WO2021100716A1 - 樹脂組成物、樹脂成形体及びその製造方法 - Google Patents

樹脂組成物、樹脂成形体及びその製造方法 Download PDF

Info

Publication number
WO2021100716A1
WO2021100716A1 PCT/JP2020/042852 JP2020042852W WO2021100716A1 WO 2021100716 A1 WO2021100716 A1 WO 2021100716A1 JP 2020042852 W JP2020042852 W JP 2020042852W WO 2021100716 A1 WO2021100716 A1 WO 2021100716A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
group
polyimide
polyimide resin
particles
Prior art date
Application number
PCT/JP2020/042852
Other languages
English (en)
French (fr)
Inventor
敦史 酒井
勇希 佐藤
金子 直樹
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020227014716A priority Critical patent/KR20220104687A/ko
Priority to JP2021558401A priority patent/JPWO2021100716A1/ja
Priority to EP20888816.4A priority patent/EP4063092A4/en
Priority to US17/776,771 priority patent/US20220403169A1/en
Priority to CN202080079312.XA priority patent/CN114729187B/zh
Publication of WO2021100716A1 publication Critical patent/WO2021100716A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/823Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/101Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents
    • C08G73/1017Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents in the form of (mono)amine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/24Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having ten or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/08Epoxidised polymerised polyenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/04Polyamides derived from alpha-amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape

