WO2021104469A1 - 一种具有低液位物料抽提装置的低温全容罐 - Google Patents

一种具有低液位物料抽提装置的低温全容罐 Download PDF

Info

Publication number
WO2021104469A1
WO2021104469A1 PCT/CN2020/132342 CN2020132342W WO2021104469A1 WO 2021104469 A1 WO2021104469 A1 WO 2021104469A1 CN 2020132342 W CN2020132342 W CN 2020132342W WO 2021104469 A1 WO2021104469 A1 WO 2021104469A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
low
temperature
venturi mixer
material circulation
Prior art date
Application number
PCT/CN2020/132342
Other languages
English (en)
French (fr)
Inventor
应捷成
肖舒恒
鲁强
汪琳
Original Assignee
南京扬子石油化工设计工程有限责任公司
中国国际海运集装箱(集团)股份有限公司
中集安瑞科投资控股(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京扬子石油化工设计工程有限责任公司, 中国国际海运集装箱(集团)股份有限公司, 中集安瑞科投资控股(深圳)有限公司 filed Critical 南京扬子石油化工设计工程有限责任公司
Priority to EP20891908.4A priority Critical patent/EP4047259A4/en
Publication of WO2021104469A1 publication Critical patent/WO2021104469A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0119Shape cylindrical with flat end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0326Valves electrically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/013Single phase liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0114Propulsion of the fluid with vacuum injectors, e.g. venturi
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • F17C2227/0142Pumps with specified pump type, e.g. piston or impulsive type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0171Arrangement
    • F17C2227/0178Arrangement in the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0171Arrangement
    • F17C2227/0185Arrangement comprising several pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0408Level of content in the vessel

