silk fibroin film with a moisture content of about 3.64% prepared in Example 2 was immersed in water, methanol, benzyl alcohol, ethanol, 2-phenylethanol, phenoxyethanol, 3-phenylpropanol, 4 -In phenyl-1-butanol and 1,3-butanediol, the immersion time is 5 minutes, and the temperature of each reagent is room temperature. Then remove the silk fibroin membrane soaked in each reagent, use filter paper to absorb the remaining reagent on the surface, and weigh the obtained sample.
  • the mass change after sample treatment is shown in Figure 3.
  • A, B, C, D, E, F, G, H, and I in turn represent water, methanol, benzyl alcohol, ethanol, 2-phenylethanol, phenoxyethanol, 3-phenylpropanol, 4-benzene 1-butanol, 1,3-butanediol, unless otherwise specified, the letters in the following drawings have the same meanings here.
  • the results showed that the quality of the silk fibroin membrane treated with ethanol hardly changed, while the quality of the silk fibroin membrane treated with phenethyl alcohol increased, which was correlated with the length of the carbon chain.
  • the silk fibroin membrane immersed in various alcohols is washed with ethanol to remove non-specifically bound phenethyl alcohol, and then washed with deionized water to remove residual ethanol. Place the sample in a fume hood and dry overnight at room temperature.
  • the dried silk fibroin membranes of each group are weighed, the dry weight W 3 of each silk fibroin membrane is measured, and the mass change rate W m % of each group of samples is calculated according to the mass of the samples before and after processing.
  • W 1 represents the initial dry weight of the silk fibroin membrane in Example 2, and the experiment was repeated 5 times to improve the reliability of the experiment.
  • W 1 is the initial dry weight of the silk fibroin film in Example 2, and the experiment was repeated 5 times to improve the reliability of the experiment.
  • Figure 4 shows the comparison of the weight changes of the silk fibroin film after the above two methods (soaking or fumigation). It can be seen from the figure that the quality of the silk fibroin film treated with phenylethanol is increased after the immersion treatment with various reagents, and the mass increase of the sample group treated with 2-phenylethanol is the maximum 2.56%. In the control group, the quality of the ethanol-treated sample group was reduced, with a reduction rate of 0.42%, which may be due to the loss of a small amount of low-molecular-weight silk protein in the membrane with ethanol soaking and cleaning; while the other control groups were water, methanol, and 1,3-butanediol groups. The quality has declined. After the fumigation treatment of each reagent, the quality of the sample is slightly different from that of the immersion treatment, but the overall trend is the same as that of the immersion treatment.
  • Figures 5a and b are the infrared measurement results of the silk fibroin film treated by different reagent immersion and fumigation methods. From the figure, it can be seen that the two kinds of silk fibroin film treated with phenylethanol after immersion in each reagent are shown in the figure.
  • the hierarchical structure has undergone a certain transformation, and it is observed that the characteristic absorption peaks of the silk fibroin film after 2-phenylethanol treatment have shifted to 1615-1535cm -1 , 1525-1541cm -1 , and other phenylethyl alcohols, such as phenoxyethanol and 3-benzene With propanol and 4-phenyl-1-butanol, the characteristic absorption peaks of the silk fibroin film after treatment and the silk fibroin film after 2-phenylethanol treatment are consistent, indicating the mechanism of action of phenylethanol on the silk fibroin film Unanimous.
  • the silk fibroin film prepared in Example 2 is passed through water, methanol, benzyl alcohol, ethanol, 2-phenylethanol, phenoxyethanol, 3-phenylpropanol, 4-phenyl-1-butanol, and 1, Reagents such as 3-butanediol are fumigated.
  • the fumigation temperature is 25°C, 60°C and 90°C.
  • the treatment time is 2 hours.
  • the water-insoluble silk fibroin film treated by the above method was prepared according to the test standard, and the Instron-3365 material mechanics testing machine was used to test the breaking strength of the water-insoluble silk fibroin film.
  • Figure 6 shows the silk fibroin membrane treated with the above method after water, methanol, benzyl alcohol, ethanol, 2-phenylethanol, phenoxyethanol, 3-phenylpropanol, 4-phenyl at 25°C, 60°C and 90°C
  • the control group is set as the silk fibroin membrane through water, methanol, ethanol, 2-phenylethanol, phenoxyethanol, 3-phenylpropanol, 4-phenyl-1-butanol and 1,3-butanediol, etc.
  • the reagent is soaked. It can be seen from Fig.
  • the breaking strength of the silk fibroin film treated with phenethyl alcohol increases as the length of the carbon-carbon branch chain increases.
  • the breaking strength of silk fibroin membranes treated with phenethyl alcohol was higher than that of non-phenyl alcohol reagents except that the benzyl alcohol was slightly lower than that of methanol.
  • the silk fibroin film obtained by soaking with the same reagent and fumigation at different temperatures was found to have higher breaking strength after the former treatment than the latter three, indicating that soaking is beneficial to the full chemical reaction of the silk fibroin film. With the increase of temperature, the strength of the silk protein film after fumigation is obviously enhanced.
  • the breaking strength of silk fibroin membranes treated with two fumigation temperatures of 60°C and 90°C is relatively close, indicating that if the fumigation treatment is used to treat the silk fibroin membrane, after the temperature exceeds 60°C, it has little effect on the mechanical properties.
  • Figures 7-9 show the surface morphology of silk fibroin membranes after steam treatment at 25°C, 60°C and 90°C.
  • the letters and numbers in the figure represent the same meanings as in Figure 3. It can be seen from Figures 6-8 that the different reagent treatments did not affect the surface morphology of the silk fibroin membrane, and the surface is flat without voids, meshes, and particles.
  • Example 5 37°C aromatic alcohol induced modified silk fibroin membrane
  • step (3) Immerse 1 g of silk fibroin membrane prepared in step (2) in 10 mL of phenethyl alcohol, the temperature of the reagent is 37° C., and the immersion time is 30 min. After the treatment is completed, the product is taken out to obtain a water-insoluble silk fibroin membrane.
  • the ⁇ -sheet structure content of the water-insoluble silk fibroin membrane obtained in step (3) was tested, and the result showed that: compared with the silk fibroin membrane of step (2), the ⁇ -sheet structure of the silk fibroin membrane obtained in step (3) The structure content increased from 17.5% to 51.29%.
  • Example 6 60°C aromatic alcohol induced modified silk fibroin membrane
  • step (3) Immerse 1 g of the silk fibroin membrane prepared in step (2) in 10 mL of phenethyl alcohol, the temperature of the reagent is 60° C., and the immersion time is 30 min. After the treatment is completed, the product is taken out to obtain a water-insoluble silk fibroin membrane.
  • the ⁇ -sheet structure content of the water-insoluble silk fibroin membrane obtained in step (3) was tested, and the result showed that: compared with the silk fibroin membrane of step (2), the ⁇ -sheet structure of the silk fibroin membrane obtained in step (3) The structure content increased from 17.5% to 57.39%.
  • Example 7 Change of adhesion between dry silk fibroin membranes after steam treatment with different reagents
  • Figure 10 shows that the silk fibroin membrane is processed through water, methanol, benzyl alcohol, ethanol, 2-phenylethanol, phenoxyethanol, 3-phenylpropanol, 4-phenyl-1-butanol, and 1,3-butanediol.
  • the adhesion strength test results after immersion and fumigation treatments. From Figure 10, it can be seen that the force between the silk fibroin membranes treated with phenylethanol is higher than that of the reagents without benzene ring. Among them, the adhesion of 2-phenylethanol treatment The most powerful, much higher than other alcohols. This is due to the obvious force between phenylethyl alcohol and silk fibroin materials.
  • 2-phenylethyl alcohol can bind to silk fibroin materials with high strength due to the specific conformational relationship between the benzene ring and the hydroxyl group. Form tight bridging sites to achieve a strong bonding effect.
  • the binding sites between alcohol and silk protein in the steam-treated membrane are more than those in the liquid-immersed membrane, and the distribution is more uniform, resulting in higher Adhesion.
  • Example 8 The effect of steam treatment time of different reagents on the adhesion between dry silk fibroin films
  • Example 2 The silk fibroin membrane prepared in Example 2 with a moisture content of about 3.64% was mechanically clamped and forced to be laminated together by an external force, and then passed through ethanol (control) and 2-phenylethanol reagent at 60°C. Fumigation treatment for 1, 3, 6 and 12 hours, at least two silk fibroin membranes per group.
  • Figure 11 shows the adhesion strength of the silk fibroin film after being fumigated at 60°C for 1, 3, 6, and 12 hours with ethanol and 2-phenylethanol reagent.
  • the adhesion strength between the silk fibroin films after 2-phenylethanol fumigation is significantly higher than that of ethanol fumigation, indicating that the former has a stronger effect on silk fibroin materials.
  • the adhesion strength basically does not increase, indicating that the saturated fumigation effect can be achieved in 3 hours.
  • Example 9 Steam treatment of aromatic alcohol promotes the adhesion between silk fibroin and different materials
  • Figure 12 shows the adhesion strength test results of the silk fibroin film treated with the above method and smooth, frosted glass after being fumigated at 60°C for 3 hours with ethanol and 2-phenylethanol. It can be seen from Figure 12 that the adhesion strength of the silk fibroin film treated with 2-phenylethanol vapor to smooth and frosted glass is 4N and 5.1N, respectively, while the silk fibroin film treated with ethanol vapor is compared with smooth and frosted glass. The bonding strength is 0.1N. 2-Phenylethanol steam treatment is 40-50 times the adhesion strength of silk fibroin film after ethanol steam treatment.
  • Example 10 Steam treatment of aromatic alcohol promotes the adhesion between silk fibroin and natural polymer
  • step (3) The silk fibroin film and the cellulose film prepared in step (2) are mechanically clamped, driven by an external force, and forced to be bonded together, and then fumigated at 90° C. for 0.5 h with phenethyl alcohol.
  • the adhesion strength of the silk fibroin film and the cellulose film treated with phenylethanol steam is 3.56N.
  • Example 11 Steam treatment of aromatic alcohol promotes the adhesion between silk fibroin and synthetic polymer
  • step (3) The silk fibroin film and the polyethylene film prepared in step (2) are mechanically clamped, driven by an external force, and forced to be bonded together, and subjected to a fumigation treatment at 60° C. for 0.5 h with phenethyl alcohol.
  • the adhesion strength of the silk fibroin film and the polyethylene film treated with phenylethanol steam is 3.69N.
  • Example 12 "Welding" of aromatic alcohol to silk fibroin
  • the silk fibroin nanofiber membrane prepared above is placed in a closed container, 50-200 mL of water is poured into the lower layer, and 10-20g silk fibroin nanofiber membrane is spread on the upper layer. Put all into the oven, set the temperature to 45 ⁇ 75°C, and the time for 30 ⁇ 60min.
  • Randomly select the silk fibroin nanofiber membrane in the process of 2mg phenethyl alcohol treatment cut it into powder, mix with 20mg lithium bromide, grind in an agate mortar, put it into a mold, and press it into a thin sheet.
  • the silk fibroin nanofiber membrane was taken out at different time periods when the phenethyl alcohol was dissolved, compacted with a 500g weight, and heated in an oven at the original set temperature for 30 minutes before being taken out. Randomly select samples and spray gold on them for 90s. Observe the morphological changes, diameter changes and adhesion of the surface of the cooked silk under Hitachi S4800 field emission scanning electron microscope.
  • the silk fibroin nanofiber membrane treated with steam is in a water-insoluble state, and the appearance is a loose fiber network structure, and the fibers do not adhere to each other.
  • its secondary structure is Silk I structure, and the content of ⁇ -sheet structure is about 23%.
  • the silk fibroin nanofiber membrane formed after the solvent volatilization drying treatment (temperature is 90°C, time is 300min, pressure is 0.01MPa) is a tight and firm overall network structure, and there are adhesions to each other. Observe the microscopic appearance ( As shown in Figure 13B1-B5), there is obvious welding phenomenon in the transversely and longitudinally staggered fibers. The appearance and structure of the welded joints are obviously different from the smooth surface of the fibers before dissolution, forming obvious raised welding areas. Tested by infrared spectrometer, the secondary structure of the silk fibroin nanofiber membrane after welding is Silk II structure, and the content of ⁇ -sheet structure is 75%.
  • phenylethanol can account for 0.1% to 1% of the mass fraction of the silk fibroin nanofiber membrane. Due to the effect of temperature and time, the boiling point of phenylethanol is 230°C, which can be volatilized during the welding process. In addition, during the curing process of the silk fibroin nanofiber membrane after welding, it was tested by experiments that there was little or no residue of phenylethanol. Moreover, phenethyl alcohol has the ability to dissolve silk fibroin materials with a ⁇ -sheet structure content of less than 50%.
  • Example 13 Cooling and comparing the "welding" effect of aromatic alcohol on silk fibroin
  • the silk fibroin nanofiber membranes prepared in steps 1)-2) of Example 12 were added dropwise with 0.5 mL of phenethyl alcohol, and the silk fibroin nanofiber membranes were given a pressure of 0.1 MPa to each other, and the temperature was increased to 90°C. After the reaction time exceeds 15 minutes, take it out, and complete the welding of the silk fibroin nanofiber membrane after solvent volatilization and drying treatment.
  • Example 14 Comparison of the "welding" effect of aromatic alcohol on silk fibroin by heating up
  • the silk fibroin nanofiber membranes prepared in steps 1)-2) of Example 12 were added dropwise with 0.5 mL of phenethyl alcohol, and the silk fibroin nanofiber membranes were given a pressure of 0.1 MPa to each other, and the temperature was increased to 200°C. After the reaction time exceeds 15 minutes, take it out, and complete the welding of the silk fibroin nanofiber membrane after solvent volatilization and drying treatment.
  • Example 15 Comparison of the "welding" effect of aromatic alcohol on silk fibroin by boosting pressure
  • the silk fibroin nanofiber membranes prepared in steps 1)-2) of Example 12 were added dropwise with 0.5 mL of phenethyl alcohol, and the silk fibroin nanofiber membranes were given a pressure of 1 MPa to each other, and the temperature was increased to 120°C. After the reaction time exceeds 15 minutes, take it out, and complete the welding of the silk fibroin nanofiber membrane after solvent volatilization and drying treatment.
  • Example 16 Antihypertensive comparison of the "welding" effect of aromatic alcohol on silk fibroin
  • the silk fibroin nanofiber membranes prepared in steps 1)-2) of Example 12 were added dropwise with 0.5 mL of phenethyl alcohol, and the silk fibroin nanofiber membranes were given a pressure of 0.01 MPa to each other, and the temperature was increased to 120°C. After the reaction time exceeds 15 minutes, take it out, and complete the welding of the silk fibroin nanofiber membrane after solvent volatilization and drying treatment.
  • Example 17 Time-lapse comparison of the "welding" effect of aromatic alcohol on silk fibroin
  • Example 18 Time-lapse comparison of the "welding" effect of aromatic alcohol on silk fibroin
  • Example 19 "Welding" of phenethyl alcohol to silk fibroin nanofiber membrane
  • the fibrous membrane contained both the dissolved silk fibroin solution and the undissolved silk fibroin solids.
  • the solid and liquid are separated, and the separated liquid (marked as A sample) is subjected to an infrared test.
  • the undissolved silk fibroin solid it is divided into two parts, one part (marked as B sample) is directly subjected to infrared test, and the other part is tested after being completely welded with phenethyl alcohol according to the above method (marked as C sample).
  • the sample to be tested is mixed with 20 mg of lithium bromide, ground in an agate mortar, placed in a mold, and pressed into a thin sheet.
  • the bottom-up curve in Figure 14 represents the infrared test results of sample A, sample B and sample C in turn. From the figure It can be seen that the secondary structure of the silk fibroin of the A sample is in the Silk I structure, and the B and C samples are both in the Silk II structure.
  • the results of ⁇ -sheet structure content are shown in Figure 15.
  • the results show that phenylethyl alcohol has a strong ability to induce transformation of silk fibroin materials.
  • phenylethyl alcohol can promote water vapor treatment.
  • the resulting silk fibroin nanofiber membrane ( ⁇ -sheet structure content of 17.6 ⁇ 3.1%) induces a conversion to 82.3 ⁇ 5.7%.
  • the content of the induced ⁇ -sheet structure is very close to the distribution of natural silk, showing a strong ability to induce transformation.
  • Example 20 "Welding" of phenethyl alcohol to cooked wire
  • Figure 16a, b, c, d are the surface morphology test results of samples taken out at 0h, 0.h, 1h, and 1.5h in sequence.
  • Figures 16e, f, g, and h are the actual photos corresponding to Figures 16a, b, c, and d.
  • Fig. 16 show that by dissolving cooked silk with phenylethanol, nanofibers in the range of 10-20 nm can be peeled off, and the aspect ratio is much higher than 100. It shows that the dissolution of phenylethyl alcohol on silk fibroin materials is similar to that of hexafluoroisopropanol, formic acid/calcium chloride, formic acid/hydrochloric acid and other weak hydrogen bonds between the dissolved silk fibroin molecules, but not like lithium bromide, ethanol/ Calcium chloride/water, etc. strongly destroy the hydrogen bonds between silk fibroin molecules and the fibrous structure of silk fibroin.
  • the ability of phenylethyl alcohol to dissolve the medium and high strength of silk fibroin materials can be understood as being able to dissolve the low-crystalline structure regions of silk fibroin materials well, but cannot destroy the high-crystalline or super-crystalline materials in the solubilized silk fibroin materials. High crystal area.
  • Figure 17 is a schematic diagram of the morphological changes of the cooked silk during the above treatment.
  • Fig. 18 show that after the cooked silk is dissolved by phenyl alcohol, adhesion occurs on the macroscopic level, which is the so-called reassembly, or "welding" for short.
  • reassembly or "welding” for short.
  • Figure 16 it is shown that after the low-crystalline structure region in the silk fibroin material is dissolved by phenylethanol, it rearranges toward the high-crystalline or ultra-high-crystalline structure region, and a certain degree of structural transformation occurs.
  • the re-arrangement and combination of silk fibroin molecules in adjacent regions result in a cross and intricate combination, resulting in a secondary re-solidification phenomenon.
  • Figures 16 and 18 explain step by step the dissolution and assembly of phenylethyl alcohol on silk fibroin materials.
  • the combination can explain the "welding" problem of phenylethanol to silk fibroin materials.
  • phenylethyl alcohol can dissolve the medium and low crystal structure regions in the silk fibroin material, which is likely to reduce it to the free state of a single molecule.
  • Under the action of temperature it can accelerate the occurrence of certain The phenomenon of thermal movement of the heat transfer and change occurs to a certain extent, which is the so-called rearrangement and combination.
  • the changed silk fibroin structure area is promoted to undergo a certain transformation, which greatly increases the content of the transformed ⁇ -sheet structure, which means that the structure of the silk fibroin material is turned towards high crystal or Transformation of ultra-high crystal regions.
  • Example 21 Silk fibroin aerogel filtration membrane material
  • the treated silk fibroin aerogel scaffold has excellent oil-water separation and smoke filtration performance.
  • the silk fibroin aerogel scaffold can complete the separation of water/soybean oil within 50s, and the maximum oil absorption rate exceeds 45 times its own mass.
  • the oil-water separation is carried out according to the above method, the difference is that the soybean oil is replaced with corn oil, rapeseed oil, sunflower oil and olive oil (Figure 20a). Mix different oils with water to observe whether the silk fibroin aerogel scaffold is absorbing water during the oil absorbing process, as shown in Figure 20b. The results show that the silk fibroin aerogel scaffold mainly adsorbs oily substances during the oil-water separation process, and the adsorption rate exceeds 98.5 ⁇ 0.7%.
  • FIG. 21a, b, and c show the filtration conditions of filter paper, commercial mask and silk fibroin filter membrane.
  • Figures 21d1-d2 are photos before and after filter paper filtration
  • Figure 21d3-d4 are photos before and after mask filtration
  • Figure 21d5-d6 are photos before and after filtration of silk fibroin filter membranes.
  • Figures 21e1-e2 are the results of scanning electron microscope pictures of the microscopic images before and after the silk fibroin filter membrane material is adsorbed.
  • the silk fibroin aerogel stent is removed under the premise of removing the electret factors of the mask.
  • the filtration efficiency is far higher than that of medical masks, N95 masks, and 3M masks, reaching 3.2 ⁇ 0.6, 2.7 ⁇ 0.4, and 1.9 ⁇ 0.3 times, respectively.
  • Example 22 Preparation of aerogel filtration membrane material with a molecular weight of 5000 Da silk fibroin
  • the silk fibroin aerogel filtration membrane material was prepared according to the method of Example 21, except that in step (1), the molecular weight of silk fibroin was 5000 Da or more.
  • the obtained silk fibroin aerogel filtration membrane material has a ⁇ -sheet structure content of 57.39% and a hydrophobic angle of 147.36°.
  • Example 23 Preparation of aerogel filtration membrane material by silk fibroin with a molecular weight of 10,000 Da
  • the silk fibroin aerogel filtration membrane material was prepared according to the method of Example 21, except that in step (1), the silk fibroin molecular weight was more than 10,000 Da.
  • the obtained silk fibroin aerogel filtration membrane material has a ⁇ -sheet structure content of 53.29% and a hydrophobic angle of 136.56°.
  • Example 24 Silk fibroin aerogel filtration membrane material prepared at 90°C
  • the silk fibroin aerogel filtration membrane material was prepared according to the method of Example 21, except that in step (4), the fumigation temperature was 90° C. and the time was 30 minutes.
  • the obtained silk fibroin aerogel filtration membrane material has a ⁇ -sheet structure content of 55.23% and a hydrophobic angle of 152.28°.
  • Example 25 Silk fibroin aerogel filtration membrane material prepared at 120°C
  • the silk fibroin aerogel filtration membrane material was prepared according to the method of Example 21, except that in step (4), the fumigation temperature was 120° C. and the time was 30 minutes.
  • the obtained silk fibroin aerogel filtration membrane material has a ⁇ -sheet structure content of 56.31% and a hydrophobic angle of 157.23°.
  • Example 26 Silk fibroin fiber modification and its textile performance characterization (1)
  • Method 1 Use a self-made fully enclosed evaporating dish, put the 2-phenylethanol solution at the bottom, place the evaporating dish in an oven, set the temperature to 45-120°C, and wait until the 2-phenylethanol solution at the bottom becomes a vapor state.
  • distilled water and ethanol were used as controls.
  • Method 1 Use a self-made fully enclosed evaporating dish, put the 2-phenylethanol solution at the bottom, place the evaporating dish in an oven, set the temperature to 45-120°C, and wait until the 2-phenylethanol solution at the bottom becomes a vapor state. Place the chemical fiber to be treated on top of the steam, and set the fumigation time to 0.5 hours.
  • Example 28 Silk fibroin fiber modification and its textile performance characterization (3)
  • the coated fiber was prepared according to the method of Example 26, except that the molecular weight of silk fibroin in the silk fibroin solution was 10000 Da.
  • Example 29 Silk fibroin fiber modification and its textile performance characterization (4)
  • a fiber modification solution is prepared, which is composed of a silk fibroin solution and phenethyl alcohol, and the aromatic alcohol accounts for 0.1% of the silk fibroin mass fraction. Then, treat the fiber in the fiber modification solution prepared above for the polyester fiber at 90° C. and a pressure of 0.2 MPa for 30 minutes to obtain a coated fiber. In the obtained coated fiber, the content of ⁇ -sheet structure is 57.29%.
  • Example 30 Silk fibroin fiber modification and its textile performance characterization (5)
  • a fiber modification solution is prepared, which is composed of a silk fibroin solution and phenethyl alcohol, and the aromatic alcohol accounts for 0.5% of the silk fibroin mass fraction. Then, the cotton is placed in the fiber modification solution prepared above, and the fiber is treated at 120° C. and a pressure of 0.4 MPa for 30 minutes to obtain a coated fiber. In the obtained coated fiber, the content of ⁇ -sheet structure is 59.23%.
  • Example 31 Silk fibroin fiber modification and its textile performance characterization (6)
  • Method 2 A pure 2-phenylethanol solution is placed inside the iron, and distilled water and ethanol are used as the control group.
  • the chemical fiber fabric obtained in step (3) is placed in room temperature to dry, and an iron is used for ironing treatment.
  • Example 32 Silk fibroin fiber modification and its textile performance characterization (7)
  • Method 3 Mix the silk fibroin solution of different mass fractions obtained in step (1) with pure 2-phenylethanol solution, the volume ratio is between 50:1 and 1:1, and the chemical fiber fabric is soaked In the above mixed solution, the time is 5-10min, and after it is completely infiltrated, take it out.
  • the chemical fiber fabric after the infiltration is treated with a double-roll pad dyeing machine, and a rotary spring is used to set the padding pressure to remove the excess silk fibroin solution, take it out, and dry it.
  • the chemical fiber fabric after the above treatment is directly ironed with an iron (the iron is filled with water).
  • the chemical fiber fabrics prepared by the above three methods were sequentially tested for surface morphology, air permeability, fabric thickness, and moisture regain.
  • 1) Surface morphology test Paste the chemical fiber fabric prepared above on the round stage of the electron microscope, and spray gold (10mA, 90s).
  • Air permeability test Cut the chemical fiber fabric prepared above into a 20cm 2 circle, and use YG461E-III automatic air permeability The parameters are set as follows: balance time 24 hours, pressure 100Pa, temperature 20°C, humidity 65%, test unit mm/s; 3) Fabric thickness test: Cut the chemical fiber fabric prepared above into a 20cm 2 circle, using YG141D -II Fabric Thickness Tester, the parameter setting is: balance time 24 hours, refer to test standard GB/T 3820-1997, test time 10s, single cycle, temperature 20°C, humidity 65%, test unit mm; 4) Moisture regain test :Cut the chemical fiber fabric prepared above into a 20cm 2 circle, using HF-MS moisture regain tester, parameter setting: balance time 24 hours, temperature 104°C, test times 10 times, refer to test standard GB/T 9995- 1997, test
  • FIG. 24 is the test result of the surface morphology of the chemical fiber fabric after being processed by the method in Example 26.
  • FIG. Figure 24 (a) is an untreated chemical fiber fabric; (b) is a chemical fiber fabric that has been soaked in a 5% silk fibroin solution for 1 minute; (c) (f) (i) is a chemical fiber fabric After soaking the silk fibroin solution with a mass fraction of 5% for 1 minute, fumigate with 2-phenylethanol for 1, 3 and 5 hours; (d), (g) and (j) are chemical fiber fabrics that have passed through the silk fibroin with a mass fraction of 1%.
  • FIG. 25 is the test result of the air permeability of the treated fabric in Example 26.
  • FIG. The results show that compared with untreated fabrics, the air permeability of fabrics treated by different methods is improved, and the air permeability of chemical fiber fabrics after treatment can reach 950-993mm/s, which is comparable to that of natural silk fabrics. The air permeability is close to 956mm/s.
  • the air permeability of the fabric treated by the methods in Examples 27 and 28 is the same as the result of the above method.
  • Figures 26-27 are the test results of fabric thickness and moisture regain after treatment in Example 26, the fabric thickness of the treated chemical fiber fabric can reach 0.40-0.47mm, which is close to the fabric thickness of natural silk fabric 0.37mm; The standard moisture regain of the treated chemical fiber fabric can reach 9.27-11.03%, which is close to the standard moisture regain of 11.9% of natural silk fabric.
  • the thickness and moisture regain of the fabric treated by the methods in Examples 27 and 28 are the same as the results of the above method.
  • Figure 28 shows the morphological characteristics of fiber fabric textiles coated with water-insoluble silk fibroin in the form of photos. The results show that the treated silk fibroin has better gloss.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Insects & Arthropods (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

