WO2022252359A1 - 一种核电厂新型自动卸压系统及方法 - Google Patents
一种核电厂新型自动卸压系统及方法 Download PDFInfo
- Publication number
- WO2022252359A1 WO2022252359A1 PCT/CN2021/106714 CN2021106714W WO2022252359A1 WO 2022252359 A1 WO2022252359 A1 WO 2022252359A1 CN 2021106714 W CN2021106714 W CN 2021106714W WO 2022252359 A1 WO2022252359 A1 WO 2022252359A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water tank
- ads
- nuclear power
- ejector
- bubbler
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 84
- 238000002955 isolation Methods 0.000 claims abstract description 15
- 239000003381 stabilizer Substances 0.000 claims abstract description 9
- 239000002826 coolant Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 3
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 238000001816 cooling Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010793 Steam injection (oil industry) Methods 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C9/00—Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
- G21C9/004—Pressure suppression
- G21C9/012—Pressure suppression by thermal accumulation or by steam condensation, e.g. ice condensers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- the invention relates to the technical field of nuclear power plant steam self-relieving pressure systems, in particular to a novel automatic pressure-relieving system and method for nuclear power plants with passive design.
- the main function of the automatic depressurization system is to reduce the pressure of the reactor coolant system (RCS) to allow safe injection to be put into use after a loss of water accident in a nuclear power plant, so that the core can maintain cooling.
- the automatic pressure relief system of a general nuclear power plant is mainly composed of an automatic pressure relief valve and related pipelines. The inlet of the automatic pressure relief valve is connected to the pressure stabilizer, and the outlet is discharged to the suppression pool or refueling water tank.
- Safety injection is the main means for nuclear power plants to maintain core cooling.
- Using water level difference for safe injection has the characteristics of not needing to use pumps, fans, diesel engines or AC power sources, and is an advanced passive core cooling method. However, as the injection proceeds, the water level decreases and the driving capacity decreases, resulting in a decrease in the safe injection flow rate, which is not conducive to the cooling of the core.
- the purpose of the present invention is to overcome the deficiencies of the prior art, effectively utilize the energy released during steam injection, pump the water in the low-level water tank into the high-level water tank through the injector, and improve the ability of the high-level water tank to maintain gravity injection; in addition, it can also reduce The designed water capacity of the small high-level water tank reduces the space occupied by the high-level water tank and optimizes the layout in the containment.
- pressurizer Including pressurizer, ADS isolation valve, ejector, high level water tank located in containment, bubbler, low level water tank, ADS discharge pipe and water suction pipe;
- the outlet end of the voltage stabilizer is connected to the ADS isolation valve, a water inlet of the injector, and the bubbler in turn using an ADS discharge pipeline; water intake.
- a method for a new type of automatic pressure relief system of a nuclear power plant characterized in that: when a breach loss of water accident occurs in a nuclear power plant, the ADS isolation valves are successively opened, and the high-pressure steam flows from the pressurizer through the ADS discharge pipeline through the ejector, The high-pressure steam converts the pressure into suction kinetic energy through the nozzle in the ejector, and the water in the low-level water tank is guided into the suction chamber of the ejector through the suction pipe under the action of the suction kinetic energy, and the water in the low-temperature water tank and the ejector The high-pressure steam is mixed to form a mixed liquid, which is discharged out of the injector, and then discharged into the high-level water tank through the bubbler, thereby reducing the pressure of the reactor coolant system.
- the present invention can effectively utilize the energy released during steam injection, so that the energy originally discharged directly into the high-level water tank can be effectively utilized, and at the same time, the water source that was not used in the low-level water tank can be pumped to the high-level water tank Therefore, the design size of the high-level water tank can also be reduced, so as to maximize the use of the layout space inside the containment vessel, optimize the design of the containment vessel, and ultimately improve the safety and economy of the nuclear power plant.
- Fig. 1 is a process flow diagram of the present invention.
- the present invention effectively utilizes the kinetic energy discharged by the automatic pressure relief system to suck the water in the low-level water tank to the high-level, and can reduce the design size of the high-level water tank at the same time.