Definitions

  • the invention relates to the technical field of low-temperature liquefied gas storage, in particular to a low-temperature full-capacity tank with a low-liquid level material extraction device.
  • Substances that are gaseous under normal temperature and pressure and can be liquefied after proper freezing can be stored safely and efficiently in low-temperature and normal-pressure storage tanks.
  • the substances that meet this characteristic include methane, ethylene, ethane, propylene, propane, butene, butane and other hydrocarbons involved in the petrochemical industry, and ammonia, which is commonly used in the chemical industry.
  • Methane is the main component of natural gas
  • propane and butane are the main components of liquefied gas. A large proportion is used as clean energy for industry and civil use.
  • LNG liquefied hydrocarbon
  • liquefied hydrocarbon Liquefied Hydrocarbon
  • LNG liquefied natural gas
  • the petrochemical industry that uses hydrocarbons as raw materials for further deep processing
  • the number of enterprises and the scale of production are also increasing, and the demand for large cryogenic storage tanks for storing these clean energy and liquefied hydrocarbons is also increasing.
  • openings are not allowed on the wall and bottom of the existing large-scale low-temperature full-capacity storage tanks, and the pipelines connected to the storage tanks are in the top-in and top-out mode, that is, in and out from the top of the tank. Due to the large diameter and height of the storage tank, the height of the tank top space plus the height of the tank wall is far greater than the suction vacuum height of the liquid, the discharge pump can only work in a submerged mode, that is, a low-temperature submersible pump.
  • the cryogenic submersible pump requires sufficient cryogenic medium in the storage tank when it is started to ensure that the minimum liquid level is not lower than the minimum operable liquid level required by the cryogenic submersible pump.
  • the minimum operable liquid level of the cryogenic submersible pump plus a certain safety margin is usually about 1.2m, that is, the range of 1.2m from the bottom of the low-temperature full-capacity tank is usually a working "dead zone", resulting in a large ineffective working volume at the bottom of the tank .
  • the inner tank diameter of 50000m 3 cryogenic storage tank is about ⁇ 46m, the volume of 1.2m height is about 1994m 3 ; the inner tank diameter of 80,000m 3 cryogenic storage tank is about ⁇ 59m, the height of 1.2m is about 3280m 3 ; the inner tank diameter of 160,000m 3 cryogenic storage tank is about ⁇ 87m , 1.2m height and volume is about 7134m 3 .
  • the object of the present invention is to provide a low-temperature full-capacity tank with a low-liquid level material extraction device to solve the problem of too much ineffective working volume at the bottom of the storage tank and too much residual medium that cannot be extracted in the prior art.
  • a low-temperature full-containment tank with a low-liquid level material extraction device including an inner tank, an outer tank surrounding the periphery of the inner tank, and an operating platform set on the top of the outer tank;
  • the low-temperature full-capacity tank also includes a material extraction device capable of extracting low-liquid level materials;
  • the material extraction device includes: a material circulation tank, which is installed on the operating platform and is used to contain low-temperature media; the first venturi The mixer is installed at the bottom of the inner tank; its two ends are respectively an inlet and an outlet, and its outer periphery is provided with suction holes; an introduction pipeline, the outlet of the material circulation tank is connected to the first Venturi mixer Inlet; outgoing pipeline, connected to the inlet of the material circulation tank from the outlet of the first Venturi mixer; cryogenic pump, installed on the operating platform and connected to the introduction pipeline; in the medium During extraction, the low-temperature medium in the material circulation tank enter
  • the first Venturi mixer includes a constriction section, a throat section and a diffusion section that are connected in sequence; the large end opening of the constriction section serves as an inlet to connect the introduction pipeline; the large end opening of the diffusion section serves as The outlet is connected to the lead-out pipeline; the two ends of the throat section are respectively connected to the small end opening of the contraction section and the small end opening of the diffuser section; the suction hole is opened corresponding to the outer circumference of the throat section, And communicate with the inside of the throat pipe section; the first venturi mixer is placed horizontally in the inner tank.
  • the first venturi mixer further includes a suction cavity which is arranged around the periphery of the throat section and communicates with the inside of the throat section; both ends of the suction cavity are connected to the outer wall of the constriction section and the The outer wall of the diffusion section is connected; the outer peripheral wall of the suction cavity is provided with the suction hole.
  • the suction hole is opened on the outer peripheral wall of the throat section; the first venturi mixer further includes a suction pipe correspondingly arranged at the suction hole, and the suction pipe communicates with the inside of the inner tank.
  • the material circulation tank is also provided with a medium output port for outputting low-temperature medium to the outside, and is provided with a liquid level control mechanism to control the opening and closing of the medium output port when the preset liquid level is reached.
  • the level is higher than the liquid level required for the operation of the cryopump when the medium is extracted.
  • the liquid level control mechanism is an overflow weir arranged in the material circulation tank; the outlet of the material circulation tank communicates with the internal space of the overflow weir, and the medium outlet is connected to the overflow weir.
  • the outer space is connected.
  • the liquid level control mechanism is an overflow port arranged on the side wall of the material circulation tank, the height of the overflow port is higher than the outlet of the material circulation tank, and the overflow port and the medium The output ports are connected.
  • the liquid level control mechanism includes an electrically connected liquid level gauge and an on-off valve, the liquid level gauge is used to detect the liquid level in the material circulation tank, and the on-off valve is correspondingly arranged at the medium output port .
  • the introduction pipeline is provided with a control valve to adjust the flow in the introduction pipeline, the control valve is located outside the outer tank; the cryopump is located between the material circulation tank and the control valve .
  • the material extraction device further includes a pressurizing unit, and the pressurizing unit is arranged on the lead-out pipeline to increase the power of the low-temperature medium flowing to the material circulation tank.
  • the pressurizing unit includes: a second Venturi mixer, the suction hole and outlet of which are connected in series on the lead-out pipeline; a pressurized introduction line, which communicates the inlet of the second Venturi mixer and the The outlet of the material circulation tank; the pressurization control valve is arranged on the pressurized introduction pipeline to adjust the flow rate of the pressurized introduction pipeline.
  • the low-temperature full-capacity tank of the present invention is equipped with a material extraction device that can extract low-level materials, wherein the material extraction device includes an operating platform on the top of the tank.
  • the low-temperature medium in the material circulation tank enters the Venturi mixer through the cryogenic pump.
  • the low-temperature medium will form a local low pressure and high-speed flow entrainment effect in the Venturi mixer, making the internal tank
  • the low temperature medium enters the Venturi mixer through the suction hole under the action of the pressure difference, and the mixed low temperature medium returns to the material circulation tank together.
  • the flow of the low-temperature medium returning to the material circulation tank is greater than the flow of the low-temperature medium pumped from the material circulation tank, and the difference is the extracted low-temperature medium.
  • the material extraction device is mainly used as a supplementary discharge measure after the submersible pump in the low-temperature full-capacity tank is pumped to the lowest liquid level and stopped. Through this extraction device, it can treat the low-level low-temperature medium that is originally in the working "dead zone".
  • the low-temperature medium above the liquid level of the suction hole of the venturi mixer can be extracted by the material extraction device, so that the liquid level of the low-temperature full-capacity tank can be reduced to the suction hole of the first venturi mixer Or at the position where the suction nozzle is located, the liquid level is significantly smaller than the minimum operable liquid level required by the prior art submersible pump, which can significantly reduce the ineffective volume of the low-temperature full-containment tank and improve the volume utilization rate of the full-containment tank .