芳香醇处理丝素蛋白的方法及其在制备含丝素蛋白材料中的应用。一种丝素蛋白的处理方法,包括以下步骤:将丝素蛋白与含芳香醇的蒸汽或液体接触,以诱导所述丝素蛋白发生结构转变,得到水不溶性的丝素蛋白,处理后的水不溶性的丝素蛋白材料本身的力学性能和丝素蛋白材料与基底材料之间的黏合强度超出传统处理方法的50%以上。

Description

芳香醇处理丝素蛋白的方法及其在制备含丝素蛋白材料中的应用 技术领域
本发明涉及材料技术领域,尤其涉及一种芳香醇处理丝素蛋白的方法及其在制备含丝素蛋白材料中的应用。
背景技术
蚕丝由外层丝胶蛋白(20-30%)和内心丝素蛋白(70-80%)构成。通过溶解、除盐等步骤可以获得再生丝素蛋白。利用再生丝素蛋白可以制备颗粒、纤维、薄膜、凝胶、管和支架等材料形式。这些材料广泛应用于纺织工业、轻工化学、药物缓释载体、组织工程支架等研究领域。
水不溶性丝素蛋白材料获得通常采用以下几种方式:pH、温度、超声、涡旋震荡等物理方法,甲醇、乙醇、聚乙二醇等化学试剂诱导等化学方法,京尼平、HRP等化学交联方法,以实现游离丝素蛋白分子内及分子之间的交联。
目前,常用的丝素蛋白诱导剂,如水蒸气、甲醇、乙醇,可以实现干态丝素蛋白材料内丝素蛋白分子二级结构变化,进而实现分子内及分子之间通过物理作用力的交联,使材料在水中不溶解,且具有强韧的力学性能及化学和生物稳定性。
但上述这些处理方式存在一些尚需改进的地方,例如一方面制得的丝素蛋白材料的力学性质(刚性和韧性)较弱,无法满足行业需求,尤其是丝素蛋白在较低浓度的情况下很难形成稳定的形状;另一方面对于已经成型的两个或者多个干态丝素蛋白材料,使用上述诱导剂处理后无法相互黏合或者无法与其他基底材料之间黏合。
此外,目前研究学者制备丝素蛋白基材料,如纳米颗粒、膜、凝胶、支架等,首先是将蚕丝经过溶丝、透析、浓缩等步骤,获取再生重组丝素蛋白溶液。然后将获取的再生重组的蚕丝蛋白溶液经过物理(温度、超声、搅拌以及pH等条件)诱导或化学诱导(醇类试剂、京尼平以及辣根过氧化物酶(HRP))等方式实现游离的丝素蛋白分子之内或之间的重新交联组装。重组丝素蛋白溶液溶丝过程中使用强极性过饱和的中性钙、镁、锂、锌的卤素盐,如常用的氯化钙/乙醇/水、溴化锂溶液、硝酸盐以及硫氰酸盐,通过破坏分子间氢键,经透析除盐后获得再生丝素蛋白溶液。制备过程中也可能会使用极性液体,如N-甲基吗啉-N-氧化物或酸/盐溶解体系溶解。值得注意的是,盐溶解过程对于丝素蛋白分子结构破坏较大,致使再生重组丝素蛋白的分子量降低,且使得再生重组丝素蛋白重塑形后脆性增加。
上述过程可以通俗地理解为从上往下,即将蚕丝在溶丝过程中降低纤维直径(即剥离)及丝素蛋白分子量(即降解),以此获取游离的丝素蛋白分子,之后通过诱导调控其二级结构变化和分子间作用力,达到所需的材料性能与结构。因此,对于再生丝素蛋白材料来讲,从蚕丝至丝素蛋白溶液,再至丝素蛋白材料,如膜、凝胶、支架等,若要实现丝素蛋白分子游离、丝素蛋白分子之内或之间的重新交联组装存在关键的蚕丝的“溶解”与“组装”的两个过程。上述“溶解”与“组装”过程类似于金属的焊接过程。焊接,也称作熔接,是一种以加热、高温或者高压的方式接合金属或其他热塑性材料如塑料的制造工艺及技术,此过程中也存在着被焊接材料的熔化与重新组装过程。而研究者在整个过程中,通常至少采用两种以上试剂,例如溴化锂溶丝、乙醇诱导成凝胶来完成“溶解”与“组装”过程。目前尚无报道显示一种试剂同时具有上述两种功能。
一般低晶态丝素蛋白可以通过一些有机溶剂,如六氟异丙醇,HFIP实现完全溶解,但溶剂挥发后形成的固态物β-折叠含量低,易溶于水,需进一步采用甲醇、乙醇、水蒸汽处理等方法诱导高β-折叠结构形成。虽然此类材料也具有水不溶、力学性能高、降解时间可调等性能,但由于材料中晶体尺寸较大、分布不均匀,因而制备后的材料容易产生形变且硬脆。因此,对于具有低β-折叠含量(15%-40%)的丝素蛋白材料,如何经过溶解低β-折叠区域,二次重新组装,均匀调控升至高β-折叠含量(45%-75%),达到接近甚至超出天然蚕丝的β-折叠结晶含量是研究者所追求的目标。因此,亟需开发一种试剂以及特定的方法,对相同或不同的丝素蛋白材料(纤维、薄膜、颗粒、海绵、凝胶等)进行表面或局部溶丝并组装,取得类似金属焊接的效果,实现对丝素蛋白生物材料的性能与结构的拓展,丰富用途、补充应用。
发明内容
为解决上述技术问题,本发明的目的是提供芳香醇处理丝素蛋白的方法及其在制备含丝素蛋白材料中的应用,本发明公开了芳香醇作为丝素蛋白诱导剂的应用,为开发诱导丝素蛋白二级结构发生变化的试剂提供了新方向。
本发明的第一个目的是公开芳香醇作为丝素蛋白诱导剂的应用。
进一步地,芳香醇包括一种或几种以下结构式的化合物:
Figure PCTCN2020132549-appb-000001
其中,m=0-5;X为亚甲基或氧原子;R 1、R 2、R 3、R 4、R 5、R 6分别独立地选自氢(—H)、苯环、羟基(—OH)、羧基(—COOH)、醛基(—CHO)、酮基(—CO—)、酯键(—COO—)、醚键(—O—)、氨基(—NH 2)、硝基(—NO 2)、腈基(—CN)、酰胺基(—CO—NH 2)、偶氮(—N=N—)、脒基(HN=C(NH 2)—)、肟、腙、卤素原子(—X)、酰卤(—CO—X)、磺酸基(—SO 3H)、二硫键(—S—S—)、巯基(—SH)、膦基(—PH 2)、磷酸脂基(—PO 3H 2)等基团的侧链。
优选地,芳香醇的结构式为
Figure PCTCN2020132549-appb-000002
其中,a=1-5,b=1-5。
进一步地,芳香醇呈液态或蒸汽态。
优选地,芳香醇为苯甲醇、苯乙醇、苯丙醇、苯丁醇、苯戊醇和苯氧乙醇中的一种或几种。
本发明的第二个目的是公开一种水不溶性丝素蛋白的处理方法,包括以下步骤:
将丝素蛋白与含芳香醇的蒸汽或液体接触,以诱导所述丝素蛋白发生结构转变,得到所述水不溶性丝素蛋白。
进一步地,芳香醇包括一种或几种以下结构式的化合物:
Figure PCTCN2020132549-appb-000003
其中,m=0-5;X为亚甲基或氧原子;R 1、R 2、R 3、R 4、R 5、R 6分别独立地选自氢(—H)、苯环、羟基(—OH)、羧基(—COOH)、醛基(—CHO)、酮基(—CO—)、酯键(—COO—)、醚键(—O—)、氨基(—NH 2)、硝基(—NO 2)、腈基(—CN)、酰胺基(—CO—NH 2)、偶 氮(—N=N—)、脒基(HN=C(NH 2)—)、肟、腙、卤素原子(—X)、酰卤(—CO—X)、磺酸基(—SO 3H)、二硫键(—S—S—)、巯基(—SH)、膦基(—PH 2)、磷酸脂基(—PO 3H 2)等基团的侧链。
优选地,芳香醇的结构式为
Figure PCTCN2020132549-appb-000004
其中,a=1-5,b=1-5。
优选地,芳香醇为苯甲醇、苯乙醇、苯丙醇、苯丁醇、苯戊醇和苯氧乙醇中的一种或几种。
进一步地,丝素蛋白呈干态,其含水量不高于30%。本发明的处理方法若用于已成型的干态丝素蛋白材料时,所处理后的丝素蛋白具有良好的黏性,可提高其与其他丝素蛋白材料或基底的黏合力。
进一步地,将丝素蛋白浸泡于含芳香醇的液体中处理或利用含芳香醇的蒸汽对所述丝素蛋白进行熏蒸处理。
进一步地,采用含芳香醇的液体处理时,处理时间不低于5秒;处理温度为20-200℃。优选地,处理温度20-120℃。
进一步地,采用含芳香醇的蒸汽处理时,处理时间不少于5分钟,处理温度为25-200℃。优选地,处理温度20-120℃。
进一步地,所述含芳香醇的蒸汽或液体中还包括水、甲醇、乙醇等常规醇类诱导剂。
本发明中,采用含芳香醇的蒸汽或液体诱导处理丝素蛋白,不仅可以得到水不溶性纯丝素蛋白材料,还可以将丝素蛋白与其他材料进行黏合。其中其他材料包括:陶瓷、玻璃以及水泥等无机金属材料;橡胶、化学纤维以及塑料等高分子材料(聚合物);结构与功能复合材料。所得的产品可以适用于医药、环境、纺织、轻工业以及医疗器械领域等领域。
本发明中,“诱导剂”的含义是能够使丝蛋白材料由水溶性转变为水不溶性的化学试剂,前者材料中丝素蛋白分子二级结构以无序的无规则卷曲为主,后者材料中丝素蛋白二级结构以有序的α-螺旋或者β-折叠为主。
本发明的第三个目的是提供一种水不溶性丝素蛋白材料,水不溶性丝素蛋白材料包括多条丝素蛋白纤维,相邻的两条丝素蛋白纤维之间具有至少一个融合点。
进一步地,水不溶性丝素蛋白材料经芳香醇进行结构诱导得到。
进一步地,融合点的β-折叠结构含量为15-80%。优选为45-75%。
进一步地,β-折叠晶体粒径及分布均匀度接近天然蚕丝,经芳香醇诱导形成的β-折叠晶体粒径相比其他处理方法更为均匀、细小。
被芳香醇处理之前的丝素蛋白,其β-折叠含量为15%-40%,使用芳香醇诱导丝素蛋白发生结构转变过程中,丝素蛋白中低β-折叠含量(15%-40%)区域被溶解,所处理后的丝素蛋白发生二次重新组装,促使变化后的丝素蛋白结构区域发生一定的转变,极大地提高转变后的β-折叠含量,β-折叠含量可升高至45%-80%(优选45%-75%),β-折叠含量提高,促使丝素蛋白强度提高。
本发明的第四个目的是提供一种过滤膜材,包括上述水不溶性丝素蛋白材料。
进一步地,水不溶性丝素蛋白材料经芳香醇进行结构诱导得到。
进一步地,融合点的β-折叠结构含量为15-80%。优选为45-75%。
进一步地,β-折叠晶体粒径及分布均匀度接近天然蚕丝,经芳香醇诱导形成的β-折叠晶体粒径相比其他处理方法更为均匀、细小。
水溶性丝素蛋白材料经芳香醇处理后,在得到的水不溶性丝素蛋白材料中的丝素蛋白纤维之间形成融合点,这些融合点的形成,既在过滤膜材中形成稳定的交联点,其不易受外界作用力影响,且能够减小膜材料中通孔的大小,使得过滤效果得以强。这区别于传统丝素蛋白材料形成的过滤材料,传统过滤材料中,丝素蛋白纤维与纤维之间仅形成物理接触,容易在外界作用力的作用下(如气压、水压、机械压力)发生相互位移,其机械强度差,且过滤性能不稳定。
本发明的第五个目的是提供一种复合材料,包括基体以及与基体连接的水不溶性丝素蛋白材料,水不溶性丝素蛋白材料与基体之间具有至少一个融合点,基体包括高分子聚合物。
进一步地,复合材料经芳香醇进行结构诱导得到。
进一步地,融合点的β-折叠结构含量为15-80%。优选为45-75%。
进一步地,β-折叠晶体粒径及分布均匀度接近天然蚕丝,经芳香醇诱导形成的β-折叠晶体粒径相比其他处理方法更为均匀、细小。
进一步地,高分子聚合物包括天然高分子材料和/或合成高分子材料。
本发明的复合材料中,基体与水不溶性丝素蛋白材料之间具有至少一个融合点,沿基体与水不溶性丝素蛋白材料形成的界面上,该融合点可连续分布,也可非连续分布,由于融合点的存在,提高了丝素蛋白材料与基体之间的结合力,即,提高了丝素蛋白与基体之间的黏性。
本发明的第六个目的是提供一种涂层纤维,包括纤维以及纤维表面的水不溶性丝素蛋白膜,纤维和水不溶性丝素蛋白膜之间具有至少一个融合点,水不溶性丝素蛋白膜中的相邻两条丝素蛋白纤维之间具有至少一个融合点。
进一步地,纤维表面的水不溶性丝素蛋白膜经芳香醇进行结构诱导得到。
进一步地,融合点的β-折叠结构含量为15-80%。优选为45-75%。
进一步地,β-折叠晶体粒径及分布均匀度接近天然蚕丝,经芳香醇诱导形成的β-折叠晶体粒径相比其他处理方法更为均匀、细小。
本发明的涂层纤维中,纤维表面具有含均匀分布的细小β-折叠结构的水不溶性丝素蛋白膜,该水不溶性丝素蛋白膜是经芳香醇的诱导,以及温度、压力的加速作用,完成细小β-折叠结构的均匀分布。
本发明的第七个目的是提供一种纤维改性液,包括丝素蛋白,纤维改性液中丝素蛋白的质量分数为0.01-30%,丝素蛋白的分子量为3500Da以上,优选为10000Da以上。
进一步地,纤维改性液还包括芳香醇。优选地,纤维改性液中,芳香醇占丝素蛋白质量分数的0.1%-1%。
进一步地,芳香醇呈液态或气态。当芳香醇呈液态时,可直接将待处理纤维浸没于含芳香醇的改性液中;当芳香醇呈气态时,即可采用气态芳香醇熏蒸待处理纤维,以诱导改性液中的丝素蛋白发生结晶转变。
本发明的第八个目的是提供一种仿真丝织物,织物中的纤维表面具有水不溶性丝素蛋白膜,织物中的纤维和水不溶性丝素蛋白膜之间具有至少一个融合点,水不溶性丝素蛋白膜内具有至少一个丝素蛋白纤维与丝素蛋白纤维间的融合点。
进一步地,织物中的纤维表面的水不溶性丝素蛋白膜经芳香醇进行结构诱导得到。
进一步地,融合点的β-折叠结构含量为15-80%。优选为45-75%。