Definitions

  • the present invention relates to a resin composition, a resin molded product, and a method for producing the same. More specifically, the present invention relates to a resin composition containing thermoplastic polyimide resin particles and a thermoplastic resin or a thermosetting resin, a resin molded product, and a method for producing the same.
  • Polyimide resin is a useful engineering plastic with high thermal stability, high strength, and high solvent resistance due to the rigidity of molecular chains, resonance stabilization, and strong chemical bonds, and is applied in a wide range of fields. Further, since the crystalline polyimide resin can further improve its heat resistance, strength, and chemical resistance, it is expected to be used as a metal substitute or the like. However, while the polyimide resin has high heat resistance, it does not exhibit thermoplasticity and has a problem of low moldability.
  • High heat resistant resin Vespel registered trademark
  • Patent Document 1 High heat resistant resin Vespel (registered trademark) and the like are known as polyimide molding materials (Patent Document 1), but molding processing is difficult because the fluidity is extremely low even at high temperatures, and it takes a long time under high temperature and high pressure conditions. It is also disadvantageous in terms of cost because it needs to be molded.
  • a resin having a melting point and fluidity at a high temperature such as a crystalline resin, can be easily and inexpensively molded.
  • thermoplastic polyimide resin having thermoplasticity has been reported.
  • the thermoplastic polyimide resin is excellent in molding processability in addition to the heat resistance inherent in the polyimide resin. Therefore, the thermoplastic polyimide resin can be applied to a molded product used in a harsh environment to which nylon or polyester, which is a general-purpose thermoplastic resin, cannot be applied.
  • Patent Document 2 describes a predetermined product obtained by reacting a tetracarboxylic dian and / or a derivative thereof containing at least one aromatic ring, a diamine containing at least one alicyclic hydrocarbon structure, and a chain aliphatic diamine.
  • a thermoplastic polyimide resin containing the repeating structural unit of the above is disclosed.
  • Patent Document 3 discloses a thermoplastic polyimide resin containing a predetermined repeating unit, and also describes that the polyimide resin and another resin are used in combination as a polymer alloy.
  • thermoplastic polyimide resin has high heat resistance, strength, and chemical resistance, and has a lower specific gravity than metal. Therefore, heat resistance and machinery are maintained while maintaining lightness derived from the resin material. It is also expected to be used as a resin modifier that can improve the properties.
  • An example of Patent Document 3 describes that a crystalline thermoplastic polyimide resin containing a predetermined repeating unit and a polyetheretherketone resin (PEEK) are alloyed to produce a resin molded product.
  • PEEK polyetheretherketone resin
  • PEEK is a thermoplastic resin having high heat resistance like a polyimide resin, and PEEK is extruded by heating and melting a crystalline thermoplastic polyimide resin containing a predetermined repeating unit and PEEK at a temperature equal to or higher than the melting point of the polyimide resin.
  • a resin molded body is manufactured by performing thermoforming.
  • the polyimide resin is used to improve the characteristics of a thermoplastic resin having lower heat resistance, for example, a crystalline thermoplastic resin having a low melting point, an amorphous thermoplastic resin having a low glass transition temperature, or a thermosetting resin. No consideration has been given to what to do.
  • the cured product of the thermosetting resin generally has higher heat resistance than the thermoplastic resin, but the toughness tends to be low due to the high crosslink density.
  • factors related to fracture strength such as strain energy release rate (G 1c ) are regarded as important as mechanical properties of the cured resin product, and G 1c is used while maintaining the heat resistance of the cured resin product. It is hoped that it will be improved.
  • An object of the present invention is a resin composition or resin molding in which various properties such as heat resistance and mechanical properties are improved while maintaining the lightness derived from the resin in a thermoplastic resin having low heat resistance or a thermosetting resin.
  • the purpose is to provide a body and a method for producing the same.
  • the present inventors have made a resin composition in which a thermoplastic resin or a thermosetting resin contains a crystalline thermoplastic polyimide resin having a specific polyimide constituent unit in the state of resin particles having a specific particle size range. It was found that the above problem can be solved by. That is, the present invention provides the following [1] to [3]. [1] The total of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2), including the repeating structural unit represented by the following formula (1) and the repeating structural unit represented by the following formula (2).
  • the content ratio of the repeating structural unit of the formula (1) to the above is 20 to 70 mol%, and the polyimide resin particles (A) having a volume average particle diameter D50 of 5 to 200 ⁇ m, the thermoplastic resin (B), and the thermocurable property.
  • R 1 is a divalent group having 6 to 22 carbon atoms containing at least one alicyclic hydrocarbon structure.
  • R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms.
  • X 1 And X 2 are independently tetravalent groups of 6 to 22 carbon atoms containing at least one aromatic ring.
  • the content ratio of the repeating structural unit of the formula (1) is 20 to 70 mol%, and the volume average particle diameter D50 is 5 to 200 ⁇ m, the polyimide resin particles (A), the thermoplastic resin (B), and the thermosetting.
  • a method for producing a resin molded product which comprises a step of molding a resin composition containing at least one of these at a temperature lower than the melting point of the polyimide resin particles (A).
  • thermoplastic resin such as a crystalline thermoplastic resin having a low melting point, an amorphous thermoplastic resin having a low glass transition temperature, or a thermocurable resin
  • heat resistance is maintained while maintaining lightness derived from the resin.
  • a resin composition having improved various properties such as mechanical properties, a resin molded body, and a method for producing the same can be provided.
  • the resin composition of the present invention contains a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2), and the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2).
  • the content ratio of the repeating structural units of the formula (1) to the total of the repeating structural units is 20 to 70 mol%, and the volume average particle diameter D50 is 5 to 200 ⁇ m. It also contains "particles (A)" or "component (A)”) and at least one selected from the group consisting of a thermoplastic resin (B) and a thermosetting resin (C).
  • R 1 is a divalent group having 6 to 22 carbon atoms containing at least one alicyclic hydrocarbon structure.
  • R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms.
  • X 1 And X 2 are independently tetravalent groups of 6 to 22 carbon atoms containing at least one aromatic ring.
  • the resin composition of the present invention contains a polyimide resin obtained by combining specific different polyimide constituent units in the above-mentioned specific ratio in the form of particles having a predetermined D50. As a result, a resin composition and a resin molded product having improved various properties such as heat resistance and mechanical properties are obtained while maintaining the light weight derived from the thermoplastic resin (B) and the thermosetting resin (C). be able to.
  • the polyimide resin particles (A) are dispersed in the thermoplastic resin (B), the thermosetting resin (C), or the cured product thereof and act as a resin filler, thereby providing heat resistance. It is considered that the effect of improving various characteristics such as mechanical characteristics is obtained. Further, since the polyimide resin particles (A) act as a resin filler, an effect of improving slidability can be expected.
  • the resin composition of the present invention is a thermoplastic resin composition or a thermosetting resin composition, and the form thereof is appropriately depending on whether the thermoplastic resin (B) or the thermosetting resin (C) is used. You can choose.
  • the resin composition of the present invention is a thermoplastic resin composition containing the polyimide resin particles (A) and the thermoplastic resin (B)
  • the form of the thermoplastic resin composition is from the viewpoint of handleability and processability. Is preferably pellets. More preferably, the thermoplastic resin composition is pellets in which the polyimide resin particles (A) described below are dispersed in a matrix composed of the thermoplastic resin (B).
  • the resin composition of the present invention has the following formula (1) from the viewpoint of improving various properties such as heat resistance and mechanical properties while maintaining the lightness derived from the thermoplastic resin (B) and the thermosetting resin (C).
  • It contains polyimide resin particles (A) having a repeating constitutional unit content ratio of 20 to 70 mol% and a volume average particle size D50 of 5 to 200 ⁇ m.
  • R 1 is a divalent group having 6 to 22 carbon atoms containing at least one alicyclic hydrocarbon structure.
  • R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms.
  • X 1 And X 2 are independently tetravalent groups of 6 to 22 carbon atoms containing at least one aromatic ring.
  • the polyimide resin constituting the component (A) is a thermoplastic resin, and is formed by closing the imide ring after molding in the state of a polyimide precursor such as polyamic acid, and has no glass transition temperature (Tg). It is distinguished from resin or polyimide resin that decomposes at a temperature lower than the glass transition temperature. Further, the polyimide resin has crystallinity, and the degree of crystallinity is the calorific value (crystallization) of the crystallization exothermic peak observed when the polyimide resin is melted and then cooled at a temperature lowering rate of 20 ° C./min. It can be judged by the calorific value). Details will be described later.
  • R 1 is a divalent group having 6 to 22 carbon atoms containing at least one alicyclic hydrocarbon structure.
  • the alicyclic hydrocarbon structure means a ring derived from the alicyclic hydrocarbon compound, and the alicyclic hydrocarbon compound may be saturated or unsaturated, and may be simply. It may be cyclic or polycyclic.
  • Examples of the alicyclic hydrocarbon structure include, but are limited to, a cycloalkane ring such as a cyclohexane ring, a cycloalkene ring such as cyclohexene, a bicycloalkene ring such as norbornane ring, and a bicycloalkene ring such as norbornene. Do not mean. Among these, a cycloalkane ring is preferable, a cycloalkane ring having 4 to 7 carbon atoms is more preferable, and a cyclohexane ring is more preferable.
  • R 1 has 6 to 22 carbon atoms, preferably 8 to 17 carbon atoms.
  • R 1 contains at least one alicyclic hydrocarbon structure, preferably 1 to 3.
  • R 1 is preferably a divalent group represented by the following formula (R1-1) or (R1-2).
  • M 11 and m 12 are independently integers of 0 to 2, preferably 0 or 1.
  • m 13 to m 15 are independently integers of 0 to 2, preferably 0. Or 1.
  • R 1 is particularly preferably a divalent group represented by the following formula (R1-3).
  • R1-3 the positional relationship between the two methylene groups with respect to the cyclohexane ring may be cis or trans, and the ratio of cis to trans is Any value can be used.
  • X 1 is a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • the aromatic ring may be a monocyclic ring or a condensed ring, and examples thereof include, but are not limited to, a benzene ring, a naphthalene ring, an anthracene ring, and a tetracene ring. Among these, a benzene ring and a naphthalene ring are preferable, and a benzene ring is more preferable.
  • X 1 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
  • X 1 contains at least one aromatic ring, preferably 1 to 3.
  • X 1 is preferably a tetravalent group represented by any of the following formulas (X-1) to (X-4).
  • R 11 to R 18 are independently alkyl groups having 1 to 4 carbon atoms.
  • P 11 to p 13 are independently integers of 0 to 2, preferably 0.
  • P 14 , P 15 , p 16 and p 18 are independently integers of 0 to 3, preferably 0.
  • p 17 is an integer of 0 to 4, preferably 0. L 11 to L.
  • X 13 is independently a single bond, an ether group, a carbonyl group, or an alkylene group having 1 to 4 carbon atoms.
  • X 1 is a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring
  • R 12 , R 13 , p 12 and p 13 in the formula (X-2) are represented by the formula (X-).
  • the tetravalent group represented by 2) is selected so that the number of carbon atoms is in the range of 10 to 22.
  • L 11 , R 14 , R 15 , p 14 and p 15 in the formula (X-3) have the carbon number of the tetravalent group represented by the formula (X-3) in the range of 12 to 22.
  • X 1 is particularly preferably a tetravalent group represented by the following formula (X-5) or (X-6).
  • R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms, preferably having from 6 to 14 carbon atoms, more preferably from 7 to 12 carbon atoms, more preferably 8 to 10 carbon atoms.
  • the chain aliphatic group means a group derived from the chain aliphatic compound, and the chain aliphatic compound may be saturated or unsaturated, and is linear. It may be branched or may contain a hetero atom such as an oxygen atom.
  • R 2 is preferably an alkylene group having 5 to 16 carbon atoms, more preferably 6 to 14 carbon atoms, more preferably an alkylene group having 7 to 12 carbon atoms, with preference 8 to 10 carbon atoms It is an alkylene group.
  • the alkylene group may be a linear alkylene group or a branched alkylene group, but is preferably a linear alkylene group.
  • R 2 is at least one preferably selected from the group consisting of octamethylene and decamethylene group, and particularly preferably octamethylene.
  • a divalent chain aliphatic group having 5 to 16 carbon atoms including an ether group can be mentioned.
  • the carbon number is preferably 6 to 14, more preferably 7 to 12, and even more preferably 8 to 10.
  • it is preferably a divalent group represented by the following formula (R2-1) or (R2-2).
  • M 21 and m 22 are independently integers of 1 to 15, preferably 1 to 13, more preferably 1 to 11, and even more preferably 1 to 9.
  • M 23 to m 25 respectively.
  • it is an integer of 1 to 14, preferably 1 to 12, more preferably 1 to 10, and even more preferably 1 to 8).
  • R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms (preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms)
  • the divalent group represented by the formula (R2-1) has 5 to 16 carbon atoms (preferably 6 to 14 carbon atoms, more preferably 7 carbon atoms). It is selected so as to fall within the range of ⁇ 12, more preferably 8 to 10). That is, m 21 + m 22 is 5 to 16 (preferably 6 to 14, more preferably 7 to 12, still more preferably 8 to 10).
  • m 23 to m 25 in the formula (R2-2) have a divalent group represented by the formula (R2-2) having 5 to 16 carbon atoms (preferably 6 to 14 carbon atoms, more preferably 6 to 14 carbon atoms). It is selected so as to be in the range of 7 to 12 carbon atoms, more preferably 8 to 10 carbon atoms). That is, m 23 + m 24 + m 25 is 5 to 16 (preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms).
  • X 2 is defined in the same manner as X 1 in the equation (1), and so is the preferred mode.
  • the content ratio of the repeating structural unit of the formula (1) to the total of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) is preferably 20 to 70 mol%.
  • the content ratio of the repeating structural unit of the formula (1) is in the above range, the polyimide resin can be sufficiently crystallized even in a general injection molding cycle.
  • the content ratio is 20 mol% or more, the molding processability is good, and when it is 70 mol% or less, good heat resistance can be maintained.
  • the content ratio of the repeating structural unit of the formula (1) to the total of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) is preferably 65 mol% or less from the viewpoint of exhibiting high crystallinity.
  • the repeating structural unit of the formula (1) with respect to the total of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2).
  • the content ratio is preferably 20 mol% or more and less than 40 mol%.
  • the content ratio is more preferably 25 mol% or more, further preferably 30 mol% or more, still more preferably 32 mol% or more from the viewpoint of molding processability, and more preferably from the viewpoint of exhibiting high crystallinity. More preferably, it is 35 mol% or less.
  • the total content ratio of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) to all the repeating structural units constituting the polyimide resin is preferably 50 to 100 mol%, more preferably 75 to 100. It is mol%, more preferably 80 to 100 mol%, and even more preferably 85 to 100 mol%.
  • the polyimide resin may further contain a repeating structural unit of the following formula (3).
  • the content ratio of the repeating structural unit of the formula (3) to the total of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) is preferably 25 mol% or less.
  • the lower limit is not particularly limited and may exceed 0 mol%.
  • the content ratio is preferably 5 mol% or more, more preferably 10 mol% or more, from the viewpoint of improving heat resistance, and preferably 20 mol% or less, more preferably from the viewpoint of maintaining crystallinity. It is preferably 15 mol% or less.
  • R 3 is a divalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • X 3 is a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • R 3 is a divalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • the aromatic ring may be a monocyclic ring or a condensed ring, and examples thereof include, but are not limited to, a benzene ring, a naphthalene ring, an anthracene ring, and a tetracene ring. Among these, a benzene ring and a naphthalene ring are preferable, and a benzene ring is more preferable.
  • R 3 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
  • R 3 contains at least one aromatic ring, preferably 1 to 3.
  • a monovalent or divalent electron-attracting group may be bonded to the aromatic ring.
  • the monovalent electron-attracting group include a nitro group, a cyano group, a p-toluenesulfonyl group, a halogen, an alkyl halide group, a phenyl group and an acyl group.
  • the divalent electron-attracting group includes a fluorinated alkylene group (for example, -C (CF 3 ) 2 -,-(CF 2 ) p- (where p is an integer of 1 to 10)).
  • a fluorinated alkylene group for example, -C (CF 3 ) 2 -,-(CF 2 ) p- (where p is an integer of 1 to 10).
  • p is an integer of 1 to 10
  • R 3 is preferably a divalent group represented by the following formula (R3-1) or (R3-2).
  • M 31 and m 32 are independently integers of 0 to 2, preferably 0 or 1.
  • m 33 and m 34 are independently integers of 0 to 2, preferably 0. Or 1.
  • R 21 , R 22 , and R 23 are independently an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms.
  • p 21 , p 22 and p 23 are integers from 0 to 4, preferably 0.
  • L 21 is a single bond, an ether group, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.) Since R 3 is a divalent group having 6 to 22 carbon atoms containing at least one aromatic ring, m 31 , m 32 , R 21 and p 21 in the formula (R3-1) are represented by the formula (R3-). The divalent group represented by 1) is selected so that the number of carbon atoms is in the range of 6 to 22. Similarly, L 21 , m 33 , m 34 , R 22 , R 23 , p 22 and p 23 in the formula (R3-2) have the carbon number of the divalent group represented by the formula (R3-2). It is selected to fall within the range of 12-22.
  • X 3 is defined in the same manner as X 1 in the formula (1), and so is the preferred mode.
  • the polyimide resin may further contain a repeating structural unit represented by the following formula (4).
  • R 4 is a divalent group containing -SO 2- or -Si (R x ) (R y ) O-, and R x and R y are independently chain aliphatics having 1 to 3 carbon atoms. group or .
  • X 4 which represents a phenyl group is a tetravalent radical having 6 to 22 carbon atoms containing at least one aromatic ring.
  • X 4 is defined in the same manner as X 1 in the equation (1), and so is the preferred mode.
  • the terminal structure of the polyimide resin is not particularly limited.
  • the polyimide resin constituting the polyimide resin particles (A) may be a polyimide resin whose ends are not sealed.
  • the unsealed polyimide resin refers to a polyimide resin in which the terminal structure of the polyimide resin is only a terminal amino group and a terminal carboxy group derived from the tetracarboxylic acid component and the diamine component which are the raw materials thereof.
  • the polyimide resin constituting the polyimide resin particles (A) When the polyimide resin constituting the polyimide resin particles (A) is not terminal-sealed, the terminal amino group and the terminal carboxy group in the polyimide resin particles (A) and the thermoplastic resin (B) or thermosetting property Cross-linking with the resin (C) becomes possible, and mechanical properties such as toughness can be further improved. From this point of view, in the resin composition of the present invention, it is more preferable to use the polyimide resin particles (A) composed of the unsealed polyimide resin in combination with the thermosetting resin (C).
  • the polyimide resin when the polyimide resin is end-sealed, it is preferable that the polyimide resin has a chain aliphatic group having 5 to 14 carbon atoms at the end.
  • the chain aliphatic group may be saturated or unsaturated, and may be linear or branched.
  • the polyimide resin has the specific group at the end, a resin composition having excellent heat aging resistance can be obtained.
  • the saturated chain aliphatic group having 5 to 14 carbon atoms include n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group and n-undecyl group.
  • unsaturated chain aliphatic groups having 5 to 14 carbon atoms 1-pentenyl group, 2-pentenyl group, 1-hexenyl group, 2-hexenyl group, 1-heptenyl group, 2-heptenyl group, 1- Examples thereof include an octenyl group, a 2-octenyl group, a nonenyl group, a decenyl group, a dodecenyl group, a tridecenyl group, a tetradecenyl group and the like.
  • the above-mentioned chain aliphatic group is preferably a saturated chain aliphatic group, and more preferably a saturated linear aliphatic group.
  • the chain aliphatic group preferably has 6 or more carbon atoms, more preferably 7 or more carbon atoms, still more preferably 8 or more carbon atoms, and preferably 12 or less carbon atoms, more preferably.
  • the above-mentioned chain aliphatic group may be only one kind or two or more kinds.
  • the chain aliphatic group is particularly preferably at least one selected from the group consisting of an n-octyl group, an isooctyl group, a 2-ethylhexyl group, an n-nonyl group, an isononyl group, an n-decyl group, and an isodecyl group.
  • the polyimide resin has a chain aliphatic group having 5 to 14 carbon atoms at the terminal, the polyimide resin has a chain shape having 5 to 14 carbon atoms in addition to the terminal amino group and the terminal carboxy group from the viewpoint of heat aging resistance. It is preferable to have only an aliphatic group at the end.
  • the content thereof is preferably 10 mol% or less, more preferably 5 mol% or less, based on the chain aliphatic group having 5 to 14 carbon atoms.
  • the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin exhibits excellent heat aging resistance. From the viewpoint of Is. Further, in order to secure a sufficient molecular weight and obtain good mechanical properties, the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin is a fully repetitive structure constituting the polyimide resin. It is preferably 10 mol% or less, more preferably 6 mol% or less, still more preferably 3.5 mol% or less, based on the total of 100 mol% of the units. The content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin can be determined by depolymerizing the polyimide resin.
  • the polyimide resin preferably has a melting point of 360 ° C. or lower and a glass transition temperature of 150 ° C. or higher.
  • the melting point of the polyimide resin is preferably 280 ° C. or higher, more preferably 290 ° C. or higher from the viewpoint of heat resistance, and more preferably 345 ° C. or lower, still more preferably 340, from the viewpoint of exhibiting high molding processability.
  • ° C. or lower more preferably 335 ° C. or lower.
  • the glass transition temperature of the polyimide resin is more preferably 160 ° C. or higher, further preferably 170 ° C. or higher from the viewpoint of heat resistance, and preferably 250 ° C. or lower from the viewpoint of exhibiting high molding processability.
  • the polyimide resin is measured by a differential scanning calorimeter when the polyimide resin is melted and then cooled at a temperature lowering rate of 20 ° C./min.
  • the calorific value of the crystallization calorific value observed in is preferably 5.0 mJ / mg or more, and more preferably 10.0 mJ / mg or more. It is more preferably 17.0 mJ / mg or more.
  • the upper limit of the calorific value for crystallization is not particularly limited, but is usually 45.0 mJ / mg or less.
  • the melting point, glass transition temperature, and calorific value of crystallization of the polyimide resin can all be measured by a differential scanning calorimeter, and specifically, can be measured by the method described in Examples.
  • the logarithmic viscosity of the 5% by mass concentrated sulfuric acid solution of the polyimide resin at 30 ° C. is preferably in the range of 0.2 to 2.0 dL / g, more preferably 0.3 to 1.8 dL / g.
  • the logarithmic viscosity ⁇ is calculated from the following formula by measuring the flow time of concentrated sulfuric acid and the polyimide resin solution at 30 ° C. using a Canon Fenceke viscometer.
  • ln (ts / t 0 ) / C t 0 : Time for concentrated sulfuric acid to flow ts: Time for polyimide resin solution to flow C: 0.5 (g / dL)
  • the weight average molecular weight Mw of the polyimide resin constituting the polyimide resin particles (A) is preferably 10,000 to 150,000, more preferably 15,000 to 100,000, still more preferably 20,000 to 80,000. Even more preferably, it is in the range of 30,000 to 70,000, and even more preferably, it is in the range of 35,000 to 65,000. Further, when the weight average molecular weight Mw of the polyimide resin is 10,000 or more, the mechanical strength of the obtained molded product becomes good, and when it is 40,000 or more, the mechanical strength stability becomes good. If it is 000 or less, the molding processability is good.
  • the weight average molecular weight Mw of the polyimide resin can be measured by gel permeation chromatography (GPC) using polymethylmethacrylate (PMMA) as a standard sample.
  • the polyimide resin particles (A) are a resin composition and resin molding having improved various properties such as heat resistance and mechanical properties while maintaining the lightness derived from the thermoplastic resin (B) and the thermosetting resin (C). From the viewpoint of obtaining a body and dispersibility, the volume average particle diameter D50 is 5 to 200 ⁇ m, more preferably 5 to 150 ⁇ m, still more preferably 5 to 100 ⁇ m, and even more preferably 5 to 40 ⁇ m.
  • the D50 of the polyimide resin particles (A) can be measured by a laser diffracted light scattering type particle size distribution measuring device, and specifically, can be measured by the method described in Examples.
  • the shape of the polyimide resin particles (A) is not particularly limited, but is preferably porous.
  • the polyimide resin particles (A) are porous, it is possible to further reduce the weight while improving various properties such as heat resistance and mechanical properties of the obtained resin composition and the resin molded product. Further, it can be expected that the resin composition and the resin molded product have a low dielectric constant. From the viewpoint of obtaining these effects, it is preferable that the polyimide resin particles (A) are present in the resin composition and the resin molded product in the state of porous particles. Therefore, as will be described later, it is preferable to produce the resin composition and the resin molded product without giving a thermal history equal to or higher than the melting point of the polyimide resin particles (A).
  • manufacturing a resin composition and a resin molded product without giving a thermal history equal to or higher than the melting point of the polyimide resin particles (A) means all production in the production of the resin composition and the resin molded product of the present invention. It means that the step is carried out under temperature conditions below the melting point of the polyimide resin particles (A).
  • the porous shape of the polyimide resin particles (A) can be confirmed by observing with a scanning electron microscope (SEM).
  • adjusting the D50 of the polyimide resin particles (A) to the above range and forming the polyimide resin particles (A) into a porous shape can be achieved by producing the polyimide resin particles (A) by a production method described later.
  • the specific gravity of the polyimide resin particles (A) is derived from the thermoplastic resin (B) and the thermosetting resin (C), and the resin composition has improved various properties such as heat resistance and mechanical properties while maintaining the light weight. From the viewpoint of obtaining a resin molded product, preferably 0.8 to 1.7, more preferably 0.9 to 1.5, still more preferably 1.0 to 1.4, still more preferably 1.05 to 1. 25.
  • the specific gravity of the polyimide resin particles (A) is a value measured at 23 ° C., and can be specifically measured by the method described in Examples.
  • the true density of the polyimide resin particles (A) measured by the vapor phase method is various properties such as heat resistance and mechanical properties while maintaining the lightness derived from the thermoplastic resin (B) and the thermosetting resin (C). from the viewpoint of obtaining a resin composition and a resin molded body with improved, preferably 1.0 ⁇ 1.8 g / cm 3, more preferably 1.1 ⁇ 1.6 g / cm 3, more preferably 1.2 to It is 1.5 g / cm 3 . From the above viewpoint, the true density of the polyimide resin particles (A) measured by the liquid phase method is preferably 0.8 to 1.7 g / cm 3 , more preferably 0.9 to 1.5 g / cm 3.
  • the true density measurement by the gas phase method can be performed in accordance with the "measurement method of density and specific gravity by the gas substitution method" specified in JIS Z8807: 2012. Further, the true density measurement by the liquid phase method (pycnometer method) can be performed by using n-butyl alcohol as the medium solution and using a wet true density measuring device. Specifically, the true density measurement can be performed by the method described in Examples.
  • the difference (D 1 ⁇ D 2 ) between the true density D 1 measured by the vapor phase method and the true density D 2 measured by the liquid phase method of the polyimide resin particles (A) is 0.05 to 0. It is preferably 7 g / cm 3 , more preferably 0.08 to 0.5 g / cm 3 , and even more preferably 0.08 to 0.4 g / cm 3 . It is presumed that (D 1- D 2 ) indicates the presence of fine pores in which the medium used in the true density measurement by the liquid phase method cannot enter.
  • the specific surface area of the polyimide resin particles (A) is preferably 1.0 to 50 m 2 / g, more preferably 2.0 to 40 m, from the viewpoint of handleability and obtaining a resin composition having excellent fluidity. It is 2 / g, more preferably 5.0 to 25 m 2 / g. It is presumed that both the D50 of the polyimide resin particles (A) and the pore volume have an effect on the specific surface area.
  • the specific surface area can be determined by the BET method, and specifically, it can be measured by the method described in Examples.
  • Total pore volume When the polyimide resin particles (A) are porous, the total pore volume thereof is such as heat resistance, mechanical properties, etc. while maintaining the lightness derived from the thermoplastic resin (B) and the thermosetting resin (C). From the viewpoint of obtaining a resin composition and a resin molded product having improved various properties, it is preferably 0.005 to 0.50 cc / g, more preferably 0.01 to 0.30 cc / g, still more preferably 0.015 to 0.015 to. It is 0.20 cc / g. Specifically, the total pore volume can be measured by the method described in Examples.
  • the average pore diameter thereof is such as heat resistance, mechanical properties, etc. while maintaining the lightness derived from the thermoplastic resin (B) and the thermosetting resin (C).
  • the thickness is preferably 5 to 85 nm, more preferably 10 to 80 nm, and further preferably 20 to 70 nm.
  • the average pore diameter can be measured by the method described in Examples.
  • the D50 specific gravity, true density, specific surface area, total pore volume, and average pore diameter of the polyimide resin particles (A), the polyimide resin particles (A) before being blended into the resin composition and the resin molded product were used. It is preferable that the value measured in the above range is in the above range.
  • the polyimide resin particles (A) in the resin composition and the resin molded body are produced. It is considered that the shape of the polyimide resin particles (A) used is maintained as long as there is no deformation due to shear stress.
  • the "shape of the polyimide resin particles (A) to be used” means the D50 and the porous state of the polyimide resin particles (A) before being blended into the resin composition and the resin molded product.
  • the polyimide resin particles (A) can be produced by reacting a tetracarboxylic acid component with a diamine component.
  • the tetracarboxylic acid component contains a tetracarboxylic acid containing at least one aromatic ring and / or a derivative thereof
  • the diamine component contains a diamine containing at least one alicyclic hydrocarbon structure and a chain aliphatic diamine. ..
  • the tetracarboxylic acid containing at least one aromatic ring is preferably a compound in which four carboxy groups are directly bonded to the aromatic ring, and may contain an alkyl group in the structure.
  • the tetracarboxylic acid preferably has 6 to 26 carbon atoms.
  • Examples of the tetracarboxylic dian include pyromellitic acid, 2,3,5,6-toluenetetracarboxylic dian, 3,3', 4,4'-benzophenonetetracarboxylic dian, 3,3', 4,4'-biphenyl. Tetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid and the like are preferable. Of these, pyromellitic acid is more preferable.
  • Examples of the derivative of the tetracarboxylic acid containing at least one aromatic ring include an anhydride or an alkyl ester of the tetracarboxylic acid containing at least one aromatic ring.
  • the tetracarboxylic acid derivative preferably has 6 to 38 carbon atoms.
  • Examples of the tetracarboxylic dianhydride include pyromellitic dianhydride, pyromellitic dianhydride, 2,3,5,6-toluenetetracarboxylic dianhydride, 3,3', 4,4'-diphenyl.
  • Sulfontetracarboxylic dianhydride 3,3', 4,4'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 1,4,5, Examples thereof include 8-naphthalenetetracarboxylic dianhydride.
  • alkyl ester of tetracarboxylic acid examples include dimethyl pyromellitic acid, diethyl pyromellitic acid, dipropyl pyromellitic acid, diisopropyl pyromellitic acid, dimethyl 2,3,5,6-toluenetetracarboxylic acid, 3,3', 4 , 4'-Diphenylsulfonetetracarboxylic acid dimethyl, 3,3', 4,4'-benzophenone tetracarboxylic acid dimethyl, 3,3', 4,4'-biphenyltetracarboxylic acid dimethyl, 1,4,5,8 -Dimethyl naphthalenetetracarboxylate and the like can be mentioned.
  • the alkyl group preferably has 1 to 3 carbon atoms.
  • At least one compound selected from the above may be used alone, or two or more compounds may be used in combination.
  • the number of carbon atoms of the diamine containing at least one alicyclic hydrocarbon structure is preferably 6 to 22, for example, 1,2-bis (aminomethyl) cyclohexane, 1,3-bis (aminomethyl) cyclohexane, 1,4-.
  • diamines containing an alicyclic hydrocarbon structure generally have structural isomers, but the ratio of cis / trans isomers is not limited.
  • the chain aliphatic diamine may be linear or branched, and the number of carbon atoms is preferably 5 to 16, more preferably 6 to 14, and even more preferably 7 to 12. Further, if the number of carbon atoms in the chain portion is 5 to 16, an ether bond may be contained between them.