  • the effective working volume of the full containment tank can be increased.
  • the height of the inner and outer tanks can be reduced, saving engineering investment.
  • Fig. 1 is a schematic structural diagram of an embodiment of the low-temperature full-containment tank of the present invention.
  • Fig. 2 is a schematic diagram of the structure of the material extraction device in Fig. 1.
  • Fig. 3 is a schematic diagram of the mixing principle of the low-temperature medium in Fig. 2 in the first venturi mixer.
  • Fig. 4 is a schematic structural diagram of another embodiment of the low-temperature full-containment tank of the present invention.
  • Fig. 5 is a schematic diagram of the structure of the material extraction device in Fig. 4.
  • Figure 6 is a schematic diagram of another type of Venturi mixer.
  • the present invention provides a low-temperature full-capacity tank for storing liquefied low-temperature media.
  • These low-temperature media can be hydrocarbons such as methane, ethylene, ethane, propylene, propane, butene, butane, etc., or commonly used in the chemical industry Ammonia etc.
  • the low-temperature full-containment tank provided by this embodiment roughly includes an inner tank for storing cryogenic medium 1, an outer tank surrounding the periphery of the inner tank 1, an operating platform 3 arranged on the top of the outer tank 2, and The top of the tank 2 penetrates into the pump column 4 at the bottom of the inner tank 1, a submersible pump 5 arranged in the pump column 4, and a material extraction device 6 for extracting low-level materials from the bottom of the inner tank 1.
  • Both the inner tank 1 and the outer tank 2 roughly include a horizontally arranged bottom plate and a cylinder erected on the bottom plate, and an insulating layer is provided between the bottom plates of the inner tank 1 and the outer tank 2 and between the cylinders.
  • the top of the outer tank 2 has a dome and a top plate suspended below the dome, and an insulating layer is also arranged between the dome and the top plate.
  • the top plate is connected with the inner tank 1 in a soft seal.
  • the pump column 4 penetrates the top of the outer tank 2 and extends into the bottom of the inner tank 1.
  • the submersible pump 5 is installed at the bottom of the pump column 4 and is immersed in the low-temperature medium in the inner tank 1 to transport the low-temperature medium in the inner tank 1 through the pump column 4 to the outside.
  • the operating platform 3 is fixed on the top of the outer tank 2 and can be used to house various pipeline valves, working accessories, etc., equipped with the low-temperature full-containment tank, and for the operator to perform work and maintenance on it.
  • the low-temperature full-capacity tank of this embodiment is equipped with a material extraction device 6, which serves as a supplementary discharge measure after the submersible pump 5 is pumped to the lowest liquid level L1 and stops, to reduce the low-temperature full-capacity The ineffective volume of the tank.
  • the material extraction device 6 involved in the present invention can not only extract low-level materials (that is, the low-temperature medium below the lowest operable liquid level L1 of the submersible pump 5), but also The submersible pump 5 in the column 4 can be operated within the range of the working liquid level.
  • the material extraction device 6 of this embodiment includes a material circulation tank 61, a first venturi mixer 62, an introduction pipeline 63, an extraction pipeline 64, and a cryogenic pump 65. Furthermore, a control valve 66 is also provided on the introduction pipeline 63.
  • the material circulation tank 61 in this embodiment is a horizontal low-temperature tank, which is installed on the operating platform 3.
  • the inside of the material circulation tank 61 is used to contain low-temperature media, and the outside of the material circulation tank 61 can be wrapped with cold insulation materials.
  • an overflow weir 611 is provided in the material circulation tank 61.
  • the overflow weir 611 divides the internal space of the material circulation tank 61 into two parts. (Left side of 611) When the low temperature medium exceeds the height of the overflow weir 611, the low temperature medium overflows outside the overflow weir 611 (that is, the right side of the overflow weir 611 in the figure).
  • the space on the left side of the overflow weir 611 should meet the requirement of the circulation volume of the cryogenic medium required for medium extraction, and the height of the overflow weir 611 should meet the requirement of the minimum operating liquid level of the cryopump 65. On this basis, it should be set according to the actual situation. Determine the height of the overflow weir 611.
  • An outlet 6101 is provided at the bottom of the left end of the material circulation tank 61.
  • the outlet 6101 communicates with the space enclosed by the overflow weir 611 and is used for outputting low-temperature medium during medium extraction.
  • the bottom of the right end of the material circulation tank 61 is also provided with a medium output port 6103 which communicates with the space outside the overflow weir 611 in the material circulation tank 61 and is used to output low-temperature medium to the outside.
  • An inlet 6102 is provided on the left side of the top of the material circulation tank 61 for receiving low-temperature medium.
  • the first venturi mixer 62 is placed horizontally on the bottom plate of the inner tank 1 so as to have a low installation height.
  • the first venturi mixer 62 is a liquid-liquid mixer, which mainly includes a contraction section 621, a throat section 622, and a diffusion section 623 connected in sequence.
  • the first Venturi mixer 62 further has a suction cavity 624.
  • the constriction section 621 and the diffusion section 623 are both hollow structures with gradual cross-sections.
  • the large end opening of the constriction section 621 is used as the inlet 6201 of the first Venturi mixer 62, and the large end opening of the diffusion section 623 is used as the first Venturi mixer. 62 exit 6203.
  • One end of the throat section 622 is connected to the small end opening of the contraction section 621, and the other end is aligned with the small end opening of the diffuser section 623.
  • the suction cavity 624 is circumferentially arranged on the periphery of the throat section 622, and a double cavity structure is formed at the throat section 622.
  • the two ends of the suction cavity 624 are respectively connected with the outer wall of the contraction section 621 and the outer wall of the diffusion section 623.
  • the outer peripheral wall of the suction cavity 624 is provided with a plurality of suction holes 6202 which communicate with the inside of the inner tank 1 so that the low-temperature medium in the inner tank 1 can be sucked into the suction cavity 624.
  • An annular cavity is formed between the suction cavity 624 and the throat pipe 622, and the suction cavity 624 communicates with the inside of the throat pipe section 622, and the low-temperature medium in the suction cavity 624 can further enter the throat pipe section 622.
  • the introduction pipe 63 passes through the top of the outer tank 2, and the outlet 6101 of the material circulation tank 61 is connected to the inlet 6201 of the first venturi mixer 62 to introduce the low-temperature medium in the material circulation tank 61 into the first venturi mixer
  • the extraction operation is performed in 62.
  • the lead-out pipeline 64 also passes through the top of the outer tank 2, and the outlet 6203 of the first Venturi mixer 62 is connected to the inlet 6102 of the material circulation tank 61 to lead the low-temperature medium in the first Venturi mixer 62 to the material circulation In the tank 61.
  • the cryopump 65 is installed on the operating platform 3 and connected to the introduction pipeline 63 to provide power for the flow of the cryogenic medium.
  • the cryopump 65 adopts a non-submerged pump, that is, it does not need to be immersed in a cryogenic medium, and it can be a non-submerged pump of any structure.
  • the control valve 66 is arranged on the introduction pipeline 63, on the one hand, it controls the on and off of the introduction pipeline 63, and at the same time, it can also adjust the flow of the low-temperature medium introduced into the pipeline 63.
  • the control valve 66 is located downstream of the cryopump 65 but located outside the outer tank 2.
  • the above-mentioned material circulation tank 61, the first venturi mixer 62, the introduction pipe 63, the discharge pipe 64, the cryogenic pump 65 and the control valve 66 are required to be able to withstand the temperature of the extracted cryogenic medium. Low temperature material manufacturing.
  • the working principle of the material extraction device 6 is: during medium extraction, the low temperature medium in the material circulation tank 61 is driven by the cryogenic pump 65 and enters through the introduction pipeline 63.
  • the first Venturi mixer 62 for ease of understanding, the part of the low temperature medium introduced from the material circulation tank 61 into the first Venturi mixer 62 is called the initial low temperature medium F0.