进一步地,β-折叠晶体粒径及分布均匀度接近天然蚕丝,经芳香醇诱导形成的β-折叠晶体粒径相比其他处理方法更为均匀、细小。
上述发明内容中,“经芳香醇进行结构诱导”的诱导条件包括:
温度为50-250℃,压力为0.01-0.1MPa,诱导时间为0.5-300min。优选地,温度为90-150℃,压力为0.05-0.1MPa,诱导时间为15-180min。
本发明中,提及的水不溶性丝素蛋白材料中的融合点、过滤膜材中的融合点、复合材料中的融合点、涂层纤维中的融合点、仿真丝织物中的融合点,上述“融合点”的含义是:1、类似焊接点的结构;2、该位置处的物质相连续,没有分相,结构均匀;3、融合点是纵横交错的纤维搭连、接触位置的互相融合,不仅含纤维交叉处的点状融合,还有纤维并排处的线状融合。上述融合点的形成,均借助于芳香醇对丝素蛋白材料的一步法溶解与组装形成,该一步法实现丝素蛋白基材料的溶解与组装的步骤包括:
将丝素蛋白基材料与芳香醇接触,以完成丝素蛋白的溶解与重新组装。
利用芳香醇同时实现丝素蛋白的溶解与组装,为丝素蛋白基材料提供了一种新型组装形 式,“焊接”后的丝素蛋白基材料β-折叠结构含量得以提高,达到接近甚至超出天然蚕丝的β-折叠结构含量的效果。
进一步地,在50-250℃及0.01-0.1MPa条件下进行诱导。
进一步地,诱导时间为0.5-300min。
进一步地,芳香醇占丝素蛋白基材料质量分数的0.1%-1%。
如无特殊说明,本发明中所说的芳香醇均包括一种或几种含有以下结构式的化合物:
Figure PCTCN2020132549-appb-000005
其中,m=0-5;X为亚甲基或氧原子;R 1、R 2、R 3、R 4、R 5、R 6分别独立地选自氢、苯环、羟基、羧基、醛基、酮基、酯键、醚键、氨基、硝基、腈基、酰胺基、偶氮、脒基、肟、腙、卤素原子、酰卤磺酸基、二硫键、巯基膦基或磷酸脂基。
芳香醇可为蒸汽或液体形式,处理形式不局限于浸泡、熏蒸方式。芳香醇还可以与水、甲醇、乙醇、六氟异丙醇等常规醇类诱导剂或酸碱盐试剂(如甲酸、溴化锂及氯化钙)共混后以处理丝素蛋白基材料。
一步法实现丝素蛋白基材料的溶解与组装的方法即类似于金属材料“焊接”的过程,在此过程中,丝素蛋白基材料经过一步法完成溶解与组装,丝素蛋白与丝素蛋白之间发生融合现象,形成类似“焊接”的效果。“焊接”过程中,丝素蛋白基材料存在由液态(溶解过程)向固态(组装过程)的转变过程,此过程中伴随丝素蛋白材料的中低晶结构区域(β-折叠结构含量15%-40%)被芳香醇溶解,使其降低为单分子的游离状态并发生一定的热运动,使单分子发生一定的迁移与变动,也就是所谓的重新排列组合。之后,基于芳香醇高强的诱导能力,促使变化后的丝素蛋白结构区域发生一定的转变,极大地提高转变后的β-折叠结构含量,也就是使丝素蛋白材料的结构朝着高晶或超高晶区域(β-折叠结构含量45%-80%)转变。最后,整体过程完成了芳香醇对于丝素蛋白材料的“焊接”过程。
升高芳香醇的处理温度或提高处理压力可以加速“焊接”过程、提高“焊接”效果,而对“焊接”起决定性作用的是添加促使丝素蛋白结构发生诱导转变的试剂。压力给予方式不局限于机械压力、蒸汽压力以及液体压力等。
根据待处理的丝素蛋白基材料中β-折叠结构的含量,当β-折叠结构的含量较高时,可通 过缩短反应时间、降低反应温度,致使丝素蛋白纳米纤维膜处于部分溶解状态,方便后续“焊接”。当β-折叠结构的含量较低时,可通过适当延长反应时间、升高反应温度。诱导后的水不溶性丝素蛋白材料中的芳香醇可自然挥发或在高温下烘干去除。
借由上述方案,本发明至少具有以下优点:
本发明公开了芳香醇作为丝素蛋白诱导剂的新用途,为开发新的丝素蛋白诱导剂提供了新方向。
本发明还公开了一种水不溶性丝素蛋白的处理方法,含芳香醇的蒸汽或液体进行处理,该方法工艺简单,所处理后的丝素蛋白不溶性于水,且力学强度较传统处理方法所得产物的力学强度高,且采用本发明诱导剂及处理方法处理后的丝素蛋白材料自身的力学性质及丝素蛋白材料与基底材料之间的黏合强度超出传统处理方法(采用甲醇、乙醇和水蒸气诱导处理)的50%以上。
本发明提供了一系列基于丝素蛋白的材料,材料中具有丝素蛋白与丝素蛋白之间形成的融合点或丝素蛋白与其他基体之间形成的融合点,拓展了丝素蛋白改性材料,为开发丝素蛋白基产品提供了新方向,具体地:
本发明提供了一种水不溶性丝素蛋白材料,该水不溶性丝素蛋白材料的抗外力破坏能力提高,疏水性提高,物理化学稳定性提高。
本发明提供了一种过滤膜材,提高了疏水效果,其过滤效率得以提高,油水分离能力得以提高。
本发明还提供了一种复合材料,其具有水不溶性丝素蛋白膜,水不溶性丝素蛋白膜可牢固结合在基体表面,将丝素蛋白材料的各项优点赋予基体。
本发明提供了一种涂层纤维,其具有强韧的力学性能及抗洗牢固度。
本发明提供了一种纤维改性液,其可以实现丝素蛋白纤维之间或丝素蛋白纤维与其他纤维之间的融合。
本发明提供了一种仿真丝织物,其具有类似天然蚕丝的光泽度和丝滑感,可以掩盖化纤自身因全反射现象产生的刺眼且炫目的光泽,即极光感。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合详细附图说明如后。
附图说明
图1图示了不同试剂的化学式、分子量、饱和蒸气压以及结构式;
图2为芳香醇与乙醇、甲醇对丝素蛋白材料处理的荧光表征结果;
图3图示了丝素蛋白膜经过不同试剂浸泡处理后的重量变化情况;(A)水Water,(B)甲醇Methanol,(C)苯甲醇Benzyl alcohol,(D)乙醇Etanol,(E)2-苯乙醇Phenethyl alcohol,(F)苯氧乙醇2-Phenoxyethanol,(G)3-苯丙醇3-Phenyl-1-propanol,(H)4-苯基-1-丁醇4-Phenylbutanol,(I)1,3-丁二醇1,3-Butanediol;
图4图示了丝素蛋白膜经过不同试剂浸泡或熏蒸处理后的重量变化情况;(A)水Water,(B)甲醇Methanol,(C)苯甲醇Benzyl alcohol,(D)乙醇Etanol,(E)2-苯乙醇Phenethyl alcohol,(F)苯氧乙醇2-Phenoxyethanol,(G)3-苯丙醇3-Phenyl-1-propanol,(H)4-苯基-1-丁醇4-Phenylbutanol,(I)1,3-丁二醇1,3-Butanediol;
图5图示了丝素蛋白膜经过不同试剂进行浸泡和熏蒸处理后的二级结构变化情况;(A)水Water,(B)甲醇Methanol,(C)苯甲醇Benzyl alcohol,(D)乙醇Etanol,(E)2-苯乙醇Phenethyl alcohol,(F)苯氧乙醇2-Phenoxyethanol,(G)3-苯丙醇3-Phenyl-1-propanol,(H)4-苯基-1-丁醇4-Phenylbutanol,(I)1,3-丁二醇1,3-Butanediol;
图6图示了丝素蛋白膜经过在25、60及90℃条件下的不同试剂熏蒸后的断裂强度;(A)水Water,(B)甲醇Methanol,(C)苯甲醇Benzyl alcohol,(D)乙醇Etanol,(E)2-苯乙醇Phenethyl alcohol,(F)苯氧乙醇2-Phenoxyethanol,(G)3-苯丙醇3-Phenyl-1-propanol,(H)4-苯基-1-丁醇4-Phenylbutanol,(I)1,3-丁二醇1,3-Butanediol;
图7为经25℃的不同蒸汽处理后的丝素蛋白膜的表面形貌图;(A)水Water,(B)甲醇Methanol,(C)苯甲醇Benzyl alcohol,(D)乙醇Etanol,(E)2-苯乙醇Phenethyl alcohol,(F)苯氧乙醇2-Phenoxyethanol,(G)3-苯丙醇3-Phenyl-1-propanol,(H)4-苯基-1-丁醇4-Phenylbutanol,(I)1,3-丁二醇1,3-Butanediol;
图8为经60℃的不同蒸汽处理后的丝素蛋白膜的表面形貌图;(A)水Water,(B)甲醇Methanol,(C)苯甲醇Benzyl alcohol,(D)乙醇Etanol,(E)2-苯乙醇Phenethyl alcohol,(F)苯氧乙醇2-Phenoxyethanol,(G)3-苯丙醇3-Phenyl-1-propanol,(H)4-苯基-1-丁醇4-Phenylbutanol,(I)1,3-丁二醇1,3-Butanediol;
图9为经90℃的不同蒸汽处理后的丝素蛋白膜的表面形貌图;(A)水Water,(B)甲醇Methanol,(C)苯甲醇Benzyl alcohol,(D)乙醇Etanol,(E)2-苯乙醇Phenethyl alcohol,(F)苯氧乙醇2-Phenoxyethanol,(G)3-苯丙醇3-Phenyl-1-propanol,(H)4-苯基-1-丁醇4-Phenylbutanol,(I)1,3-丁二醇1,3-Butanediol;
图10为经不同试剂浸泡或熏蒸处理后的丝素蛋白膜之间的黏合强度测试结果;(A)水Water,(B)甲醇Methanol,(C)苯甲醇Benzyl alcohol,(D)乙醇Etanol,(E)2-苯乙醇Phenethyl alcohol,(F)苯氧乙醇2-Phenoxyethanol,(G)3-苯丙醇3-Phenyl-1-propanol,(H) 4-苯基-1-丁醇4-Phenylbutanol,(I)1,3-丁二醇1,3-Butanediol;
图11为丝素蛋白膜经过乙醇、2-苯乙醇试剂进行60℃熏蒸处理1、3、6以及12小时的黏合强度;
图12为丝素蛋白膜分别与光滑、磨砂的玻璃经过乙醇、2-苯乙醇进行60℃熏蒸处理3小时后的黏合强度;
图13为丝素蛋白纳米纤维膜的形态及焊接后的微观形态表征结果;
图14为不同丝素蛋白样品的红外测试结果;
图15为不同丝素蛋白样品的二级结构含量测试结果;
图16为熟丝经芳香醇处理不同时间的表面形态表征结果;
图17为熟丝经芳香醇处理过程中的形态变化示意图;
图18为熟丝经芳香醇“焊接”过程中表面形态测试结果;
图19为丝素蛋白过滤膜材对豆油的油水分离过程及分离效果数据;
图20是丝素蛋白过滤膜材对不同油水混合物的分离过程及分离效果数据;
图21是不同过滤材料对烟雾的吸附实验及相应结果;
图22是丝素蛋白过滤膜材与不同口罩相比的吸附效果对比结果;
图23为用于晾挂化学纤维织物的全封闭式蒸发皿的示意图;
图24为丝素蛋白溶液对化学纤维织物分别浸润与熏蒸1、3以及5小时处理后的织物表面形貌照片;(a)未经处理的化学纤维织物;(b)化学纤维织物经过质量分数为5%的丝素蛋白溶液浸润处理;(c)(f)(i)化学纤维织物经过质量分数为5%的丝素蛋白溶液浸润后,用2-苯乙醇熏蒸1h、3h以及5h;(d)(g)(j)化学纤维织物经过质量分数为1%的丝素蛋白溶液浸润后,用2-苯乙醇熏蒸1h、3h以及5h;(e)(h)(k)化学纤维织物经过质量分数为0.1%的丝素蛋白溶液浸润后,用2-苯乙醇熏蒸1h、3h以及5h;
图25为丝素蛋白溶液对化学纤维织物分别浸润与熏蒸1、3以及5小时处理后的织物透气率变化结果;(a)未经处理的化学纤维织物;(b)化学纤维织物经过质量分数为5%的丝素蛋白溶液浸润处理;(c)(f)(i)化学纤维织物经过质量分数为5%的丝素蛋白溶液浸润后,用2-苯乙醇熏蒸1h、3h以及5h;(d)(g)(j)化学纤维织物经过质量分数为1%的丝素蛋白溶液浸润后,用2-苯乙醇熏蒸1h、3h以及5h;(e)(h)(k)化学纤维织物经过质量分数为0.1%的丝素蛋白溶液浸润后,用2-苯乙醇熏蒸1h、3h以及5h;
图26为丝素蛋白溶液对化学纤维织物分别浸润与熏蒸1、3以及5小时处理后的织物厚度变化结果;(a)未经处理的化学纤维织物;(b)化学纤维织物经过质量分数为5%的丝素蛋白溶液浸润处理;(c)(f)(i)化学纤维织物经过质量分数为5%的丝素蛋白溶液浸润后, 用2-苯乙醇熏蒸1h、3h以及5h;(d)(g)(j)化学纤维织物经过质量分数为1%的丝素蛋白溶液浸润后,用2-苯乙醇熏蒸1h、3h以及5h;(e)(h)(k)化学纤维织物经过质量分数为0.1%的丝素蛋白溶液浸润后,用2-苯乙醇熏蒸1h、3h以及5h;