- the main design principle is: add an injector 3 to the ADS discharge pipeline 7 downstream of the ADS isolation valve, and the high-pressure working fluid in the ADS discharge pipeline—steam converts the pressure into kinetic energy through the nozzle of the injector 3,
- the pumped fluid the water in the low-level water tank is drawn into the suction chamber of the injector 3 due to the shear force between the working fluid and the jet boundary layer.
- the turbulent diffusion of the jet boundary layer makes the two fluids exchange energy, forming a A stream of mixed fluid exits injector 3 together.
- the injector 3 on the ADS pipeline 7, the energy that was directly discharged into the high-level water tank 4 can be effectively utilized, and at the same time, the water source in the original low-level water tank 6 is pumped into the high-level water tank 4 to maintain the injection capacity of the high-level water tank 4 Therefore, the design size of the high-level water tank 4 can also be reduced, thereby maximizing the utilization of the arrangement space inside the containment vessel and optimizing the design of the containment vessel.
- a novel automatic pressure relief system for a nuclear power plant of the present invention is characterized in that it includes a voltage stabilizer 1, an ADS isolation valve 2, an injector 3, a high-level water tank 4 located in the containment, a bubbler 5, and a low-level water tank.
- the outlet end of the pressurizer 1 adopts the ADS discharge pipe 7 to connect the ADS isolation valve 2, a water inlet of the ejector 3, and the bubbler 5 in turn; the bubbler 5 is located in the high water tank 4, and the low water tank 6 adopts
- the water suction pipe 8 is connected to another water inlet of the injector 3 .
- several parallel branches are arranged between the voltage stabilizer 1 and the injector 3, and two ADS isolation valves 2 connected in series are arranged in each branch.
- the ADS isolation valve 2 is opened successively to transfer the high-pressure steam generated by the primary circuit from the pressurizer In 1, the ADS discharge pipeline 7 flows through the ejector 3, and the high-pressure steam converts the pressure into suction kinetic energy through the nozzle in the ejector 3, and the water in the low-level water tank 6 is ejected through the suction pipe 8 under the action of the suction kinetic energy into the suction chamber of the ejector 3, the water in the low-temperature water tank 6 is mixed with the high-pressure steam in the ejector 3 to form a mixed liquid, which is discharged out of the ejector 3, and then discharged into the high-level water tank 4 through the bubbler 5, thereby reducing the reactor coolant. system pressure.
