WO2021104292A1 - 一种多层轧制复合板及其制造方法 - Google Patents

一种多层轧制复合板及其制造方法 Download PDF

Info

Publication number
WO2021104292A1
WO2021104292A1 PCT/CN2020/131388 CN2020131388W WO2021104292A1 WO 2021104292 A1 WO2021104292 A1 WO 2021104292A1 CN 2020131388 W CN2020131388 W CN 2020131388W WO 2021104292 A1 WO2021104292 A1 WO 2021104292A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
composite
rolled composite
rolled
transition layer
Prior art date
Application number
PCT/CN2020/131388
Other languages
English (en)
French (fr)
Inventor
薛鹏
朱晓东
闫博
焦四海
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to EP20893474.5A priority Critical patent/EP4067070A4/en
Priority to JP2022530327A priority patent/JP7459251B2/ja
Priority to US17/780,124 priority patent/US20220410533A1/en
Priority to KR1020227020163A priority patent/KR20220107208A/ko
Publication of WO2021104292A1 publication Critical patent/WO2021104292A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/08Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the cooling method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • B32B37/1018Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure using only vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • B21B2001/386Plates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/02Clad material

Definitions

  • the invention relates to a steel plate and a manufacturing method thereof, in particular to a rolled composite plate and a manufacturing method thereof.
  • Rolling compounding is to contact two or more metal plates with clean surfaces. Under high temperature and large deformation, the shear force generated by rolling is used to destroy the surface of the metal contact surface, so that the fresh metal is extruded and the interface is realized under the action of external force.
  • the special rolling method of metallurgical combination is a common method for producing composite plates, and the process is mature and stable.
  • Multi-layer metal rolling clad plates are prepared by hot-rolling and composite connection of two or more metals, which can not only reduce costs, but also can obtain physical and chemical properties that a single component metal does not possess. For example, combining a metal with a higher strength and a metal with a higher toughness can unify the strength and toughness of the material and be used in the manufacture of various engineering structural parts.
  • the bonding interface of the composite plate is prone to oxides and defects that hinder the bonding.
  • the diffusion of elements is also prone to occur during the hot-rolling composite process, and even in severe cases. Affect the performance of the base material and the composite material.
  • 22MnB5 as the base material and IF steel as the composite material composite board 22MnB5 provides the strength basis, IF steel improves the surface formability, but during the composite, the severe C diffusion will cause the strength of the 22MnB5 layer to decrease, and the IF steel The toughness of the layer decreases.
  • One of the objectives of the present invention is to provide a multi-layer rolled composite plate, which can be greatly changed according to the composition and process, and can achieve different strength levels from 100 MPa to 1700 MPa, providing the overall steel plate The basis of different specific mechanical properties.
  • the present invention proposes a multi-layer rolled composite plate, which includes a transition layer arranged between two adjacent composite layers, and the transition layer is an anisotropic thin steel plate.
  • the anisotropic thin steel plate can play a role in preventing the diffusion of components between the layers of other composite plates.
  • the anisotropic thin steel sheet can play a role in enhancing the adhesive strength between the layers of the composite sheet.
  • the anisotropic thin steel sheet is a cold rolled steel sheet or a hot rolled pickled steel sheet.
  • the degree of orientation of the anisotropic thin steel sheet can be controlled by controlling the cold rolling reduction ratio, annealing temperature or hot rolling finishing temperature.
  • the orientation degree of the anisotropic thin steel plate before the assembly of the billet satisfies: 1.25 ⁇ AI ⁇ 1.05.
  • the degree of orientation of the anisotropic thin steel sheet when the degree of orientation of the anisotropic thin steel sheet is high, the density of defects in the grains increases, the austenite recrystallization and the grain growth rate increase, and the vertical steel sheet direction recrystallizes
  • the driving force is greater than the driving force of the steel plate in the direction of the parallel steel plate. Therefore, in the process of hot-rolling, heating and soaking of the steel plate, the higher degree of orientation of the steel plate is very conducive to the anisotropic thin steel plate as a transition layer to dissolve the oxidation of the base metal surface during the assembly of billets Membrane and quickly metallurgically bond with the other layers of the composite board.
  • the degree of orientation of the anisotropic thin steel sheet before the assembly meets: 1.25 ⁇ AI ⁇ 1.05.