图27为丝素蛋白溶液对化学纤维织物分别浸润与熏蒸1、3以及5小时处理后的织物回潮率变化结果;(a)未经处理的化学纤维织物;(b)化学纤维织物经过质量分数为5%的丝素蛋白溶液浸润处理;(c)(f)(i)化学纤维织物经过质量分数为5%的丝素蛋白溶液浸润后,用2-苯乙醇熏蒸1h、3h以及5h;(d)(g)(j)化学纤维织物经过质量分数为1%的丝素蛋白溶液浸润后,用2-苯乙醇熏蒸1h、3h以及5h;(e)(h)(k)化学纤维织物经过质量分数为0.1%的丝素蛋白溶液浸润后,用2-苯乙醇熏蒸1h、3h以及5h;
图28为经水不溶性丝素蛋白涂层后的纤维织物纺织品的照片。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
图1图示了不同试剂的化学式、分子量、饱和蒸气压以及结构式,图中饱和蒸气压均为760mm Hg柱条件下的蒸气压。
实施例1:再生丝素蛋白的制备
(1)称取250克家蚕丝生丝,切割丝纤维,每段长度15厘米左右。用电加热罐加热100升纯水,待加热至接近沸腾时缓慢加入212克无水碳酸钠,搅拌均匀,持续加热至沸腾后放入生丝,待生丝全部没入水中开始计时,每隔7分钟搅拌一次,30分钟后取出。将脱胶蚕丝放入洗衣机中,设定漂洗程序,用纯水清洗两次,将脱水的脱胶蚕丝放入鼓风干燥箱中,干燥12小时至18小时。
(2)配制9.3M的溴化锂溶液,按脱胶蚕丝与溴化锂溶液1/4为浴比,加入脱胶蚕丝,在60度干燥箱箱中溶解4小时,取出,冷却至室温,将溶解的丝素蛋白溶液装入截留分子量为3500的透析袋中,用纯水透析48小时,期间换水6次。将透析后的丝素蛋白溶液用5层纱布过滤以去除杂质,置于2-8℃冷藏柜中待用。
实施例2:丝素蛋白膜及含水率测试
(1)将实施例1中获得的丝素蛋白溶液稀释至质量分数为4%,取体积为2mL的上述溶液加入到直径为3.5cm的塑料培养皿内,静置3小时以上,使其完全去除内部气泡为止。 室温条件下置于通风橱内,过夜风干成膜。失重法测丝素蛋白膜含水率W%。
W%=(W 1-W 2)/W 1*100%   (1)
其中W 1代表新制备丝素蛋白膜的初始干重,W 2代表彻底干燥(120℃烘干12小时)后丝素蛋白膜的重量,实验重复5次以提高实验的可靠性。
实验结果表明,在室温条件下,将丝素蛋白膜经过自然风干12小时,其内部含水率约为3.64%。
实施例3:芳香醇对丝素蛋白材料的均匀诱导
将实施例1制备的丝素蛋白溶液,按照烘干后的计算得到质量分数逐次加入去离子水,将其溶液的质量分数稀释至4%。将上述质量分数为4%的丝素蛋白溶液依次直径为3.5cm的塑料培养皿内,静置3h以上,使其完全去除内部气泡为止。室温条件下置于通风橱内,过夜风干成膜。
将上述制备的丝素蛋白膜分别浸泡于乙醇、甲醇以及苯乙醇中,1~3h后取出,再将取出的丝素蛋白膜放入浓度为30mg/mL的硫黄素(THT)水溶液中,采用荧光显微镜(德国Axio Vert.A1)拍摄荧光图像,光学滤光片设置为490nm。观察苯乙醇与乙醇、甲醇(两组对照)对于丝素蛋白材料的处理尺度的比较。结果如图2所示。图2a、b、c、d依次为空白丝素蛋白膜、经乙醇处理、经甲醇处理、经苯乙醇处理的丝素蛋白膜的晶体荧光分布图像。
结果显示,由于硫黄素(THT)与高结晶含量的β-折叠区域会产生特异性结合,在490nm的荧光激发下,显示出特定的绿色荧光现象。通过观察苯乙醇与常规醇类试剂(乙醇或甲醇)分别处理相同结构的丝素蛋白材料,发现丝素蛋白经苯乙醇处理的荧光区域呈现出典型的微纳米级别的点状分布,而经乙醇或甲醇处理后的荧光区域则多为狭长的长条状以及区域性的片状分布。结果说明:苯乙醇对于丝素蛋白诱导处理的界面尺度,明显区别于常规醇类试剂,例如乙醇、甲醇。苯乙醇属于对丝素蛋白在微纳米层面的产生诱导转变。因此,苯乙醇对于丝素蛋白材料的诱导程度更加微小且均匀,可以很好的解释相同含量的苯乙醇处理丝素蛋白材料,二级结构的转变程度(β-折叠结构含量增高的百分比)明显高于乙醇、甲醇。
实施例4:使用含不同试剂的液体或蒸汽对丝素蛋白膜进行处理并表征其力学性质变化
(1)将实施例2中制备的含水率约为3.64%的丝素蛋白膜,分别浸没于水、甲醇、苯甲醇、乙醇、2-苯乙醇、苯氧乙醇、3-苯丙醇、4-苯基-1-丁醇以及1,3-丁二醇中,浸没时间为5分钟,各试剂温度为室温。然后去除各试剂中浸泡的丝素蛋白膜,使用滤纸吸去其表面残余的试剂,对所得样品进行称重,样品处理后质量变化见图3。图3中,A、B、C、D、E、F、 G、H、I依次代表水、甲醇、苯甲醇、乙醇、2-苯乙醇、苯氧乙醇、3-苯丙醇、4-苯基-1-丁醇、1,3-丁二醇,如无特殊说明,以下附图中的字母含义同此处。结果表明,采用乙醇处理的丝素蛋白膜,质量几乎没有变化,而采用苯乙醇处理的丝素蛋白膜质量增加,且与碳链长度有相关性。
(2)随后,本发明将浸没于各种醇类物质的丝素蛋白膜经乙醇冲洗,除去非特异性结合的苯乙醇后,再使用去离子水清洗除去残留乙醇。将样品置于通风橱中,室温过夜干燥。
对干燥后的上述各组丝素蛋白膜进行称重,测得各丝素蛋白膜的干重W 3,根据样品处理前后质量计算各组样品质量变化率W m%。
W m%=(W 1-W 3)/W 1*100%     (2)
其中W 1代表实施例2中,丝素蛋白膜的初始干重,实验重复5次以提高实验的可靠性。
(3)将实施例2中制备的含水率约为3.64%的丝素蛋白膜,分别放置于特制的蒸发皿上层,下层分别为一定质量的水、甲醇、苯甲醇、乙醇、2-苯乙醇、苯氧乙醇、3-苯丙醇、4-苯基-1-丁醇以及1,3-丁二醇。设置各组实验的温度为60℃,时间为3小时。在上述条件下,不同试剂形成蒸汽,以蒸汽形式接触丝素蛋白膜。
(4)取出上述方法处理后的丝素蛋白膜,采用吹风机吹干去除表面残留的试剂,立即进行称重处理,测得各丝素蛋白膜的干重W 4,根据失重法测丝素蛋白膜含水率W n%。
W n%=(W 1-W 4)/W 1*100%       (3)
其中W 1为实施例2中,丝素蛋白膜的初始干重,实验重复5次以提高实验的可靠性。
图4分别列举了经过以上两种方法(浸泡或熏蒸)处理后的丝素蛋白膜的重量变化对比情况。从图中可以得出,经各试剂浸泡处理后,苯乙醇处理后的丝素蛋白膜质量均增高,其中2-苯乙醇处理的样品组的质量增加量最大达到2.56%。对照组中经乙醇处理的样品组质量减少,降低率为0.42%,可能是膜中少量低分子量丝蛋白随乙醇浸泡清洗而损失;而其他对照组水、甲醇、1,3-丁二醇组质量均下降。经各试剂熏蒸处理后样品质量变化与浸泡处理略有差异,但整体趋势与浸没处理一致。
此外,对以上处理后的丝素蛋白膜进行以下性能表征:
A、将按照步骤(1)与步骤(3)中经不同试剂的液体或蒸汽处理的丝素蛋白膜,根据测试标准,裁剪一定面积的丝素蛋白膜,使用红外光谱仪对样品波数扫描,扫描范围在400-4000cm -1
图5a、b分别为经不同试剂浸没和熏蒸的方法处理后的丝素蛋白膜的红外测结果,从图中可以看出经各试剂浸泡处理后,苯乙醇处理后的丝素蛋白膜的二级结构均发生一定转变,观察发现2-苯乙醇处理后的丝素蛋白膜的特征吸收峰转移至1615-1635cm -1,1525-1541cm -1, 其他苯乙醇,如苯氧乙醇、3-苯丙醇以及4-苯基-1-丁醇,处理后的丝素蛋白膜与2-苯乙醇处理后的丝素蛋白膜的特征吸收峰均一致,说明苯乙醇对于丝素蛋白膜的作用机理一致。而水、乙醇以及甲醇等传统诱导剂虽然也能诱导丝素蛋白膜的特征吸收峰产生转移,但吸收峰的尖锐度均弱于苯乙醇处理后的丝素蛋白膜,说明二级结构(β-折叠结构)转变的程度低于苯乙醇处理后的丝素蛋白膜,而人们普遍认为丝素材料中β-折叠结构含量越高,材料力学性能越强。以上结果表明苯乙醇对于丝素蛋白膜的诱导处理具有明显优势。
B、考虑到不同试剂的沸点和饱和蒸气压不同,为了进一步探究熏蒸温度对于丝素蛋白膜诱导效果的影响。本发明分别将实施例2制备的丝素蛋白膜经过水、甲醇、苯甲醇、乙醇、2-苯乙醇、苯氧乙醇、3-苯丙醇、4-苯基-1-丁醇以及1,3-丁二醇等试剂进行熏蒸处理。熏蒸温度分别为25℃、60℃和90℃。处理时间均为2小时。
将上述方法处理后的水不溶性丝素蛋白膜按照测试标准制备样品,采用Instron-3365材料力学试验机,测试水不溶性丝素蛋白膜的断裂强度。
图6为上述方法处理后的丝素蛋白膜经过25℃、60℃及90℃的水、甲醇、苯甲醇、乙醇、2-苯乙醇、苯氧乙醇、3-苯丙醇、4-苯基-1-丁醇以及1,3-丁二醇的蒸汽熏蒸后的断裂强度。其中,对照组设置为丝素蛋白膜经过水、甲醇、乙醇、2-苯乙醇、苯氧乙醇、3-苯丙醇、4-苯基-1-丁醇以及1,3-丁二醇等试剂进行浸泡处理。从图6中可以看出苯乙醇处理后的丝素蛋白膜的断裂强度随碳-碳支链长度的增长而增大。除了苯甲醇略低于甲醇处理的外,其余苯乙醇处理的丝素蛋白膜的断裂强度均高于非苯乙醇试剂处理后的断裂强度。此外,同种试剂采用浸泡以及不同温度熏蒸处理得到的丝素蛋白膜,发现经前者处理后的断裂强度高于后三者,说明了浸泡有利于对丝素蛋白膜进行充分的化学反应,而随着温度的增加,熏蒸后的丝蛋白膜的强度明显增强。两种熏蒸温度60℃与90℃处理的丝素蛋白膜的断裂强度较接近,说明如果采用熏蒸处理方式处理丝素蛋白膜,温度超过60℃以后,其对力学性能的改变作用不大。
C、将经25℃、60℃和90℃下不同试剂的蒸汽处理后的丝素蛋白膜粘贴在电镜圆台上,喷金处理(10mA、90s)。在电压3kV、电流10μA的条件下,通过冷场扫描电镜技术进行表面形貌的观察,以确定不同试剂对丝素蛋白表面形貌的影响。
图7-9依次为经25℃、60℃和90℃蒸汽处理后的丝素蛋白膜的表面形貌,图中字母编号代表含义与图3的相同。从图6-8中可以得出,不同试剂处理,并未影响丝素蛋白膜表面形貌,其表面均平整,无空隙、网眼以及颗粒状出现。
实施例5:37℃芳香醇诱导改性的丝素蛋白膜
(1)按照实施例1的方法制备丝素蛋白溶液,不同之处在于,将溶解的丝素蛋白溶液装入截留分子量为5000的透析袋中,进一步配制浓度为5%的丝素蛋白溶液,其中丝素蛋白的分子量为5000Da以上。
(2)按照实施例2的方法制备含水率为3.57%的丝素蛋白膜。
(3)将步骤(2)制备的1g丝素蛋白膜浸没于10mL苯乙醇中,试剂的温度为37℃,浸没时间为30min处理完毕后取出产物,得到水不溶性丝素蛋白膜。
测试步骤(3)得到的水不溶性丝素蛋白膜的β-折叠结构含量,结果表明:与步骤(2)的丝素蛋白膜相比,步骤(3)得到的丝素蛋白膜的β-折叠结构含量由17.5%增至51.29%。
实施例6:60℃芳香醇诱导改性的丝素蛋白膜
(1)按照实施例1的方法制备丝素蛋白溶液,不同之处在于,将溶解的丝素蛋白溶液装入截留分子量为10000的透析袋中,进一步配制浓度为10%的丝素蛋白溶液,其中丝素蛋白的分子量为10000Da以上。
(2)按照实施例2的方法制备含水率为3.61%的丝素蛋白膜。
(3)将步骤(2)制备的丝素蛋白膜1g浸没于10mL苯乙醇中,试剂的温度为60℃,浸没时间为30min处理完毕后取出产物,得到水不溶性丝素蛋白膜。
测试步骤(3)得到的水不溶性丝素蛋白膜的β-折叠结构含量,结果表明:与步骤(2)的丝素蛋白膜相比,步骤(3)得到的丝素蛋白膜的β-折叠结构含量由17.5%增至57.39%。
实施例7:经不同试剂的蒸汽处理后干态丝素蛋白膜之间的黏合力变化
(1)将实施例2中制备的含水率约为3.64%的2个丝素蛋白膜贴合、水平放置,采用500g砝码重压,贴合在一起,平行做多组实验,每组至少两片丝素蛋白膜,各组分别经过水、甲醇、苯甲醇、乙醇、2-苯乙醇、苯氧乙醇、3-苯丙醇、4-苯基-1-丁醇以及1,3-丁二醇进行浸泡处理3h,处理温度为室温。
(2)将实施例2中制备的含水率约为3.64%的2个丝素蛋白膜贴合、水平放置,采用500g砝码重压,贴合在一起,平行做多组实验,每组至少两片丝素蛋白膜,各组分别经过水、甲醇、苯甲醇、乙醇、2-苯乙醇、苯氧乙醇、3-苯丙醇、4-苯基-1-丁醇以及1,3-丁二醇进行60℃熏蒸处理3小时。
(3)将上述步骤(1)与步骤(2)处理的同组丝素蛋白膜互相贴合,按照测试标准制备样品,采用Instron-3365材料力学试验机测试彼此互相拉开脱离后的最大黏合强度。以此确定不同试剂对丝素蛋白处理的特异性,区别含苯环与不含苯环的试剂对丝素蛋白黏合强度 的影响。
图10为丝素蛋白膜经过水、甲醇、苯甲醇、乙醇、2-苯乙醇、苯氧乙醇、3-苯丙醇、4-苯基-1-丁醇以及1,3-丁二醇进行浸泡、熏蒸处理后的黏合强度测试结果,从图10中可以看出经过苯乙醇处理后的丝素蛋白膜之间的作用力高于不含苯环的试剂,其中2-苯乙醇处理的黏合力最大,远远高于其他的醇类。这是由于苯乙醇与丝素蛋白材料之间有明显的作用力,其中2-苯乙醇由于苯环与羟基的特定构象关系而得以与丝素蛋白材料以高强度结合,在丝素蛋白分子间形成紧密桥接位点,达到强黏合效果。此外,由于气体分子的高渗透性和高浸润性,蒸汽处理的膜中醇-丝蛋白间的结合位点相比液体浸没处理膜中的位点更多,分布更均匀,因而导致更高的黏合力。