- the injector 3 by adding the injector 3, the energy directly discharged into the high-level water tank 4 can be effectively utilized without additional kinetic energy, and at the same time, the water source in the original low-level water tank 6 is pumped into the high-level water tank 4 to maintain the injection capacity of the high-level water tank 4 , so that the design size of the high-level water tank 4 can also be reduced accordingly, the layout space inside the containment can be maximized, the design of the containment can be optimized, and at the same time, the effect of effectively reducing the RCS pressure can be achieved, which is of great significance in the design of nuclear power plants. High application value.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Jet Pumps And Other Pumps (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
本发明涉及核电厂蒸汽自卸压系统技术领域,具体地说是非能动设计的一种核电厂新型自动卸压系统及方法,包括稳压器、ADS隔离阀、喷射器、位于安全壳内的高位水箱、鼓泡器、低位水箱、ADS排放管道以及吸水管道;稳压器的出口端采用ADS排放管道依次连接ADS隔离阀、喷射器的一个进水口、鼓泡器;鼓泡器位于高位水箱内,低位水箱采用吸水管道连接喷射器的另一个进水口。本发明与现有技术相比,可以有效地利用蒸汽喷射时释放的能量,使原先直接排放至高位水箱内的能量被有效地利用,同时将原先低位水箱内用不到的水源抽至高位水箱,高位水箱的尺寸也可以减小,从而最大化地利用安全壳内部的布置空间,最终提升核电厂的安全性和经济性。
Description
本发明涉及核电厂蒸汽自卸压系统技术领域,具体地说是非能动设计的一种核电厂新型自动卸压系统及方法。
自动卸压系统(ADS)的主要功能是在核电厂发生失水事故后,降低反应堆冷却剂系统(RCS)的压力以允许安全注射投入使用,以便堆芯维持冷却。一般核电厂的自动卸压系统主要由自动卸压阀门以及相关的管线组成,自动卸压阀门进口连接稳压器,出口排放至抑压水池或换料水箱。
自动卸压系统的运行将伴随着大量蒸汽余热的释放,有较大的能量浪费,因此,有必要设计一种新型的自动卸压系统对这部份余热加以有效利用。安全注射是核电厂维持堆芯冷却的主要手段。利用水位高差进行安全注射,具有无需使用泵、风机、柴油机或交流电源的特点,是一种先进的非能动的堆芯冷却方式。然而,随着注射的进行,水位降低,驱动能力降低导致安全注射流量减小,不利于堆芯的冷却。
发明内容
本发明的目的在于克服现有技术的不足,有效利用蒸汽喷射时释放的能量,通过喷射器将低位水箱内的水抽至高位水箱内,提升高位水箱维持重力注射的能力;此外,还可以减小高位水箱的设计水装量,从而减少高位水箱所占空间,优化安全壳内的布置。
为实现上述目的,设计一种核电厂新型自动卸压系统,其特征在于,
包括稳压器、ADS隔离阀、喷射器、位于安全壳内的高位水箱、鼓泡器、 低位水箱、ADS排放管道以及吸水管道;
所述稳压器的出口端采用ADS排放管道依次连接ADS隔离阀、喷射器的一个进水口、鼓泡器;所述鼓泡器位于高位水箱内,低位水箱采用吸水管道连接喷射器的另一个进水口。
进一步的,所述稳压器与喷射器之间设有若干并联的支路,每个支路中设有两个串联的ADS隔离阀。
一种核电厂新型自动卸压系统的方法,其特征在于:当核电厂发生破口失水事故时,相继开启ADS隔离阀,将高压蒸汽从稳压器中通过ADS排放管线流经喷射器,高压蒸汽在喷射器内通过喷嘴将压力转化为抽吸动能,低位水箱内的水在抽吸动能的作用下通过吸水管道被引射入喷射器的吸入室内,低温水箱内的水与喷射器内的高压蒸汽混合形成混合液体一起排出喷射器,再经鼓泡器排出至高位水箱中,从而降低反应堆冷却剂系统的压力。