  • Examples of chain aliphatic diamines include 1,5-pentamethylenediamine, 2-methylpentane-1,5-diamine, 3-methylpentane-1,5-diamine, 1,6-hexamethylenediamine, 1,7-hepta.
  • the chain aliphatic diamine may be used alone or in combination of two or more.
  • chain aliphatic diamines having 8 to 10 carbon atoms can be preferably used, and at least one selected from the group consisting of 1,8-octamethylenediamine and 1,10-decamethylenediamine is particularly preferable. Can be used.
  • the amount of the diamine containing at least one alicyclic hydrocarbon structure charged relative to the total amount of the diamine containing at least one alicyclic hydrocarbon structure and the chain aliphatic diamine is preferably 20 to 70 mol%.
  • the molar amount is more preferably 25 mol% or more, further preferably 30 mol% or more, still more preferably 32 mol% or more, and more preferably 60 mol% or less, further preferably from the viewpoint of exhibiting high crystallinity. It is preferably 50 mol% or less, more preferably less than 40 mol%, and even more preferably 35 mol% or less.
  • the diamine component may contain a diamine containing at least one aromatic ring.
  • the number of carbon atoms of the diamine containing at least one aromatic ring is preferably 6 to 22, for example, orthoxylylene diamine, metaxylylene diamine, paraxylylene diamine, 1,2-diethynylbenzenediamine, 1,3-dietinyl.
  • the molar ratio of the amount of the diamine containing at least one aromatic ring to the total amount of the diamine containing at least one alicyclic hydrocarbon structure and the chain aliphatic diamine may be 25 mol% or less.
  • the molar ratio is preferably 5 mol% or more, more preferably 10 mol% or more, from the viewpoint of improving heat resistance, and preferably 20 mol% or less, more preferably from the viewpoint of maintaining crystallinity. It is preferably 15 mol% or less.
  • the molar ratio is preferably 12 mol% or less, more preferably 10 mol% or less, still more preferably 5 mol% or less, still more preferably 0, from the viewpoint of reducing the coloring of the polyimide resin particles (A). Mol%.
  • the charge ratio of the tetracarboxylic dian component to the diamine component is such that the diamine component is 0.9 to 1.1 mol with respect to 1 mol of the tetracarboxylic dian component. preferable.
  • an end-capping agent may be mixed in addition to the tetracarboxylic acid component and the diamine component.
  • the terminal encapsulant at least one selected from the group consisting of monoamines and dicarboxylic acids is preferable.
  • the amount used may be any amount as long as a desired amount of terminal groups can be introduced into the polyimide resin constituting the polyimide resin particles (A), and the tetracarboxylic acid and / or its derivative 1 It is preferably 0.0001 to 0.1 mol, more preferably 0.001 to 0.06 mol, further preferably 0.002 to 0.035 mol, still more preferably 0.002 to 0.020 mol, based on the mole. Preferably, 0.002 to 0.012 mol is even more preferable.
  • a monoamine terminal encapsulant is preferable as the end encapsulant, and the above-mentioned chain aliphatic group having 5 to 14 carbon atoms is introduced into the end of the polyimide resin constituting the polyimide resin particles (A) for heat aging.
  • a monoamine having a chain aliphatic group having 5 to 14 carbon atoms is more preferable, and a monoamine having a saturated linear aliphatic group having 5 to 14 carbon atoms is further preferable.
  • the terminal encapsulant is particularly preferably at least one selected from the group consisting of n-octylamine, isooctylamine, 2-ethylhexylamine, n-nonylamine, isononylamine, n-decylamine, and isodecylamine. , More preferably at least one selected from the group consisting of n-octylamine, isooctylamine, 2-ethylhexylamine, n-nonylamine, and isononylamine, most preferably n-octylamine, isooctylamine, And at least one selected from the group consisting of 2-ethylhexylamine.
  • the polymerization method for producing the polyimide resin particles (A) a known polymerization method can be applied and is not particularly limited, and examples thereof include solution polymerization, melt polymerization, solid phase polymerization, suspension polymerization and the like. Of these, suspension polymerization under high temperature conditions using an organic solvent is particularly preferable. When carrying out suspension polymerization under high temperature conditions, it is preferable to carry out the polymerization at 150 ° C. or higher, and more preferably 180 to 250 ° C.
  • the polymerization time can be appropriately selected depending on the monomer used, but is preferably about 0.1 to 6 hours.
  • the method for producing the polyimide resin particles (A) includes a step of reacting the tetracarboxylic acid component and the diamine component in the presence of a solvent containing an alkylene glycol solvent represented by the following formula (I). Is preferable. Thereby, the polyimide resin particles having a D50 of 5 to 200 ⁇ m and having a porous shape can be easily obtained.
  • Is preferable thereby, the polyimide resin particles having a D50 of 5 to 200 ⁇ m and having a porous shape can be easily obtained.
  • Ra 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • Ra 2 is a linear alkylene group having 2 to 6 carbon atoms
  • n is an integer of 1 to 3).
  • Ra 1 in the formula (I) is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group or an ethyl group.
  • Ra 2 in the formula (I) is a linear alkylene group having 2 to 6 carbon atoms, preferably a linear alkylene group having 2 to 3 carbon atoms, and more preferably an ethylene group.
  • N in the formula (I) is an integer of 1 to 3, preferably 2 or 3.
  • alkylene glycol solvent examples include ethylene glycol monomethyl ether, diethylene glycol monomethyl ether (also known as 2- (2-methoxyethoxy) ethanol), triethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and diethylene glycol monoethyl ether (also known as 2- (2-methoxyethoxy) ethanol).
  • At least one selected from the group consisting of 2- (2-methoxyethoxy) ethanol, triethylene glycol monomethyl ether, 2- (2-ethoxyethoxy) ethanol and 1,3-propanediol is preferable. ..
  • Suitable methods for producing the polyimide resin particles (A) include, for example, a solution (a) in which a tetracarboxylic acid component is contained in a solvent containing the alkylene glycol-based solvent, and a solvent containing the alkylene glycol-based solvent. After preparing the solution (b) containing the diamine component separately, the solution (b) is added to the solution (a) or the solution (a) is added to the solution (b) to prepare the polyimide. A solution (c) containing an acid is prepared, and then the solution (c) is heated to imidize the polyamic acid and precipitate polyimide resin particles in the solution (c) to precipitate a polyimide resin. A method of obtaining the particles (A) can be mentioned.
  • the reaction between the tetracarboxylic acid component and the diamine component can be carried out under normal pressure or under pressure, but is preferably carried out under normal pressure because a pressure-resistant container is not required.
  • a terminal encapsulant is used, the solution (a) and the solution (b) are mixed, and the terminal encapsulant is mixed in this mixed solution to prepare a solution (c) containing polyamic acid. Then, it is preferable to heat the solution (c), and after the solution (b) has been added to the solution (a), an end-capping agent is added to prepare a solution (c) containing polyamic acid. Then, it is more preferable to heat the solution (c).
  • thermoplastic resin (B) (hereinafter, also referred to as “component (B)”) is a thermoplastic resin other than the component (A).
  • component (B) is a thermoplastic resin other than the component (A).
  • the thermoplastic resin (B) is preferably at least one selected from the group consisting of the following (B1) and (B2).
  • the melting point of the amorphous thermoplastic resin (B2) is lower than the melting point of the polyimide resin particles (A), or the melting point of the glass transition temperature is lower than the melting point of the polyimide resin particles (A).
  • the "acrystalline thermoplastic resin” is a thermoplastic resin that has a glass transition temperature but does not have a melting point. More specifically, the “thermoplastic resin having no melting point” refers to the crystallization exothermic peak observed when the resin is melted and then cooled at a temperature lowering rate of 20 ° C./min by measurement with a differential scanning calorimeter.
  • the calorific value (calculation calorific value) is less than 5 mJ / mg.
  • the "crystalline thermoplastic resin” is a thermoplastic resin having a melting point and having a crystallization calorific value of 5 mJ / mg or more.
  • thermoplastic resin (B1)) When the thermoplastic resin (B) is an amorphous thermoplastic resin, the glass transition temperature is lower than the melting point of the polyimide resin particles (A) of the amorphous thermoplastic resin (B1) (hereinafter, "amorphous heat”). It is also preferably a "plastic resin (B1)” or “component (B1)”). Since the component (B1) can be melted and molded at a temperature lower than the melting point of the component (A), a resin composition and a resin molded product contained in the component (A) while maintaining the shape of the component (A) to be used can be obtained. be able to.
  • the component (B1) examples include polystyrene resin; polyvinyl chloride; polyvinylidene chloride; polymethylmethacrylate; acrylonitrile-butadiene-styrene resin; polycarbonate resin; polysulfone resin; polyphenylsulfone resin; polyallylate resin; polyphenylene ether resin.
  • examples thereof include an amorphous thermoplastic resin having a glass transition temperature lower than the melting point of the component (A), such as a polyether sulfone resin; a polyetherimide resin; a polyamideimide resin; a polyurethane resin; These can be used alone or in combination of two or more.
  • the glass transition temperature Tg B1 (° C.) of the component (B1) is a component from the viewpoint of facilitating the inclusion of the component (A) in the resin composition and the resin molded product while maintaining the shape of the component (A) to be used.
  • Tm A melting point
  • Tm A- 30 melting point of (A)
  • Tm A- 50 ° C. or lower
  • Tm A- 100 melting point of (A)
  • Tg B1 is preferably ⁇ 50 ° C. or higher, more preferably 0 ° C. or higher, still more preferably 50 ° C. or higher.
  • thermoplastic resin (B2) When the thermoplastic resin (B) is a crystalline thermoplastic resin, the melting point is lower than the melting point of the polyimide resin particles (A), or the glass transition temperature is lower than the glass transition temperature of the polyimide resin particles (A). It is preferably a crystalline thermoplastic resin (B2) (hereinafter, also referred to as “crystalline thermoplastic resin (B2)” or “component (B2)”). Since the component (B2) can also be melted and molded at a temperature lower than the melting point of the component (A) or a temperature lower than the glass transition temperature, the component (A) is maintained in the shape of the component (A) to be used. ) Can be contained in the resin composition and the resin molded product.
  • the component (B2) examples include polyolefin resins such as polyethylene, polypropylene, and cyclic polyolefins; polyamide resins; polyacetal resins; polyphenylene sulfide resins; polyethylene terephthalates, polyethylene naphthalates, polycyclohexylene methylene terephthalates, and polyesters such as polyglycolic acid. Resin; liquid crystal polymer; fluororesin such as polytetrafluoroethylene and polyvinylidene fluoride; polymethylpentene resin; polyurethane resin; etc., and the glass transition temperature is lower than the glass transition temperature of the component (A) or the melting point. Examples thereof include a crystalline thermoplastic resin in which is less than the melting point of the component (A). These can be used alone or in combination of two or more.
  • the melting point Tm B2 (° C.) of the component (B2) is not particularly limited as long as the temperature is lower than the melting point of the component (A), but from the viewpoint of moldability, it is preferably 320 ° C. or lower, more preferably 300 ° C. or lower, and further. It is preferably 280 ° C. or lower, and even more preferably 250 ° C. or lower.
  • the lower limit of the melting point Tm B2 is also not particularly limited, but from the viewpoint of heat resistance, it is preferably 50 ° C. or higher, more preferably 100 ° C. or higher, still more preferably 120 ° C. or higher, still more preferably 140 ° C. or higher.
  • the glass transition temperature Tg B2 (° C.) of the component (B2) is not particularly limited as long as it is lower than the glass transition temperature of the component (A), but is preferably 170 ° C. or lower, more preferably 170 ° C. or lower, from the viewpoint of moldability. It is 150 ° C. or lower, more preferably 120 ° C. or lower, and even more preferably 100 ° C. or lower.
  • the lower limit of the glass transition temperature Tg B2 is also not particularly limited, and may be, for example, -125 ° C. or higher. From the viewpoint of heat resistance, Tg B2 is preferably ⁇ 50 ° C. or higher, more preferably ⁇ 20 ° C. or higher, still more preferably 0 ° C. or higher.
  • thermoplastic resin (B) used in the present invention one kind or two or more kinds selected from the group consisting of the components (B1) and (B2) can be used.
  • the thermoplastic resin (B) ) are preferably polystyrene resin, polyvinyl chloride, polyvinylidene chloride, polymethyl methacrylate, acrylonitrile-butadiene-styrene resin, polycarbonate resin, polysulfone resin, polyphenylsulfone resin, polyarylate resin, polyphenylene ether resin, polyether.
  • polystyrene resin polyvinyl chloride, polyvinylidene chloride, polymethyl methacrylate, acrylonitrile-butadiene-styrene resin, polycarbonate resin, polyphenylsulfone resin, polyphenylene ether resin, polyethersulfone resin, polyetherimide
  • resins polyamideimide resins, polyolefin resins, polyamide resins, polyacetal resins, polyphenylene sulfide resins, polyester resins, fluororesins, and polyurethane resins, and more preferably polycarbonate resins, polyolefin resins, and polyamides.
  • the above-mentioned terminal amino group may remain in the polyimide resin particles (A), and a resin composition obtained by using a thermoplastic resin (B) having a structure capable of reacting with the terminal amino group.
  • the toughness of the resin molded product can be improved.
  • the thermoplastic resin (B) is preferably at least one selected from the group consisting of a polyamide resin and a polyamide-imide resin, and a polyamide resin is more preferable.
  • the improvement in toughness referred to here means that when a tensile stress is applied to the resin molded product, the elongation until it breaks increases, and it can be evaluated by, for example, measurement of tensile fracture strain.
  • polyamide resin used as the thermoplastic resin (B) examples include aromatic ring-containing polyamides and aliphatic polyamides.
  • aromatic ring-containing polyamide a polyamide derived from an aromatic ring-containing diamine and an aliphatic dicarboxylic acid is preferable from the viewpoint of satisfying the requirements of the component (B2).
  • aliphatic polyamide examples include polycaproamide (polyamide 6), polyhexamethylene adipamide (polyamide 66), polyundecaneamide (polyamide 11), polydodecaneamide (polyamide 12), and polyhexamethylene dodecamide (polyamide 612). Etc., and one or more of these can be used.
  • the aliphatic polyamide is more preferable from the viewpoint of obtaining the toughness improving effect in the obtained resin composition and the resin molded product.
  • thermosetting resin (C) (hereinafter, also referred to as “component (C)”) is not particularly limited as long as it is a thermosetting resin capable of dispersing the polyimide resin particles (A).
  • a thermosetting resin capable of dispersing the polyimide resin particles (A).
  • an epoxy resin or a phenol resin. Uria resin, melamine resin, unsaturated polyimide resin, bismaleimide resin, silicon resin, urethane resin, casein resin, furan resin, alkyd resin, and xylene resin.
  • the component (C) is an epoxy resin or urethane from the viewpoint of being contained in the resin composition and the resin molded body while maintaining the shape of the component (A) to be used, and from the viewpoint of the dispersibility of the component (A). At least one selected from the group consisting of resin and bismaleimide resin is preferable, at least one selected from the group consisting of epoxy resin and urethane resin is more preferable, and epoxy resin is further preferable.
  • Examples of the epoxy resin used as the component (C) include a two-component curable epoxy resin composition containing an epoxy group-containing compound as a main component and a curing agent.
  • the epoxy group-containing compound as the main agent is preferably a polyfunctional epoxy compound having two or more epoxy groups.
  • the polyfunctional epoxy compound is more preferably a polyfunctional epoxy compound containing an aromatic ring or an alicyclic structure in the molecule from the viewpoint of the mechanical strength of the cured product.
  • polyfunctional epoxy compound examples include a polyfunctional epoxy compound having a glycidylamino group derived from metaxylylene diamine; a polyfunctional epoxy compound having a glycidylamino group derived from paraxylylene diamine; 1,3- Polyfunctional epoxy compounds with glycidylamino groups derived from bis (aminomethyl) cyclohexane; polyfunctional epoxy compounds with glycidylamino groups derived from 1,4-bis (aminomethyl) cyclohexane; tetraglycidyldiaminodiphenylmethane, etc.
  • the above polyfunctional epoxy compounds can also be used by mixing two or more kinds.
  • the polyfunctional epoxy compound used as the main agent is derived from paraxylylenediamine, a polyfunctional epoxy compound having a glycidylamino group derived from m-xylylenediamine.
  • Polyfunctional epoxy compound with glycidylamino group polyfunctional epoxy compound with glycidylamino group derived from diaminodiphenylmethane, polyfunctional epoxy compound with glycidyloxy group derived from bisphenol A, and derived from bisphenol F
  • the main component is at least one selected from the group consisting of polyfunctional epoxy compounds having a glycidyloxy group, and from the viewpoint of obtaining a cured product having high heat resistance, from the viewpoint of availability and economy, tetraglycidyldiaminodiphenylmethane.
  • a polyfunctional epoxy compound having a glycidylamino group derived from diaminodiphenylmethane is more preferable.
  • the curing agent used in the epoxy resin composition may have two or more active hydrogens capable of reacting with the epoxy group in the main agent, and a polyamine compound or a modified product thereof is preferable from the viewpoint of curability.
  • chain aliphatic polyamine compounds such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, hexamethylenediamine, 2-methylpentamethylenediamine, and trimethylhexamethylenediamine; 1,2- Bis (aminomethyl) cyclohexane, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, mensenediamine, isophoronediamine, norbornandiamine, tricyclodecanediamine, adamantandiamine, diaminocyclohexane, 1,4-Diamino-2-methylcyclohexane, 1,4-diamino-3
  • Polyamine compounds having an aromatic ring Polyamine compounds having a heterocyclic structure such as N-aminomethylpiperazin and N-aminoethylpiperazin; polyetherpolyamine compounds, and their Mannig-modified products, epoxy-modified products, Michael adducts, and Michael Examples thereof include addition / polycondensate, styrene modified product, polyamide modified product and the like. These can be used alone or in combination of two or more.
  • the epoxy resin used as the component (C) has a main agent of tetraglycidyldiaminodiphenylmethane and a curing agent.
  • a two-component curable epoxy resin composition in which is a diaminodiphenyl sulfone is more preferable.
  • the cured product of the resin composition containing the polyimide resin particles (A) and the epoxy resin composition as the thermosetting resin (C) has excellent heat resistance and an improved strain energy release rate (G 1c ). This is because high breaking strength can be exhibited.
  • the strain energy release rate (G 1C ) is a value calculated from the planar strain fracture toughness (K 1C ) in accordance with ASTM D5045-99, and can be specifically obtained by the method described in Examples. ..
  • the content of the curing agent in the epoxy resin composition is preferably the ratio of the number of active amine hydrogens in the curing agent to the number of epoxy groups in the main agent (the number of active amine hydrogens in the curing agent / the number of epoxy groups in the main agent). Is 1 / 0.5 to 1/2, more preferably 1 / 0.6 to 1 / 1.8, and even more preferably 1 / 0.75 to 1 / 1.5.
  • Examples of the urethane resin used as the component (C) include a two-component curable urethane resin composition containing a polyol compound such as a polyester polyol or a polyether polyol and a polyisocyanate compound.
  • Examples of the bismaleimide resin used as the component (C) include bismaleimide such as 4,4'-bis (maleimide) diphenylmethane and a cyanate compound such as bis (3,5-dimethyl-4-cyanatephenyl) methane.
  • a two-component curable bismaleimide resin composition containing the above can be mentioned.
  • the resin composition of the present invention may contain the polyimide resin particles (A) and at least one selected from the group consisting of the thermoplastic resin (B) and the thermosetting resin (C), and is thermoplastic.
  • the resin (B) and the thermosetting resin (C) can also be used in combination.
  • the mass ratio [(A) / ⁇ (B) + (C) ⁇ ] of the polyimide resin particles (A) to the total amount of the thermoplastic resin (B) and the thermosetting resin (C) is the thermoplastic resin ( B), preferably 1/99 to 99/1, more preferably 5/95, from the viewpoint of improving various properties such as heat resistance and mechanical properties while maintaining the lightness derived from the thermosetting resin (C).
  • the mass ratio [ (A) / ⁇ (B) + (C) ⁇ ] is even more preferably 5/95 to 80/20, even more preferably 5/95 to 70/30, and even more preferably 5/95 to 60 /. It is in the range of 40, more preferably 5/95 to 50/50, and even more preferably 5/95 to 40/60.
  • the resin composition of the present invention is a thermoplastic resin composition containing the polyimide resin particles (A) and the thermoplastic resin (B), the mass ratio is 5/95 to 60/40, and further 5 /.
  • the range of 95 to 50/50 is preferable because the strand extrusion property from the extruder is good and pellets can be easily produced.
  • the total content of the polyimide resin particles (A), the thermoplastic resin (B) and the thermosetting resin (C) in the resin composition is preferably 70% by mass or more from the viewpoint of obtaining the effect of the present invention. It is preferably 80% by mass or more, more preferably 90% by mass or more. The upper limit is 100% by mass.
  • the resin composition of the present invention comprises a filler, a matting agent, a nucleating agent, a plasticizer, an antistatic agent, a coloring inhibitor, an antioxidant, a flame retardant, a coloring agent, a slidability improving agent, an antioxidant, and the like.
  • Additives such as a conductive agent and a resin modifier may be contained, if necessary.
  • the content of the additive is not particularly limited, but from the viewpoint of exhibiting the effect of the additive while maintaining the physical characteristics derived from the component (A), the component (B) and the component (C), Usually, it is 50% by mass or less, preferably 0.0001 to 30% by mass, more preferably 0.0001 to 15% by mass, still more preferably 0.001 to 10% by mass, still more preferably 0.01 to 8%. It is mass%.
  • the method for producing the resin composition of the present invention is not particularly limited, but from the viewpoint of being contained in the resin composition while maintaining the shape of the polyimide resin particles (A) to be used, heat equal to or higher than the melting point of the polyimide resin particles (A). It is preferable to produce a resin composition by mixing the polyimide resin particles (A) with the thermoplastic resin (B) or the thermosetting resin (C) without giving a history.
  • the polyimide resin particles are produced in the production of the resin composition. It is preferable to knead the polyimide resin particles (A) and the thermoplastic resin (B) at a temperature lower than the melting point of (A).
  • the resin composition containing the polyimide resin particles (A) and the thermoplastic resin (B) is kneaded in the extruder at a set temperature lower than the melting point of the polyimide resin particles (A).
  • the set temperature of the extruder is multi-stage, it is preferable that all the set temperatures are lower than the melting point of the polyimide resin particles (A). Further, it is preferable to adjust the resin temperature so that the temperature does not exceed the melting point of the polyimide resin particles (A) in the kneading process of the resin composition.
  • the kneading temperature is preferably a temperature of (Tm A- 10) ° C.
  • the melting point of the component (A) is Tm A (° C.).
  • Tm A- 20 ° C. or lower is more preferable
  • Tm A- 30 ° C. or lower is even more preferable.
  • the thermoplastic resin (B) is an amorphous thermoplastic resin (B1)
  • the kneading temperature is preferably a temperature equal to or higher than the glass transition temperature of the thermoplastic resin (B1), and the glass transition temperature of the component (B1) is Tg.
  • B1 (° C.) it is more preferably (Tg B1 +5) ° C. or higher, and further preferably (Tg B1 +10) ° C. or higher from the viewpoint of ease of extrusion.
  • the temperature is preferably equal to or higher than the melting point thereof, and when the melting point of the component (B2) is Tm B2 (° C.), the extrudability is easy. From the above viewpoint, it is more preferably (Tm B2 +5) ° C. or higher, and further preferably (Tm B2 +10) ° C. or higher.
  • the resin composition is kneaded under the above temperature conditions, and then the strands are extruded to produce pellets of the thermoplastic resin composition contained while maintaining the shape of the polyimide resin particles (A) to be used.
  • a step of drying them may be performed if necessary, but the drying temperature at this time is also preferably a temperature lower than the melting point of the polyimide resin particles (A).
  • the resin composition of the present invention is a thermosetting resin composition containing a polyimide resin particle (A) and a thermosetting resin (C)
  • the polyimide resin particle (A) is produced in the production of the resin composition.
  • the polyimide resin particles (A) and the thermosetting resin (C) may be mixed under a temperature condition lower than the melting point of.
  • the mixing temperature is the viewpoint of maintaining the shape of the component (A) used, and from the viewpoint of suppressing degradation before curing of the thermosetting resin (C), and component a melting point of (A) Tm A (° C.)
  • the temperature is preferably (Tm A- 10) ° C. or lower, more preferably (Tm A- 20) ° C.
  • the temperature is (Tm A- 30) ° C. or lower, and the temperature is (Tm A- 30) ° C. or lower. Even more preferably, the temperature is (Tm A- 50) ° C. or lower, even more preferably the temperature is (Tm A- 100) ° C. or lower, and the temperature is (Tm A- 120) ° C. or lower. It is even more preferable to have.
  • the lower limit of the mixing temperature can be selected according to the curing rate of the thermosetting resin composition and the like.
  • the melting point of the component (A) is Tm A (° C.) from the viewpoint of maintaining the shape of the component (A) used
  • all the production steps are carried out as (Tm A). more preferably conducted at a temperature of -10) ° C. or less, (Tm a -20) °C more preferably carried out under the following temperature conditions, be carried out at a temperature of (Tm a -30) °C or less Is even more preferable.
  • the resin molded body of the present invention includes a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2), and the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2).
  • the content ratio of the repeating structural units of the formula (1) to the total of the repeating structural units is 20 to 70 mol%, and the polyimide resin particles (A) having a volume average particle diameter D50 of 5 to 200 ⁇ m and the thermoplastic resin (B). ) And at least one selected from the group consisting of a cured product of the thermosetting resin (C).
  • R 1 is a divalent group having 6 to 22 carbon atoms containing at least one alicyclic hydrocarbon structure.
  • R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms.
  • X 1 And X 2 are independently tetravalent groups of 6 to 22 carbon atoms containing at least one aromatic ring.
  • the component (A), the component (B) and the component (C), and preferred embodiments thereof are the same as those described in the resin composition.
  • the resin molded product of the present invention is preferably a resin molded product in which the polyimide resin particles (A) are dispersed in a matrix composed of a cured product of the thermoplastic resin (B) or the thermosetting resin (C). ..
  • the polyimide resin particles (A) act as a resin filler, and an effect of improving various properties such as heat resistance and mechanical properties can be obtained.
  • the method for producing a resin molded product of the present invention contains a polyimide resin particle (A) and at least one selected from the group consisting of a thermoplastic resin (B) and a thermosetting resin (C). It is preferable to have a step of molding the resin composition at a temperature lower than the melting point of the polyimide resin particles (A).
  • the above-mentioned resin composition of the present invention can be used for producing a resin molded product.
  • a resin molded body is produced using a thermoplastic resin composition containing the polyimide resin particles (A) and the thermoplastic resin (B)
  • pellets of the resin composition produced by the above method it is preferable to use pellets of the resin composition produced by the above method.
  • a step of drying the pellet may be performed before the pellet is subjected to molding.
  • the drying temperature of the pellets is preferably a temperature lower than the melting point of the polyimide resin particles (A) from the viewpoint of being contained in the resin molded product while maintaining the shape of the polyimide resin particles (A) to be used, and is a thermoplastic resin. From the viewpoint of preventing deterioration of (B), the temperature is more preferably 200 ° C.
  • the drying temperature is not particularly limited, but from the viewpoint of drying efficiency, it is preferably 40 ° C. or higher, more preferably 60 ° C. or higher.
  • the drying time of the pellets can be appropriately selected depending on the type of the thermoplastic resin (B) used, the drying temperature, and the like, but is preferably 0.5 to 10 hours, more preferably 2 to 8 hours.
  • thermoplastic resin composition containing polyimide resin particles (A) and thermoplastic resin (B)
  • injection molding, extrusion molding, blow molding, hot press molding, etc. are used as molding methods for the resin molded product. Examples thereof include vacuum molding, pressure molding, laser molding, ultrasonic heat molding, welding, and welding.
  • injection molding is preferable because it can be molded without setting the molding temperature and the mold temperature at the time of molding to high temperatures.
  • thermoplastic resin (B) is selected from the group consisting of the following (B1) and (B2). It is preferable that it is at least one kind.
  • the glass transition temperature is lower than the melting point of the polyimide resin particles (A).
  • the melting point of the amorphous thermoplastic resin (B2) is lower than the melting point of the polyimide resin particles (A), or the glass transition temperature is lower.
  • a crystalline thermoplastic resin having a temperature lower than the glass transition temperature of the polyimide resin particles (A), an amorphous thermoplastic resin (B1) and a crystalline thermoplastic resin (B2), and preferred embodiments thereof are described in the resin composition. It is the same as the one that was done.
  • the method for producing the resin molded body is the polyimide resin particles (A) from the viewpoint of maintaining the shape of the polyimide resin particles (A) to be used.
  • the temperature is preferably (Tm A- 10) ° C.
  • (Tm A-10) ° C. when the melting point of the component (A) is Tm A (° C.). It is more preferably A- 20) ° C. or lower, and even more preferably (Tm A- 30) ° C. or lower.
  • the lower limit of the temperature is not particularly limited as long as it is a temperature equal to or higher than the glass transition temperature of the component (B1), but when the glass transition temperature of the component (B1) is Tg B1 (° C.), it is easy to extrude. , Preferably (Tg B1 +5) ° C. or higher, and more preferably (Tg B1 +10) ° C. or higher.
  • the set temperature at the time of extrusion is in the above range, and when the set temperature is multi-stage, it is preferable that all the set temperatures are in the above range. Further, it is more preferable to adjust the resin temperature at the time of extrusion so as to be within the above range.
  • the method for producing the resin molded body is the polyimide resin particles (A) from the viewpoint of maintaining the shape of the polyimide resin particles (A) to be used. It is preferable to have a step of extruding the resin composition containing the crystalline thermoplastic resin (B2) at a temperature lower than the melting point of the polyimide resin particles (A) and higher than the melting point of the crystalline thermoplastic resin (B2). .. From the viewpoint of maintaining the shape of the component (A) used, the temperature is preferably (Tm A- 10) ° C. or lower, preferably (Tm A-10) ° C., when the melting point of the component (A) is Tm A (° C.).
  • the lower limit of the temperature is not particularly limited as long as it is a temperature equal to or higher than the melting point of the component (B2), but when the melting point of the component (B2) is Tm B2 (° C.), it is preferably (from the viewpoint of extrusion ease). Tm B2 +5) ° C. or higher, more preferably (Tm B2 +10) ° C. or higher.
  • Tm B2 +5) ° C. or higher is preferably (Tm B2 +10) ° C. or higher.
  • at least the set temperature at the time of extrusion is preferably set in the above range, and when the set temperature is multi-stage, all the set temperatures may be set in the above range. preferable. Further, it is more preferable to adjust the resin temperature at the time of extrusion so as to be within the above range.
  • thermoplastic resin composition containing the polyimide resin particles (A) and the thermoplastic resin (B)
  • the specific procedure of the method for producing the resin molded product of the present invention is, for example, the following method. Can be mentioned. First, the polyimide resin particles (A), the thermoplastic resin (B), and various optional components are added as necessary and dry-blended, and then this is introduced into the extruder to obtain the polyimide resin particles (A). Pellets are prepared by kneading and extruding at a temperature below the melting point, preferably in the above range.
  • the thermoplastic resin (B) is introduced into the extruder and melted at a temperature lower than the melting point of the polyimide resin particles (A), preferably in the above range, where the polyimide resin particles (A) and, if necessary, are melted.
  • the above-mentioned pellets may be prepared by introducing various optional components, kneading them in an extruder, and extruding them. If necessary, the pellets are dried under the above-mentioned drying conditions, introduced into various molding machines such as an injection molding machine, molded at a temperature lower than the melting point of the polyimide resin particles (A), and have a desired shape. A molded product can be manufactured. After molding, post-processing may be performed to melt and bond the interface between the component (A) and the component (B) by heating for a short time with ultrasonic waves, if necessary.
  • thermosetting resin composition containing polyimide resin particles (A) and a thermosetting resin (C)
  • the method for producing the resin molded body maintains the shape of the component (A) used. From this point of view, it is preferable to cure the resin composition at a temperature lower than the melting point of the polyimide resin particles (A), preferably at a temperature within the above range. Temperature (curing temperature), the viewpoint of maintaining the shape of the component (A) used, and from the viewpoint of suppressing degradation before curing of the thermosetting resin (C), the melting point of the component (A) Tm A ( In the case of (° C.), the temperature is preferably (Tm A- 10) ° C.