  • the initial low temperature medium F0 after the initial low temperature medium F0 enters the first Venturi mixer 62, it flows from the contraction section 621 to the throat section 622 due to the flow cross-sectional area Decrease, the flow rate increases, and the pressure decreases, so that the local low pressure and high-speed flow entrainment effect is formed at the throat section 622, so that the low-temperature medium Fi in the inner tank 1 enters the first venturi mixer 62 through the suction hole 6202 under the action of the pressure difference. , The sucked low-temperature medium Fi is mixed with the initial low-temperature medium F0.
  • the mixed low-temperature medium Fm in the diffusion section 623 increases due to the increase in circulation cross-sectional area, the flow rate decreases, and the pressure increases, and then enters the material circulation tank 61 through the lead-out pipe 64.
  • the throat section 622 of the first venturi mixer 62 is also provided with a suction cavity 624.
  • the low-temperature medium in the inner tank 1 is first sucked into the suction cavity 624, and then enters the throat section 622 for mixing.
  • the momentum of the initial low-temperature medium F0 can be used more effectively, so that the mixed low-temperature medium can flow back to the material circulation tank 61 more smoothly.
  • the flow rate of the low-temperature medium reaching the material circulation tank 61 is greater than the flow rate of the initial low-temperature medium initially pumped from the material circulation tank 61 into the first venturi mixer 62, and the extra part is the low-temperature medium extracted from the inner tank 1 .
  • the low-temperature medium in the inner tank 1 can be continuously extracted into the material circulation tank 61.
  • the low temperature medium in the overflow weir 611 in the material circulation tank 61 is used to maintain the medium extraction operation.
  • the low temperature medium in the material circulation tank 61 exceeds the overflow weir 611, the low temperature medium exceeding the height of the overflow weir 611 can be output through the medium Port 6103 conveys outward.
  • the material extraction device 6a is further provided with a pressurizing unit 67 on the basis of the foregoing embodiment, and the pressurizing unit 67 is arranged in the lead-out pipeline 64 Above, it is used to increase the power of the mixed low-temperature medium to flow to the material circulation tank 61a, so that the low-temperature medium can flow back to the material circulation tank 61a more smoothly. It is suitable for the situation of large pumping degree, such as high-altitude low-temperature full-capacity tank.
  • the pressurizing unit 67 includes a second Venturi mixer 671, a pressurized introduction pipeline 672, and a pressurized control valve 673.
  • the composition structure of the second Venturi mixer 671 may be the same as the composition structure of the first Venturi mixer 62.
  • the suction hole 6712 and the outlet 6713 of the second venturi mixer 671 are connected in series on the lead-out pipe 64a.
  • the lead-out pipe 64a is divided into a first lead-out section 641a and a second lead-out section 642a, and the first lead-out section 641a is connected
  • the outlet 6203 of the first Venturi mixer 62 and the suction hole 6712 of the second Venturi mixer 671, and the second lead-out section 642a connects the outlet 6713 of the second Venturi mixer 671 and the inlet 6102a of the material circulation tank 61a.
  • the pressurized introduction pipeline 672 connects the inlet 6711 of the second Venturi mixer 671 and the outlet 6101a of the material circulation tank 61a to introduce a certain initial low temperature medium from the material circulation tank 61a to the second Venturi mixer 671.
  • the low temperature medium is further mixed with the mixed low temperature medium from the first Venturi mixer 62 in the second Venturi mixer 671 to increase the pressure, so that the low temperature medium has greater power to return to the material circulation from the second lead-out section 642a Tank 61a.
  • the pressurization control valve 673 is arranged on the pressurization introduction pipeline 672, on the one hand, it controls the on and off of the pressurization introduction pipeline 672, and on the other hand, it also adjusts the flow rate of the pressurization introduction pipeline 672.
  • the second venturi mixer 671, the pressurization introduction line 672 and the pressurization control valve 673 are also required to be able to withstand the temperature of the extracted low-temperature medium. Low temperature material manufacturing.
  • a second Venturi mixer 671 is used to increase the power of refluxing the low-temperature medium to form a two-stage series extraction process.
  • more Venturi mixers can be connected in series on the lead-out pipeline 64/64a to form a multi-stage series extraction process, and multi-stage series extraction.
  • the connection method can be deduced by analogy.
  • the material circulation tank 61a adopts a vertical storage tank.
  • the inlet 6102a of the material circulation tank 61a is located at the top, and the outlet 6101a of the material circulation tank 61a is located on the side wall close to the bottom.
  • the material circulation tank 61a is not provided with an overflow weir 611, but is provided with an overflow port 6104a on the side wall of the material circulation tank 61a.
  • the height of the overflow port 6104a is higher than that of the outlet 6101a of the material circulation tank 61a.
  • the liquid level required when the medium is extracted is connected to the medium output port 6103a from the overflow port 6104a.
  • the structure of the vertical material circulation tank 61a is also applicable to the material extraction device 6 in the previous embodiment.
  • the overflow weir 611 and the overflow port 6104a are respectively adopted on the material circulation tank 61/61a to form a liquid level control mechanism to control the opening of the medium output port 6103/6103a when the preset liquid level is reached. close.
  • the liquid level control mechanism may also include an electrically connected liquid level gauge and an on-off valve. The liquid level gauge is used to detect the liquid level in the material circulation tank, and the on-off valve is correspondingly arranged at the medium output port. .
  • the Venturi mixer 62/671 in the above embodiments can also be replaced with the structure shown in FIG. 6.
  • the Venturi mixer 62b is not equipped with a suction cavity 624, but a plurality of suction holes 6202b are provided on the outer peripheral wall of the throat section 622b, and a suction pipe 625b is also provided at each suction hole 6202b. .
  • the initial low-temperature medium F0 When the initial low-temperature medium F0 is introduced into the contraction section 621 of the Venturi mixer 62b, under the action of the pressure difference, the low-temperature medium Fi in the inner tank 1 can be guided into the throat section 622b through the suction pipe 625b, and the initial low-temperature medium Fi After mixing, the mixed low-temperature medium Fm is then led to the next process.
  • the suction pipe 625b can also be removed, and the low-temperature medium Fi in the inner tank 1 is directly sucked through the suction hole 6202b on the outer peripheral wall of the throat section 622b.
  • a suction pipe may be additionally provided at the suction hole 6202 of the suction cavity 624.
  • the suction hole 6712 of the second venturi mixer 671 can also be additionally provided with a suction pipe.
  • the low-temperature full-capacity tank in each embodiment of the present invention outputs the low-temperature medium through the pump column 4 through the power of the submersible pump 5 during normal operation.
  • the submersible pump 5 can reduce the liquid level in the low-temperature full-capacity tank to L1 as shown in Figure 1 and Figure 3, according to the prior art In the general submersible pump 5, L1 is about 1.2m.
  • the submersible pump 5 stops, if it is necessary to further extract the low-temperature medium from the inner tank 1, use the material extraction device 6/6a, and the material extraction device 6/ 6a According to the working principle introduced above, the low-temperature medium at the bottom of the inner tank 1 is continuously extracted until the liquid level drops to the first Venturi mixer 62, and the liquid level at this time is at L2.
  • the L2 can be approximately 0.2m to 0.3m.
  • the liquid level in the inner tank 1 can be reduced by about 1m, which significantly reduces the ineffective volume of the low-temperature full-containment tank and improves the volume utilization rate of the low-temperature full-containment tank.
  • the power part and control part of the material extraction device 6/6a are all arranged outside the outer tank 2, except that the Venturi mixer 62/671/62b and the pipeline part need to be immersed in the low-temperature medium , No other equipment or cables are immersed in the low temperature medium, and the parts in the tank can realize the maintenance-free operation of the whole life cycle of the storage tank.
  • the material circulation tank 61/61a of the material extraction device 6/6a may not store the low-temperature medium, and when the low-level medium needs to be extracted At this time, fill a certain amount of low temperature medium into the material circulation tank 61/61a as the initial power flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