本发明与现有技术相比,可以有效地利用蒸汽喷射时释放的能量,使原先直接排放至高位水箱内的能量被有效地利用,同时将原先低位水箱内用不到的水源抽至高位水箱,高位水箱的设计尺寸也可以因此而减小,从而最大化地利用安全壳内部的布置空间,优化安全壳的设计,最终提升核电厂的安全性和经济性。
图1为本发明的工艺流程图。
现结合附图对本发明作进一步地说明。
本发明通过非能动的结构设计,有效利用自动卸压系统排放的动能将低位 水箱里的水吸到高位,同时可以减小高位水箱的设计尺寸。
其主要设计原理是:在ADS隔离阀下游的ADS排放管路7上增加一个喷射器3,ADS排放管道内的压力较高的工作流体——蒸汽通过喷射器3的喷嘴将压力转化为动能,被抽流体——低位水箱内的水由于与工作流体之间的剪切力而被引射入喷射器3的吸入室,射流边界层的紊流扩散作用使得两股流体发生能量交换,形成一股混合流体一起排出喷射器3。这样通过在ADS管路7上设置喷射器3,使原先直接排放至高位水箱4内的能量被有效利用,同时将原先低位水箱6内水源抽至高位水箱4内,维持高位水箱4的注射能力,高位水箱4的设计尺寸也可以因此而减小,从而最大化地利用安全壳内部的布置空间,优化安全壳的设计。
实施例1
参见图1,本发明一种核电厂新型自动卸压系统,其特征在于,包括稳压器1、ADS隔离阀2、喷射器3、位于安全壳内的高位水箱4、鼓泡器5、低位水箱6、ADS排放管道7以及吸水管道8;
所述稳压器1的出口端采用ADS排放管道7依次连接ADS隔离阀2、喷射器3的一个进水口、鼓泡器5;所述鼓泡器5位于高位水箱4内,低位水箱6采用吸水管道8连接喷射器3的另一个进水口。其中,所述稳压器1与喷射器3之间设有若干并联的支路,每个支路中设有两个串联的ADS隔离阀2。
基于本发明中的自动卸压系统,当核电厂发生破口失水事故时,为了对RCS进行逐级受控卸压,相继开启ADS隔离阀2,将一回路产生的高压蒸汽从稳压器1中通过ADS排放管线7流经喷射器3,高压蒸汽在喷射器3内通过喷嘴将压力转化为抽吸动能,低位水箱6内的水在抽吸动能的作用下通过吸水管道8 被引射入喷射器3的吸入室内,低温水箱6内的水与喷射器3内的高压蒸汽混合形成混合液体一起排出喷射器3,再经鼓泡器5排出至高位水箱4中,从而降低反应堆冷却剂系统的压力。
本发明通过增加喷射器3,无需额外动能即可使原先直接排放至高位水箱4内的能量被有效利用,同时将原先低位水箱6内水源抽至高位水箱4内,维持高位水箱4的注射能力,从而高位水箱4的设计尺寸也可以因此而减小,最大化地利用安全壳内部的布置空间,优化安全壳的设计,同时达到有效降低RCS压力的效果,其在核电厂的设计中具有较高的应用价值。
Claims (3)
- 一种核电厂新型自动卸压系统,其特征在于,包括稳压器(1)、ADS隔离阀(2)、喷射器(3)、位于安全壳内的高位水箱(4)、鼓泡器(5)、低位水箱(6)、ADS排放管道(7)以及吸水管道(8);所述稳压器(1)的出口端采用ADS排放管道(7)依次连接ADS隔离阀(2)、喷射器(3)的一个进水口、鼓泡器(5);所述鼓泡器(5)位于高位水箱(4)内,低位水箱(6)采用吸水管道(8)连接喷射器(3)的另一个进水口。
- 如权利要求1所述的一种核电厂新型自动卸压系统,其特征在于,所述稳压器(1)与喷射器(3)之间设有若干并联的支路,每个支路中设有两个串联的ADS隔离阀(2)。
- 如权利要求2所述的自动卸压系统的方法,其特征在于:当核电厂发生破口失水事故时,相继开启ADS隔离阀(2),将高压蒸汽从稳压器(1)中通过ADS排放管线(7)流经喷射器(3),高压蒸汽在喷射器(3)内通过喷嘴将压力转化为抽吸动能,低位水箱(6)内的水在抽吸动能的作用下通过吸水管道(8)被引射入喷射器(3)的吸入室内,低温水箱(6)内的水与喷射器(3)内的高压蒸汽混合形成混合液体一起排出喷射器(3),再经鼓泡器(5)排出至高位水箱(4)中,从而降低反应堆冷却剂系统的压力。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110604239.X | 2021-05-31 | ||
CN202110604239.XA CN113421660A (zh) | 2021-05-31 | 2021-05-31 | 一种核电厂新型自动卸压系统及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022252359A1 true WO2022252359A1 (zh) | 2022-12-08 |
Family
ID=77713437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/106714 WO2022252359A1 (zh) | 2021-05-31 | 2021-07-16 | 一种核电厂新型自动卸压系统及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113421660A (zh) |
WO (1) | WO2022252359A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116246804B (zh) * | 2023-05-11 | 2023-07-07 | 中国电力工程顾问集团有限公司 | 一种抑压水池及水上浮动核电站的安全系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07159581A (ja) * | 1993-12-06 | 1995-06-23 | Hitachi Ltd | 原子炉冷却設備 |
CN103295654A (zh) * | 2012-02-29 | 2013-09-11 | 上海核工程研究设计院 | 核反应堆的非能动安全注射系统 |