实施例8:不同试剂的蒸汽处理时间对干态丝素蛋白膜之间黏合力的影响
(1)将实施例2中制备的含水率约为3.64%的丝素蛋白膜采用机械夹持,外力驱动强迫贴合在一起,依次分别经过乙醇(对照)、2-苯乙醇试剂进行60℃熏蒸处理1、3、6以及12小时,每组至少两片丝素蛋白膜。
(2)将上述步骤处理后的同组丝素蛋白膜互相贴合,按照测试标准制备样品,采用Instron-3365材料力学试验机测试彼此互相拉开脱离后的最大黏合强度。以此确定不同醇类试剂对丝素蛋白处理的特异性,区别含苯环与不含苯环对其的黏合强度的影响。
图11为丝素蛋白膜经过乙醇、2-苯乙醇试剂进行60℃熏蒸处理1、3、6以及12小时的黏合强度。2-苯乙醇熏蒸后的丝素蛋白膜之间的黏合强度明显高于乙醇熏蒸处理,说明前者对于丝素蛋白材料具备较强的作用效果。而且,熏蒸时间超过3小时以后,黏合强度基本不再增长,说明3h可以达到饱和熏蒸效果。
实施例9:芳香醇的蒸汽处理促进丝素蛋白与不同材质之间的黏合
(1)将实施例1中获得的丝素蛋白溶液,按照烘干后的计算得到质量分数逐次加入去离子水,将其溶液的质量分数稀释至4%。
(2)取体积为2mL的上述溶液加入到直径为3.5cm的塑料培养皿内,静置3小时以上,使其完全去除内部气泡为止。室温条件下置于通风橱内,过夜风干成膜。
(3)将上述制备的丝素蛋白膜分别与光滑、磨砂的玻璃采用机械夹持,外力驱动强迫贴合在一起,依次分别经过乙醇(对照)、2-苯乙醇进行60℃熏蒸处理3h。
(4)图12为上述方法处理后的丝素蛋白膜分别与光滑、磨砂的玻璃经过乙醇、2-苯乙醇进行60℃熏蒸处理3小时后的黏合强度测试结果。从图12中可以看出经含2-苯乙醇蒸汽 处理的丝素蛋白膜与光滑、磨砂玻璃的黏合强度分别为4N和5.1N,而乙醇蒸汽处理后的丝素蛋白膜与光滑、磨砂玻璃的黏合强度则均为0.1N。2-苯乙醇蒸汽处理是乙醇蒸汽处理后的丝素蛋白膜黏合强度的40-50倍。
实施例10:芳香醇的蒸汽处理促进丝素蛋白与天然高分子之间的黏合
(1)按照实施例1的方法制备丝素蛋白溶液,不同之处在于,将溶解的丝素蛋白溶液装入截留分子量为10000的透析袋中,进一步配制浓度为5%的丝素蛋白溶液,其中丝素蛋白的分子量为10000Da以上。
(2)按照实施例2的方法制备含水率为3.57%的丝素蛋白膜。
(3)将步骤(2)制备的丝素蛋白膜与纤维素膜采用机械夹持,外力驱动强迫贴合在一起,经苯乙醇进行90℃熏蒸处理0.5h。经苯乙醇蒸汽处理的丝素蛋白膜与纤维素膜的黏合强度为3.56N。
实施例11:芳香醇的蒸汽处理促进丝素蛋白与合成高分子之间的黏合
(1)按照实施例1的方法制备丝素蛋白溶液,不同之处在于,将溶解的丝素蛋白溶液装入截留分子量为3500的透析袋中,进一步配制浓度为?的丝素蛋白溶液,其中丝素蛋白的分子量为3500Da以上。
(2)按照实施例2的方法制备含水率3.57%的丝素蛋白膜。
(3)将步骤(2)制备的丝素蛋白膜与聚乙烯膜采用机械夹持,外力驱动强迫贴合在一起,经苯乙醇进行60℃熏蒸处理0.5h。经苯乙醇蒸汽处理的丝素蛋白膜与聚乙烯膜的黏合强度为3.69N。
实施例12:芳香醇对丝素蛋白的“焊接”
为验证芳香醇对于具有一定β-折叠结构含量(15%~40%)的丝素蛋白材料具有一定“焊接”(溶解、组装)效果,选取水蒸气处理后(水不溶)的静电纺丝纳米纤维膜作为实验对象,步骤如下:
1)制备丝素蛋白溶液:采用家蚕生丝,经过煮丝、溶丝、透析、浓缩等工作,制备新鲜的丝素蛋白溶液。
称取250克家蚕丝生丝,切割丝纤维,每段长度15厘米左右。用电加热罐加热100升纯水,待加热至接近沸腾时缓慢加入212克无水碳酸钠,搅拌均匀,持续加热至沸腾后放入生丝,待生丝全部没入水中开始计时,每隔7分钟搅拌一次,30分钟后取出。将脱胶蚕丝放 入洗衣机中,设定漂洗程序,用纯水清洗两次,将脱水的脱胶蚕丝放入鼓风干燥箱中,干燥12小时至18小时。
配制9.3M的溴化锂溶液,按脱胶蚕丝与溴化锂溶液1/4为浴比,加入脱胶蚕丝,在60度干燥箱箱中溶解4小时,取出,冷却至室温,将溶解的丝素蛋白溶液装入截留分子量为3500的透析袋中,用纯水透析48小时,期间换水6次。将透析后的丝素蛋白溶液用5层纱布过滤以去除杂质,置于2-8℃冷藏柜中待用。
2)制备丝素蛋白纳米纤维膜:将丝素蛋白溶液经过纺丝、水蒸汽处理,制备(水不溶)的静电纺丝纳米纤维膜
量取10~20mL经过浓缩的丝素蛋白溶液(15~20wt%),放置于高压静电纺丝装置的推注器内,设定流速(0.1~0.5mL/min)、喷丝孔直径(0.1~0.5mm)、高压电场(15~30kV)以及喷丝距离(15~30cm)。待喷丝时间经过30~60min,观察收集板的纺丝情况,取下丝素蛋白纳米纤维膜。
经上述制备的丝素蛋白纳米纤维膜放置于密闭容器内,下层倒入50~200mL水,上层平铺10~20g丝素蛋白纳米纤维膜。全部放入烘箱,设定温度45~75℃,时间30~60min。
3)焊接丝素蛋白纳米纤维膜:将纳米纤维膜接触芳香醇,借助机械压力、蒸汽压力以及液体压力等手段使膜中纳米纤维相互接近
量取5g上述水蒸气处理的丝素蛋白纳米纤维膜,滴加0.5mL苯乙醇,丝素蛋白纳米纤维膜之间彼此给予0.1MPa压力,升高温度至140℃。待反应时间超过15min后,取出,经溶剂挥发烘干处理后即可完成丝素蛋白纳米纤维膜的焊接。
在焊接过程中,测试滴加苯乙醇溶解前后、组装前后丝素蛋白纤维的二级结构转变及表面形态变化情况,步骤如下:
随机选取2mg苯乙醇处理过程中的丝素蛋白纳米纤维膜,剪成粉末,掺入20mg溴化锂在玛瑙研钵中研磨,放入模具,压成薄片。利用Thermo Nicolet 5700型傅里叶变换红外光谱仪检测,分峰测试β-折叠结构含量结果。
此外,将丝素蛋白纳米纤维膜在苯乙醇溶解的不同时间段取出,采用500g砝码压实,在原设定温度的烘箱继续加热30min后取出。随机选取样品,并对其进行喷金处理90s,在日立S4800型场发射扫描电子显微镜下观察熟丝表面的形态变化,直径变化以及粘连情况。
如图13A1所示,在溶解前,水蒸汽处理的丝素蛋白纳米纤维膜为水不溶状态,外观为松散的纤维网络结构,纤维彼此之间不粘连。经红外光谱仪测试,其二级结构为Silk I结构,β-折叠结构含量为23%左右。
如图13A2所示,在苯乙醇溶解15min后且实现丝素蛋白纳米纤维膜焊接前的照片:从 图中可看出,丝素蛋白纳米纤维膜处于半溶解状态。
焊接后:经溶剂挥发烘干处理(温度为90℃,时间为300min,压力为0.01MPa)后形成的丝素蛋白纳米纤维膜为紧密牢固的整体网络结构,彼此存在粘连,观察微观形貌(如图13B1-B5所示),横纵交错的纤维存在明显焊接现象,焊接点的外观结构明显区别于溶解前纤维的光滑表面,形成明显的隆起焊接区域。经红外光谱仪测试,焊接后的丝素蛋白纳米纤维膜的二级结构为Silk II结构,β-折叠结构含量为75%。
焊接过程中,苯乙醇可占丝素蛋白纳米纤维膜质量分数的0.1%~1%,由于温度以及时间的作用,苯乙醇的沸点为230℃,可以在焊接过程中完成挥发。而且焊接后丝素蛋白纳米纤维膜固化过程中,经实验检测,苯乙醇仅有微量或无任何残留。而且,苯乙醇对于β-折叠结构含量低于50%丝素蛋白材料存在溶解能力。
实施例13:降温对比芳香醇对丝素蛋白的“焊接”效果
将实施例12步骤1)-2)制备的丝素蛋白纳米纤维膜,滴加0.5mL苯乙醇,丝素蛋白纳米纤维膜之间彼此给0.1MPa压力,升高温度至90℃。待反应时间超过15min后,取出,经溶剂挥发烘干处理后即可完成丝素蛋白纳米纤维膜的焊接。
实施例14:升温对比芳香醇对丝素蛋白的“焊接”效果
将实施例12步骤1)-2)制备的丝素蛋白纳米纤维膜,滴加0.5mL苯乙醇,丝素蛋白纳米纤维膜之间彼此给0.1MPa压力,升高温度至200℃。待反应时间超过15min后,取出,经溶剂挥发烘干处理后即可完成丝素蛋白纳米纤维膜的焊接。
实施例15:升压对比芳香醇对丝素蛋白的“焊接”效果
将实施例12步骤1)-2)制备的丝素蛋白纳米纤维膜,滴加0.5mL苯乙醇,丝素蛋白纳米纤维膜之间彼此给予1MPa压力,升高温度至120℃。待反应时间超过15min后,取出,经溶剂挥发烘干处理后即可完成丝素蛋白纳米纤维膜的焊接。
实施例16:降压对比芳香醇对丝素蛋白的“焊接”效果
将实施例12步骤1)-2)制备的丝素蛋白纳米纤维膜,滴加0.5mL苯乙醇,丝素蛋白纳米纤维膜之间彼此给予0.01MPa压力,升高温度至120℃。待反应时间超过15min后,取出,经溶剂挥发烘干处理后即可完成丝素蛋白纳米纤维膜的焊接。
实施例17:缩时对比芳香醇对丝素蛋白的“焊接”效果
取丝素蛋白溶液按照实施例12步骤1)-2)制备的丝素蛋白纳米纤维膜上滴加0.5mL芳香醇,丝素蛋白纳米纤维膜之间彼此给予0.1MPa压力,升高温度至120℃。待反应时间超过5min后,取出,经溶剂挥发烘干处理后即可完成丝素蛋白纳米纤维膜的焊接。
实施例18:延时对比芳香醇对丝素蛋白的“焊接”效果
取丝素蛋白溶液按照实施例12步骤1)-2)制备的丝素蛋白纳米纤维膜上滴加0.5mL芳香醇,丝素蛋白纳米纤维膜之间彼此给予0.1MPa压力,升高温度至120℃。待反应时间超过30min后,取出,经溶剂挥发烘干处理后即可完成丝素蛋白纳米纤维膜的焊接。
实施例19:苯乙醇对丝素蛋白纳米纤维膜的“焊接”
采用10mL实施例1制备的质量分数为15%的丝素蛋白溶液,放置于高压静电纺丝装置的推注器内,设定流速(0.1mL/min)、喷丝孔直径(0.1mm)、高压电场(20kV)以及喷丝距离(20cm)。待喷丝时间经过60min。之后进行60℃条件下水蒸气处理30min。取1.5g上述制备的丝素蛋白纳米纤维膜,滴加0.5g苯乙醇,采用500g砝码压实,置于120℃烘箱加热30min。
滴加苯乙醇30min后,随机选取2mg丝素蛋白纳米纤维膜,此纤维膜中既包括已溶解成液态的丝素蛋白溶液,又包括未溶解的丝素蛋白固体。将固体和液体分离,将分离出的液体(标记为A样品)进行红外测试。对于未溶解的丝素蛋白固体,将其分成两部分,一部分(标记为B样品)直接进行红外测试,另一部分再按照上述方法,利用苯乙醇焊接完全后进行测试(标记为C样品)。
红外测试时,将待测样品掺入20mg溴化锂在玛瑙研钵中研磨,放入模具,压成薄片。利用Thermo Nicolet 5700型傅里叶变换红外光谱仪检测,分析其二级结构,如图14所示,图14中自下而上曲线依次代表A样品、B样品和C样品的红外测试结果,从图中可看出,A样品的丝素蛋白的二级结构处于Silk I结构,B、C样品均为Silk II结构。
β-折叠结构含量结果如图15所示,结果显示,苯乙醇对于丝素蛋白材料具有极强的诱导转变能力,通过比较A、B样品和C样品的结果,发现苯乙醇可以促使水蒸气处理后的丝素蛋白纳米纤维膜(β-折叠结构含量为17.6±3.1%)诱导转变为82.3±5.7%。诱导后的β-折叠结构含量非常接近天然蚕丝的分布情况,显示出强大的诱导转变能力。
实施例20:苯乙醇对熟丝的“焊接”
量取5g仅作碱性脱胶处理的蚕丝(熟丝),加入50mL苯乙醇,放置于烘箱,设定温度140℃,时间为1.5h。
在苯乙醇处理的不同时间段随机选取样品,并对其进行喷金处理90s,在日立S4800型场发射扫描电子显微镜下观察熟丝表面的形态变化,直径变化。结果如图16所示。图16a、b、c、d依次为0h、0.h、1h、1.5h取出的样品的表面形态测试结果。图16e、f、g、h依次为图16a、b、c、d对应的实物照片。从图中可看出,随着处理时间的延长,熟丝的直径逐渐变细,并在1h时可剥离出纳米级纤维,且在1.5h呈现纳米颗粒,这与报道的蚕丝蛋白的结构组成类似,显示出苯乙醇对丝素蛋白具有强大的溶解能力。
图16结果显示,经苯乙醇溶解熟丝,可以剥离出10~20nm范围内的纳米纤维,且长径比远高于100。说明苯乙醇对于丝素蛋白材料的溶解,类似于六氟异丙醇、甲酸/氯化钙、甲酸/盐酸等较弱的溶解丝素蛋白分子之间的氢键,而不是像溴化锂、乙醇/氯化钙/水等强烈的破坏丝素蛋白分子之间的氢键以及丝素蛋白的纤维结构。因此,苯乙醇对于丝素蛋白材料的中高强度的溶解能力,可以理解为其对于丝素蛋白材料中低晶结构区域可以很好地溶解,而不能破坏溶解丝素蛋白材料中的高晶或者超高晶区域。