一种具有低液位物料抽提装置的低温全容罐,包括内罐(1)、外罐(2)、操作平台(3)和能抽提低液位物料的物料抽提装置(6);物料抽提装置(6)包括安装于操作平台(3)上的物料循环罐(61)和低温泵(65),安装于内罐(1)底部的第一文丘里混合器(62)以及相应的连接管路;物料循环罐(61)内的低温介质可以经低温泵(65)和引入管路(63)进入第一文丘里混合器(62),使得内罐(1)中的低温介质能够在压力差作用下经第一文丘里混合器(62)的吸入孔(6202)进入第一文丘里混合器(62)中,混合后经引出管路(64)进入物料循环罐(61)。该低温全容罐能够将罐内泵柱中潜液泵无法抽提的低液位的低温介质抽提出来,减小低温全容罐的无效容积,提高全容罐的容积利用率;低液位物料抽提装置还可以作为泵柱之外的备用抽提设施。

Description

一种具有低液位物料抽提装置的低温全容罐 技术领域
本发明涉及低温液化气体存储技术领域,特别涉及一种具有低液位物料抽提装置的低温全容罐。
背景技术
常温常压下呈气态、适当冷冻后可以液化的物质均可采用低温常压储罐来安全高效地储存。符合这一特性的物质有石油化工行业所涉及的甲烷、乙烯、乙烷、丙烯、丙烷、丁烯、丁烷等烃类,有化工行业常用的氨等。甲烷作为天然气的主要成分、丙烷和丁烷作为液化气的主要成分,相当大的比例是作为工业和民用清洁能源使用。随着世界对环保问题重视程度的增加,液化烃(Liquefied Hydrocarbon)和液化天然气(Liquefied Natural Gas,以下简称LNG)等清洁能源的消耗正不断增加,另外,以烃类为原料进一步深加工的石油化工企业的数量和生产规模也在增加,用于储存这些清洁能源和液化烃类的大型低温储罐的需求也随之上升。
基于安全方面的考虑,现有大型低温全容储罐罐壁和罐底均不允许开孔,与储罐连接的管线均采用上进上出方式,即从罐顶进出。由于储罐直径、高度较大,罐顶空间高度加上罐壁高度已经远远大于液体的吸上真空高度,出料泵只能采取液下方式工作,即采用低温潜液泵。
低温潜液泵在启动时要求储罐内有足够的低温介质,保证最低液位不得低于低温潜液泵所需的最低可操作液位高度。目前低温潜液泵的最低可操作液位加上一定的安全裕量后通常为1.2m左右,即低温全容罐底部1.2m范围内通常为工作“死区”,导致罐底无效工作容积很大。例如,50000m 3低温储罐内罐直径约Ф46m,1.2m高度体积约1994m 3;80000m 3低温储罐内罐直径约Ф59m,1.2m高度体积约3280m 3;160000m 3低温储罐内罐直径约Ф87m,1.2m高度体积约7134m 3
罐底无效工作容积的物料无法通过低温潜液泵排出罐外,若储罐需要停机检修,这些底部物料只能靠汽化排出,能耗很大,周期也很长。
发明内容
本发明的目的是提供一种具有低液位物料抽提装置的低温全容罐,以解决现有技术中储罐底部无效工作容积太大、无法抽出的残余介质太多的问题。
为解决上述技术问题,本发明采用如下技术方案:一种具有低液位物料抽提装置的低温全容罐,包括内罐、包围于内罐外围的外罐以及设置于外罐顶部的操作平台;低温全容罐还包括能抽提低液位物料的物料抽提装置;所述物料抽提装置包括:物料循环罐,安装于所述操作平台上,其内用于盛装低温介质;第一文丘里混合器,安装于所述内罐的底部;其两端分别为进口和出口,其外周设有吸入孔;引入管路,由所述物料循环罐的出口连接所述第一文丘里混合器的进口;引出管路,由所述第一文丘里混合器的出口连接所述物料 循环罐的进口;低温泵,安装于所述操作平台上,并连接于所述引入管路中;在进行介质抽提时,所述物料循环罐内的低温介质经所述低温泵和所述引入管路进入所述第一文丘里混合器,使得所述内罐中的低温介质能够在压力差作用下经所述吸入孔进入第一文丘里混合器中,混合后经所述引出管路进入所述物料循环罐。
其中,所述第一文丘里混合器包括依次连接的收缩段、喉管段和扩散段;所述收缩段的大端开口作为进口,连接所述引入管路;所述扩散段的大端开口作为出口,连接所述引出管路;所述喉管段的两端分别连接所述收缩段的小端开口和所述扩散段的小端开口;所述吸入孔对应于所述喉管段的外周开设,并与所述喉管段内部相通;所述第一文丘里混合器在所述内罐中水平地放置。
其中,所述第一文丘里混合器还包括环设于所述喉管段外围并与所述喉管段内部相通的吸入腔;所述吸入腔的两端分别与所述收缩段的外壁和所述扩散段的外壁相接;所述吸入腔的外周壁开设所述吸入孔。
其中,所述吸入孔开设于所述喉管段的外周壁;所述第一文丘里混合器还包括对应设置于所述吸入孔处的吸入管,所述吸入管与所述内罐内部相通。
其中,所述物料循环罐还设有用于向外部输出低温介质的介质输出口,并设有液位控制机构以在达到预设液位时控制所述介质输出口的开闭,该预设液位高于介质抽提时所述低温泵运行所需的液位。
其中,所述液位控制机构为设置于所述物料循环罐内的溢流堰;所述物料循环罐的出口与所述溢流堰内部空间相通,所述介质输出口与所述溢流堰外的空间相通。
其中,所述液位控制机构为设置于所述物料循环罐侧壁上的溢流口,所述溢流口的高度高于所述物料循环罐的出口,所述溢流口与所述介质输出口相通。
其中,所述液位控制机构包括电连接的液位计和开关阀,所述液位计用以检测所述物料循环罐中的液位,所述开关阀对应设置于所述介质输出口处。
其中,所述引入管路上设置有控制阀门以调节所述引入管路中的流量,所述控制阀门位于所述外罐外部;所述低温泵位于所述物料循环罐与所述控制阀门之间。
其中,所述物料抽提装置还包括加压单元,所述加压单元设置于所述引出管路上,以增加低温介质往所述物料循环罐流动的动力。
其中,所述加压单元包括:第二文丘里混合器,其吸入孔和出口串接在所述引出管路上;加压引入管路,连通所述第二文丘里混合器的进口和所述物料循环罐的出口;加压控制阀门,设置于所述加压引入管路上,以调节所述加压引入管路中的流量。
由上述技术方案可知,本发明至少具有如下优点和积极效果:本发明的低温全容罐配备有可抽提低液位物料的物料抽提装置,其中,物料抽提装置包括位于罐顶操作平台的物料循环罐和低温泵,位于内罐底部的文丘里混合器,以及相应的连接管路。物料循环罐内的低温介质通过低温泵进入文丘里混合器中,根据伯努利原理和动量传递原理,低温介质在文丘里混合器中会形成局部低压和高速流动夹带效应,使得内罐中的低温介质在压力 差作用下经吸入孔进入文丘里混合器,混合后的低温介质一同回到物料循环罐。在循环过程中,回到物料循环罐的低温介质流量大于从物料循环罐泵出的低温介质流量,差值部分即为抽提出来的低温介质。
该物料抽提装置主要作为低温全容罐中潜液泵抽到最低液位停机后的补充出料措施,通过这种抽提装置,可对原本处于工作“死区”的低液位的低温介质进行抽提,文丘里混合器的吸入孔所在液位上方的低温介质均可被该物料抽提装置抽提出来,从而可将低温全容罐的液位降低至第一文丘里混合器的吸入孔或吸入管口所在的位置处,该液位高度明显小于现有技术潜液泵所需的最低可操作液位高度,从而可显著减小低温全容罐的无效容积,提高全容罐的容积利用率。在同等罐体尺寸的情况下,可以增加全容罐的有效工作容积。而在有效工作容积一定的情况下,可降低内、外罐的高度,节省工程投资。
附图说明
图1是本发明低温全容罐一实施例的结构示意图。
图2是图1中物料抽提装置的结构示意图。
图3是图2中低温介质在第一文丘里混合器中混合的原理示意图。
图4是本发明低温全容罐另一实施例的结构示意图。
图5是图4中物料抽提装置的结构示意图。
图6是另一种文丘里混合器的结构示意图。
附图标记说明如下:1、内罐;2、外罐;3、操作平台;4、泵柱;5、潜液泵;6/6a、物料抽提装置;61/61a、物料循环罐;6101/6101a、出口;6102/6102a、进口;6103/6103a、介质输出口;6104a、溢流口;611、溢流堰;62、第一文丘里混合器;621、收缩段;622/622b、喉管段;623、扩散段;624、吸入腔;62b、文丘里混合器;625b、吸入管;6201、进口;6202/6202b、吸入孔;6203、出口;63、引入管路;64/64a、引出管路;641a、第一引出段;642a、第二引出段;65、低温泵;66、控制阀门;67、加压单元;671、第二文丘里混合器;6711、进口;6712、吸入孔;6713、出口;672、加压引入管路;673、加压控制阀门。
具体实施方式
体现本发明特征与优点的典型实施方式将在以下的说明中详细叙述。应理解的是本发明能够在不同的实施方式上具有各种的变化,其皆不脱离本发明的范围,且其中的说明及图示在本质上是当作说明之用,而非用以限制本发明。
本发明提供一种低温全容罐,用于储存液化后的低温介质,这些低温介质可以是甲烷、乙烯、乙烷、丙烯、丙烷、丁烯、丁烷等烃类,也可以是化工行业常用的氨等。
参阅图1,本实施例所提供的低温全容罐大致地包括用于储存低温介质的内罐1、包围于内罐1外围的外罐2、设置于外罐2顶部的操作平台3、从外罐2顶部穿入至内罐1底部的泵柱4、设置于泵柱4内的潜液泵5,以及用于从内罐1底部抽提低液位物料的物 料抽提装置6。
内罐1和外罐2大致地均包括水平布置的底板和立设于底板上的筒体,内罐1和外罐2的底板之间以及筒体之间均设置绝热层。外罐2的顶部具有拱顶和吊设于拱顶下方的顶板,拱顶与顶板之间也设置绝热层。顶板与内罐1软密封连接。泵柱4穿过外罐2的顶部伸入内罐1的底部。潜液泵5安装于泵柱4的底部,浸入于内罐1的低温介质中,用于将内罐1中的低温介质经泵柱4向外输送。操作平台3固定于外罐2的顶部,其上可用于容置低温全容罐所配备的各项管路阀件、工作配件等,并供操作人员在其上进行工作维护。
相比于现有技术的低温全容罐,本实施例的低温全容罐配备物料抽提装置6,其作为潜液泵5抽到最低液位L1停机后的补充出料措施,以减小低温全容罐的无效容积,值得一提的是,本发明涉及的物料抽提装置6不仅可以抽提低液位物料(即潜液泵5的最低可操作液位L1之下的低温介质),在泵柱4内的潜液泵5可以工作的液位范围它都能操作,因此在一些情况下,其也可作为潜液泵5之外的小流量输出备用设施。以下将结合图2主要对于物料抽提装置6进行详细介绍,而对于内罐1、外罐2、操作平台3、泵柱4、潜液泵5的其他具体结构可参照全容罐相关技术的结构,此处不再详述。