US9460818B2 (en) * | 2012-03-21 | 2016-10-04 | Ge-Hitachi Nuclear Energy Americas Llc | Low pressure reactor safety systems and methods |
CN106297915A (zh) * | 2015-05-12 | 2017-01-04 | 国核华清(北京)核电技术研发中心有限公司 | 一种用于核电站的非能动安注系统 |
CN108597630A (zh) * | 2018-04-26 | 2018-09-28 | 中国核动力研究设计院 | 一种核电厂全压非能动重力注入系统 |
CN111916233A (zh) * | 2020-08-13 | 2020-11-10 | 中国核动力研究设计院 | 一种小型压水堆非能动与能动相结合的安全注射系统 |
-
2021
- 2021-05-31 CN CN202110604239.XA patent/CN113421660A/zh not_active Withdrawn
- 2021-07-16 WO PCT/CN2021/106714 patent/WO2022252359A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07159581A (ja) * | 1993-12-06 | 1995-06-23 | Hitachi Ltd | 原子炉冷却設備 |
CN103295654A (zh) * | 2012-02-29 | 2013-09-11 | 上海核工程研究设计院 | 核反应堆的非能动安全注射系统 |
US9460818B2 (en) * | 2012-03-21 | 2016-10-04 | Ge-Hitachi Nuclear Energy Americas Llc | Low pressure reactor safety systems and methods |
CN106297915A (zh) * | 2015-05-12 | 2017-01-04 | 国核华清(北京)核电技术研发中心有限公司 | 一种用于核电站的非能动安注系统 |
CN108597630A (zh) * | 2018-04-26 | 2018-09-28 | 中国核动力研究设计院 | 一种核电厂全压非能动重力注入系统 |
CN111916233A (zh) * | 2020-08-13 | 2020-11-10 | 中国核动力研究设计院 | 一种小型压水堆非能动与能动相结合的安全注射系统 |
Also Published As
Publication number | Publication date |
---|---|
CN113421660A (zh) | 2021-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108831573A (zh) | 一种核电站二次侧非能动余热排出安全系统 | |
CN113808764B (zh) | 安全壳内堆芯余热导出方法和系统 | |
WO2022252359A1 (zh) | 一种核电厂新型自动卸压系统及方法 | |
CN105070326A (zh) | 核电站的一回路充排系统 | |
CN209641363U (zh) | 一种直流蒸汽发生器的二次侧给水系统 | |
CN206929144U (zh) | 一种多级多喷口引射器装置 | |
CN207702444U (zh) | 一种锅炉给水系统 | |
CN208778054U (zh) | 蒸汽透平配套的喷射器作功后乏汽余热及凝液回收装置 | |
CN216487332U (zh) | 一种核电厂新型自动卸压系统 | |
CN207920859U (zh) | 一种一体化液环抽真空装置 | |
CN202380518U (zh) | 一种炼油厂循环水低压供水系统 | |
CN202072680U (zh) | 高效的油脂精炼真空系统 | |
CN203848584U (zh) | 一种大型火电机组的节能型开式循环冷却水系统 | |
CN209530281U (zh) | 一种大型水轮发电机组水导轴承在线滤油系统 | |
CN211345276U (zh) | 一种发电站定容排污系统 | |
CN203746436U (zh) | 乏燃料水池设备冷却水系统 | |
CN202947115U (zh) | 一种采用直流蒸汽发生器反应堆的启停系统 | |
CN201857256U (zh) | 掘进机油箱快速加油系统 | |
CN204458569U (zh) | 一种用于反应堆冷却剂系统抽真空的喷射器系统 | |
CN207195147U (zh) | 天然气增压装置 | |
CN204732169U (zh) | 一种浮动核电站的应急给水系统 | |
CN209843262U (zh) | 一种核电厂核燃料余热导出系统 | |
CN113447401B (zh) | 小型核反应堆余排系统取水接管多相流试验系统及方法 | |
CN212673181U (zh) | 一种蒸汽利用系统 | |
CN203323104U (zh) | 一种除氧器排汽余热回收利用装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21943716 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21943716 Country of ref document: EP Kind code of ref document: A1 |