  • the transition layer has one or more layers.
  • the thickness of each layer of anisotropic thin steel plate is less than 5% of the total thickness of the multilayer rolled composite plate, preferably less than 1% of the total thickness.
  • the thickness of each layer of anisotropic thin steel sheet before rolling is 0.5-10.0 mm.
  • the thickness of each layer of anisotropic thin steel sheet before rolling is 1-3 mm.
  • each layer of anisotropic thin steel plate may be the same or different.
  • the mass percentage of the chemical element composition of the anisotropic thin steel plate is: C, 0.01-0.10%; Si, 0.01-0.5%; Mn, 0.5-2.5%; Al, 0.01-0.06%; Ti, ⁇ 0.06%; Cr, ⁇ 0.50%; Mo, ⁇ 0.30%; the balance is Fe and unavoidable impurities.
  • the chemical element composition mass percentage of the anisotropic thin steel sheet is: C, 0.01-0.10%; Si, 0.01-0.4%; Mn, 1.0-2.3%; Al, 0.02-0.04%; Ti, ⁇ 0.05%; Cr, ⁇ 0.50%; Mo, ⁇ 0.30%; the balance is Fe and unavoidable impurities.
  • the multilayer rolled composite board of the present invention includes a substrate layer, a transition layer located on one or both sides of the substrate layer, and a composite layer located on the outside of the transition layer.
  • the thickness of the substrate layer is usually in the range of 0.5-4.0 mm, such as 1.50-2.0 mm.
  • the composite layer is a steel plate used to composite with the substrate layer.
  • the thickness of each composite layer can be the same or different.
  • the thickness of each composite layer is usually in the range of 0.05-0.4mm, such as 0.15-0.25mm.
  • Exemplary structures of the multilayer rolled composite board of the present invention are composite layer-transition layer-base material layer, composite layer-transition layer-base material layer-transition layer-composite layer.
  • the substrate layer may be various steels well known in the art, including but not limited to martensitic steel, mild steel, high-strength steel, high-precipitation-strengthened steel, and the like.
  • the composite layer can be various steels well known in the art, including but not limited to mild steel, high-strength steel, martensitic steel, and the like.
  • the mass percentage of the chemical element composition of an exemplary martensitic steel is: C, 0.2-0.3%; Si, 0.1-0.5%; Mn, 1.0-1.6%; Al, 0.01-0.25%; B, 0.001-0.005%; Ti, ⁇ 0.05%; Cr, ⁇ 0.3%; Mo, ⁇ 0.2%; the balance is Fe and unavoidable impurities.
  • the mass percentage of the chemical element composition of an exemplary soft steel is: C, 0.0005-0.003%; Si, 0.001-0.01%; Mn, 0.1-0.5%; Al, 0.01-0.04%; Ti, ⁇ 0.06%; the balance is Fe and unavoidable impurities; in some embodiments, the mass percentage of the chemical element composition of mild steel is: C, 0.01-0.04%; Si, 0.01-0.05%; Mn, 0.1-0.5%; Al, 0.01-0.04% ; The balance is Fe and unavoidable impurities.
  • the mass percentage of the chemical element composition of an exemplary high-strength steel is: C, 0.1-0.3%; Si, 1.3-2.0%; Mn, 1.5-3.0%; Al, 0.01-0.05%; Ti, 0.01-0.03%; Mo, ⁇ 0.3%; the balance is Fe and unavoidable impurities; in some embodiments, the mass percentage of the chemical element composition of the high-strength steel is: C, 0.05-0.15%; Si, 0.1-0.4%; Mn, 1.5-3.0% ; Al, 0.01-0.05%; Ti, 0.01-0.03%; Cr, 0.4-0.6%; Mo, 0.1-0.3%; the balance is Fe and unavoidable impurities.
  • the mass percentage of the chemical element composition of an exemplary high precipitation strengthened steel is: C, 0.03-0.08%; Si, 0.1-0.4%; Mn, 1.0-1.5%; Al, 0.01-0.05%; Ti, 0.05-0.12%; The balance is Fe and unavoidable impurities.
  • the C content of the transition layer is between the base material layer and the composite layer.
  • the multilayer rolled composite plate of the present invention at least one surface of the multilayer rolled composite plate has a metal or non-metal coating.
  • the surface of the multi-layer rolled composite plate may not have a plating layer.
  • another object of the present invention is to provide a method for manufacturing the above-mentioned multilayer rolled composite plate, by which a multilayer rolled composite plate can be obtained.
  • the present invention proposes the above-mentioned manufacturing method of the multilayer rolled composite plate, which includes the steps:
  • step (3) cold rolling in the manufacturing method of the present invention, it also includes step (3) cold rolling.
  • the cold rolling deformation is ⁇ 40%.
  • step (4) annealing the soaking temperature is 700-880°C, and then cooling at a rate of 3-20°C/s to the rapid cooling start temperature of 600-780°C , Preferably 600-770°C, and then cool to 150-550°C at a rate of 20-1000°C/s, preferably 40-1000°C/s.
  • step (5) tempering the tempering temperature is 150-550°C, and the tempering time is 100s-400s.
  • the manufacturing method of the present invention also includes a leveling step.
  • the multilayer rolled composite board of the present invention has the following advantages and beneficial effects:
  • the multi-layer rolled composite plate of the present invention can be greatly changed according to the difference in composition and process, can realize different strength levels from 100 MPa to 1700 MPa, and provide a basis for different specific mechanical properties of the overall steel plate.