一并参阅图1和图2,本实施例的物料抽提装置6包括物料循环罐61、第一文丘里混合器62、引入管路63、引出管路64和低温泵65。进一步地,在引入管路63上还设置有控制阀门66。
本实施例中的物料循环罐61为卧式低温罐,安装于操作平台3上。物料循环罐61内部用于盛装低温介质,物料循环罐61外可包裹保冷材料。
以图2的视图方向为参照,物料循环罐61内设置有溢流堰611,溢流堰611将物料循环罐61内部空间分为两部分,当溢流堰611内(即图中溢流堰611左侧)低温介质超出溢流堰611高度时,低温介质溢出溢流堰611外(即图中溢流堰611右侧)。溢流堰611左侧的空间应满足介质抽提所需要的低温介质的循环容积要求,溢流堰611的高度应满足低温泵65最低操作液位的要求,在此基础上,根据实际情况设定溢流堰611的高度。
物料循环罐61的左端底部设有出口6101,该出口6101与溢流堰611内所包围的空间相通,用于在进行介质抽提时输出低温介质。
物料循环罐61的右端底部还设有介质输出口6103,该介质输出口6103与物料循环罐61中位于溢流堰611外的空间相通,用于向外部输出低温介质。
物料循环罐61的顶部靠左侧设有进口6102,用于接收低温介质。
第一文丘里混合器62水平地放置于内罐1的底板上,从而具有较低的安装高度。第一文丘里混合器62为液液混合器,其主要包括依次连接的收缩段621、喉管段622和扩散段623。本实施例中,该第一文丘里混合器62进一步地还具有吸入腔624。
收缩段621和扩散段623均为截面渐变的中空结构,收缩段621的大端开口作为该第一文丘里混合器62的进口6201,扩散段623的大端开口作为该第一文丘里混合器62的出口6203。喉管段622的一端连接收缩段621的小端开口,另一端对准扩散段623的小 端开口。
吸入腔624环绕地设置在喉管段622的外围,在喉管段622处形成双腔结构。吸入腔624的两端分别与收缩段621的外壁和扩散段623的外壁相接。吸入腔624的外周壁开设有多个吸入孔6202,这些吸入孔6202与内罐1的内部相通,以使内罐1中的低温介质能够被吸入该吸入腔624内。吸入腔624与喉管622之间形成一环形腔,吸入腔624与喉管段622内部相通,吸入腔624内的低温介质可进一步进入喉管段622中。
引入管路63穿过外罐2的顶部,由物料循环罐61的出口6101连接第一文丘里混合器62的进口6201,用以将物料循环罐61中的低温介质引入第一文丘里混合器62中进行抽提操作。
引出管路64亦穿过外罐2的顶部,由第一文丘里混合器62的出口6203连接物料循环罐61的进口6102,以将第一文丘里混合器62中的低温介质引出至物料循环罐61中。
低温泵65安装于操作平台3上,并连接于引入管路63中,以提供低温介质流动的动力。该低温泵65采用非液下泵,即无需浸于低温介质中,其可以是任何结构形式的非液下泵。
控制阀门66设置于引入管路63上,一方面控制引入管路63的通断,同时还可调节引入管路63中的低温介质流量。该控制阀门66位于低温泵65的下游,但位于外罐2的外部。
上述物料循环罐61、第一文丘里混合器62、引入管路63、引出管路64、低温泵65和控制阀门66均要求能够耐受所抽提的低温介质的温度,采用能耐受相应温度的低温材料制造。
一并结合图2和图3,该物料抽提装置6的工作原理为:在进行介质抽提时,物料循环罐61内的低温介质在低温泵65的动力驱动下,经引入管路63进入第一文丘里混合器62中,为便于理解,将从物料循环罐61引入第一文丘里混合器62的这一部分低温介质称为初始低温介质F0。根据伯努利(能量守恒)原理和动量传递原理(动量守恒),初始低温介质F0进入第一文丘里混合器62后,在从收缩段621向喉管段622流动的过程中,因流通截面积减小,流速增加,压力降低,从而喉管段622处形成局部低压和高速流动夹带效应,使得内罐1中的低温介质Fi在压力差作用下经吸入孔6202进入第一文丘里混合器62中,被吸入的这些低温介质Fi与初始低温介质F0相混合,混合后的低温介质Fm在扩散段623因流通截面积增加,流速降低,压力提高,而后经引出管路64进入物料循环罐61。其中,本实施例中,第一文丘里混合器62的喉管段622外围还设置有吸入腔624,内罐1中的低温介质先被吸入到吸入腔624中,再进入喉管段622中进行混合,可以更有效地利用初始低温介质F0的动量,使得混合后的低温介质更顺畅地回流至物料循环罐61。
到达物料循环罐61的低温介质的流量大于初始从物料循环罐61泵入第一文丘里混合器62的初始低温介质的流量,多出的部分即为从内罐1中抽提出来的低温介质。经过上述不断的循环过程,即可不断地将内罐1中的低温介质抽提到物料循环罐61中。
物料循环罐61中位于溢流堰611内的低温介质用于维持介质抽提操作,当物料循环罐61中低温介质超出溢流堰611之后,超出溢流堰611高度的低温介质可以通过介质输出口6103向外输送。
参阅图4和图5,在低温全容罐的另一实施例中,物料抽提装置6a在前述实施例的基础上进一步地设有加压单元67,该加压单元67设置于引出管路64上,用于增加混合后的低温介质往物料循环罐61a流动的动力,以便于低温介质更顺利地回流至物料循环罐61a,适用于抽提高度较大的情况,如高度较大的低温全容罐。
本实施例中,该加压单元67包括第二文丘里混合器671、加压引入管路672和加压控制阀门673。
第二文丘里混合器671的组成结构可与第一文丘里混合器62的组成结构相同。第二文丘里混合器671的吸入孔6712和出口6713串接在引出管路64a上,具体地,引出管路64a分为第一引出段641a和第二引出段642a,第一引出段641a连接第一文丘里混合器62的出口6203和第二文丘里混合器671的吸入孔6712,第二引出段642a连接第二文丘里混合器671的出口6713和物料循环罐61a的进口6102a。
加压引入管路672连通第二文丘里混合器671的进口6711和物料循环罐61a的出口6101a,以从物料循环罐61a中向第二文丘里混合器671引入一定的初始低温介质,该初始低温介质在第二文丘里混合器671中与由第一文丘里混合器62出来的混合低温介质进一步混合,提升压力,从而使低温介质具有更大的动力从第二引出段642a回到物料循环罐61a。
加压控制阀门673设置于加压引入管路672上,一方面控制加压引入管路672的通断,另一方面也调节加压引入管路672中的流量。
与前一实施例同样地,该第二文丘里混合器671、加压引入管路672和加压控制阀门673亦要求能够耐受所抽提的低温介质的温度,采用能耐受相应温度的低温材料制造。
本实施例利用一个第二文丘里混合器671增加回流低温介质的动力,形成二级串联抽提流程。在其他实施例中,如抽提高度更大,回流动力不足时,还可以在引出管路64/64a上串接更多的文丘里混合器形成多级串联抽提流程,多级串联抽提的连接方式可以此类推。
相比于前一实施例,本实施例的另一个区别在于物料循环罐61a采用了立式储罐。物料循环罐61a的进口6102a位于顶部,物料循环罐61a的出口6101a位于靠近底部的侧壁上。该物料循环罐61a内未设置溢流堰611,而是在物料循环罐61a的侧壁上设有溢流口6104a,溢流口6104a的高度高于物料循环罐61a的出口6101a,且高于介质抽提时所需的液位,从该溢流口6104a处相连通地引出介质输出口6103a。
该立式的物料循环罐61a的结构形式也适用于前一实施例中的物料抽提装置6中。
在上述两实施例中,物料循环罐61/61a上分别采用溢流堰611和溢流口6104a的结构形成液位控制机构,以在达到预设液位时控制介质输出口6103/6103a的开闭。在其他未示出的实施例中,液位控制机构还可以包括电连接的液位计和开关阀,液位计用以检测 物料循环罐中的液位,开关阀对应设置于介质输出口处。
参阅图6,上述各实施例中的文丘里混合器62/671还可以更换为图6所示的结构形式。在图6所示的结构中,该文丘里混合器62b不配备吸入腔624,而是在喉管段622b的外周壁开设多个吸入孔6202b,对应在各吸入孔6202b处还设置有吸入管625b。当初始低温介质F0被引入文丘里混合器62b的收缩段621后,在压力差作用下,内罐1中的低温介质Fi可以经吸入管625b的引导进入喉管段622b中,与初始低温介质Fi混合,混合后的低温介质Fm再引出至下一流程。
在其他一些未示出的实施例中,吸入管625b也可以去除,内罐1中的低温介质Fi直接经喉管段622b外周壁的吸入孔6202b被吸入。另外,对于上述实施例第一文丘里混合器62的结构,也可以在吸入腔624的吸入孔6202处增设吸入管。同样地,第二文丘里混合器671的吸入孔6712处也可增设吸入管。
基于上述的介绍,本发明各实施例中的低温全容罐在正常工作时,通过潜液泵5的动力,经泵柱4向外输出低温介质。根据潜液泵5启动及维持工作所需的最低可操作液位,潜液泵5可将低温全容罐中的液位最低降至图1和图3中所示意的L1处,按照现有技术中一般潜液泵5的需求,L1大致为1.2m左右。当低温全容罐中的液位降至L1处,潜液泵5停机后,如需进一步从内罐1中抽提低温介质,则利用物料抽提装置6/6a进行,物料抽提装置6/6a按上文介绍的工作原理不断地对内罐1底部的低温介质进行抽提,直至液位降低至第一文丘里混合器62处,此时的液位位于L2处。该L2大致可在0.2m~0.3m左右。相比于L1的1.2m,可将内罐1中的液位降低1m左右,显著减小了该低温全容罐的无效容积,提高低温全容罐的容积利用率。
在该低温全容罐中,物料抽提装置6/6a的动力部分和控制部分均设置在外罐2的外部,除了文丘里混合器62/671/62b和管路部分需浸在低温介质中之外,没有其他设备或电缆浸泡在低温介质中,罐内部件可以实现储罐寿命全周期免维护运行。
值得一提的是,当低温全容罐工作在液位高于L1以上位置时,物料抽提装置6/6a的物料循环罐61/61a可以不储存低温介质,当需要进行低液位介质抽提时,再向物料循环罐61/61a充注一定量的低温介质作为初始动力流量即可。
虽然已参照几个典型实施方式描述了本发明,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施方式不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (11)