图17是以上处理过程中,熟丝发生的形态变化示意图。
将在苯乙醇溶解不同时间段的熟丝取出,采用500g砝码压实,原设定温度的烘箱继续加热30min取出,以实现熟丝的焊接。随机选取样品,并对其进行喷金处理90s,在日立S4800型场发射扫描电子显微镜下观察熟丝表面的形态变化,直径变化。结果如图18所示。图18A、B、C、D依次是苯乙醇处理第0、30、60、90min并用砝码压实后,熟丝表面形态测试结果。从图中可看出,随着“焊接”时间的延长,熟丝融合程度逐渐增大。图18结果显示,熟丝经苯乙醇溶解以后,宏观层面出现粘连现象,也就是所谓的重新组装,简称为“焊接”现象。结合图16结果,说明丝素蛋白材料中低晶结构区域经苯乙醇溶解以后,朝着高晶或者超高晶结构区域重新排列,并且发生一定程度的结构转变。彼此相邻区域的丝素蛋白分子的重新排列组合,产生交叉、错综复合,由此产生二次重新固化的现象。
图16与18的结果,分步解释说明苯乙醇对于丝素蛋白材料的溶解、组装的问题。结合起来很好地解释苯乙醇对于丝素蛋白材料的“焊接”问题。简而言之,苯乙醇在温度的调控下,可以溶解丝素蛋白材料中的中低晶结构区域,很有可能使其降低为单分子的游离状态,在温度的作用下,促进加速发生一定的热运动现象,发生一定的迁移与变动,也就是所谓的重新排列组合。之后,基于苯乙醇高强的诱导能力,促使变化后的丝素蛋白结构区域发生一定的转变,极大地提高转变后的β-折叠结构含量,也就是使丝素蛋白材料的结构朝着高晶或超高晶区域转变。最后,整体过程完成了苯乙醇对于丝素蛋白材料的“焊接”过程。
实施例21:丝素蛋白气凝胶过滤膜材
(1)量取20mL经过浓缩的丝素蛋白溶液(15wt%,丝素蛋白分子量为3500Da以上),放置于高压静电纺丝装置的推注器内,设定流速(0.1mL/min)、喷丝孔直径(0.2mm)、高压电场(20kV)以及喷丝距离(30cm)。待喷丝时间经过30min,观察收集板的纺丝情况,取下丝素蛋白纳米纤维膜。
(2)经上述制备的丝素蛋白纳米纤维膜放置于密闭容器内,下层倒入200mL水,上层平铺20g丝素蛋白纳米纤维膜。全部放入烘箱,设定温度60℃,时间30min。
(3)将上述制备的水蒸汽处理的丝素蛋白纳米纤维膜切割成1×1cm方块,将其加入至水中,采用高速匀浆机(转速10000rpm),液氮冷冻,抽真空干燥(真空度500mBar,时间48h),以此获得干燥的气凝胶支架。
(4)将上述制备的丝素蛋白气凝胶支架放置于密闭容器内,下层倒入50mL苯乙醇,上层平铺20g丝素蛋白气凝胶支架。全部放入烘箱,设定温度60℃,时间30min,进行苯乙醇熏蒸处理,得到高结晶含量且超疏水的气凝胶过滤膜材(β-折叠结构含量75%以上,疏水角150°以上)。
利用以上气凝胶过滤膜材进行油水分离,将其置于豆油与水的混合物中,观察豆油吸附情况(图19a-e)。如图19所示,该处理后的丝素蛋白气凝胶支架具有优异的油水分离、烟雾过滤的性能。正如图19f所示,该丝素蛋白气凝胶支架可以在50s内完成水/豆油的分离工作,且最大吸油率超过自身质量的45倍以上。
按照以上方法进行油水分离,不同之处在于,将豆油替换为玉米油、菜籽油、葵花籽油和橄榄油(图20a)。采用不同的油类与水互混,观察该丝素蛋白气凝胶支架在吸油过程中是否出在吸水现象,正如图20b所示。结果显示,该丝素蛋白气凝胶支架在油水分离过程中,主要吸附油类物质,吸附率超过98.5±0.7%以上。
测试以上丝素蛋白过滤膜材对于烟雾的过滤效果,方法如下:
分别以滤纸、商业口罩及丝素蛋白过滤膜材置于漏斗滤芯处,滤芯上方放置点燃的香烟,滤芯下方具有一密闭空间,对该密闭空间抽气,观察密闭空间内是否有烟雾进入。图21a、b、c次为滤纸、商业口罩及丝素蛋白过滤膜的过滤情况。图21d1-d2为滤纸过滤前后的照片、图21d3-d4为口罩过滤前后的照片、图21d5-d6为丝素蛋白过滤膜材过滤前后的照片。图21e1-e2为丝素蛋白过滤膜材吸附前后的微观图像见诸扫描电镜图片结果。通过对比该丝素蛋白气凝胶支架与医用口罩、N95口罩、3M口罩对颗粒物的过滤效率,正如图22所示,在去除口罩驻极因素的影响前提下,该丝素蛋白气凝胶支架的过滤效率远超医用口罩、N95口 罩、3M口罩,分别达到3.2±0.6、2.7±0.4以及1.9±0.3倍以上。
实施例22:分子量为5000Da丝素蛋白制备气凝胶过滤膜材
按照实施例21的方法制备丝素蛋白气凝胶过滤膜材,不同之处在于,在步骤(1)中,丝素蛋白分子量为5000Da以上。得到的丝素蛋白气凝胶过滤膜材的β-折叠结构含量57.39%,疏水角147.36°。
实施例23:分子量为10000Da丝素蛋白制备气凝胶过滤膜材
按照实施例21的方法制备丝素蛋白气凝胶过滤膜材,不同之处在于,在步骤(1)中,丝素蛋白分子量为10000Da以上。得到的丝素蛋白气凝胶过滤膜材的β-折叠结构含量53.29%,疏水角136.56°。
实施例24:90℃制备的丝素蛋白气凝胶过滤膜材
按照实施例21的方法制备丝素蛋白气凝胶过滤膜材,不同之处在于,在步骤(4)中,熏蒸温度为90℃,时间30min。得到的丝素蛋白气凝胶过滤膜材的β-折叠结构含量55.23%,疏水角152.28°。
实施例25:120℃制备的丝素蛋白气凝胶过滤膜材
按照实施例21的方法制备丝素蛋白气凝胶过滤膜材,不同之处在于,在步骤(4)中,熏蒸温度为120℃,时间30min。得到的丝素蛋白气凝胶过滤膜材的β-折叠结构含量56.31%,疏水角157.23°。
实施例26:丝素蛋白纤维改性及其纺织品性能表征(一)
(1)将实施例1中获得的丝素蛋白溶液,按照烘干后的计算得到质量分数逐次加入去离子水,将其溶液的质量分数稀释至0.1-5%。
(2)分别取长宽各为10cm的涤纶、锦纶以及氨纶等生活中常见的化学纤维织物,浸泡在上述不同质量分数的丝素蛋白溶液中,时间为5-10min,待其完全浸润后,取出。
(3)将上述浸润后化学纤维织物采用双辊式轧染机处理,采用旋转弹簧设置轧染的压力,去除多余的丝素蛋白溶液,取出、晾干。
(4)方法1:采用自制全封闭式蒸发皿,底部放入2-苯乙醇溶液,该蒸发皿置于烘箱,温度设置45-120℃,待底部的2-苯乙醇溶液变为蒸汽状态,将处理后的化学纤维织物沿水平 方向晾挂于蒸发皿的开口上,如图23所示,熏蒸时间设置0.5-6小时。其中,蒸馏水、乙醇作为对照组。
实施例27:丝素蛋白纤维改性及其纺织品性能表征(二)
(1)将实施例1中获得的丝素蛋白溶液,将丝素蛋白溶液的质量分数调整为3.0%。
(2)将涤纶长丝浸泡在上述丝素蛋白溶液中,时间为30min,待其完全浸润后,取出。
(3)将上述浸润后化学纤维采用双辊式轧染机处理,采用旋转弹簧设置轧染的压力,去除多余的丝素蛋白溶液,取出、晾干。
(4)方法1:采用自制全封闭式蒸发皿,底部放入2-苯乙醇溶液,该蒸发皿置于烘箱,温度设置45-120℃,待底部的2-苯乙醇溶液变为蒸汽状态,将待处理的化学纤维置于蒸汽上方,熏蒸时间设置0.5小时。
实施例28:丝素蛋白纤维改性及其纺织品性能表征(三)
按照实施例26的方法制备涂层纤维,不同之处在于,丝素蛋白溶液中丝素蛋白的分子量为10000Da。
实施例29:丝素蛋白纤维改性及其纺织品性能表征(四)
配制纤维改性液,其由丝素蛋白溶液和苯乙醇组成,芳香醇占丝素蛋白质量分数的0.1%。然后将涤纶纤维以上配制的纤维改性液中,在90℃,压力为0.2MPa条件下处理纤维30min,得到涂层纤维。所得涂层纤维中,β-折叠结构含量为57.29%。
实施例30:丝素蛋白纤维改性及其纺织品性能表征(五)
配制纤维改性液,其由丝素蛋白溶液和苯乙醇组成,芳香醇占丝素蛋白质量分数的0.5%。然后将棉置于以上配制的纤维改性液中,在120℃,压力为0.4MPa条件下处理纤维30min,得到涂层纤维。所得涂层纤维中,β-折叠结构含量为59.23%。
实施例31:丝素蛋白纤维改性及其纺织品性能表征(六)
(1)将实施例1中获得的丝素蛋白溶液,按照烘干后的计算得到质量分数逐次加入去离子水,将其溶液的质量分数稀释至0.1-5%。
(2)分别取长宽各为10cm的涤纶、锦纶以及氨纶等生活中常见的化学纤维织物,浸泡在上述不同质量分数的丝素蛋白溶液中,时间为5-10min,待其完全浸润后,取出。
(3)将上述浸润后化学纤维织物采用双辊式轧染机处理,采用旋转弹簧设置轧染的压力,去除多余的丝素蛋白溶液,取出、晾干。
(4)方法2:熨斗内部盛放纯的2-苯乙醇溶液,以蒸馏水、乙醇作为对照组。将步骤(3)处理得到的化学纤维织物置于室温条件下晾干,采用熨斗进行熨烫处理。
实施例32:丝素蛋白纤维改性及其纺织品性能表征(七)
(1)将实施例1中获得的丝素蛋白溶液,按照烘干后的计算得到质量分数逐次加入去离子水,将其溶液的质量分数稀释至0.1-5%。
(2)方法3:将步骤(1)处理得到的不同质量分数的丝素蛋白溶液与纯的2-苯乙醇溶液混合,体积比例为50:1至1:1之间,将化学纤维织物浸泡在上述混合溶液中,时间为5-10min,待其完全浸润后,取出。
(3)将上述浸润后化学纤维织物采用双辊式轧染机处理,采用旋转弹簧设置轧染的压力,去除多余的丝素蛋白溶液,取出、晾干。将上述处理后的化学纤维织物直接采用熨斗进行熨烫处理(熨斗内部盛放水)。
上述3种方法制备的化学纤维织物依次进行表面形态、透气率、织物厚度以及回潮率测试。其中,1)表面形态测试:将上述制备的化学纤维织物粘贴在电镜圆台上,喷金处理(10mA、90s)。在电压3kV、电流10μA的条件下,通过冷场扫描电镜技术进行表面形貌的观察;2)透气率测试:将上述制备的化学纤维织物裁剪为20cm 2圆形,采用YG461E-III全自动透气量仪,参数设置为:平衡时间24小时,压力100Pa,温度20℃,湿度65%,测试单位mm/s;3)织物厚度测试:将上述制备的化学纤维织物裁剪为20cm 2圆形,采用YG141D-II织物厚度仪,参数设置为:平衡时间24小时,参考测试标准GB/T 3820-1997,测试时间10s,单次循环,温度20℃,湿度65%,测试单位mm;4)回潮率测试:将上述制备的化学纤维织物裁剪为20cm 2圆形,采用HF-MS回潮率测试仪,参数设置为:平衡时间24小时,温度104℃,测试次数10次,参考测试标准GB/T 9995-1997,测试时间10s,单词循环,温度20℃,湿度65%,测试单位%。
图24为化学纤维织物经过实施例26中的方法处理后的表面形态测试结果。图24(a)为未经处理的化学纤维织物;(b)为化学纤维织物经过质量分数为5%的丝素蛋白溶液浸润处理1分钟;(c)(f)(i)为化学纤维织物经过质量分数为5%的丝素蛋白溶液浸润1分钟后,用2-苯乙醇熏蒸1、3以及5小时;(d)(g)(j)为化学纤维织物经过质量分数为1%的丝素蛋白溶液浸润1分钟后,用2-苯乙醇熏蒸1、3以及5小时;(e)(h)(k)为化学纤维织物 经过质量分数为0.1%的丝素蛋白溶液浸润后1分钟后,用2-苯乙醇熏蒸1、3以及5小时的结果。如无特殊说明,图25-27中的字母编号与此处相同。结果表明,不同条件处理的织物形态未发生明显变化,表面光滑、无颗粒以及块状物质,这与天然蚕丝的微观形态吻合。实施例27和28中的方法处理后的织物表面形态与以上方法的结果相同。
图25为实施例26中的处理后的织物透气率测试结果。结果表明,与未经处理的织物相比,经过不同方法处理后的织物的透气率均有所提高,处理后的化学纤维织物的透气率可以达到950-993mm/s,这与天然蚕丝织物的透气率956mm/s接近。实施例27和28中的方法处理后的织物透气率与以上方法的结果相同。
图26-27为实施例26中的处理后的织物厚度以及回潮率的测试结果,处理后的化学纤维织物的织物厚度可以达到0.40-0.47mm,这与天然蚕丝织物的织物厚度0.37mm接近;处理后的化学纤维织物的标准回潮率可以达到9.27-11.03%,这与天然蚕丝织物的标准回潮率11.9%接近。实施例27和28中的方法处理后的织物厚度以及回潮率与以上方法的结果相同。
图28则以照片形式展示了经水不溶性丝素蛋白涂层后的纤维织物纺织品的形态特征,结果表明,处理后的丝素蛋白具有较好的光泽度。
上述一系列结果表明,化学纤维织物经过上述3种方法处理后的仿真丝率达到95-99%。
以上仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (26)