  • the lower limit of the temperature is not particularly limited as long as it is a temperature at which the thermosetting resin composition can be cured.
  • the resin composition and the resin molded product of the present invention have improved various properties such as heat resistance and mechanical properties while maintaining the lightness derived from the resin.
  • FRP fiber reinforced plastic
  • the material constituting the structural member is the resin composition of the present invention from the viewpoint of improving both elastic modulus, strength, and toughness.
  • the material constituting the structural member is the resin composition of the present invention from the viewpoint of improving both elastic modulus, strength, and toughness.
  • it is preferably a fiber-reinforced composite material containing the cured product thereof and reinforcing fibers.
  • the reinforcing fiber used for the fiber-reinforced composite material include glass fiber, carbon fiber, boron fiber, metal fiber and the like, and one or more of these can be used.
  • carbon fiber is preferable from the viewpoint of the strength and lightness of the obtained composite material. That is, the fiber-reinforced composite material is preferably a carbon fiber-reinforced composite material (CFRP) containing the resin composition or a cured product thereof and carbon fibers.
  • CFRP carbon fiber-reinforced composite material
  • the carbon fiber used for CFRP may be produced by using rayon, polyacrylonitrile (PAN) or the like as a raw material, or may be produced by spinning a pitch such as petroleum or coal as a raw material. Further, it is also possible to use a recycled product obtained by reusing the scrap material of the carbon fiber or a recycled product obtained by removing the resin from the CFRP.
  • Examples of the form of carbon fibers include those in which monofilaments or multifilaments are simply arranged so as to intersect in one direction or alternately, fabrics such as knitted fabrics, and various forms such as non-woven fabrics or mats. Of these, the form of monofilament, cloth, non-woven fabric or mat is preferable, and the form of cloth is more preferable.
  • the average fiber diameter of the carbon fibers is preferably 1 to 100 ⁇ m, more preferably 3 to 50 ⁇ m, and even more preferably 4 to 20 ⁇ m. When the average fiber diameter is in this range, the processing is easy and the obtained CFRP has an excellent elastic modulus and strength.
  • the average fiber diameter can be measured by observation with a scanning electron microscope (SEM) or the like. It is possible to randomly select 50 or more fibers, measure the length, and calculate the average fiber diameter of the number average.
  • the fineness of the carbon fiber is preferably 20 to 4,500 tex, more preferably 50 to 4,000 tex. When the fineness is in this range, the resin composition can be easily impregnated, and the elastic modulus and strength of the obtained composite material become excellent.
  • the fineness can be obtained by obtaining the weight of a long fiber of an arbitrary length and converting it into the weight per 1,000 m. Generally, carbon fibers having a filament number of about 500 to 60,000 can be preferably used.
  • the fiber-reinforced composite material can be produced by impregnating the reinforcing fibers with the resin composition of the present invention by a conventional method and then molding the reinforcing fibers into a desired shape.
  • IR measurement ⁇ Infrared spectroscopic analysis (IR measurement)> The IR measurement of the polyimide resin particles was performed using "JIR-WINSPEC 50" manufactured by JEOL Ltd.
  • the melting point Tm of the polyimide resin particles and the thermoplastic resin described in the production example, the glass transition temperature Tg, the crystallization temperature Tc of the polyimide resin particles described in the production example, and the crystallization calorific value ⁇ Hm are determined by a differential scanning calorimeter (differential scanning calorimetry device). It was measured using "DSC-6220" manufactured by SII Nanotechnology Co., Ltd.). Under a nitrogen atmosphere, the polyimide resin particles or the thermoplastic resin were subjected to a thermal history under the following conditions.
  • the conditions of the heat history are the first temperature rise (heating rate 10 ° C./min), then cooling (heating rate 20 ° C./min), and then the second temperature rise (heating rate 10 ° C./min).
  • the melting point Tm was determined by reading the peak top value of the endothermic peak observed at the second temperature rise.
  • the glass transition temperature Tg was determined by reading the value observed at the second temperature rise.
  • the crystallization temperature Tc was determined by reading the peak top value of the exothermic peak observed during cooling.
  • the calorific value of crystallization ⁇ Hm (mJ / mg) was calculated from the area of the exothermic peak observed during cooling.
  • ⁇ Semi-crystallization time> The semi-crystallization time of the polyimide resin particles was measured using a differential scanning calorimeter (“DSC-6220” manufactured by SII Nanotechnology Co., Ltd.). When the polyimide resin was completely melted by holding it at 420 ° C. for 10 minutes in a nitrogen atmosphere and then rapidly cooled at a cooling rate of 70 ° C./min, it reached the peak top from the appearance of the observed crystallization peak. I calculated the time it took to reach it. In Table 1, when the semi-crystallization time was 20 seconds or less, it was described as " ⁇ 20".
  • the D50 of the polyimide resin particles and the resin particles used in the comparative example was determined by laser diffraction type particle size distribution measurement.
  • a laser diffracted light scattering type particle size distribution measuring device "LMS-2000e” manufactured by Malvern was used as a measuring device.
  • water was used as a dispersion medium, and the measurement was performed under ultrasonic conditions under the condition that the resin particles were sufficiently dispersed.
  • the measurement range was 0.02 to 2000 ⁇ m.
  • the specific surface area of the polyimide resin particles was determined by the BET method from the adsorption isotherm (vertical axis: nitrogen adsorption amount, horizontal axis: relative pressure P / P 0) obtained by measuring the amount of nitrogen adsorption under the following conditions.
  • a sample prepared by vacuum degassing for 6 hours under heating at 180 ° C. was used as the measurement sample.
  • Measuring device Quantachrome 4-unit specific surface area / pore distribution measuring device NOVA-TOUCH type Gas used: Nitrogen gas Refrigerant: Liquid nitrogen (temperature 77.35K) Relative pressure measured: 5 ⁇ 10 -3 ⁇ P / P 0 ⁇ 0.99 Isothermal data used to calculate the specific surface area: 0.05 ⁇ P / P 0 ⁇ 0.3
  • Total pore volume The total pore volume of the polyimide resin particles was determined from the amount of adsorbed nitrogen at P / P 0, max in the adsorption isotherm, assuming that the pores were filled with liquid nitrogen.
  • thermoplastic resin (B) used alone in Examples 1 to 3 or the thermoplastic resin composition obtained in Examples 1 to 3 a molded product having a size of 80 mm ⁇ 10 mm ⁇ thickness 4 mm was prepared by a method described later. It was prepared and the specific gravity at 23 ° C. was determined by an electronic hydrometer (“MDS-300” manufactured by Alpha Mirage Co., Ltd.). In this example, the specific gravity of the polyimide resin particles (A) was taken as the absolute value of the true density (liquid phase method) measured by the above method. The specific gravity of the polyimide resin particles 1 obtained in Production Example 1 was 1.19.
  • the specific gravity of the pellets obtained by melting and kneading the polyimide resin particles 1 obtained in Production Example 1 at a temperature equal to or higher than the melting point was measured by the following method.
  • the polyimide resin particles 1 obtained in Production Example 1 are melt-kneaded using a laboplast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.) at a cylinder set temperature of 350 ° C. and a screw rotation speed of 70 rpm to extrude strands, and after air cooling, It was pelletized with a pelletizer (“Fan Cutter FC-Mini-4 / N” manufactured by Hoshi Plastic Co., Ltd.).
  • the obtained pellets were dried at 150 ° C. for 12 hours, and then the true density (liquid phase method) was measured by the above method, and this value was taken as the specific gravity.
  • the specific density was 1.29.
  • thermoplastic resin (B) used in each example alone or the thermoplastic resin composition obtained in each example a 1A type test piece specified in JIS K7161-2: 2014 was prepared by the method described later. And used for measurement.
  • a tensile tester (“Strograph VG-1E” manufactured by Toyo Seiki Co., Ltd.), the temperature is 23 ° C, the distance between grippers is 50 mm, and the test speed is based on JIS K7161-1: 2014 and K7161-2: 2014.
  • a tensile test was carried out at 20 mm / min, and tensile strength, tensile elastic modulus and tensile fracture strain were measured.
  • ⁇ Flexural modulus> A molded product of 80 mm ⁇ 10 mm ⁇ thickness 4 mm specified in ISO316 by the method described later, using the thermoplastic resin (B) alone used in each example or the thermoplastic resin composition obtained in each example. was prepared and used for measurement. Using a bend graph (manufactured by Toyo Seiki Seisakusho Co., Ltd.), a bending test was performed at a temperature of 23 ° C. and a test speed of 2 mm / min in accordance with ISO178, and the flexural modulus was measured.
  • thermoplastic resin (B) alone used in each example or the thermoplastic resin composition obtained in each example
  • a resin molded product having an size of 80 mm ⁇ 10 mm ⁇ thickness 4 mm was produced by the method described below. Used for measurement. The measurement was carried out in a flatwise manner in accordance with JIS K711-1, 2: 2015. Specifically, using the HDT test device "Auto-HDT3D-2" (manufactured by Toyo Seiki Seisakusho Co., Ltd.), heat is applied under the conditions of a distance between fulcrums of 64 mm, a load of 1.80 MPa, and a heating rate of 120 ° C./hour. The deformation temperature was measured.
  • thermoplastic resin (B) used in each example alone, or the pellet of the thermoplastic resin composition obtained in each example or the cured product of the thermosetting resin composition was used for the measurement.
  • a thermogravimetric analyzer (“TG / DTA6200” manufactured by Seiko Instruments Inc.) was used for the measurement. About 10 mg of a sample was collected and heated to room temperature to 450 ° C. under the conditions of a nitrogen gas flow rate of 100 mL / min and a heating rate of 10 ° C./min.
  • the temperature at which the weight is reduced by 1% by mass is the 1% weight reduction temperature
  • the temperature at which the weight is reduced by 5% by mass is the 5% weight reduction temperature
  • the temperature at which the weight is reduced by 10% by mass is 10% by weight with respect to the sample weight of 100% by mass at 100 ° C. The temperature was reduced.
  • thermoplastic resin (B) used in each example alone or the thermoplastic resin composition obtained in each example a resin molded product was produced by the method described later, and the size was 30 mm ⁇ 30 mm ⁇ thickness 3 mm.
  • the machined product was used for measurement.
  • a friction and wear tester (MODEL EMF-III-F) manufactured by A & D Co., Ltd. was used for the measurement. According to JIS K7218 (1986) -A method, 23 ° C., 50% R.M. H.
  • the mating material was an S45C ring (contact area 2 cm 2 ), a slip wear test was performed under the conditions of an initial load of 50 N, a test speed of 0.5 m / s, and a slip distance of 3 km, and the dynamic friction coefficient was measured.
  • a universal material testing machine (Type 5966) manufactured by Instron was used for the measurement.
  • (Tensile test) Using the cured products of the thermosetting resin compositions shown in Table 7, resin molded bodies were produced by the methods described below, and the test pieces obtained by cutting to 150 mm ⁇ 12 mm ⁇ thickness 3 mm were used for measurement. used.
  • a universal material testing machine (Type 5966) manufactured by Instron was used for the measurement.
  • a uniaxial strain gauge (Kyowa Electric Co., Ltd. "KFGS-5-120-C1-23") was attached to the center of one side of the test piece to measure the strain.
  • K Q Stress intensity factor (MPa ⁇ m 1/2 )
  • P Q Load for K Q (kN)
  • B Test piece thickness (cm)
  • W Test piece width (cm)
  • a Crack length x: a / W
  • K Q K 1C . B, a, W-a> 2.5 (K Q / ⁇ y ) 2 ... (2) ⁇ y : Bending offset 0.2% stress (MPa)
  • the strain energy release rate (G 1C ) was calculated by the following formula.
  • G 1C Strain energy release rate (J / m 2 ) ⁇ : Poisson's ratio
  • E Tension elastic modulus (MPa)
  • Tg ⁇ Glass transition temperature
  • the Tg of the cured product of the thermosetting resin composition shown in Table 7 was determined by dynamic viscoelasticity measurement (DMA).
  • DMA dynamic viscoelasticity measurement
  • resin molded articles having a size of 50 mm ⁇ 10 mm ⁇ thickness 3 mm were produced by the methods described below, and used for measurement.
  • a dynamic viscoelasticity measuring device (“EXSTAR DMS6100” manufactured by Hitachi High-Tech Science Corporation) was used for the measurement. According to JIS K7244: 1998, storage in nitrogen stream (300 mL / min), measurement temperature: room temperature to 300 ° C, heating rate: 4.0 ° C / min, frequency: 1 Hz, measurement mode: bending mode.
  • the elastic modulus E', the loss elastic modulus E', and tan ⁇ were measured, and the peak top temperature (° C.) on the high temperature side of tan ⁇ was shown in Table 7 as Tg.
  • thermoplastic resin compositions having the compositions shown in Table 8
  • films were prepared by the methods described below, and the films cut to a width of 10 mm were used for the measurement.
  • a tensile tester (“Strograph VG-1E” manufactured by Toyo Seiki Co., Ltd.)
  • the temperature is 23 ° C
  • the distance between grippers is 50 mm
  • the test speed is based on JIS K7161-1: 2014 and K7161-2: 2014.
  • a tensile test was performed at 50 mm / min, and tensile strength, tensile elastic modulus, maximum point elongation, and fracture point elongation were measured.
  • Production Example 1 (Production of Polyimide Resin Particles 1)
  • a 2L separable flask equipped with a Dean-Stark apparatus, a Liebig condenser, a thermocouple, and four paddle blades 500 g of 2- (2-methoxyethoxy) ethanol (manufactured by Nippon Emulsion Co., Ltd.) and pyromellitic acid dianhydride ( 218.12 g (1.00 mol) (manufactured by Mitsubishi Gas Chemical Company, Inc.) was introduced, and after nitrogen flow, the mixture was stirred at 150 rpm so as to have a uniform suspension solution.
  • Logarithmic viscosity is 1.30 dL / g
  • Tm is 323 ° C
  • Tg is 184 ° C
  • Tc is 266 ° C
  • crystallization calorific value is 21.0 mJ / mg
  • semi-crystallization time is 20 seconds or less
  • Mw is 55,000. there were.
  • the composition of the polyimide resin particles 1 obtained in Production Example 1 is shown in Table 1.
  • the molar% of the tetracarboxylic dian component and the diamine component in Table 1 is a value calculated from the amount of each component charged at the time of producing the polyimide resin particles.
  • the D50 of the polyimide resin particles 1 was 17 ⁇ m, the specific gravity was 1.19, and the polyimide resin particles 1 were porous.
  • the analysis results of the true density, specific surface area, total pore volume, and average pore diameter of the polyimide resin particles 1 are also shown in Table 1.
  • Production Example 2 (Production of Polyimide Resin Particles 2) Polyimide resin particles 2 were produced in the same manner as in Production Example 1 except that n-octylamine, which is an end-capping agent, was not used in Production Example 1, and analysis was performed by the above method. Table 1 shows the composition and analysis results of the polyimide resin particles 2.
  • Example 1 (Preparation and evaluation of thermoplastic resin composition and resin molded product) Polyimide resin particles 1 obtained in Production Example 1 and polypropylene (PP) resin pellets which are crystalline thermoplastic resin (B2-1) ("Novatec FY6" manufactured by Japan Polypropylene Corporation, melting point 150 to 160 ° C., The glass transition temperature (0 ° C.) was used at the ratio shown in Table 2.
  • the polyimide resin particles 1 were introduced into the extruder from the side feeder and kneaded under the conditions of a cylinder set temperature of 200 ° C., a feed amount of 6 kg / h, and a screw rotation speed of 200 rpm to extrude the strands.
  • the resin temperature is the temperature at the outlet of the extruder.
  • the strands extruded from the extruder were water-cooled, pelletized by a pelletizer (“Fan Cutter FC-Mini-4 / N” manufactured by Hoshi Plastic Co., Ltd.), and used for injection molding.
  • injection molding is performed under the conditions of a cylinder set temperature of 200 ° C., a mold temperature of 50 ° C., and an injection speed of 62.5 mm / s, and various evaluations are performed.
  • a resin molded product having a predetermined shape to be used in the above was produced.
  • Various evaluations were carried out by the above-mentioned methods using the obtained pellets and the resin molded product. The results are shown in Table 2.
  • Example 2 Comparative Example 1 Pellets and resin molded products were produced in the same manner as in Example 1 except that the composition, strand extrusion conditions, and molding conditions of the resin composition were changed as shown in Table 2, and various evaluations were performed by the above methods. .. The results are shown in Table 2.
  • the resin molded bodies of Examples 1 to 3 containing the polyimide resin particles 1 as the component (A) and the PP resin as the crystalline thermoplastic resin (B2-1) are the resin molded products of Comparative Example 1 composed of only the PP resin.
  • the tensile elasticity, bending elasticity, HDT, and 1% weight loss temperature were improved as compared with the body.
  • the specific gravity of the component (A) in the molded product was 1.19 to 1.22.
  • the specific gravity is lower than the specific gravity (1.29) of the pellets obtained by melt-kneading the polyimide resin particles 1, and is the same as or slightly higher than the specific gravity (1.19) of the polyimide resin particles 1 blended in the resin composition.
  • the value is shown. From this, the component (A) was not melted in the process of manufacturing the resin compositions and the resin molded product of Examples 1 to 3, and the shape of the polyimide resin particles 1 used in the resin composition and the resin molded product was changed. It is considered that it is contained in a maintained state.
  • the resin composition (pellet) obtained in Example 1 was cut using a microtome (“ULTRACUT E” manufactured by REICHERT-JUNG LIMITED), smoothed, and then dyed with a ruthenium-based dyeing agent. This cut surface was observed using a field emission scanning electron microscope (ZEISS "GeminiSEM500”) at an acceleration voltage of 1.00 kV and an observation magnification of 100 times (FIG. 1). From FIG. 1, it can be seen that in the resin composition obtained in Example 1, the polyimide resin particles 1 are dispersed in a matrix made of PP resin.
  • the extrudability of the strands was confirmed in the production of the resin compositions (pellets) of Examples 1 to 3.
  • the resin compositions of Examples 1 to 3 were capable of extruding strands, but in Example 3, the resin temperature, torque and resin pressure were higher than those of Examples 1 and 2. An increase was seen and the resulting strands were also brittle. Therefore, it can be said that the resin compositions of Examples 1 and 2 are superior in strand extrusion property.
  • Example 4 (Preparation and evaluation of thermoplastic resin composition and resin molded product) Polyimide resin particles 1 obtained in Production Example 1 and polycarbonate (PC) resin which is an amorphous thermoplastic resin (B1-1) (“Iupilon S2000” manufactured by Mitsubishi Engineering Plastics Co., Ltd., glass transition temperature 145 to 150 ° C.) was used at the ratio shown in Table 3. After the PC resin was dried in a dryer at 120 ° C. for 5 hours, the PC resin was introduced from the hopper on the inlet side of the co-rotating twin-screw kneading extruder (“HK-25D” manufactured by Parker Corporation).
  • PC polycarbonate
  • Polyimide resin particles 1 were introduced into an extruder from a side feeder and kneaded under the conditions of a cylinder set temperature of 275 ° C., a feed amount of 6 kg / h, and a screw rotation speed of 150 rpm to extrude the strands.
  • the strands extruded from the extruder were air-cooled, pelletized by a pelletizer (“Fan Cutter FC-Mini-4 / N” manufactured by Hoshi Plastic Co., Ltd.), and used for injection molding. After drying the obtained pellets in a dryer at 120 ° C.
  • Comparative Example 2 A polycarbonate resin, which is an amorphous thermoplastic resin (B1-1), was used alone and dried in a dryer at 120 ° C. for 4 hours, and then a resin molded product was prepared in the same manner as in Example 4. Using the obtained resin molded product, HDT measurement was performed by the above method. The results are shown in Table 3.
  • Example 5 (Preparation and evaluation of thermoplastic resin composition and resin molded product) Polyimide resin particles 1 obtained in Production Example 1 and polyphenylene sulfide (PPS) resin (“Trelina A900” manufactured by Toray Co., Ltd., melting point 278 ° C., glass transition temperature 90) which is a crystalline thermoplastic resin (B2-2). ° C.) was used at the ratio shown in Table 3. PPS resin is introduced from the hopper on the inlet side of the co-rotating twin-screw kneading extruder (“HK-25D” manufactured by Parker Corporation), and the polyimide resin particles 1 are introduced into the extruder from the side feeder to set the cylinder.
  • PPS polyphenylene sulfide
  • the strands were extruded by kneading under the conditions of a temperature of 290 ° C., a feed amount of 6 kg / h, and a screw rotation speed of 200 rpm.
  • the strands extruded from the extruder were water-cooled, pelletized by a pelletizer (“Fan Cutter FC-Mini-4 / N” manufactured by Hoshi Plastic Co., Ltd.), and used for injection molding. After the obtained pellets are dried in a dryer at 130 ° C. for 3 hours, an injection molding machine (“Roboshot ⁇ -S30iA” manufactured by FANUC Co., Ltd.) is used to set a cylinder temperature of 310 ° C. and a mold temperature.
  • Comparative Example 3 A PPS resin, which is a crystalline thermoplastic resin (B2-2), was used alone and dried in a dryer at 130 ° C. for 3 hours, and then a resin molded product was prepared in the same manner as in Example 5. Using the obtained resin molded product, HDT measurement was performed by the above method. The results are shown in Table 3.
  • Example 6 Manufacturing and evaluation of thermoplastic resin composition and resin molded product
  • Polyimide resin particles 1 obtained in Production Example 1 and polyamide resin PA6 (“UBE Nylon 1030B” manufactured by Ube Industries, Ltd., melting point 215 to 225 ° C., glass transition temperature) which is a crystalline thermoplastic resin (B2-3). 50 ° C.) was used at the ratio shown in Table 4.
  • PA6 is introduced from the hopper on the root side of the co-rotating twin-screw kneading extruder (“HK-25D” manufactured by Parker Corporation), and the polyimide resin particles 1 are introduced into the extruder from the side feeder to set the cylinder temperature.
  • the strands were extruded by kneading under the conditions of 260 ° C., a feed amount of 6 kg / h, and a screw rotation speed of 200 rpm.
  • the strands extruded from the extruder were water-cooled, pelletized by a pelletizer (“Fan Cutter FC-Mini-4 / N” manufactured by Hoshi Plastic Co., Ltd.), and used for injection molding. After drying the obtained pellets in a dryer at 80 ° C. for 6 hours, a cylinder set temperature of 250 ° C. and a mold temperature were used using an injection molding machine (“Roboshot ⁇ -S30iA” manufactured by FANUC Co., Ltd.). Injection molding was performed under the conditions of 80 ° C.
  • the obtained injection-molded product was annealed in a dryer at 120 ° C. for 1 hour to prepare a resin molded product having a predetermined shape to be used for various evaluations.
  • HDT measurement and tensile test were performed by the above method. The results are shown in Table 4.
  • Example 7 A resin molded product was produced in the same manner as in Example 6 except that the blending amount (mass part) of the polyimide resin particles 1 and the polyamide resin PA6 was changed to the amounts shown in Table 4 in Example 6. .. Using the obtained resin molded product, HDT measurement and tensile test were performed by the above method. The results are shown in Table 4.
  • Comparative Example 4 The polyamide resin PA6, which is a crystalline thermoplastic resin (B2-3), was used alone and dried in a dryer at 80 ° C. for 6 hours, and then a resin molded product was prepared in the same manner as in Example 6. Using the obtained resin molded product, HDT measurement and tensile test were performed by the above method. The results are shown in Table 4.
  • Example 8 Manufacturing and evaluation of thermoplastic resin composition and resin molded product
  • PET resin is introduced from the hopper on the root side of the co-rotating twin-screw kneading extruder (“HK-25D” manufactured by Parker Corporation), and the polyimide resin particles 1 are introduced into the extruder from the side feeder to set the cylinder.
  • HK-25D co-rotating twin-screw kneading extruder
  • the strands were extruded by kneading under the conditions of a temperature of 280 ° C., a feed amount of 6 kg / h, and a screw rotation speed of 200 rpm.
  • the strands extruded from the extruder were water-cooled, pelletized by a pelletizer (“Fan Cutter FC-Mini-4 / N” manufactured by Hoshi Plastic Co., Ltd.), and used for injection molding. After drying the obtained pellets in a dryer at 80 ° C. for 6 hours, an injection molding machine (“Roboshot ⁇ -S30iA” manufactured by FANUC Co., Ltd.) was used to set the cylinder temperature at 250 ° C. and the mold temperature. Injection molding was performed under the conditions of 80 ° C.
  • Comparative Example 5 A PET resin, which is a crystalline thermoplastic resin (B2-4), was used alone and dried in a dryer at 130 ° C. for 3 hours, and then a resin molded product was prepared in the same manner as in Example 8. Various evaluations were carried out by the above-mentioned method using the obtained resin molded product. The results are shown in Table 5.
  • Example 9 Manufacturing and evaluation of thermoplastic resin composition and resin molded product
  • the polyimide resin particles 1 obtained in Production Example 1 and the modified polyethylene terephthalate (PET) resin 1 (melting point 220 to 230 ° C., glass transition temperature) which is the crystalline thermoplastic resin (B2-5) obtained in Production Example 3 110 ° C.) was used at the ratio shown in Table 5.
  • PET resin is introduced from the hopper on the root side of the co-rotating twin-screw kneading extruder (“HK-25D” manufactured by Parker Corporation), and the polyimide resin particles 1 are introduced into the extruder from the side feeder to set the cylinder.
  • HK-25D co-rotating twin-screw kneading extruder
  • the strands were extruded by kneading under the conditions of a temperature of 265 ° C., a feed amount of 6 kg / h, and a screw rotation speed of 200 rpm.
  • the strands extruded from the extruder were water-cooled, pelletized by a pelletizer (“Fan Cutter FC-Mini-4 / N” manufactured by Hoshi Plastic Co., Ltd.), and used for injection molding. After drying the obtained pellets in a dryer at 80 ° C. for 6 hours, an injection molding machine (“Roboshot ⁇ -S30iA” manufactured by FANUC Co., Ltd.) was used to set the cylinder temperature at 250 ° C. and the mold temperature. Injection molding was performed under the conditions of 80 ° C.
  • Comparative Example 6 A PET resin, which is a crystalline thermoplastic resin (B2-5), was used alone and dried in a dryer at 130 ° C. for 3 hours, and then a resin molded product was prepared in the same manner as in Example 9. Various evaluations were carried out by the above-mentioned method using the obtained resin molded product. The results are shown in Table 5.
  • the resin molded bodies of Examples 8 and 9 containing the polyimide resin particles 1 and the PET resin or the modified PET resin 1 are the resin molded bodies of Comparative Examples 5 and 6 composed of only the PET resin or the modified PET resin 1. In comparison, improvements in HDT, bending strength and bending elasticity were observed.
  • thermosetting resin composition (C-1) as the thermosetting resin (C)
  • thermosetting resin composition (C)
  • thermosetting resin composition and a cured product were prepared and evaluated by the following methods.
  • jER828 bisphenol A type liquid epoxy resin
  • epoxy equivalent 186 g / equivalent an epoxy group-containing compound of the main agent whose temperature was adjusted to 40 ° C.
  • thermosetting resin composition containing (C-1) was prepared.
  • the molar ratio of the number of epoxy groups in the main agent to the number of active amine hydrogens in the curing agent is 1/1.
  • the obtained thermosetting resin composition was held in a hot air dryer at 80 ° C. for 1 hour to be cured, and the 5% weight loss temperature and the 10% weight loss temperature of the cured product were measured by the above method. The results are shown in Table 6.
  • Example 11 A thermosetting resin composition and a cured product thereof were prepared in the same manner as in Example 10 except that the amount of the polyimide resin particles 1 added was changed to 22.1 g in Example 10, and cured by the above method. The 5% weight loss temperature and the 10% weight loss temperature of the object were measured. The results are shown in Table 6.
  • thermosetting resin composition and resin molded product Using a two-component curable epoxy resin composition (C-2) as the thermosetting resin (C), a thermosetting resin composition and a cured product were prepared and evaluated by the following methods.
  • TGDDM tetraglycidyldiaminodiphenylmethane
  • the epoxy resin composition was prepared by stirring and mixing at 110 ° C. in an oven.
  • the obtained epoxy resin composition was defoamed under reduced pressure, the epoxy resin composition was poured into a casting mold having a predetermined shape preheated to 110 ° C., and the temperature was raised to 150 ° C. at a heating rate of 2 ° C./min for 2 hours. After heating, the temperature was raised to 180 ° C., and the mixture was further heated for 2 hours to be cured to obtain a test piece having a desired shape.
  • the dimensions of the test piece are as follows.
  • TGDDM Tetraglycidyl diaminodiphenylmethane
  • DDS 4,4'-diaminodiphenyl sulfone
  • the cured products of the thermosetting resin compositions of Examples 12 to 15 can improve the planar strain fracture toughness and the strain energy release rate as compared with the cured products of the comparative examples while maintaining heat resistance. You can see that. Further, by using the polyimide resin particles 2 whose ends are not sealed as the polyimide resin particles, the planar strain fracture toughness and the strain energy release rate are further improved.
  • Table 8 shows the polyimide resin particles 1 obtained in Production Example 1 and the pellets of polypropylene (PP) resin which is a crystalline thermoplastic resin (B2-1) (“Novatec FY6” manufactured by Japan Polypropylene Corporation). Used in proportion.
  • the PP resin was used after being previously dried with hot air at 80 ° C. for 6 hours or more.
  • the polyimide resin particles 1 were introduced into the extruder from the side feeder and kneaded under the conditions of a cylinder set temperature of 200 ° C., a feed amount of 6 kg / h, and a screw rotation speed of 200 rpm to extrude the strands.
  • the strands extruded from the extruder were water-cooled and then pelletized with a pelletizer (“Fan Cutter FC-Mini-4 / N” manufactured by Hoshi Plastic Co., Ltd.), and a single-layer film was produced by extrusion molding using the pellets.
  • Extrusion molding was carried out under the following conditions using a Labopla T-die extrusion molding device (manufactured by Toyo Seiki Seisakusho Co., Ltd.) equipped with an extruder, a T-die, a cooling roll, and a take-up machine.
  • Extruder Screw diameter D 20 mm ⁇
  • L / D 25 (L: screw length)
  • Set temperature 205 ° C
  • Pick-up machine Pick-up speed: 1.0 m / min Using the obtained film, the film was evaluated by the above method. The results are shown in Table 8.
  • thermoplastic resin film The polyimide resin particles 1 obtained in Production Example 1 and the polyamide resin PA6 (“UBE Nylon 1030B” manufactured by Ube Industries, Ltd.), which is a crystalline thermoplastic resin (B2-3), are used at the ratios shown in Table 8. There was. PA6 was used after being pre-dried at 80 ° C. for 10 hours or more. PA6 is introduced from the hopper on the root side of the co-rotating twin-screw kneading extruder (“HK-25D” manufactured by Parker Corporation), and the polyimide resin particles 1 are introduced into the extruder from the side feeder to set the cylinder temperature.
  • PA6 co-rotating twin-screw kneading extruder
  • the strands were extruded by kneading under the conditions of 260 ° C., a feed amount of 6 kg / h, and a screw rotation speed of 200 rpm.
  • the strands extruded from the extruder were water-cooled and then pelletized with a pelletizer (“Fan Cutter FC-Mini-4 / N” manufactured by Hoshi Plastic Co., Ltd.), and a single-layer film was produced by extrusion molding using the pellets.
  • Extrusion molding was carried out under the following conditions using a Labopla T-die extrusion molding device (manufactured by Toyo Seiki Seisakusho Co., Ltd.) equipped with an extruder, a T-die, a cooling roll, and a take-up machine.
  • Extruder Screw diameter D 20 mm ⁇
  • L / D 25 Screw rotation speed: 16 rpm
  • Pick-up machine Pick-up speed: 1.0 m / min Using the obtained film, the film was evaluated by the above method. The results are shown in Table 8.
  • thermoplastic resin film Polyimide resin particles 1 obtained in Production Example 1, polyamide resin MXD6 which is a crystalline thermoplastic resin (B2-6): polymethoxylylen adipamide, "S6011” manufactured by Mitsubishi Gas Chemical Company, Ltd., melting point 237 ° C. , Glass transition temperature 85 ° C.) was used at the ratio shown in Table 8. MXD6 was used after being pre-dried at 80 ° C. for 10 hours or more.
  • polyamide resin MXD6 which is a crystalline thermoplastic resin (B2-6): polymethoxylylen adipamide, "S6011” manufactured by Mitsubishi Gas Chemical Company, Ltd., melting point 237 ° C. , Glass transition temperature 85 ° C.
  • MXD6 is introduced from the hopper on the root side of the co-rotating twin-screw kneading extruder (“HK-25D” manufactured by Parker Corporation), and the polyimide resin particles 1 are introduced into the extruder from the side feeder to set the cylinder temperature.
  • the strands were extruded by kneading under the conditions of 260 ° C., a feed amount of 6 kg / h, and a screw rotation speed of 200 rpm.
  • the strands extruded from the extruder were water-cooled and then pelletized with a pelletizer (“Fan Cutter FC-Mini-4 / N” manufactured by Hoshi Plastic Co., Ltd.), and a single-layer film was produced by extrusion molding using the pellets.
  • Extrusion molding was carried out under the following conditions using a Labopla T-die extrusion molding device (manufactured by Toyo Seiki Seisakusho Co., Ltd.) equipped with an extruder, a T-die, a cooling roll, and a take-up machine.
  • Polyimide resin particles 1 Polyimide resin particles obtained in Production Example 1
  • Polypropylene resin “Novatec FY6” manufactured by Japan Polypropylene Corporation
  • Polyamide resin PA6 "UBE Nylon 1030B” manufactured by Ube Industries, Ltd.
  • Polyamide Resin MXD6 Polymethaxylylene adipamide, "S6011” manufactured by Mitsubishi Gas Chemical Company, Inc.
  • thermoplastic resin such as a crystalline thermoplastic resin having a low melting point, an amorphous thermoplastic resin having a low glass transition temperature, or a thermocurable resin
  • heat resistance is maintained while maintaining lightness derived from the resin.
  • a resin composition having improved various properties such as mechanical properties, a resin molded body, and a method for producing the same can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%であり、体積平均粒径D50が5~200μmのポリイミド樹脂粒子(A)と、熱可塑性樹脂(B)及び熱硬化性樹脂(C)からなる群から選ばれる少なくとも1種とを含有する樹脂組成物。(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)