  1. 一种具有低液位物料抽提装置的低温全容罐,包括内罐、包围于内罐外围的外罐以及设置于外罐顶部的操作平台;其特征在于,所述低温全容罐还包括能抽提低液位物料的物料抽提装置;所述物料抽提装置包括:
    物料循环罐,安装于所述操作平台上;其内用于盛装低温介质;
    第一文丘里混合器,安装于所述内罐的底部;其两端分别为进口和出口,其外周设有吸入孔;
    引入管路,由所述物料循环罐的出口连接所述第一文丘里混合器的进口;
    引出管路,由所述第一文丘里混合器的出口连接所述物料循环罐的进口;
    低温泵,安装于所述操作平台上,并连接于所述引入管路中;
    在进行介质抽提时,所述物料循环罐内的低温介质经所述低温泵和所述引入管路进入所述第一文丘里混合器,使得所述内罐中的低温介质能够在压力差作用下经所述吸入孔进入第一文丘里混合器中,混合后经所述引出管路进入所述物料循环罐。
  2. 根据权利要求1所述的低温全容罐,其特征在于,所述第一文丘里混合器包括依次连接的收缩段、喉管段和扩散段;所述收缩段的大端开口作为进口,连接所述引入管路;所述扩散段的大端开口作为出口,连接所述引出管路;所述喉管段的两端分别连接所述收缩段的小端开口和所述扩散段的小端开口;所述吸入孔对应于所述喉管段的外周开设,并与所述喉管段内部相通;所述第一文丘里混合器在所述内罐中水平地放置。
  3. 根据权利要求2所述的低温全容罐,其特征在于,所述第一文丘里混合器还包括环设于所述喉管段外围并与所述喉管段内部相通的吸入腔;所述吸入腔的两端分别与所述收缩段的外壁和所述扩散段的外壁相接;所述吸入腔的外周壁开设所述吸入孔。
  4. 根据权利要求2所述的低温全容罐,其特征在于,所述第一文丘里混合器的吸入孔开设于所述喉管段的外周壁;
    所述第一文丘里混合器还包括对应设置于所述吸入孔处的吸入管,所述吸入管与所述内罐内部相通。
  5. 根据权利要求1所述的低温全容罐,其特征在于,所述物料循环罐还设有用于向外部输出低温介质的介质输出口,并设有液位控制机构以在达到预设液位时控制所述介质输出口的开闭,该预设液位高于介质抽提时所述低温泵运行所需的液位。
  6. 根据权利要求5所述的低温全容罐,其特征在于,所述液位控制机构为设置于所述物料循环罐内的溢流堰;所述物料循环罐的出口与所述溢流堰内部空间相通,所述介质输出口与所述溢流堰外的空间相通。
  7. 根据权利要求5所述的低温全容罐,其特征在于,所述液位控制机构为设置于所述物料循环罐侧壁上的溢流口,所述溢流口的高度高于所述物料循环罐的出口,所述溢流口与所述介质输出口相通。
  8. 根据权利要求5所述的低温全容罐,其特征在于,所述液位控制机构包括电连接 的液位计和开关阀,所述液位计用以检测所述物料循环罐中的液位,所述开关阀对应设置于所述介质输出口处。
  9. 根据权利要求1所述的低温全容罐,其特征在于,所述引入管路上设置有控制阀门以调节所述引入管路中的流量,所述控制阀门位于所述外罐外部;所述低温泵位于所述物料循环罐与所述控制阀门之间。
  10. 根据权利要求1所述的低温全容罐,其特征在于,所述物料抽提装置还包括加压单元,所述加压单元设置于所述引出管路上,以增加低温介质往所述物料循环罐流动的动力。
  11. 根据权利要求10所述的低温全容罐,其特征在于,所述加压单元包括:
    第二文丘里混合器,其吸入孔和出口串接在所述引出管路上;
    加压引入管路,连通所述第二文丘里混合器的进口和所述物料循环罐的出口;
    加压控制阀门,设置于所述加压引入管路上,以调节所述加压引入管路中的流量。
PCT/CN2020/132342 2019-11-29 2020-11-27 一种具有低液位物料抽提装置的低温全容罐 WO2021104469A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20891908.4A EP4047259A4 (en) 2019-11-29 2020-11-27 LOW TEMPERATURE COMPLETE CONTAINER WITH EXTRACTION DEVICE FOR LOW LIQUID MATERIAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911198981.4 2019-11-29
CN201911198981.4A CN112879795A (zh) 2019-11-29 2019-11-29 一种具有低液位物料抽提装置的低温全容罐