  • the manufacturing method of the present invention also has the above-mentioned advantages and beneficial effects.
  • Figure 1 shows the structure of the comparative composite board of Comparative Example 1.
  • Figure 2 shows the structure of the multilayer rolled composite sheet of Example 1.
  • Figure 3 is a metallographic diagram of the microstructure of the comparative composite plate of Comparative Example 1.
  • FIG. 4 is a metallographic diagram of the microstructure of the multilayer rolled composite sheet of Example 1.
  • the multilayer rolled composite board of Examples 1-6 was prepared by the following steps:
  • a transition layer is set between adjacent composite layers to form a blank, and the layers are vacuumed.
  • the mass percentage of each blank layer is shown in Table 1. It should be noted that the composite layer in this case includes a substrate layer and a composite layer.
  • it may also include step (3) cold rolling.
  • step (4) annealing the soaking temperature is 700-880°C, and then cooling at a rate of 3-20°C/s to the rapid cooling start temperature of 600-780°C, preferably 600-770 °C, and then cool to 150-550°C at a rate of 20-1000°C/s, preferably 40-1000°C/s.
  • it may also include step (5) tempering: the tempering temperature is 150-550°C, and the tempering time is 100s-400s.
  • the step of leveling may also be included.
  • Table 1 lists the mass percentage ratios of the chemical elements of the multilayer rolled composite plates of Examples 1-6 and the comparative composite plates of Comparative Example 1.
  • Table 2 lists the specific process parameters of the multilayer rolled composite board of Examples 1-6 and the comparative composite board of Comparative Example 1.
  • transition layer base material layer: transition layer: composite layer, the unit of thickness is mm.
  • Table 3 lists the relevant performance parameters and advantages of the composite steel plates of Examples 1-6.
  • Figure 1 shows the structure of the comparative composite board of Comparative Example 1.
  • Figure 2 shows the structure of the multilayer rolled composite sheet of Example 1.
  • the transition layer 3 may also have multiple layers.
  • the anisotropic thin steel sheet of the transition layer 3 is a cold-rolled steel sheet or a hot-rolled pickled steel sheet, and the orientation degree before forming the billet meets: 1.25 ⁇ AI ⁇ 1.05, and the thickness of each layer of the anisotropic thin steel sheet is smaller than that of multiple layers 5% of the total thickness of the rolled composite plate.
  • At least one surface of the multilayer rolled composite plate has a metal or non-metal coating.
  • Figure 3 is a metallographic diagram of the microstructure of the comparative composite plate of Comparative Example 1.
  • FIG. 4 is a metallographic diagram of the microstructure of the multilayer rolled composite sheet of Example 1.
  • the multi-layer rolled composite panel of Example 1 has significantly improved C diffusion between the composite layer 1 and the base material layer 2 compared with the comparative composite panel of Comparative Example 1.
  • the diffusion of C atoms belongs to interstitial diffusion, and the diffusion rate is large, especially when there is a large carbon potential difference on both sides of the composite interface, C atoms are very easy to diffuse. In severe cases, it even affects the respective performance of the base material layer 2 and the composite layer 1. Severe C diffusion leads to a decrease in the strength of the base material layer and a decrease in the toughness of the composite layer.
  • the anisotropic thin steel plate can effectively reduce the carbon potential difference on both sides of the composite interface and greatly slow down the diffusion of C.
  • the thickness of the transition layer 3 should be relatively thin. This is because if the thickness of the transition layer 3 is thick, the bonding strength after rolling and compounding depends on the strength of the transition layer 3 material, and if the strength of the transition layer 3 is low, it will decrease Bonding performance of metal composite panels. If the thickness of the transition layer 3 is too thin, it will not serve the purpose of preventing element diffusion.
  • the multi-layer rolled composite plate of the present invention can be greatly changed according to the composition and process, and can achieve different strength levels from 100 MPa to 1700 MPa, and provide a basis for different specific mechanical properties for the overall steel plate.
  • the manufacturing method of the present invention also has the above-mentioned advantages and beneficial effects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Metal Rolling (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明公开了一种多层轧制复合板,其包括设于两相邻的复合层之间的过渡层,所述过渡层为各向异性薄钢板。此外,本发明还公开了上述的多层轧制复合板的制造方法,其包括步骤:(1)在相邻的复合层之间设置过渡层以组坯,各层之间抽真空;(2)复合轧制:将坯料加热至1100-1260℃,保温0.6小时以上,然后采用Ar3以上温度热轧,控制终轧温度大于820℃,轧后以30-100℃/s的速度冷却,然后进行卷取,控制卷取温度为20-750℃。本发明所述的多层轧制复合板可以根据成分和工艺的不同大幅度变换,可以实现从150MPa到1700MPa的不同强度级别,为整体钢板提供不同特定力学性能基础。