Description

樹脂組成物、樹脂成形体及びその製造方法
 本発明は樹脂組成物、樹脂成形体及びその製造方法に関する。詳細には、熱可塑性のポリイミド樹脂粒子と、熱可塑性樹脂又は熱硬化性樹脂とを含有する樹脂組成物、樹脂成形体及びその製造方法に関する。
 ポリイミド樹脂は分子鎖の剛直性、共鳴安定化、強い化学結合によって、高熱安定性、高強度、高耐溶媒性を有する有用なエンジニアリングプラスチックであり、幅広い分野で応用されている。また結晶性を有しているポリイミド樹脂はその耐熱性、強度、耐薬品性をさらに向上させることができることから、金属代替等としての利用が期待されている。しかしながらポリイミド樹脂は高耐熱性である反面、熱可塑性を示さず、成形加工性が低いという問題がある。
 ポリイミド成形材料としては高耐熱樹脂ベスペル(登録商標)等が知られているが(特許文献1)、高温下でも流動性が極めて低いため成形加工が困難であり、高温、高圧条件下で長時間成形を行う必要があることからコスト的にも不利である。これに対し、結晶性樹脂のように融点を有し、高温での流動性がある樹脂であれば容易にかつ安価で成形加工が可能である。
 そこで近年、熱可塑性を有するポリイミド樹脂が報告されている。熱可塑性ポリイミド樹脂はポリイミド樹脂が本来有している耐熱性に加え、成形加工性にも優れる。そのため熱可塑性ポリイミド樹脂は、汎用の熱可塑性樹脂であるナイロンやポリエステルは適用できなかった過酷な環境下で使用される成形体への適用も可能である。
 例えば特許文献2には、少なくとも1つの芳香環を含むテトラカルボン酸及び/またはその誘導体、少なくとも1つの脂環式炭化水素構造を含むジアミン、及び鎖状脂肪族ジアミンを反応させて得られる、所定の繰り返し構成単位を含む熱可塑性ポリイミド樹脂が開示されている。
 エンジニアリングプラスチック分野において、物性の改良、用途に応じた機能付与等を目的として、2種以上の熱可塑性樹脂をコンパウンドしてアロイ化する技術も知られている。特許文献3には、所定の繰り返し単位を含む熱可塑性ポリイミド樹脂が開示され、該ポリイミド樹脂と他の樹脂とを併用してポリマーアロイとして用いることも記載されている。
特開2005-28524号公報 国際公開第2013/118704号 国際公開第2016/147996号
 結晶性熱可塑性ポリイミド樹脂は、前述したように高い耐熱性、強度、耐薬品性を有し、且つ金属よりも低比重であることから、樹脂材料由来の軽量性を維持しながら耐熱性、機械的特性等を向上させることができる樹脂改質剤としての使用も期待される。
 特許文献3の実施例には、所定の繰り返し単位を含む結晶性熱可塑性ポリイミド樹脂と、ポリエーテルエーテルケトン樹脂(PEEK)とをアロイ化し、樹脂成形体を製造したことが記載されている。PEEKはポリイミド樹脂と同様に高耐熱性を有する熱可塑性樹脂であり、所定の繰り返し単位を含む結晶性熱可塑性ポリイミド樹脂とPEEKとを、該ポリイミド樹脂の融点以上の温度で加熱溶融して押出及び熱成形を行うことにより樹脂成形体が製造されている。
 一方で、当該ポリイミド樹脂を用いて、より耐熱性の低い熱可塑性樹脂、例えば低融点の結晶性熱可塑性樹脂又は低ガラス転移温度の非晶性熱可塑性樹脂や、熱硬化性樹脂の特性を改良することについては検討されていない。
 また、熱硬化性樹脂の硬化物は一般に熱可塑性樹脂よりも耐熱性が高いが、架橋密度が高いことから靭性が低くなる傾向がある。航空機、船舶等においては、樹脂硬化物の機械的特性としてひずみエネルギー解放率(G1c)等の破壊強度に関するファクターが重要視されており、樹脂硬化物の耐熱性を維持しつつ、G1cを向上させることが望まれる。
 本発明の課題は、耐熱性の低い熱可塑性樹脂、又は熱硬化性樹脂において、樹脂由来の軽量性を維持しながら耐熱性、機械的特性等の諸特性を向上させた樹脂組成物、樹脂成形体及びその製造方法を提供することにある。
 本発明者らは、熱可塑性樹脂又は熱硬化性樹脂に対し、特定のポリイミド構成単位を有する結晶性熱可塑性ポリイミド樹脂を、特定範囲の粒径を有する樹脂粒子の状態で含有させた樹脂組成物とすることで上記課題を解決できることを見出した。
 すなわち本発明は、下記[1]~[3]を提供する。
[1]下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%であり、体積平均粒径D50が5~200μmのポリイミド樹脂粒子(A)と、熱可塑性樹脂(B)及び熱硬化性樹脂(C)からなる群から選ばれる少なくとも1種とを含有する樹脂組成物。
Figure JPOXMLDOC01-appb-C000003