  1. 芳香醇作为丝素蛋白诱导剂的应用。
  2. 根据权利要求1所述的应用,其特征在于:所述芳香醇包括一种或几种含有以下结构式的化合物:
    Figure PCTCN2020132549-appb-100001
    其中,m=0-5;X为亚甲基或氧原子;R 1、R 2、R 3、R 4、R 5、R 6分别独立地选自氢、苯环、羟基、羧基、醛基、酮基、酯键、醚键、氨基、硝基、腈基、酰胺基、偶氮、脒基、肟、腙、卤素原子、酰卤磺酸基、二硫键、巯基膦基或磷酸脂基。
  3. 根据权利要求1所述的应用,其特征在于:所述芳香醇呈液态或蒸汽态。
  4. 一种水不溶性丝素蛋白的处理方法,其特征在于,包括以下步骤:
    将丝素蛋白与含芳香醇的蒸汽或液体接触,以诱导所述丝素蛋白发生结构转变,得到所述水不溶性丝素蛋白。
  5. 根据权利要求4所述的处理方法,其特征在于:所述芳香醇包括一种或几种含有以下结构式的化合物:
    Figure PCTCN2020132549-appb-100002
    其中,m=0-5;X为亚甲基或氧原子;R 1、R 2、R 3、R 4、R 5、R 6分别独立地选自氢、苯环、羟基、羧基、醛基、酮基、酯键、醚键、氨基、硝基、腈基、酰胺基、偶氮、脒基、肟、腙、卤素原子、酰卤磺酸基、二硫键、巯基膦基或磷酸脂基。
  6. 根据权利要求4所述的处理方法,其特征在于:所述丝素蛋白呈干态,其含水量不高于30%。
  7. 根据权利要求4所述的处理方法,其特征在于:将丝素蛋白浸泡于含芳香醇的液体中处理或利用含芳香醇的蒸汽对所述丝素蛋白进行熏蒸处理。
  8. 根据权利要求4或7所述的处理方法,其特征在于:采用含芳香醇的液体处理时,处理时间不低于5秒;处理温度为20-200℃。
  9. 根据权利要求4或7所述的处理方法,其特征在于:采用含芳香醇的蒸汽处理时,处理时间不少于5分钟,处理温度为25-200℃。
  10. 根据权利要求4所述的处理方法,其特征在于:所述含芳香醇的蒸汽或液体中还包括水和/或醇类诱导剂。
  11. 一种水不溶性丝素蛋白材料,其特征在于:所述水不溶性丝素蛋白材料包括多条丝素蛋白纤维,相邻的两条丝素蛋白纤维之间具有至少一个融合点。
  12. 根据权利要求11所述的水不溶性丝素蛋白材料,其特征在于:所述水不溶性丝素蛋白材料经芳香醇进行结构诱导得到。
  13. 根据权利要求11所述的水不溶性丝素蛋白材料,其特征在于:所述融合点的β-折叠结构含量为15-80%。
  14. 一种过滤膜材,其特征在于:包括权利要求11-13中任一项所述的水不溶性丝素蛋白材料。
  15. 一种复合材料,其特征在于:包括基体以及与所述基体连接的水不溶性丝素蛋白材料,所述水不溶性丝素蛋白材料与基体之间具有至少一个融合点,所述基体包括高分子聚合物。
  16. 根据权利要求15所述的复合材料,其特征在于:所述复合材料经芳香醇进行结构诱导得到。
  17. 根据权利要求15所述的复合材料,其特征在于:所述融合点的β-折叠结构含量为15-80%。
  18. 一种涂层纤维,其特征在于:包括纤维以及纤维表面的水不溶性丝素蛋白膜,所述纤维和水不溶性丝素蛋白膜之间具有至少一个融合点,所述水不溶性丝素蛋白膜中的相邻两条丝素蛋白纤维之间具有至少一个融合点。
  19. 根据权利要求18所述的涂层纤维,其特征在于:所述涂层纤维经芳香醇进行结构诱导得到。
  20. 根据权利要求18所述的涂层纤维,其特征在于:所述融合点的β-折叠结构含量为15-80%。
  21. 一种纤维改性液,其特征在于:包括丝素蛋白,所述纤维改性液中丝素蛋白的质量分数为0.01-30%,所述丝素蛋白的分子量为3500Da以上。
  22. 根据权利要求21所述的纤维改性液,其特征在于:还包括芳香醇。
  23. 根据权利要求22所述的纤维改性液,其特征在于:所述芳香醇呈液态或气态。
  24. 一种仿真丝织物,其特征在于:织物中的纤维表面具有水不溶性丝素蛋白膜,织物中的纤维和水不溶性丝素蛋白膜之间具有至少一个融合点,所述水不溶性丝素蛋白膜内具有至少一个丝素蛋白纤维与丝素蛋白纤维间的融合点。
  25. 根据权利要求24所述的仿真丝织物,其特征在于:织物中纤维表面的水不溶性丝素蛋白膜经芳香醇进行结构诱导得到。
  26. 根据权利要求24所述的仿真丝织物,其特征在于:所述融合点的β-折叠结构含量为15-80%。
PCT/CN2020/132549 2019-11-29 2020-11-28 芳香醇处理丝素蛋白的方法及其在制备含丝素蛋白材料中的应用 WO2021104509A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911201913.9A CN110903372A (zh) 2019-11-29 2019-11-29 芳香醇作为丝素蛋白诱导剂的应用及丝素蛋白的处理方法
CN201911201913.9 2019-11-29