Description

一种多层轧制复合板及其制造方法 技术领域
本发明涉及一种钢板及其制造方法,尤其涉及一种轧制复合板及其制造方法。
背景技术
轧制复合是将两种或两种以上表面洁净的金属板相互接触,在高温大变形下利用轧制产生剪切力破坏金属接触面的表层,使新鲜金属挤出并在外力作用下实现界面冶金结合的特殊轧制方式,是生产复合板的一种普遍方法,工艺成熟稳定。
多层金属轧制复合板是将两种以上的金属通过热轧轧制复合的连接方式制备成形,不仅能降低成本,而且可以获得单一组元金属所不具备的物理化学性能。例如,将强度较高的金属与韧性较高的金属进行复合,能使材料的强韧性相统一,用于各种工程结构件的制造当中。
由于受生产环境的影响及生产设备能力的限制,复合板结合界面处容易产生氧化物及阻碍结合的缺陷等问题,在热轧轧制复合的过程中也容易发生元素的扩散,严重情况下甚至影响基材和复材各自的性能。例如作为基材的22MnB5以及作为复材的IF钢复合得到的复合板,22MnB5提供强度基础,IF钢改善表面成型性能,但是在复合时,严重的C扩散会导致22MnB5层的强度下降,IF钢层的韧性下降。
发明内容
本发明的目的之一在于提供一种多层轧制复合板,该多层轧制复合板可以根据成分和工艺的不同大幅度变换,可以实现从100MPa到1700MPa的不同强度级别,为整体钢板提供不同特定力学性能基础。
为了实现上述目的,本发明提出了一种多层轧制复合板,其包括设于两相邻的复合层之间的过渡层,过渡层为各向异性薄钢板。
在本发明所述的技术方案中,各向异性薄钢板可以起到阻碍其他复合板各层之间成分扩散的作用。此外,该各向异性薄钢板可以起到增强复合板各层间粘合强度 的作用。
进一步地,在本发明所述的多层轧制复合板中,各向异性薄钢板为冷轧钢板或热轧酸洗钢板。
上述方案中,可以通过控制冷轧压下率、退火温度或是热轧终轧温度,从而控制各向异性薄钢板的取向程度。
进一步地,在本发明所述的多层轧制复合板中,各向异性薄钢板在组坯前的取向程度满足:1.25≥AI≥1.05。
在本发明所述的技术方案中,当各向异性薄钢板的取向程度较高时,晶粒内缺陷密度增多,奥氏体重结晶和晶粒长大速度增大,且垂直钢板方向重结晶驱动力大于平行钢板方向的钢板驱动力,因此,在钢板热轧加热均热过程中,较高的钢板取向程度非常有利于各向异性薄钢板作为过渡层,溶解组坯时母材表面的氧化膜,并且与复合板的其他层快速冶金结合。考虑到取向程度过大,则各向异性薄钢板在复合层内成分扩散速度增加,不易于控制各层之间的成分扩散,基于此,控制各向异性薄钢板在组坯前取向程度满足:1.25≥AI≥1.05。
进一步地,在本发明所述的多层轧制复合板中,过渡层具有一层或多层。
进一步地,在本发明所述的多层轧制复合板中,每一层各向异性薄钢板的厚度小于多层轧制复合板总厚度的5%,优选小于该总厚度的1%。
进一步地,在本发明所述的多层轧制复合板中,每一层各向异性薄钢板轧制前的厚度为0.5-10.0mm。
进一步地,在本发明所述的多层轧制复合板中,每一层各向异性薄钢板轧制前的厚度为1-3mm。
进一步地,在本发明所述的多层轧制复合板中,每一层各向异性薄钢板可相同或不同。
进一步地,在本发明所述的多层轧制复合板的一些实施方案中,各向异性薄钢板的化学元素组成质量百分比为:C,0.01-0.10%;Si,0.01-0.5%;Mn,0.5-2.5%;Al,0.01-0.06%;Ti,≤0.06%;Cr,≤0.50%;Mo,≤0.30%;余量为Fe和不可避免的杂质。优选地,各向异性薄钢板的化学元素组成质量百分比为:C,0.01-0.10%;Si,0.01-0.4%;Mn,1.0-2.3%;Al,0.02-0.04%;Ti,≤0.05%;Cr,≤0.50%;Mo,≤0.30%;余量为Fe和不可避免的杂质。
本发明所述的多层轧制复合板包括基材层,位于基材层一侧或两侧的过渡层,以及位于过渡层外侧的复材层。最终成品中,基材层的厚度通常为0.5-4.0mm的范围内,如1.50-2.0mm。复材层为用于与基材层复合的钢板,每一层复材层的厚度可相同或不同,最终成品中,每一层复材层的厚度通常在0.05-0.4mm的范围内,如0.15-0.25mm。示例性的本发明多层轧制复合板的结构为复材层-过渡层-基材层、复材层-过渡层-基材层-过渡层-复材层。