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
[2]前記式(1)で示される繰り返し構成単位及び前記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%であり、体積平均粒径D50が5~200μmのポリイミド樹脂粒子(A)と、熱可塑性樹脂(B)及び熱硬化性樹脂(C)の硬化物からなる群から選ばれる少なくとも1種とを含有する樹脂成形体。
[3]上記[2]に記載の樹脂成形体の製造方法であって、前記ポリイミド樹脂粒子(A)と、前記熱可塑性樹脂(B)及び前記熱硬化性樹脂(C)からなる群から選ばれる少なくとも1種とを含有する樹脂組成物を、該ポリイミド樹脂粒子(A)の融点未満の温度で成形する工程を有する、樹脂成形体の製造方法。
 本発明によれば、低融点の結晶性熱可塑性樹脂、低ガラス転移温度の非晶性熱可塑性樹脂等の熱可塑性樹脂、又は熱硬化性樹脂において、樹脂由来の軽量性を維持しながら耐熱性、機械的特性等の諸特性を向上させた樹脂組成物、樹脂成形体及びその製造方法を提供することができる。
実施例1の樹脂組成物(ペレット)をフィールドエミッション型走査型電子顕微鏡(FE-SEM)により観察した際の顕微鏡写真である。
[樹脂組成物]
 本発明の樹脂組成物は、下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%であり、体積平均粒径D50が5~200μmのポリイミド樹脂粒子(A)(以下、単に「ポリイミド樹脂粒子(A)」又は「成分(A)」ともいう)と、熱可塑性樹脂(B)及び熱硬化性樹脂(C)からなる群から選ばれる少なくとも1種とを含有する。
Figure JPOXMLDOC01-appb-C000004

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 本発明の樹脂組成物は、特定の異なるポリイミド構成単位を上記の特定の比率で組み合わせてなるポリイミド樹脂を、所定のD50を有する粒子の状態で含有するものである。これにより、熱可塑性樹脂(B)及び熱硬化性樹脂(C)に由来する軽量性を維持しながら、耐熱性、機械的特性等の諸特性を向上させた樹脂組成物及び樹脂成形体を得ることができる。
 この理由については定かではないが、ポリイミド樹脂粒子(A)が熱可塑性樹脂(B)、熱硬化性樹脂(C)又はその硬化物中に分散して樹脂フィラーとして作用し、これにより耐熱性、機械的特性等の諸特性の向上効果が得られているものと考えられる。また、ポリイミド樹脂粒子(A)が樹脂フィラーとして作用することで、摺動性向上効果も期待できる。
 本発明の樹脂組成物は熱可塑性樹脂組成物又は熱硬化性樹脂組成物であり、その形態は、熱可塑性樹脂(B)及び熱硬化性樹脂(C)のいずれを使用するかに応じて適宜選択することができる。本発明の樹脂組成物がポリイミド樹脂粒子(A)及び熱可塑性樹脂(B)を含有する熱可塑性樹脂組成物である場合は、取り扱い性、加工性の観点から、該熱可塑性樹脂組成物の形態はペレットであることが好ましい。より好ましくは、該熱可塑性樹脂組成物は、熱可塑性樹脂(B)から構成されるマトリックス中に、以下に説明するポリイミド樹脂粒子(A)が分散したペレットである。
<ポリイミド樹脂粒子(A)>
 本発明の樹脂組成物は、熱可塑性樹脂(B)、熱硬化性樹脂(C)由来の軽量性を維持しながら耐熱性、機械的特性等の諸特性を向上させる観点から、下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%であり、体積平均粒径D50が5~200μmのポリイミド樹脂粒子(A)を含有する。
Figure JPOXMLDOC01-appb-C000005

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 成分(A)を構成するポリイミド樹脂は熱可塑性樹脂であり、例えばポリアミド酸等のポリイミド前駆体の状態で成形した後にイミド環を閉環して形成される、ガラス転移温度(Tg)を持たないポリイミド樹脂、あるいはガラス転移温度よりも低い温度で分解してしまうポリイミド樹脂とは区別される。
 また該ポリイミド樹脂は結晶性を有しており、結晶性の程度については、該ポリイミド樹脂を溶融後、降温速度20℃/分で冷却した際に観測される結晶化発熱ピークの熱量(結晶化発熱量)により判断することができる。詳細は後述する。
 式(1)の繰り返し構成単位について、以下に詳述する。
 Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。ここで、脂環式炭化水素構造とは、脂環式炭化水素化合物から誘導される環を意味し、該脂環式炭化水素化合物は、飽和であっても不飽和であってもよく、単環であっても多環であってもよい。
 脂環式炭化水素構造としては、シクロヘキサン環等のシクロアルカン環、シクロヘキセン等のシクロアルケン環、ノルボルナン環等のビシクロアルカン環、及びノルボルネン等のビシクロアルケン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはシクロアルカン環、より好ましくは炭素数4~7のシクロアルカン環、さらに好ましくはシクロヘキサン環である。
 Rの炭素数は6~22であり、好ましくは8~17である。
 Rは脂環式炭化水素構造を少なくとも1つ含み、好ましくは1~3個含む。
 Rは、好ましくは下記式(R1-1)又は(R1-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000006

(m11及びm12は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。m13~m15は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。)
 Rは、特に好ましくは下記式(R1-3)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000007

 なお、上記の式(R1-3)で表される2価の基において、2つのメチレン基のシクロヘキサン環に対する位置関係はシスであってもトランスであってもよく、またシスとトランスの比は如何なる値でもよい。
 Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基である。前記芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環、及びテトラセン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環である。
 Xの炭素数は6~22であり、好ましくは6~18である。
 Xは芳香環を少なくとも1つ含み、好ましくは1~3個含む。
 Xは、好ましくは下記式(X-1)~(X-4)のいずれかで表される4価の基である。
Figure JPOXMLDOC01-appb-C000008

(R11~R18は、それぞれ独立に、炭素数1~4のアルキル基である。p11~p13は、それぞれ独立に、0~2の整数であり、好ましくは0である。p14、p15、p16及びp18は、それぞれ独立に、0~3の整数であり、好ましくは0である。p17は0~4の整数であり、好ましくは0である。L11~L13は、それぞれ独立に、単結合、エーテル基、カルボニル基又は炭素数1~4のアルキレン基である。)
 なお、Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基であるので、式(X-2)におけるR12、R13、p12及びp13は、式(X-2)で表される4価の基の炭素数が10~22の範囲に入るように選択される。
 同様に、式(X-3)におけるL11、R14、R15、p14及びp15は、式(X-3)で表される4価の基の炭素数が12~22の範囲に入るように選択され、式(X-4)におけるL12、L13、R16、R17、R18、p16、p17及びp18は、式(X-4)で表される4価の基の炭素数が18~22の範囲に入るように選択される。
 Xは、特に好ましくは下記式(X-5)又は(X-6)で表される4価の基である。
Figure JPOXMLDOC01-appb-C000009
 次に、式(2)の繰り返し構成単位について、以下に詳述する。
 Rは炭素数5~16の2価の鎖状脂肪族基であり、好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10である。ここで、鎖状脂肪族基とは、鎖状脂肪族化合物から誘導される基を意味し、該鎖状脂肪族化合物は、飽和であっても不飽和であってもよく、直鎖状であっても分岐状であってもよく、酸素原子等のヘテロ原子を含んでいてもよい。
 Rは、好ましくは炭素数5~16のアルキレン基であり、より好ましくは炭素数6~14、更に好ましくは炭素数7~12のアルキレン基であり、なかでも好ましくは炭素数8~10のアルキレン基である。前記アルキレン基は、直鎖アルキレン基であっても分岐アルキレン基であってもよいが、好ましくは直鎖アルキレン基である。
 Rは、好ましくはオクタメチレン基及びデカメチレン基からなる群から選ばれる少なくとも1種であり、特に好ましくはオクタメチレン基である。
 また、Rの別の好適な様態として、エーテル基を含む炭素数5~16の2価の鎖状脂肪族基が挙げられる。該炭素数は、好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10である。その中でも好ましくは下記式(R2-1)又は(R2-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000010

(m21及びm22は、それぞれ独立に、1~15の整数であり、好ましくは1~13、より好ましくは1~11、更に好ましくは1~9である。m23~m25は、それぞれ独立に、1~14の整数であり、好ましくは1~12、より好ましくは1~10、更に好ましくは1~8である。)
 なお、Rは炭素数5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10)の2価の鎖状脂肪族基であるので、式(R2-1)におけるm21及びm22は、式(R2-1)で表される2価の基の炭素数が5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10)の範囲に入るように選択される。すなわち、m21+m22は5~16(好ましくは6~14、より好ましくは7~12、更に好ましくは8~10)である。
 同様に、式(R2-2)におけるm23~m25は、式(R2-2)で表される2価の基の炭素数が5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10)の範囲に入るように選択される。すなわち、m23+m24+m25は5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10)である。
 Xは、式(1)におけるXと同様に定義され、好ましい様態も同様である。
 式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(1)の繰り返し構成単位の含有比は好ましくは20~70モル%である。式(1)の繰り返し構成単位の含有比が上記範囲である場合、一般的な射出成型サイクルにおいても、前記ポリイミド樹脂を十分に結晶化させることが可能となる。該含有量比が20モル%以上であると成形加工性が良好であり、70モル%以下であれば良好な耐熱性を維持できる。
 式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(1)の繰り返し構成単位の含有比は、高い結晶性を発現する観点から、好ましくは65モル%以下、より好ましくは60モル%以下、更に好ましくは50モル%以下である。
 中でも、結晶性が高くなり、より耐熱性に優れる樹脂組成物を得る観点から、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する式(1)の繰り返し構成単位の含有比は20モル%以上、40モル%未満であることが好ましい。上記含有比は、成形加工性の観点からは、より好ましくは25モル%以上、更に好ましくは30モル%以上、より更に好ましくは32モル%以上であり、高い結晶性を発現する観点から、より更に好ましくは35モル%以下である。
 前記ポリイミド樹脂を構成する全繰り返し構成単位に対する、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計の含有比は、好ましくは50~100モル%、より好ましくは75~100モル%、更に好ましくは80~100モル%、より更に好ましくは85~100モル%である。
 前記ポリイミド樹脂は、さらに、下記式(3)の繰り返し構成単位を含有してもよい。その場合、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(3)の繰り返し構成単位の含有比は、好ましくは25モル%以下である。一方で、下限は特に限定されず、0モル%を超えていればよい。
 前記含有比は、耐熱性の向上という観点からは、好ましくは5モル%以上、より好ましくは10モル%以上であり、一方で結晶性を維持する観点からは、好ましくは20モル%以下、より好ましくは15モル%以下である。
Figure JPOXMLDOC01-appb-C000011

(Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基である。Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基である。前記芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環、及びテトラセン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環である。
 Rの炭素数は6~22であり、好ましくは6~18である。
 Rは芳香環を少なくとも1つ含み、好ましくは1~3個含む。
 また、前記芳香環には1価もしくは2価の電子求引性基が結合していてもよい。1価の電子求引性基としてはニトロ基、シアノ基、p-トルエンスルホニル基、ハロゲン、ハロゲン化アルキル基、フェニル基、アシル基などが挙げられる。2価の電子求引性基としては、フッ化アルキレン基(例えば-C(CF-、-(CF-(ここで、pは1~10の整数である))のようなハロゲン化アルキレン基のほかに、-CO-、-SO-、-SO-、-CONH-、-COO-などが挙げられる。
 Rは、好ましくは下記式(R3-1)又は(R3-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000012

(m31及びm32は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。m33及びm34は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。R21、R22、及びR23は、それぞれ独立に、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基である。p21、p22及びp23は0~4の整数であり、好ましくは0である。L21は、単結合、エーテル基、カルボニル基又は炭素数1~4のアルキレン基である。)
 なお、Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基であるので、式(R3-1)におけるm31、m32、R21及びp21は、式(R3-1)で表される2価の基の炭素数が6~22の範囲に入るように選択される。
 同様に、式(R3-2)におけるL21、m33、m34、R22、R23、p22及びp23は、式(R3-2)で表される2価の基の炭素数が12~22の範囲に入るように選択される。
 Xは、式(1)におけるXと同様に定義され、好ましい様態も同様である。
 前記ポリイミド樹脂は、さらに、下記式(4)で示される繰り返し構成単位を含有してもよい。
Figure JPOXMLDOC01-appb-C000013