Publications (1)

Publication Number Publication Date
WO2021104469A1 true WO2021104469A1 (zh) 2021-06-03

Family

ID=76038412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132342 WO2021104469A1 (zh) 2019-11-29 2020-11-27 一种具有低液位物料抽提装置的低温全容罐

Country Status (3)

Country Link
EP (1) EP4047259A4 (zh)
CN (1) CN112879795A (zh)
WO (1) WO2021104469A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024166A (ja) * 2005-07-15 2007-02-01 Taiyo Nippon Sanso Corp 低温液化ガス供給装置
JP2007292180A (ja) * 2006-04-25 2007-11-08 Chiyoda Corp 液化ガス設備の保冷循環システム
CN203248988U (zh) * 2013-04-22 2013-10-23 中国海洋石油总公司 一种lng接收站蒸发气零排放处理系统
CN207716090U (zh) * 2017-07-31 2018-08-10 新兴能源装备股份有限公司 一种低温储罐快速自增压管路
CN208859947U (zh) * 2018-10-10 2019-05-14 乳山市创新新能源科技有限公司 一种lng冷能提取直接制冷系统
CN109928497A (zh) * 2019-04-15 2019-06-25 湖南中拓环境工程有限公司 一种改良型升流式复合缺氧池
CN211083611U (zh) * 2019-11-29 2020-07-24 南京扬子石油化工设计工程有限责任公司 一种具有低液位物料抽提装置的低温全容罐

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2109525A1 (de) * 1971-03-01 1972-09-07 Liquid Gas Anlagen Union Verfahren und Vorrichtung zum restlenzen von Flüssigkeitsbehältern, insbesondere auf Flüssiggastankern
DE102004043080A1 (de) * 2004-09-07 2006-03-09 Bayerische Motoren Werke Ag Entnahmeeinrichtung für einen druckfesten Behälter mit kondensiertem Gas
DE102004043079A1 (de) * 2004-09-07 2006-03-09 Bayerische Motoren Werke Ag Entnahmeeinrichtung für kondensiertes Gas aus einem druckfesten Behälter
FR2876981B1 (fr) * 2004-10-27 2006-12-15 Gaz Transp Et Technigaz Soc Pa Dispositif pour l'alimentation en combustible d'une installation de production d'energie d'un navire
CN201057178Y (zh) * 2007-05-31 2008-05-07 重庆特瑞尔分析仪器有限公司 气动采样泵
CN201940303U (zh) * 2010-12-09 2011-08-24 苏州德莱电器有限公司 一种三通管及采用该三通管的蒸汽喷射装置
NL2009328C2 (en) * 2012-08-16 2014-02-18 Vialle Alternative Fuel Systems Bv Assembly for buffering a liquefied petroleum gas in a liquefied petroleum gas storage and storage bag therefore.
JP6439110B2 (ja) * 2014-10-31 2018-12-19 五洋建設株式会社 エジェクターポンプを使用した地盤改良用負圧駆動装置
CN204384858U (zh) * 2014-12-24 2015-06-10 赤峰盛森硅业科技发展有限公司 液体抽取与输送装置
CN206146158U (zh) * 2016-08-31 2017-05-03 云南石丰种业有限公司 一种能够快速排出机体内多余水分的种子微波干燥机
CN208120945U (zh) * 2018-02-24 2018-11-20 江苏华西节能装备有限公司 金属制品酸洗废水污泥再生四氧化三铁系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024166A (ja) * 2005-07-15 2007-02-01 Taiyo Nippon Sanso Corp 低温液化ガス供給装置
JP2007292180A (ja) * 2006-04-25 2007-11-08 Chiyoda Corp 液化ガス設備の保冷循環システム
CN203248988U (zh) * 2013-04-22 2013-10-23 中国海洋石油总公司 一种lng接收站蒸发气零排放处理系统
CN207716090U (zh) * 2017-07-31 2018-08-10 新兴能源装备股份有限公司 一种低温储罐快速自增压管路
CN208859947U (zh) * 2018-10-10 2019-05-14 乳山市创新新能源科技有限公司 一种lng冷能提取直接制冷系统
CN109928497A (zh) * 2019-04-15 2019-06-25 湖南中拓环境工程有限公司 一种改良型升流式复合缺氧池
CN211083611U (zh) * 2019-11-29 2020-07-24 南京扬子石油化工设计工程有限责任公司 一种具有低液位物料抽提装置的低温全容罐

Also Published As

Publication number Publication date
EP4047259A4 (en) 2023-09-06
EP4047259A1 (en) 2022-08-24
CN112879795A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
CN109027662B (zh) 一种lng/l-cng橇装加气站
CN211574758U (zh) 一种利用泵柱实现低液位物料抽提功能的低温全容罐
CN102913753A (zh) Lng接收站的储存和气化工程输出系统及方法
WO2021104469A1 (zh) 一种具有低液位物料抽提装置的低温全容罐
CN211083611U (zh) 一种具有低液位物料抽提装置的低温全容罐
CN208090297U (zh) 虹吸式深冷液体立式贮罐系统
CN103629393A (zh) 一种低温潜液泵配套锥面密封吸入底阀
CN202868303U (zh) Lng接收站的储存和气化工程输出系统
CN205296301U (zh) 一种稳压箱式智能无负压供水设备
WO2021121013A1 (zh) 一种利用泵柱实现低液位物料抽提功能的低温全容罐
CN212844722U (zh) 一种液化石油气瓶水压爆破试验瓶体注水排气装置
CN206247681U (zh) 一种钻井泥浆制冷装置
CN109865222A (zh) 一种储油罐的抽油系统
WO2022252359A1 (zh) 一种核电厂新型自动卸压系统及方法
CN205480170U (zh) 低温罐
CN201568728U (zh) 低温液体储槽供气液装置
CN204384858U (zh) 液体抽取与输送装置
CN203925934U (zh) 低温真空泵池
CN106440447A (zh) 一种钻井泥浆制冷装置及其钻井泥浆制冷方法
CN202327629U (zh) 深冷虹吸罐系统
CN208222055U (zh) 一种液态二氧化碳储罐
CN205504452U (zh) 低温乙烯预应力混凝土全容罐贮存气化外输系统
JP2000328613A (ja) 給水システム
CN212830579U (zh) 一种储油罐防堵补气管道
CN217646015U (zh) 一种恒温真空冷源气液分离器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020891908

Country of ref document: EP

Effective date: 20220520

NENP Non-entry into the national phase

Ref country code: DE