基材层可以是本领域熟知的各种钢,包括但不限于马氏体钢、软钢、高强钢、高析出强化钢等。复材层可以是本领域熟知的各种钢,包括但不限于软钢、高强钢和马氏体钢等。示例性的马氏体钢的化学元素组成质量百分比为:C,0.2-0.3%;Si,0.1-0.5%;Mn,1.0-1.6%;Al,0.01-0.25%;B,0.001-0.005%;Ti,≤0.05%;Cr,≤0.3%;Mo,≤0.2%;余量为Fe和不可避免的杂质。示例性的软钢的化学元素组成质量百分比为:C,0.0005-0.003%;Si,0.001-0.01%;Mn,0.1-0.5%;Al,0.01-0.04%;Ti,≤0.06%;余量为Fe和不可避免的杂质;在一些实施方案中,软钢的化学元素组成质量百分比为:C,0.01-0.04%;Si,0.01-0.05%;Mn,0.1-0.5%;Al,0.01-0.04%;余量为Fe和不可避免的杂质。示例性的高强钢的化学元素组成质量百分比为:C,0.1-0.3%;Si,1.3-2.0%;Mn,1.5-3.0%;Al,0.01-0.05%;Ti,0.01-0.03%;Mo,≤0.3%;余量为Fe和不可避免的杂质;在一些实施方案中,高强钢的化学元素组成质量百分比为:C,0.05-0.15%;Si,0.1-0.4%;Mn,1.5-3.0%;Al,0.01-0.05%;Ti,0.01-0.03%;Cr,0.4-0.6%;Mo,0.1-0.3%;余量为Fe和不可避免的杂质。示例性的高析出强化钢的化学元素组成质量百分比为:C,0.03-0.08%;Si,0.1-0.4%;Mn,1.0-1.5%;Al,0.01-0.05%;Ti,0.05-0.12%;余量为Fe和不可避免的杂质。
优选地,过渡层的C含量介于基材层与复材层之间。
进一步地,在本发明所述的多层轧制复合板中,多层轧制复合板的至少一个表面具有金属或非金属镀层。
当然,在一些其他的实施方式中,多层轧制复合板的表面也可以不具有镀层。
相应地,本发明的另一目的在于提供上述的多层轧制复合板的制造方法,通过该制造方法可以获得多层轧制复合板。
为了实现上述目的,本发明提出了上述的多层轧制复合板的制造方法,其包括步骤:
(1)在相邻的复合层之间设置过渡层以组坯,各层之间抽真空;
(2)复合轧制:将坯料加热至1100-1260℃,保温0.5小时以上、优选0.6小时以上,控制终轧温度大于820℃,轧后以30-100℃/s的速度冷却,然后进行卷取,控制卷取温度为20-750℃。
进一步地,在本发明所述的制造方法中,还包括步骤(3)冷轧。在一些实施方案中,冷轧变形量≥40%。
进一步地,在本发明所述的制造方法中,还包括步骤(4)退火:均热温度为700-880℃,然后以3-20℃/s的速度冷却到快冷开始温度600-780℃、优选600-770℃,然后再以20-1000℃/s、优选40-1000℃/s的速度冷却到150-550℃。
进一步地,在本发明所述的制造方法中,还包括步骤(5)回火:回火温度为150-550℃,回火时间为100s-400s。
进一步地,在本发明所述的制造方法中,还包括平整步骤。
本发明所述的多层轧制复合板相较于现有技术具有如下所述的优点以及有益效果:
本发明所述的多层轧制复合板可以根据成分和工艺的不同大幅度变换,可以实现从100MPa到1700MPa的不同强度级别,为整体钢板提供不同特定力学性能基础。
此外,本发明所述的制造方法也同样具有上述的优点以及有益效果。
附图说明
图1显示了对比例1的对比复合板的结构。
图2显示了实施例1的多层轧制复合板的结构。
图3为对比例1的对比复合板的微观组织金相图。
图4为实施例1的多层轧制复合板的微观组织金相图。
具体实施方式
下面将结合说明书附图和具体的实施例对本发明所述的多层轧制复合板及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例1-6以及对比例1
实施例1-6的多层轧制复合板采用以下步骤制得:
(1)在相邻的复合层之间设置过渡层以组坯,各层之间抽真空,其中各坯层的质量百分比参见表1。需要说明的是,本案中复合层包括基材层以及复材层。