(Rは-SO-又は-Si(R)(R)O-を含む2価の基であり、R及びRはそれぞれ独立に、炭素数1~3の鎖状脂肪族基又はフェニル基を表す。Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 Xは、式(1)におけるXと同様に定義され、好ましい様態も同様である。
 前記ポリイミド樹脂の末端構造には特に制限はない。例えば、ポリイミド樹脂粒子(A)を構成するポリイミド樹脂は、末端封止されていないポリイミド樹脂であってもよい。末端封止されていないポリイミド樹脂とは、ポリイミド樹脂の末端構造が、その原料であるテトラカルボン酸成分及びジアミン成分に由来する末端アミノ基及び末端カルボキシ基のみであるポリイミド樹脂をいう。
 ポリイミド樹脂粒子(A)を構成するポリイミド樹脂が末端封止されていないものであると、ポリイミド樹脂粒子(A)中の末端アミノ基及び末端カルボキシ基と、熱可塑性樹脂(B)又は熱硬化性樹脂(C)との架橋が可能になり、靭性等の機械的特性をより向上させることができる。この観点からは、本発明の樹脂組成物においては、末端封止されていないポリイミド樹脂から構成されたポリイミド樹脂粒子(A)は、熱硬化性樹脂(C)と組み合わせて用いることがより好ましい。
 一方で、前記ポリイミド樹脂が末端封止されたものである場合には、該ポリイミド樹脂は、炭素数5~14の鎖状脂肪族基を末端に有することが好ましい。
 該鎖状脂肪族基は、飽和であっても不飽和であってもよく、直鎖状であっても分岐状であってもよい。前記ポリイミド樹脂が上記特定の基を末端に有すると、耐熱老化性に優れる樹脂組成物を得ることができる。
 炭素数5~14の飽和鎖状脂肪族基としては、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、ラウリル基、n-トリデシル基、n-テトラデシル基、イソペンチル基、ネオペンチル基、2-メチルペンチル基、2-メチルヘキシル基、2-エチルペンチル基、3-エチルペンチル基、イソオクチル基、2-エチルヘキシル基、3-エチルヘキシル基、イソノニル基、2-エチルオクチル基、イソデシル基、イソドデシル基、イソトリデシル基、イソテトラデシル基等が挙げられる。
 炭素数5~14の不飽和鎖状脂肪族基としては、1-ペンテニル基、2-ペンテニル基、1-へキセニル基、2-へキセニル基、1-ヘプテニル基、2-ヘプテニル基、1-オクテニル基、2-オクテニル基、ノネニル基、デセニル基、ドデセニル基、トリデセニル基、テトラデセニル基等が挙げられる。
 中でも、上記鎖状脂肪族基は飽和鎖状脂肪族基であることが好ましく、飽和直鎖状脂肪族基であることがより好ましい。また耐熱老化性を得る観点から、上記鎖状脂肪族基は好ましくは炭素数6以上、より好ましくは炭素数7以上、更に好ましくは炭素数8以上であり、好ましくは炭素数12以下、より好ましくは炭素数10以下、更に好ましくは炭素数9以下である。上記鎖状脂肪族基は1種のみでもよく、2種以上でもよい。
 上記鎖状脂肪族基は、特に好ましくはn-オクチル基、イソオクチル基、2-エチルヘキシル基、n-ノニル基、イソノニル基、n-デシル基、及びイソデシル基からなる群から選ばれる少なくとも1種であり、更に好ましくはn-オクチル基、イソオクチル基、2-エチルヘキシル基、n-ノニル基、及びイソノニル基からなる群から選ばれる少なくとも1種であり、最も好ましくはn-オクチル基、イソオクチル基、及び2-エチルヘキシル基からなる群から選ばれる少なくとも1種である。
 また前記ポリイミド樹脂は、炭素数5~14の鎖状脂肪族基を末端に有する場合には、耐熱老化性の観点から、末端アミノ基及び末端カルボキシ基以外に、炭素数5~14の鎖状脂肪族基のみを末端に有することが好ましい。上記以外の基を末端に有する場合、その含有量は、好ましくは炭素数5~14の鎖状脂肪族基に対し10モル%以下、より好ましくは5モル%以下である。
 前記ポリイミド樹脂が炭素数5~14の鎖状脂肪族基を末端に有する場合、前記ポリイミド樹脂中の上記炭素数5~14の鎖状脂肪族基の含有量は、優れた耐熱老化性を発現する観点から、前記ポリイミド樹脂を構成する全繰り返し構成単位の合計100モル%に対し、好ましくは0.01モル%以上、より好ましくは0.1モル%以上、更に好ましくは0.2モル%以上である。また、十分な分子量を確保し良好な機械的物性を得るためには、前記ポリイミド樹脂中の上記炭素数5~14の鎖状脂肪族基の含有量は、前記ポリイミド樹脂を構成する全繰り返し構成単位の合計100モル%に対し、好ましくは10モル%以下、より好ましくは6モル%以下、更に好ましくは3.5モル%以下である。
 前記ポリイミド樹脂中の上記炭素数5~14の鎖状脂肪族基の含有量は、前記ポリイミド樹脂を解重合することにより求めることができる。
 前記ポリイミド樹脂は、360℃以下の融点を有し、かつ150℃以上のガラス転移温度を有することが好ましい。
 前記ポリイミド樹脂の融点は、耐熱性の観点から、好ましくは280℃以上、より好ましくは290℃以上であり、高い成形加工性を発現する観点からは、より好ましくは345℃以下、更に好ましくは340℃以下、より更に好ましくは335℃以下である。
 また、前記ポリイミド樹脂のガラス転移温度は、耐熱性の観点から、より好ましくは160℃以上、更に好ましくは170℃以上であり、高い成形加工性を発現する観点からは、好ましくは250℃以下、より好ましくは230℃以下、更に好ましくは200℃以下である。
 また前記ポリイミド樹脂は、結晶性、耐熱性、機械的強度、耐薬品性を向上させる観点から、示差走査型熱量計測定により、該ポリイミド樹脂を溶融後、降温速度20℃/分で冷却した際に観測される結晶化発熱ピークの熱量(以下、単に「結晶化発熱量」ともいう)が、5.0mJ/mg以上であることが好ましく、10.0mJ/mg以上であることがより好ましく、17.0mJ/mg以上であることが更に好ましい。結晶化発熱量の上限値は特に限定されないが、通常、45.0mJ/mg以下である。
 前記ポリイミド樹脂の融点、ガラス転移温度、及び結晶化発熱量は、いずれも示差走査型熱量計により測定することができ、具体的には実施例に記載の方法で測定できる。
 前記ポリイミド樹脂の5質量%濃硫酸溶液の30℃における対数粘度は、好ましくは0.2~2.0dL/g、より好ましくは0.3~1.8dL/gの範囲である。対数粘度が0.2dL/g以上であれば、得られる樹脂組成物を成形体とした際に十分な機械的強度が得られ、2.0dL/g以下であると、成形加工性及び取り扱い性が良好になる。対数粘度μは、キャノンフェンスケ粘度計を使用して、30℃において濃硫酸及び上記ポリイミド樹脂溶液の流れる時間をそれぞれ測定し、下記式から求められる。
  μ=ln(ts/t)/C
   t:濃硫酸の流れる時間
   ts:ポリイミド樹脂溶液の流れる時間
   C:0.5(g/dL)
 ポリイミド樹脂粒子(A)を構成するポリイミド樹脂の重量平均分子量Mwは、好ましくは10,000~150,000、より好ましくは15,000~100,000、更に好ましくは20,000~80,000、より更に好ましくは30,000~70,000、より更に好ましくは35,000~65,000の範囲である。また、前記ポリイミド樹脂の重量平均分子量Mwが10,000以上であれば得られる成形体の機械的強度が良好になり、40,000以上であれば機械的強度安定性が良好になり、150,000以下であれば成形加工性が良好になる。
 前記ポリイミド樹脂の重量平均分子量Mwは、ポリメチルメタクリレート(PMMA)を標準試料としてゲルろ過クロマトグラフィー(GPC)法により測定することができる。
(体積平均粒径D50)
 ポリイミド樹脂粒子(A)は、熱可塑性樹脂(B)、熱硬化性樹脂(C)由来の軽量性を維持しながら耐熱性、機械的特性等の諸特性を向上させた樹脂組成物及び樹脂成形体を得る観点、及び分散性の観点から、体積平均粒径D50が5~200μmであり、より好ましくは5~150μm、更に好ましくは5~100μm、より更に好ましくは5~40μmである。
 ポリイミド樹脂粒子(A)のD50はレーザー回折光散乱式粒度分布測定器により測定することができ、具体的には実施例に記載の方法で測定できる。
 ポリイミド樹脂粒子(A)の形状には特に制限はないが、ポーラス状であることが好ましい。ポリイミド樹脂粒子(A)がポーラス状であると、得られる樹脂組成物及び樹脂成形体の耐熱性、機械的特性等の諸特性を向上させつつ、より軽量化することが可能になる。また、樹脂組成物及び樹脂成形体の低誘電率化等も期待できる。これらの効果を得る観点からは、ポリイミド樹脂粒子(A)はポーラス状粒子の状態で樹脂組成物及び樹脂成形体に存在していることが好ましい。そのため、後述するように、ポリイミド樹脂粒子(A)の融点以上の熱履歴を与えずに、樹脂組成物及び樹脂成形体を製造することが好ましい。なお、「ポリイミド樹脂粒子(A)の融点以上の熱履歴を与えずに樹脂組成物及び樹脂成形体を製造する」とは、本発明の樹脂組成物及び樹脂成形体の製造において、すべての製造工程を、ポリイミド樹脂粒子(A)の融点未満の温度条件下で行うことを意味する。
 ポリイミド樹脂粒子(A)がポーラス状であることは、走査型電子顕微鏡(SEM)により観察することで確認できる。
 なお、ポリイミド樹脂粒子(A)のD50を前記範囲に調整すること、及びポーラス状にすることは、ポリイミド樹脂粒子(A)を後述する製造方法により製造することで達成できる。
(比重)
 ポリイミド樹脂粒子(A)の比重は、熱可塑性樹脂(B)、熱硬化性樹脂(C)由来の軽量性を維持しながら耐熱性、機械的特性等の諸特性を向上させた樹脂組成物及び樹脂成形体を得る観点から、好ましくは0.8~1.7、より好ましくは0.9~1.5、更に好ましくは1.0~1.4、より更に好ましくは1.05~1.25である。
 ポリイミド樹脂粒子(A)の比重は、23℃において測定される値であり、具体的には実施例に記載の方法で測定できる。
(真密度)
 ポリイミド樹脂粒子(A)の気相法により測定される真密度は、熱可塑性樹脂(B)、熱硬化性樹脂(C)由来の軽量性を維持しながら耐熱性、機械的特性等の諸特性を向上させた樹脂組成物及び樹脂成形体を得る観点から、好ましくは1.0~1.8g/cm、より好ましくは1.1~1.6g/cm、更に好ましくは1.2~1.5g/cmである。また、ポリイミド樹脂粒子(A)の液相法により測定される真密度は、上記観点から、好ましくは0.8~1.7g/cm、より好ましくは0.9~1.5g/cm、更に好ましくは1.0~1.4g/cmである。
 気相法による真密度測定は、JIS Z8807:2012で規定する「気体置換法による密度及び比重の測定方法」に準拠して行うことができる。また液相法(ピクノメーター法)による真密度測定は、媒液としてn-ブチルアルコールを使用し、湿式真密度測定器を用いて行うことができる。
 上記真密度測定は、具体的には実施例に記載の方法で測定できる。
 さらに、ポリイミド樹脂粒子(A)の気相法により測定される真密度Dと液相法により測定される真密度Dとの差(D-D)は、0.05~0.7g/cmであることが好ましく、0.08~0.5g/cmであることがより好ましく、0.08~0.4g/cmであることが更に好ましい。(D-D)は、液相法による真密度測定で用いる媒液が入り込むことができない微細な細孔の存在を示していると推察される。
(比表面積)
 ポリイミド樹脂粒子(A)の比表面積は、取り扱い性の観点、及び優れた流動性を有する樹脂組成物を得る観点から、好ましくは1.0~50m/g、より好ましくは2.0~40m/g、更に好ましくは5.0~25m/gである。上記比表面積には、ポリイミド樹脂粒子(A)のD50及び細孔容積の両方が影響していると推察される。
 上記比表面積はBET法により求めることができ、具体的には実施例に記載の方法で測定できる。
(全細孔容積)
 ポリイミド樹脂粒子(A)がポーラス状である場合、その全細孔容積は、熱可塑性樹脂(B)、熱硬化性樹脂(C)由来の軽量性を維持しながら耐熱性、機械的特性等の諸特性を向上させた樹脂組成物及び樹脂成形体を得る観点から、好ましくは0.005~0.50cc/g、より好ましくは0.01~0.30cc/g、更に好ましくは0.015~0.20cc/gである。
 上記全細孔容積は、具体的には実施例に記載の方法で測定できる。
(平均細孔直径)
 ポリイミド樹脂粒子(A)がポーラス状である場合、その平均細孔直径は、熱可塑性樹脂(B)、熱硬化性樹脂(C)由来の軽量性を維持しながら耐熱性、機械的特性等の諸特性を向上させた樹脂組成物及び樹脂成形体を得る観点から、好ましくは5~85nm、より好ましくは10~80nm、更に好ましくは20~70nmである。
 上記平均細孔直径は、具体的には実施例に記載の方法で測定できる。
 ポリイミド樹脂粒子(A)の前記D50、比重、真密度、比表面積、全細孔容積、及び平均細孔直径は、樹脂組成物及び樹脂成形体に配合する前のポリイミド樹脂粒子(A)を用いて測定した値が前記範囲であることが好ましい。なお本発明において、ポリイミド樹脂粒子(A)の融点以上の熱履歴を与えずに樹脂組成物及び樹脂成形体を製造した場合は、該樹脂組成物及び樹脂成形体中のポリイミド樹脂粒子(A)の形状は、剪断応力による変形がない限り、使用するポリイミド樹脂粒子(A)の形状を維持していると考えられる。「使用するポリイミド樹脂粒子(A)の形状」とは、樹脂組成物及び樹脂成形体に配合する前のポリイミド樹脂粒子(A)のD50及びポーラス状態を意味する。
(ポリイミド樹脂粒子(A)の製造方法)
 ポリイミド樹脂粒子(A)は、テトラカルボン酸成分とジアミン成分とを反応させることにより製造することができる。該テトラカルボン酸成分は少なくとも1つの芳香環を含むテトラカルボン酸及び/又はその誘導体を含有し、該ジアミン成分は少なくとも1つの脂環式炭化水素構造を含むジアミン及び鎖状脂肪族ジアミンを含有する。
 少なくとも1つの芳香環を含むテトラカルボン酸は4つのカルボキシ基が直接芳香環に結合した化合物であることが好ましく、構造中にアルキル基を含んでいてもよい。また前記テトラカルボン酸は、炭素数6~26であるものが好ましい。前記テトラカルボン酸としては、ピロメリット酸、2,3,5,6-トルエンテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸等が好ましい。これらの中でもピロメリット酸がより好ましい。
 少なくとも1つの芳香環を含むテトラカルボン酸の誘導体としては、少なくとも1つの芳香環を含むテトラカルボン酸の無水物又はアルキルエステル体が挙げられる。前記テトラカルボン酸誘導体は、炭素数6~38であるものが好ましい。テトラカルボン酸の無水物としては、ピロメリット酸一無水物、ピロメリット酸二無水物、2,3,5,6-トルエンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物等が挙げられる。テトラカルボン酸のアルキルエステル体としては、ピロメリット酸ジメチル、ピロメリット酸ジエチル、ピロメリット酸ジプロピル、ピロメリット酸ジイソプロピル、2,3,5,6-トルエンテトラカルボン酸ジメチル、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸ジメチル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジメチル、3,3’,4,4’-ビフェニルテトラカルボン酸ジメチル、1,4,5,8-ナフタレンテトラカルボン酸ジメチル等が挙げられる。上記テトラカルボン酸のアルキルエステル体において、アルキル基の炭素数は1~3が好ましい。
 少なくとも1つの芳香環を含むテトラカルボン酸及び/又はその誘導体は、上記から選ばれる少なくとも1つの化合物を単独で用いてもよく、2つ以上の化合物を組み合わせて用いてもよい。
 少なくとも1つの脂環式炭化水素構造を含むジアミンの炭素数は6~22が好ましく、例えば、1,2-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、カルボンジアミン、リモネンジアミン、イソホロンジアミン、ノルボルナンジアミン、ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルプロパン等が好ましい。これらの化合物を単独で用いてもよく、これらから選ばれる2つ以上の化合物を組み合わせて用いてもよい。これらのうち、1,3-ビス(アミノメチル)シクロヘキサンが好適に使用できる。なお、脂環式炭化水素構造を含むジアミンは一般的には構造異性体を持つが、シス体/トランス体の比率は限定されない。
 鎖状脂肪族ジアミンは、直鎖状であっても分岐状であってもよく、炭素数は5~16が好ましく、6~14がより好ましく、7~12が更に好ましい。また、鎖部分の炭素数が5~16であれば、その間にエーテル結合を含んでいてもよい。鎖状脂肪族ジアミンとして例えば1,5-ペンタメチレンジアミン、2-メチルペンタン-1,5-ジアミン、3-メチルペンタン-1,5-ジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミン、1,10-デカメチレンジアミン、1,11-ウンデカメチレンジアミン、1,12-ドデカメチレンジアミン、1,13-トリデカメチレンジアミン、1,14-テトラデカメチレンジアミン、1,16-ヘキサデカメチレンジアミン、2,2’-(エチレンジオキシ)ビス(エチレンアミン)等が好ましい。
 鎖状脂肪族ジアミンは1種類あるいは複数を混合して使用してもよい。これらのうち、炭素数が8~10の鎖状脂肪族ジアミンが好適に使用でき、特に1,8-オクタメチレンジアミン及び1,10-デカメチレンジアミンからなる群から選ばれる少なくとも1種が好適に使用できる。
 ポリイミド樹脂粒子(A)を製造する際、少なくとも1つの脂環式炭化水素構造を含むジアミンと鎖状脂肪族ジアミンの合計量に対する、少なくとも1つの脂環式炭化水素構造を含むジアミンの仕込み量のモル比は20~70モル%であることが好ましい。該モル量は、より好ましくは25モル%以上、更に好ましくは30モル%以上、より更に好ましくは32モル%以上であり、高い結晶性を発現する観点から、より好ましくは60モル%以下、更に好ましくは50モル%以下、より更に好ましくは40モル%未満、より更に好ましくは35モル%以下である。
 また、上記ジアミン成分中に、少なくとも1つの芳香環を含むジアミンを含有してもよい。少なくとも1つの芳香環を含むジアミンの炭素数は6~22が好ましく、例えば、オルトキシリレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、1,2-ジエチニルベンゼンジアミン、1,3-ジエチニルベンゼンジアミン、1,4-ジエチニルベンゼンジアミン、1,2-ジアミノベンゼン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、α,α’-ビス(4-アミノフェニル)1,4-ジイソプロピルベンゼン、α,α’-ビス(3-アミノフェニル)-1,4-ジイソプロピルベンゼン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,6-ジアミノナフタレン、1,5-ジアミノナフタレン等が挙げられる。
 上記において、少なくとも1つの脂環式炭化水素構造を含むジアミンと鎖状脂肪族ジアミンの合計量に対する、少なくとも1つの芳香環を含むジアミンの仕込み量のモル比は、25モル%以下であることが好ましい。
 前記モル比は、耐熱性の向上という観点からは、好ましくは5モル%以上、より好ましくは10モル%以上であり、一方で結晶性を維持する観点からは、好ましくは20モル%以下、より好ましくは15モル%以下である。
 また、前記モル比は、ポリイミド樹脂粒子(A)の着色を少なくする観点からは、好ましくは12モル%以下、より好ましくは10モル%以下、更に好ましくは5モル%以下、より更に好ましくは0モル%である。
 ポリイミド樹脂粒子(A)を製造する際、前記テトラカルボン酸成分と前記ジアミン成分の仕込み量比は、テトラカルボン酸成分1モルに対してジアミン成分が0.9~1.1モルであることが好ましい。
 またポリイミド樹脂粒子(A)を製造する際、前記テトラカルボン酸成分、前記ジアミン成分の他に、末端封止剤を混合してもよい。末端封止剤としては、モノアミン類及びジカルボン酸類からなる群から選ばれる少なくとも1種が好ましい。末端封止剤を用いる場合、その使用量は、ポリイミド樹脂粒子(A)を構成するポリイミド樹脂中に所望量の末端基を導入できる量であればよく、前記テトラカルボン酸及び/又はその誘導体1モルに対して0.0001~0.1モルが好ましく、0.001~0.06モルがより好ましく、0.002~0.035モルが更に好ましく、0.002~0.020モルがより更に好ましく、0.002~0.012モルがより更に好ましい。
 中でも、末端封止剤としてはモノアミン類末端封止剤が好ましく、ポリイミド樹脂粒子(A)を構成するポリイミド樹脂の末端に前述した炭素数5~14の鎖状脂肪族基を導入して耐熱老化性を向上させる観点から、炭素数5~14の鎖状脂肪族基を有するモノアミンがより好ましく、炭素数5~14の飽和直鎖状脂肪族基を有するモノアミンが更に好ましい。
 末端封止剤は、特に好ましくはn-オクチルアミン、イソオクチルアミン、2-エチルヘキシルアミン、n-ノニルアミン、イソノニルアミン、n-デシルアミン、及びイソデシルアミンからなる群から選ばれる少なくとも1種であり、更に好ましくはn-オクチルアミン、イソオクチルアミン、2-エチルヘキシルアミン、n-ノニルアミン、及びイソノニルアミンからなる群から選ばれる少なくとも1種であり、最も好ましくはn-オクチルアミン、イソオクチルアミン、及び2-エチルヘキシルアミンからなる群から選ばれる少なくとも1種である。
 ポリイミド樹脂粒子(A)を製造するための重合方法としては、公知の重合方法が適用でき、特に限定されないが、例えば溶液重合、溶融重合、固相重合、懸濁重合法等が挙げられる。この中で特に有機溶媒を用いた高温条件下における懸濁重合が好ましい。高温条件下における懸濁重合を行う際は、150℃以上で重合を行うのが好ましく、180~250℃で行うのがより好ましい。重合時間は使用するモノマーにより適宜選択できるが、0.1~6時間程度が好ましい。
 ポリイミド樹脂粒子(A)の製造方法としては、前記テトラカルボン酸成分と前記ジアミン成分とを、下記式(I)で表されるアルキレングリコール系溶媒を含む溶媒の存在下で反応させる工程を含むことが好ましい。これにより、D50が5~200μmであり、かつポーラス状のポリイミド樹脂粒子を容易に得ることができる。
Figure JPOXMLDOC01-appb-C000014