Publications (1)

Publication Number Publication Date
WO2021104509A1 true WO2021104509A1 (zh) 2021-06-03

Family

ID=69820710

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/122715 WO2021103059A1 (zh) 2019-11-29 2019-12-03 芳香醇作为丝素蛋白诱导剂的应用及丝素蛋白的处理方法
PCT/CN2020/132549 WO2021104509A1 (zh) 2019-11-29 2020-11-28 芳香醇处理丝素蛋白的方法及其在制备含丝素蛋白材料中的应用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122715 WO2021103059A1 (zh) 2019-11-29 2019-12-03 芳香醇作为丝素蛋白诱导剂的应用及丝素蛋白的处理方法

Country Status (3)

Country Link
US (1) US20220289652A1 (zh)
CN (2) CN110903372A (zh)
WO (2) WO2021103059A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110903372A (zh) * 2019-11-29 2020-03-24 苏州丝美特生物技术有限公司 芳香醇作为丝素蛋白诱导剂的应用及丝素蛋白的处理方法
CN113106756A (zh) * 2021-03-10 2021-07-13 浙江凯喜雅国际股份有限公司 一种蚕丝蛋白涂层液及其在纤维或织物表面改性中的应用
CN115137869A (zh) * 2022-06-08 2022-10-04 苏州大学 一种增强增韧蚕丝缝合线及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101967282A (zh) * 2010-09-21 2011-02-09 苏州大学 一种难溶于水的透明丝素蛋白膜及其制备方法
CN104368050A (zh) * 2014-10-17 2015-02-25 南京师范大学 一种原子转移自由基聚合制备聚磺酸内盐抗凝血生物材料的方法
CN105326674A (zh) * 2014-08-07 2016-02-17 青岛蓝农谷农产品研究开发有限公司 一种保湿海藻丝素蛋白面膜的制备方法
WO2017139684A1 (en) * 2016-02-10 2017-08-17 Cocoon Biotech Inc. Compositions including benzenesulfonamide-containing non-steroidal anti-inflammatory drugs silk fibroin and a gelling agent and uses thereof
CN110903372A (zh) * 2019-11-29 2020-03-24 苏州丝美特生物技术有限公司 芳香醇作为丝素蛋白诱导剂的应用及丝素蛋白的处理方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB550022A (en) * 1940-06-14 1942-12-18 Du Pont Improved protein-containing materials and their applications
US20100028451A1 (en) * 2006-09-26 2010-02-04 Trustees Of Tufts College Silk microspheres for encapsulation and controlled release
CN101874751B (zh) * 2009-04-30 2013-07-10 复旦大学 一种多层多孔支架及其制备方法
CN102181957B (zh) * 2011-03-30 2012-11-14 东华大学 一种再生蚕丝蛋白纤维的制备方法
CN102344686A (zh) * 2011-08-02 2012-02-08 北京汇亨创管理咨询有限公司 一种以聚乙烯醇为稳定剂的丝素蛋白纳米颗粒的制备方法
CN103498210B (zh) * 2013-08-21 2016-08-10 浙江理工大学 一种高强度再生蚕丝蛋白纤维的仿生制备方法
WO2016077551A1 (en) * 2014-11-14 2016-05-19 The University Of Florida Research Foundation, Inc. Biomimetic pore structures and methods of making biomimetic pore structures
JP6931210B2 (ja) * 2016-02-24 2021-09-01 国立研究開発法人農業・食品産業技術総合研究機構 不溶化処理フリー絹フィブロイン素材
CN108785752A (zh) * 2018-06-29 2018-11-13 苏州丝美特生物技术有限公司 丝素蛋白基多孔材料及其制备方法
CN110025828B (zh) * 2019-04-16 2021-07-30 苏州科技城医院 一种功能丝素蛋白多孔材料或功能丝素蛋白膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101967282A (zh) * 2010-09-21 2011-02-09 苏州大学 一种难溶于水的透明丝素蛋白膜及其制备方法
CN105326674A (zh) * 2014-08-07 2016-02-17 青岛蓝农谷农产品研究开发有限公司 一种保湿海藻丝素蛋白面膜的制备方法
CN104368050A (zh) * 2014-10-17 2015-02-25 南京师范大学 一种原子转移自由基聚合制备聚磺酸内盐抗凝血生物材料的方法
WO2017139684A1 (en) * 2016-02-10 2017-08-17 Cocoon Biotech Inc. Compositions including benzenesulfonamide-containing non-steroidal anti-inflammatory drugs silk fibroin and a gelling agent and uses thereof
CN110903372A (zh) * 2019-11-29 2020-03-24 苏州丝美特生物技术有限公司 芳香醇作为丝素蛋白诱导剂的应用及丝素蛋白的处理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WEI YALI; SUN DAN; YI HONGGEN; ZHAO HUANRONG; WANG JIANNAN: "Preparation and characterization of PEGDE crosslinked silk fibroin film", WUHAN UNIVERSITY OF TECHNOLOGY. JOURNAL (MATERIAL SCIENCE EDITION), WUHAN LIGONG DAXUE,WUHAN UNIVERSITY OF TECHNOLOGY, CN, vol. 29, no. 5, 4 October 2014 (2014-10-04), CN, pages 1083 - 1089, XP035402533, ISSN: 1000-2413, DOI: 10.1007/s11595-014-1047-8 *
ZUO, BAOQI ET AL.,: "Effect on Properties of Regenerated Silk Fibroin Fiber Coagulated with Aqueous Methanol/Ethanol,", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 106, 11 June 2007 (2007-06-11) *

Also Published As

Publication number Publication date
US20220289652A1 (en) 2022-09-15
CN112979779A (zh) 2021-06-18
WO2021103059A1 (zh) 2021-06-03
CN112979779B (zh) 2024-02-09
CN110903372A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
WO2021104509A1 (zh) 芳香醇处理丝素蛋白的方法及其在制备含丝素蛋白材料中的应用
Ki et al. Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption
Zhou et al. Electrospinning of silk fibroin and collagen for vascular tissue engineering
Zhang et al. Genipin‐crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue‐engineering application
Magaz et al. Porous, aligned, and biomimetic fibers of regenerated silk fibroin produced by solution blow spinning
Li et al. Processing and characterizations of rotary linear needleless electrospun polyvinyl alcohol (PVA)/Chitosan (CS)/Graphene (Gr) nanofibrous membranes
Lu et al. Mild immobilization of diverse macromolecular bioactive agents onto multifunctional fibrous membranes prepared by coaxial electrospinning
Singh et al. A novel electrospinning approach to fabricate high strength aqueous silk fibroin nanofibers
CN100493626C (zh) 一种细胞培养支架材料及其制备方法
Choi et al. Keratin/poly (vinyl alcohol) blended nanofibers with high optical transmittance
Hang et al. Preparation of regenerated silk fibroin/silk sericin fibers by coaxial electrospinning
CN108884617A (zh) 亲水性聚氨酯纳米纤维及其制备方法
JP5761736B2 (ja) セリシンナノファイバーおよびその製造方法、金属イオン吸着材、染色機能増強材、耐薬品増強材、ならびにセリシン・フィブロイン複合ナノファイバーおよびその製造方法
CN113046926B (zh) 一种丝素聚乳酸多孔纳米纤维复合材料及其制备方法和应用
WO2005103158A1 (ja) 絹フィブロインフィルム
CN108295310A (zh) 一种导电型组织工程支架及其制备方法和应用
Fan et al. Regenerated silk fibroin nanofibrous matrices treated with 75% ethanol vapor for tissue-engineering applications
Baek et al. Metal ion adsorbability of electrospun wool keratose/silk fibroin blend nanofiber mats
CN105885070B (zh) 一种再生蚕丝蛋白膜的制备方法
CN114773549B (zh) 一种甲基丙烯酸酐改性丝素的制备方法
Sazegar et al. Preparation and characterization of water-absorbing gas-assisted electrospun nanofibers based on poly (vinyl alcohol)/chitosan
Dadras Chomachayi et al. Improvement of the electrospinnability of silk fibroin solution by atmospheric pressure plasma treatment
CN105887327B (zh) 一种复合纳米纤维膜及其制备方法
CN110409192B (zh) 一种纳米羧基壳聚糖原位涂层织物及其制备方法
Li et al. Tough and VEGF-releasing scaffolds composed of artificial silk fibroin mats and a natural acellular matrix

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893779

Country of ref document: EP

Kind code of ref document: A1