(2)复合轧制:将坯料加热至1100-1260℃,保温0.5小时以上、优选0.6小时以上,控制终轧温度大于820℃,轧后以30-100℃/s的速度冷却,然后进行卷取,控制卷取温度为20-750℃。
在一些实施方式中,还可以包括步骤(3)冷轧。
在另一些实施方式中,还可以包括步骤(4)退火:均热温度为700-880℃,然后以3-20℃/s的速度冷却到快冷开始温度600-780℃、优选600-770℃,然后再以20-1000℃/s、优选40-1000℃/s的速度冷却到150-550℃。
在一些其他的实施方式中,还可以包括步骤(5)回火:回火温度为150-550℃,回火时间为100s-400s。
在一些更为优选的实施方式中,还可以包括步骤平整。
表1列出了实施例1-6的多层轧制复合板以及对比例1的对比复合板的各化学元素的质量百分配比。
表1(wt%,余量为Fe和的其他不可避免的杂质)
Figure PCTCN2020131388-appb-000001
Figure PCTCN2020131388-appb-000002
表2列出了实施例1-6的多层轧制复合板以及对比例1的对比复合板的具体工艺参数。
表2
Figure PCTCN2020131388-appb-000003
Figure PCTCN2020131388-appb-000004
*:各坯层依次为复材层:过渡层:基材层:过渡层:复材层,厚度单位为mm。
表3列出了实施例1-6的复合钢板的相关性能参数及复合后的优势。
表3
Figure PCTCN2020131388-appb-000005
Figure PCTCN2020131388-appb-000006
图1显示了对比例1的对比复合板的结构。
图2显示了实施例1的多层轧制复合板的结构。
结合图1和图2可以看出,相较于对比例1的对比复合板只含有三层结构(包括基材层2和复合于基材层2的两层复材层1),本案实施例1的多层轧制复合板在复材层1与基材层2之间具有过渡层3,过渡层3为各向异性薄钢板。
需要指出的是,在一些其他的实施方式中,过渡层3也可以具有多层。
过渡层3的各向异性薄钢板为冷轧钢板或热轧酸洗钢板,在组坯前的取向程度满足:1.25≥AI≥1.05,每一层所述各向异性薄钢板的厚度小于多层轧制复合板总厚度的5%。
并且在一些其他的实施方式中,多层轧制复合板的至少一个表面具有金属或非金属镀层。
图3为对比例1的对比复合板的微观组织金相图。
图4为实施例1的多层轧制复合板的微观组织金相图。
结合图3和图4可以看出,实施例1的多层轧制复合板相较于对比例1的对比复合板在复材层1与基材层2之间的C扩散明显得到改善,这是因为:C含量对强度起着至关重要的作用,C原子的扩散属于间隙扩散,扩散速率大,尤其是当复合界面两侧均存在较大的碳势差时,C原子极易扩散,严重情况下甚至影响基材层2和复材层1的各自的性能,严重的C扩散导致基材层强度下降,复合层韧性下降,选取C含量介于基材层2与复材层1的各向异性薄钢板作为过渡层3,可以有效降低复合界面两侧的碳势差,大幅减缓了C的扩散。
过渡层3的厚度应当相对较薄,这是因为:若过渡层3的厚度较厚,轧制复合后的结合强度就取决过渡层3材料的强度,若过渡层3的强度较低则会降低金属复合板的结合性能。若过渡层3的厚度太薄,则起不到阻止元素扩散的目的。
而通过图4可以看出,本案实施例1的复合界面的结合性能较好。
综上所述,本发明所述的多层轧制复合板可以根据成分和工艺的不同大幅度变换,可以实现从100MPa到1700MPa的不同强度级别,为整体钢板提供不同特定力学性能基础。
此外,本发明所述的制造方法也同样具有上述的优点以及有益效果。
需要说明的是,本发明的保护范围中现有技术部分并不局限于本申请文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。
此外,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上所列举的实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范围。

Claims (15)

  1. 一种多层轧制复合板,其特征在于,其包括设于两相邻的复合层之间的过渡层,所述过渡层为各向异性薄钢板。
  2. 如权利要求1所述的多层轧制复合板,其特征在于,所述各向异性薄钢板为冷轧钢板或热轧酸洗钢板。
  3. 如权利要求1所述的多层轧制复合板,其特征在于,所述各向异性薄钢板在组坯前的取向程度满足:1.25≥AI≥1.05。
  4. 如权利要求1所述的多层轧制复合板,其特征在于,所述过渡层具有一层或多层。
  5. 如权利要求1所述的多层轧制复合板,其特征在于,每一层所述各向异性薄钢板的厚度小于多层轧制复合板总厚度的5%。
  6. 如权利要求1所述的多层轧制复合板,其特征在于,所述多层轧制复合板包括基材层,位于基材层一侧或两侧的过渡层,以及位于过渡层外侧的复材层;其中,基材层的厚度为0.5-4.0mm,每一层复材层的厚度在0.05-0.4mm的范围内。
  7. 如权利要求1所述的多层轧制复合板,其特征在于,所述多层轧制复合板的至少一个表面具有金属或非金属镀层。
  8. 如权利要求1所述的多层轧制复合板,其特征在于,所述各向异性薄钢板的化学元素组成质量百分比为:C,0.01-0.10%;Si,0.01-0.5%;Mn,0.5-2.5%;Al,0.01-0.06%;Ti,≤0.06%;Cr,≤0.50%;Mo,≤0.30%;余量为Fe和不可避免的杂质。
  9. 如权利要求1所述的多层轧制复合板,其特征在于,所述多层轧制复合板包括基材层、过渡层和复材层,其中,过渡层中的C含量介于基材层和复材层之间。
  10. 如权利要求1-9中任意一项所述的多层轧制复合板的制造方法,其特征在于,其包括步骤:
    (1)在相邻的复合层之间设置过渡层以组坯,各层之间抽真空;
    (2)复合轧制:将坯料加热至1100-1260℃,保温0.5小时以上,然后采用Ar3以上温度热轧,控制终轧温度大于820℃,轧后以30-100℃/s的速度冷却,然 后进行卷取,控制卷取温度为20-750℃。
  11. 如权利要求10所述的制造方法,其特征在于,还包括步骤(3)冷轧。
  12. 如权利要求11所述的制造方法,其特征在于,还包括步骤(4)退火:均热温度为700-880℃,然后以3-20℃/s的速度冷却到快冷开始温度600-780℃,再以20-1000℃/s的速度冷却到150-550℃。
  13. 如权利要求12所述的制造方法,其特征在于,还包括步骤(5)回火:回火温度为150-550℃,回火时间为100s-400s。
  14. 如权利要求10-13中任意一项所述的制造方法,其特征在于,还包括平整步骤。
  15. 如权利要求1所述的多层轧制复合板,其特征在于,每一层所述各向异性薄钢板的厚度0.5-10.0mm;优选1-3mm。
PCT/CN2020/131388 2019-11-27 2020-11-25 一种多层轧制复合板及其制造方法 WO2021104292A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20893474.5A EP4067070A4 (en) 2019-11-27 2020-11-25 MULTILAYER ROLLED COMPOSITE PANEL AND PROCESS FOR THEIR MANUFACTURE
JP2022530327A JP7459251B2 (ja) 2019-11-27 2020-11-25 多層圧延複合板及びその製造方法
US17/780,124 US20220410533A1 (en) 2019-11-27 2020-11-25 Multi-layer rolled composite board and manufacturing method therefor
KR1020227020163A KR20220107208A (ko) 2019-11-27 2020-11-25 다층 압연 복합판 및 이의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911179893.X 2019-11-27
CN201911179893.XA CN112848550B (zh) 2019-11-27 2019-11-27 一种多层轧制复合板及其制造方法

Publications (1)

Publication Number Publication Date
WO2021104292A1 true WO2021104292A1 (zh) 2021-06-03

Family

ID=75985377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131388 WO2021104292A1 (zh) 2019-11-27 2020-11-25 一种多层轧制复合板及其制造方法

Country Status (6)

Country Link
US (1) US20220410533A1 (zh)
EP (1) EP4067070A4 (zh)
JP (1) JP7459251B2 (zh)
KR (1) KR20220107208A (zh)
CN (1) CN112848550B (zh)
WO (1) WO2021104292A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113969338A (zh) * 2021-09-28 2022-01-25 材谷金带(佛山)金属复合材料有限公司 一种层状铝/钢复合板材制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117821722B (zh) * 2024-03-05 2024-05-14 太原理工大学 一种高强韧异质微观结构层状复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1273544A (zh) * 1998-06-03 2000-11-15 住友特殊金属株式会社 包覆材料及其制造方法
KR20050000566A (ko) * 2003-06-24 2005-01-06 주식회사 포스코 강자기장 차폐용 적층강판
CN109692884A (zh) * 2017-10-20 2019-04-30 鞍钢股份有限公司 一种以if钢为过渡层的钛钢复合板及其高温制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906305A (en) * 1988-08-18 1990-03-06 Allegheny Ludlum Corporation Method of making a composite drawn article
JP2548660B2 (ja) * 1992-04-20 1996-10-30 新日本製鐵株式会社 薄板クラッド鋼板およびその製造方法
JPH0790492A (ja) * 1993-09-28 1995-04-04 Nippon Steel Corp 耳発生の著しく小さい絞り缶用表面処理原板およびその製造方法
JP5272688B2 (ja) 2008-12-02 2013-08-28 Jfeスチール株式会社 クラッド型電磁鋼板
JP5391997B2 (ja) * 2009-10-22 2014-01-15 新日鐵住金株式会社 張り剛性に優れた複合パネル
CN101787514A (zh) * 2010-03-15 2010-07-28 南京航空航天大学 一种难熔金属表面的铂族金属涂层及其制备方法
EP3685952B1 (en) * 2011-01-27 2021-10-13 NIPPON STEEL Stainless Steel Corporation Alloying element-saving hot rolled duplex stainless steel material, and production method for same
CN203937248U (zh) * 2014-06-04 2014-11-12 鞍山亚盛特钢有限公司 一种不锈钢复合钢板
EP3276043B1 (en) * 2015-03-27 2021-12-15 JFE Steel Corporation Insulating-coated oriented magnetic steel sheet and method for manufacturing same
CN105772507A (zh) * 2016-03-25 2016-07-20 首钢总公司 一种碳钢与双相不锈钢复合钢板及其生产方法
CN108118252A (zh) * 2016-11-30 2018-06-05 宝山钢铁股份有限公司 一种马氏体不锈钢轧制复合钢板及其制造方法
MX2019009771A (es) * 2017-02-20 2019-09-27 Nippon Steel Corp Lamina de acero.
WO2018179839A1 (ja) * 2017-03-30 2018-10-04 Jfeスチール株式会社 ホットプレス部材およびその製造方法
CN109695000B (zh) * 2017-10-20 2021-01-08 鞍钢股份有限公司 以if钢为过渡层的双面钛钢复合板及其高温制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1273544A (zh) * 1998-06-03 2000-11-15 住友特殊金属株式会社 包覆材料及其制造方法
KR20050000566A (ko) * 2003-06-24 2005-01-06 주식회사 포스코 강자기장 차폐용 적층강판
CN109692884A (zh) * 2017-10-20 2019-04-30 鞍钢股份有限公司 一种以if钢为过渡层的钛钢复合板及其高温制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LU TANYING: "Preferred Orientation in Deformed Metal and Rocks: An introduction to Modern Texture Analysis", 31 May 1991, CHINA UNIVERSITY OF GEOSCIENCES PRESS, CN, article H.-R. WENK: "Optimum Orientation of Deformed Rocks and Metals, Introduction to Modern Structural Analysis", pages: 122 - 124, XP009528543 *
See also references of EP4067070A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113969338A (zh) * 2021-09-28 2022-01-25 材谷金带(佛山)金属复合材料有限公司 一种层状铝/钢复合板材制备方法

Also Published As

Publication number Publication date
EP4067070A4 (en) 2022-12-14
US20220410533A1 (en) 2022-12-29
CN112848550A (zh) 2021-05-28
KR20220107208A (ko) 2022-08-02
JP7459251B2 (ja) 2024-04-01
EP4067070A1 (en) 2022-10-05
CN112848550B (zh) 2022-06-24
JP2023503153A (ja) 2023-01-26

Similar Documents

Publication Publication Date Title
TWI489000B (zh) An alloyed molten zinc plating layer and a steel sheet having the same, and a method for producing the same
JP7274505B2 (ja) 高強度両面ステンレス鋼クラッド板およびその製造方法
US10094011B2 (en) Superstrength cold-rolled weathering steel sheet and method of manufacturing same
JP2015503023A (ja) 温間プレス成形用鋼板、温間プレス成形部材、及びこれらの製造方法
TW201303042A (zh) 熱壓印成形品、熱壓印成形品之製造方法、能量吸收構件及能量吸收構件之製造方法
US20220396054A1 (en) High corrosion-resistance strip steel and manufacturing method therefor
WO2021104292A1 (zh) 一种多层轧制复合板及其制造方法
US11414721B2 (en) Method for the manufacture of TWIP steel sheet having an austenitic matrix
JP4833698B2 (ja) ダイクエンチ用高強度鋼板
CN110629000A (zh) 屈服强度280MPa级冷轧热镀锌钢板及其制造方法
JP2010121213A (ja) 延性に優れた高強度低比重鋼板の製造方法
EP3831597A1 (en) Low-density clad steel sheet having excellent formability and fatigue property and manufacturing method therefor
JP4214664B2 (ja) プレス成形用薄鋼板およびその製造方法
KR101543857B1 (ko) 가공성이 우수한 복합조직강판 및 그 제조방법
US20170002436A1 (en) Ferritic lightweight steel sheet having excellent strength and ductility and method for manufacturing the same
KR20160073493A (ko) 연신율이 우수한 아연도금강판의 제조방법 및 이에 의해 제조된 연신율이 우수한 아연도금강판
CN114032467A (zh) 冷轧高强度钢板及其制备方法
CN111763876A (zh) 一种机动车消音片用冷轧钢板及其生产方法
CN115505817A (zh) 一种薄厚度低碳含b热轧钢板的生产方法
JPH06264180A (ja) 耐デント性と耐面歪性及び加工性に優れた冷延鋼板とその製造方法
CN115135792A (zh) 硬度和加工性优良的结构部用冷轧钢板及其制造方法
JP2013060644A (ja) 加工性に優れた薄鋼板、めっき薄鋼板及びそれらの製造方法
JPH04191331A (ja) 耐面歪み、耐デント性を有する深絞り用冷延鋼板の製造方法
JPH06264175A (ja) 耐デント性と耐面歪性及び加工性に優れた鋼板とその製造方法
JPH06287687A (ja) 耐デント性と耐面ひずみ性及びめっき密着性に優れた溶融亜鉛めっき鋼板とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530327

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227020163

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020893474

Country of ref document: EP

Effective date: 20220627