(Raは水素原子又は炭素数1~4のアルキル基であり、Raは炭素数2~6の直鎖のアルキレン基であり、nは1~3の整数である。)
 式(I)中のRaは水素原子又は炭素数1~4のアルキル基であり、好ましくは炭素数1~4のアルキル基であり、より好ましくはメチル基又はエチル基である。
 式(I)中のRaは炭素数2~6の直鎖のアルキレン基であり、好ましくは炭素数2~3の直鎖のアルキレン基であり、より好ましくはエチレン基である。
 式(I)中のnは1~3の整数であり、好ましくは2又は3である。
 前記アルキレングリコール系溶媒の具体例としては、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル(別名:2-(2-メトキシエトキシ)エタノール)、トリエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル(別名:2-(2-エトキシエトキシ)エタノール)、エチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノイソプロピルエーテル、トリエチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、エチレングリコールモノイソブチルエーテル、ジエチレングリコールモノイソブチルエーテル、エチレングリコールモノイソブチルエーテル、エチレングリコール、1,3-プロパンジオール等が挙げられる。これら溶媒を単独で用いてもよく、これらから選ばれる2つ以上の溶媒を組み合わせて用いてもよい。これら溶媒のうち、好ましくは2-(2-メトキシエトキシ)エタノール、トリエチレングリコールモノメチルエーテル、2-(2-エトキシエトキシ)エタノール及び1,3-プロパンジオールからなる群から選ばれる少なくとも1種である。
 ポリイミド樹脂粒子(A)の好適な製造方法としては、例えば、上記アルキレングリコール系溶媒を含む溶媒中にテトラカルボン酸成分を含ませてなる溶液(a)と、前記アルキレングリコール系溶媒を含む溶媒中にジアミン成分を含ませてなる溶液(b)を別々に調製した後、溶液(a)に対し溶液(b)を添加して又は溶液(b)に対し溶液(a)を添加して、ポリアミド酸を含有する溶液(c)を調製し、次いで、前記溶液(c)を加熱することにより、前記ポリアミド酸をイミド化するとともに該溶液(c)中でポリイミド樹脂粒子を析出させて、ポリイミド樹脂粒子(A)を得る方法が挙げられる。
 テトラカルボン酸成分とジアミン成分との反応は、常圧下又は加圧下のいずれで行うこともできるが、耐圧性容器を必要としない点で、常圧下で行われることが好ましい。
 末端封止剤を使用する場合には、溶液(a)と溶液(b)を混合し、この混合液中に末端封止剤を混合して、ポリアミド酸を含有する溶液(c)を調製し、次いで、前記溶液(c)を加熱することが好ましく、溶液(a)に溶液(b)を添加し終わった後に末端封止剤を添加して、ポリアミド酸を含有する溶液(c)を調製し、次いで、前記溶液(c)を加熱することがより好ましい。
<熱可塑性樹脂(B)>
 熱可塑性樹脂(B)(以下「成分(B)」ともいう)は、前記成分(A)以外の熱可塑性樹脂である。
 ポリイミド樹脂粒子(A)に対し、その融点以上の熱履歴を与えずに樹脂組成物及び樹脂成形体を製造すると、剪断応力による変形がない限り、使用するポリイミド樹脂粒子(A)の形状を維持した状態で樹脂組成物及び樹脂成形体に含有させることができる。この観点から、熱可塑性樹脂(B)は、下記(B1)及び(B2)からなる群から選ばれる少なくとも1種であることが好ましい。
 (B1)ガラス転移温度が、ポリイミド樹脂粒子(A)の融点未満である非晶性熱可塑性樹脂
 (B2)融点が、ポリイミド樹脂粒子(A)の融点未満であるか、又はガラス転移温度が、ポリイミド樹脂粒子(A)のガラス転移温度未満である結晶性熱可塑性樹脂
 なお本明細書において「非晶性熱可塑性樹脂」とは、ガラス転移温度を有するが融点を持たない熱可塑性樹脂であり、「融点を持たない熱可塑性樹脂」とは、より詳細には、示差走査型熱量計測定により、該樹脂を溶融後、降温速度20℃/分で冷却した際に観測される結晶化発熱ピークの熱量(結晶化発熱量)が5mJ/mg未満であるものをいう。また「結晶性熱可塑性樹脂」とは、融点を有する熱可塑性樹脂であって、当該結晶化発熱量が5mJ/mg以上であるものをいう。
(非晶性熱可塑性樹脂(B1))
 熱可塑性樹脂(B)が非晶性熱可塑性樹脂である場合は、ガラス転移温度が、ポリイミド樹脂粒子(A)の融点未満である非晶性熱可塑性樹脂(B1)(以下「非晶性熱可塑性樹脂(B1)」又は「成分(B1)」ともいう)であることが好ましい。成分(B1)は、成分(A)の融点未満の温度で溶融及び成形を行うことができるので、使用する成分(A)の形状を維持した状態で含有する樹脂組成物及び樹脂成形体を得ることができる。
 成分(B1)としては、例えば、ポリスチレン樹脂;ポリ塩化ビニル;ポリ塩化ビニリデン;ポリメタクリル酸メチル;アクリロニトリル-ブタジエン-スチレン樹脂;ポリカーボネート樹脂;ポリスルホン樹脂;ポリフェニルスルホン樹脂;ポリアリレート樹脂;ポリフェニレンエーテル樹脂;ポリエーテルスルホン樹脂;ポリエーテルイミド樹脂;ポリアミドイミド樹脂;ポリウレタン樹脂;等であってガラス転移温度が成分(A)の融点未満である非晶性熱可塑性樹脂が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて用いることができる。
 成分(B1)のガラス転移温度TgB1(℃)は、使用する成分(A)の形状を維持した状態で該成分(A)を樹脂組成物及び樹脂成形体に含有させやすくする観点から、成分(A)の融点をTm(℃)とした場合、(Tm-30)℃以下であることが好ましく、(Tm-50)℃以下であることがより好ましく、(Tm-100)℃以下であることが更に好ましい。ガラス転移温度TgB1の下限値は特に制限されず、例えば、-125℃以上であればよい。耐熱性の観点からは、TgB1は、好ましくは-50℃以上、より好ましくは0℃以上、更に好ましくは50℃以上である。
(結晶性熱可塑性樹脂(B2))
 熱可塑性樹脂(B)が結晶性熱可塑性樹脂である場合は、融点が、ポリイミド樹脂粒子(A)の融点未満であるか、又はガラス転移温度が、ポリイミド樹脂粒子(A)のガラス転移温度未満である結晶性熱可塑性樹脂(B2)(以下「結晶性熱可塑性樹脂(B2)」又は「成分(B2)」ともいう)であることが好ましい。成分(B2)も、成分(A)の融点未満の温度又はガラス転移温度未満の温度で溶融及び成形を行うことができるので、使用する成分(A)の形状を維持した状態で該成分(A)を樹脂組成物及び樹脂成形体に含有させることができる。
 成分(B2)としては、例えば、ポリエチレン、ポリプロピレン、環状ポリオレフィン等のポリオレフィン樹脂;ポリアミド樹脂;ポリアセタール樹脂;ポリフェニレンサルファイド樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリシクロへキシレンジメチレンテレフタレート、ポリグリコール酸等のポリエステル樹脂;液晶ポリマー;ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素樹脂;ポリメチルペンテン樹脂;ポリウレタン樹脂;等であって、ガラス転移温度が成分(A)のガラス転移温度未満であるか、又は融点が成分(A)の融点未満である結晶性熱可塑性樹脂が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて用いることができる。
 成分(B2)の融点TmB2(℃)は、成分(A)の融点未満の温度である限り特に制限されないが、成形性の観点から、好ましくは320℃以下、より好ましくは300℃以下、更に好ましくは280℃以下、より更に好ましくは250℃以下である。融点TmB2の下限値も特に制限されないが、耐熱性の観点から、好ましくは50℃以上、より好ましくは100℃以上、更に好ましくは120℃以上、より更に好ましくは140℃以上である。
 また成分(B2)のガラス転移温度TgB2(℃)は、成分(A)のガラス転移温度未満の温度である限り特に制限されないが、成形性の観点から、好ましくは170℃以下、より好ましくは150℃以下、更に好ましくは120℃以下、より更に好ましくは100℃以下である。ガラス転移温度TgB2の下限値も特に制限されず、例えば、-125℃以上であればよい。耐熱性の観点からは、TgB2は、好ましくは-50℃以上、より好ましくは-20℃以上、更に好ましくは0℃以上である。
 本発明に用いる熱可塑性樹脂(B)として、成分(B1)及び(B2)からなる群から選ばれる1種又は2種以上を用いることができる。
 使用する成分(A)の形状を維持した状態で該成分(A)を樹脂組成物及び樹脂成形体に含有させる観点、並びに耐熱性、機械的特性等の向上の観点から、熱可塑性樹脂(B)としては、好ましくはポリスチレン樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメタクリル酸メチル、アクリロニトリル-ブタジエン-スチレン樹脂、ポリカーボネート樹脂、ポリスルホン樹脂、ポリフェニルスルホン樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリフェニレンサルファイド樹脂、ポリエステル樹脂、液晶ポリマー、フッ素樹脂、ポリメチルペンテン樹脂、及びポリウレタン樹脂からなる群から選ばれる少なくとも1種であり、より好ましくはポリスチレン樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメタクリル酸メチル、アクリロニトリル-ブタジエン-スチレン樹脂、ポリカーボネート樹脂、ポリフェニルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリフェニレンサルファイド樹脂、ポリエステル樹脂、フッ素樹脂、及びポリウレタン樹脂からなる群から選ばれる少なくとも1種であり、更に好ましくはポリカーボネート樹脂、ポリオレフィン樹脂、ポリアミド樹脂、及びポリフェニレンサルファイド樹脂からなる群から選ばれる少なくとも1種であり、より更に好ましくはポリオレフィン樹脂、より更に好ましくはポリプロピレン樹脂である。
 また、ポリイミド樹脂粒子(A)には前述した末端アミノ基が残存していることがあり、該末端アミノ基と反応しうる構造を有する熱可塑性樹脂(B)を用いると、得られる樹脂組成物及び樹脂成形体の靭性を向上させることができる。この観点からは、熱可塑性樹脂(B)はポリアミド樹脂及びポリアミドイミド樹脂からなる群から選ばれる少なくとも1種が好ましく、ポリアミド樹脂がより好ましい。
 ここでいう靭性の向上とは、樹脂成形体に引張応力を与えた際に破断するまでの伸びが大きくなることを意味し、例えば引張破壊ひずみ測定によって評価することができる。
 熱可塑性樹脂(B)として用いられるポリアミド樹脂としては、芳香環含有ポリアミド、脂肪族ポリアミドが挙げられる。
 芳香環含有ポリアミドとしては、前記成分(B2)の要件を満たす観点から、芳香環含有ジアミン及び脂肪族ジカルボン酸に由来するポリアミドが好ましく、例えば、ポリメタキシリレンアジパミド(MXD6)、ポリメタキシリレンセバカミド(MXD10)、ポリパラキシリレンアジパミド(PXD6)、ポリパラキシリレンセバカミド(PXD10)、ポリメタ/パラキシリレンアジパミド(MPXD6)、及びポリメタ/パラキシリレンセバカミド(MPXD10)等が挙げられ、これらのうち1種又は2種以上を用いることができる。
 脂肪族ポリアミドとしては、ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリウンデカンアミド(ポリアミド11)、ポリドデカンアミド(ポリアミド12)、ポリヘキサメチレンドデカミド(ポリアミド612)等が挙げられ、これらのうち1種又は2種以上を用いることができる。
 上記の中でも、得られる樹脂組成物及び樹脂成形体において靭性向上効果を得る観点からは、脂肪族ポリアミドがより好ましい。
<熱硬化性樹脂(C)>
 熱硬化性樹脂(C)(以下「成分(C)」ともいう)としては、ポリイミド樹脂粒子(A)を分散しうる熱硬化性樹脂であれば特に制限はなく、例えば、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリイミド樹脂、ビスマレイミド樹脂、ケイ素樹脂、ウレタン樹脂、カゼイン樹脂、フラン樹脂、アルキド樹脂、及びキシレン樹脂からなる群から選ばれる少なくとも1種が挙げられる。これらの中でも、使用する成分(A)の形状を維持した状態で樹脂組成物及び樹脂成形体に含有させる観点、及び成分(A)の分散性の観点から、成分(C)はエポキシ樹脂、ウレタン樹脂、及びビスマレイミド樹脂からなる群から選ばれる少なくとも1種が好ましく、エポキシ樹脂及びウレタン樹脂からなる群から選ばれる少なくとも1種がより好ましく、エポキシ樹脂が更に好ましい。
 成分(C)として用いられるエポキシ樹脂としては、主剤であるエポキシ基含有化合物と、硬化剤とを含有する2液硬化型のエポキシ樹脂組成物が挙げられる。
 主剤であるエポキシ基含有化合物は、エポキシ基を2つ以上有する多官能エポキシ化合物であることが好ましい。当該多官能エポキシ化合物としては、硬化物の機械的強度の観点から、分子内に芳香環又は脂環式構造を含む多官能エポキシ化合物であることがより好ましい。
 多官能エポキシ化合物の具体例としては、メタキシリレンジアミンから誘導されたグリシジルアミノ基を有する多官能エポキシ化合物;パラキシリレンジアミンから誘導されたグリシジルアミノ基を有する多官能エポキシ化合物;1,3-ビス(アミノメチル)シクロヘキサンから誘導されたグリシジルアミノ基を有する多官能エポキシ化合物;1,4-ビス(アミノメチル)シクロヘキサンから誘導されたグリシジルアミノ基を有する多官能エポキシ化合物;テトラグリシジルジアミノジフェニルメタン等の、ジアミノジフェニルメタンから誘導されたグリシジルアミノ基を有する多官能エポキシ化合物;パラアミノフェノールから誘導されたグリシジルアミノ基及び/又はグリシジルオキシ基を有する多官能エポキシ化合物;ビスフェノールAジグリシジルエーテル等の、ビスフェノールAから誘導されたグリシジルオキシ基を有する多官能エポキシ化合物;ビスフェノールFジグリシジルエーテル等の、ビスフェノールFから誘導されたグリシジルオキシ基を有する多官能エポキシ化合物;フェノールノボラックから誘導されたグリシジルオキシ基を有する多官能エポキシ化合物;及びレゾルシノールから誘導されたグリシジルオキシ基を有する多官能エポキシ化合物;等が挙げられる。上記の多官能エポキシ化合物は、2種以上混合して用いることもできる。
 上記の中でも、耐熱性の高い硬化物を得る観点から、主剤として用いる多官能エポキシ化合物としては、メタキシリレンジアミンから誘導されたグリシジルアミノ基を有する多官能エポキシ化合物、パラキシリレンジアミンから誘導されたグリシジルアミノ基を有する多官能エポキシ化合物、ジアミノジフェニルメタンから誘導されたグリシジルアミノ基を有する多官能エポキシ化合物、ビスフェノールAから誘導されたグリシジルオキシ基を有する多官能エポキシ化合物、及びビスフェノールFから誘導されたグリシジルオキシ基を有する多官能エポキシ化合物からなる群から選ばれる少なくとも1種を主成分とするものが好ましく、耐熱性の高い硬化物を得る観点、入手性及び経済性の観点から、テトラグリシジルジアミノジフェニルメタン等の、ジアミノジフェニルメタンから誘導されたグリシジルアミノ基を有する多官能エポキシ化合物がより好ましい。
 エポキシ樹脂組成物に用いられる硬化剤は、主剤中のエポキシ基と反応し得る活性水素を2以上有するものであればよく、硬化性の観点から、ポリアミン化合物又はその変性物が好ましい。
 具体的には、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、トリメチルヘキサメチレンジアミン等の鎖状脂肪族ポリアミン化合物;1,2-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、メンセンジアミン、イソホロンジアミン、ノルボルナンジアミン、トリシクロデカンジアミン、アダマンタンジアミン、ジアミノシクロヘキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-3,6-ジエチルシクロヘキサン、ジアミノジエチルメチルシクロヘキサン、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルメタン等の脂環式構造を有するポリアミン化合物;o-キシリレンジアミン、m-キシリレンジアミン(MXDA)、及びp-キシリレンジアミン(PXDA)、フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香環を有するポリアミン化合物;N-アミノメチルピペラジン、N-アミノエチルピペラジン等の複素環式構造を有するポリアミン化合物;ポリエーテルポリアミン化合物、及びこれらのマンニッヒ変性物、エポキシ変性物、マイケル付加物、マイケル付加・重縮合物、スチレン変性物、ポリアミド変性物等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて用いることができる。
 上記の中でも、耐熱性が高く、且つ破壊強度の高い樹脂組成物及び樹脂成形体を得る観点からは、成分(C)として用いられるエポキシ樹脂としては、主剤がテトラグリシジルジアミノジフェニルメタンであり、硬化剤がジアミノジフェニルスルホンである2液硬化型のエポキシ樹脂組成物がより好ましい。ポリイミド樹脂粒子(A)と、熱硬化性樹脂(C)として該エポキシ樹脂組成物とを含有する樹脂組成物の硬化物は、耐熱性に優れるとともに、ひずみエネルギー解放率(G1c)が向上し、高い破壊強度を発現することができるためである。
 ひずみエネルギー解放率(G1C)は、ASTM D5045-99に準拠して、平面歪破壊靭性(K1C)より算出される値であり、具体的には実施例に記載の方法により求めることができる。
 エポキシ樹脂組成物中の硬化剤の含有量は、主剤中のエポキシ基の数に対する硬化剤中の活性アミン水素数の比(硬化剤中の活性アミン水素数/主剤中のエポキシ基数)が、好ましくは1/0.5~1/2、より好ましくは1/0.6~1/1.8、さらに好ましくは1/0.75~1/1.5となる量である。
 成分(C)として用いられるウレタン樹脂としては、例えば、ポリエステルポリオール、ポリエーテルポリオール等のポリオール化合物と、ポリイソシアネート化合物とを含有する2液硬化型ウレタン樹脂組成物が挙げられる。
 成分(C)として用いられるビスマレイミド樹脂としては、例えば、4,4’-ビス(マレイミド)ジフェニルメタン等のビスマレイミドと、ビス(3,5-ジメチル-4-シアネートフェニル)メタン等のシアネート化合物とを含有する2液硬化型ビスマレイミド樹脂組成物が挙げられる。
(含有量)
 本発明の樹脂組成物は、ポリイミド樹脂粒子(A)と、熱可塑性樹脂(B)及び熱硬化性樹脂(C)からなる群から選ばれる少なくとも1種とを含有していればよく、熱可塑性樹脂(B)と熱硬化性樹脂(C)とを併用することもできる。
 ポリイミド樹脂粒子(A)と、熱可塑性樹脂(B)及び熱硬化性樹脂(C)の合計量との質量比[(A)/{(B)+(C)}]は、熱可塑性樹脂(B)、熱硬化性樹脂(C)由来の軽量性を維持しながら耐熱性、機械的特性等の諸特性を向上させる観点から、好ましくは1/99~99/1、より好ましくは5/95~95/5、更に好ましくは5/95~90/10の範囲である。
 熱可塑性樹脂(B)、熱硬化性樹脂(C)又はその硬化物から構成されるマトリックス中にポリイミド樹脂粒子(A)が分散した樹脂組成物又は樹脂成形体を得る観点からは、質量比[(A)/{(B)+(C)}]は、より更に好ましくは5/95~80/20、より更に好ましくは5/95~70/30、より更に好ましくは5/95~60/40、より更に好ましくは5/95~50/50、より更に好ましくは5/95~40/60の範囲である。
 本発明の樹脂組成物がポリイミド樹脂粒子(A)と熱可塑性樹脂(B)とを含有する熱可塑性樹脂組成物である場合は、当該質量比が5/95~60/40、更には5/95~50/50の範囲であると、押出機からのストランド押出性が良好であり、ペレットを容易に製造できる点で好ましい。
 また樹脂組成物中、ポリイミド樹脂粒子(A)、熱可塑性樹脂(B)及び熱硬化性樹脂(C)の合計含有量は、本発明の効果を得る観点から、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上である。また、上限は100質量%である。
<添加剤>
 本発明の樹脂組成物は、充填材、艶消剤、核剤、可塑剤、帯電防止剤、着色防止剤、ゲル化防止剤、難燃剤、着色剤、摺動性改良剤、酸化防止剤、導電剤、樹脂改質剤等の添加剤を、必要に応じて含有していてもよい。
 上記添加剤の含有量には特に制限はないが、成分(A)、成分(B)及び成分(C)由来の物性を維持しつつ添加剤の効果を発現させる観点から、樹脂組成物中、通常、50質量%以下であり、好ましくは0.0001~30質量%、より好ましくは0.0001~15質量%、更に好ましくは0.001~10質量%、より更に好ましくは0.01~8質量%である。
[樹脂組成物の製造方法]
 本発明の樹脂組成物の製造方法は特に制限されないが、使用するポリイミド樹脂粒子(A)の形状を維持した状態で樹脂組成物に含有させる観点から、ポリイミド樹脂粒子(A)の融点以上の熱履歴を与えずに、ポリイミド樹脂粒子(A)と、熱可塑性樹脂(B)又は熱硬化性樹脂(C)とを混合して樹脂組成物を製造することが好ましい。前記の通り「ポリイミド樹脂粒子(A)の融点以上の熱履歴を与えずに樹脂組成物を製造する」とは、本発明の樹脂組成物の製造において、すべての製造工程を、ポリイミド樹脂粒子(A)の融点未満の温度条件下で行うことを意味する。
 具体的には、本発明の樹脂組成物がポリイミド樹脂粒子(A)と熱可塑性樹脂(B)とを含有する熱可塑性樹脂組成物である場合は、該樹脂組成物の製造において、ポリイミド樹脂粒子(A)の融点未満の温度でポリイミド樹脂粒子(A)と熱可塑性樹脂(B)とを混練することが好ましい。例えば、押出機内で、ポリイミド樹脂粒子(A)の融点未満の設定温度でポリイミド樹脂粒子(A)と熱可塑性樹脂(B)とを含有する樹脂組成物を混練する。押出機の設定温度が多段的である場合は、すべての設定温度をポリイミド樹脂粒子(A)の融点未満とすることが好ましい。また、樹脂組成物の混練過程で、樹脂温度がポリイミド樹脂粒子(A)の融点以上の温度にならないよう調整することが好ましい。
 上記混練温度は、使用する成分(A)の形状を維持する観点から、成分(A)の融点をTm(℃)とした場合、(Tm-10)℃以下の温度であることが好ましく、(Tm-20)℃以下の温度であることがより好ましく、(Tm-30)℃以下の温度であることが更に好ましい。
 また上記混練温度は、熱可塑性樹脂(B)が非晶性熱可塑性樹脂(B1)である場合は、そのガラス転移温度以上の温度であることが好ましく、成分(B1)のガラス転移温度をTgB1(℃)とした場合、押出容易性の観点から、より好ましくは(TgB1+5)℃以上、更に好ましくは(TgB1+10)℃以上である。熱可塑性樹脂(B)が結晶性熱可塑性樹脂(B2)である場合は、その融点以上の温度であることが好ましく、成分(B2)の融点をTmB2(℃)とした場合、押出容易性の観点から、より好ましくは(TmB2+5)℃以上、更に好ましくは(TmB2+10)℃以上である。
 好ましくは上記温度条件下で樹脂組成物を混練し、次いでストランドを押出すことで、使用するポリイミド樹脂粒子(A)の形状を維持した状態で含有する熱可塑性樹脂組成物のペレットを製造できる。
 該ペレットを製造後、必要に応じ乾燥させる工程を行ってもよいが、この際の乾燥温度も、ポリイミド樹脂粒子(A)の融点未満の温度であることが好ましい。
 本発明の樹脂組成物がポリイミド樹脂粒子(A)と熱硬化性樹脂(C)とを含有する熱硬化性樹脂組成物である場合は、該樹脂組成物の製造において、ポリイミド樹脂粒子(A)の融点未満の温度条件下でポリイミド樹脂粒子(A)と熱硬化性樹脂(C)とを混合すればよい。該混合温度は、使用する成分(A)の形状を維持する観点、及び熱硬化性樹脂(C)の硬化前の分解を抑制する観点から、成分(A)の融点をTm(℃)とした場合、(Tm-10)℃以下の温度であることが好ましく、(Tm-20)℃以下の温度であることがより好ましく、(Tm-30)℃以下の温度であることが更に好ましく、(Tm-50)℃以下の温度であることがより更に好ましく、(Tm-100)℃以下の温度であることがより更に好ましく、(Tm-120)℃以下の温度であることがより更に好ましい。混合温度の下限は、熱硬化性樹脂組成物の硬化速度等に応じて選択できる。
 本発明の樹脂組成物の製造においては、使用する成分(A)の形状を維持する観点から、成分(A)の融点をTm(℃)とした場合、すべての製造工程を、(Tm-10)℃以下の温度条件下で行うことがより好ましく、(Tm-20)℃以下の温度条件下で行うことが更に好ましく、(Tm-30)℃以下の温度条件下で行うことがより更に好ましい。
[樹脂成形体]
 本発明の樹脂成形体は、下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%であり、体積平均粒径D50が5~200μmのポリイミド樹脂粒子(A)と、熱可塑性樹脂(B)及び熱硬化性樹脂(C)の硬化物からなる群から選ばれる少なくとも1種とを含有する。
Figure JPOXMLDOC01-appb-C000015

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 成分(A)、成分(B)及び成分(C)、並びにこれらの好適態様については、樹脂組成物において記載したものと同じである。
 本発明の樹脂成形体は、好ましくは、熱可塑性樹脂(B)又は熱硬化性樹脂(C)の硬化物から構成されるマトリックス中に、ポリイミド樹脂粒子(A)が分散した樹脂成形体である。これにより、ポリイミド樹脂粒子(A)が樹脂フィラーとして作用し、耐熱性、機械的特性等の諸特性の向上効果が得られると考えられる。
[樹脂成形体の製造方法]
 本発明の樹脂成形体の製造においては、使用するポリイミド樹脂粒子(A)の形状を維持した状態で樹脂成形体に含有させる観点から、ポリイミド樹脂粒子(A)の融点以上の熱履歴を与えずに樹脂成形体を製造することが好ましい。上記観点から、本発明の樹脂成形体の製造方法は、ポリイミド樹脂粒子(A)と、熱可塑性樹脂(B)及び熱硬化性樹脂(C)からなる群から選ばれる少なくとも1種とを含有する樹脂組成物を、ポリイミド樹脂粒子(A)の融点未満の温度で成形する工程を有することが好ましい。
 樹脂成形体の製造には、前述した本発明の樹脂組成物を用いることができる。
 ポリイミド樹脂粒子(A)及び熱可塑性樹脂(B)を含有する熱可塑性樹脂組成物を用いて樹脂成形体を製造する場合には、前記方法で製造した樹脂組成物のペレットを用いることが好ましい。
 ペレットを成形に供する前に、必要に応じ、該ペレットを乾燥させる工程を行ってもよい。ペレットの乾燥温度は、使用するポリイミド樹脂粒子(A)の形状を維持した状態で樹脂成形体に含有させる観点から、ポリイミド樹脂粒子(A)の融点未満の温度であることが好ましく、熱可塑性樹脂(B)の劣化を防止する観点から、より好ましくは200℃以下、更に好ましくは150℃以下、より更に好ましくは120℃以下である。乾燥温度の下限値は特に制限されないが、乾燥効率の観点から、好ましくは40℃以上、より好ましくは60℃以上である。
 ペレットの乾燥時間は、使用する熱可塑性樹脂(B)の種類及び乾燥温度等に応じて適宜選択できるが、好ましくは0.5~10時間、より好ましくは2~8時間である。
 樹脂組成物としてポリイミド樹脂粒子(A)及び熱可塑性樹脂(B)を含有する熱可塑性樹脂組成物を用いる場合、樹脂成形体の成形方法としては射出成形、押出成形、ブロー成形、熱プレス成形、真空成形、圧空成形、レーザー成形、超音波加熱成形、溶接、溶着等が挙げられる。これらの中でも、射出成形は、成形温度及び成形時の金型温度を高温に設定することなく成形可能であるため好ましい。
 樹脂組成物としてポリイミド樹脂粒子(A)及び熱可塑性樹脂(B)を含有する熱可塑性樹脂組成物を用いる場合は、熱可塑性樹脂(B)は下記(B1)及び(B2)からなる群から選ばれる少なくとも1種であることが好ましい。
 (B1)ガラス転移温度が、ポリイミド樹脂粒子(A)の融点未満である非晶性熱可塑性樹脂
 (B2)融点が、ポリイミド樹脂粒子(A)の融点未満であるか、又はガラス転移温度が、ポリイミド樹脂粒子(A)のガラス転移温度未満である結晶性熱可塑性樹脂
 非晶性熱可塑性樹脂(B1)及び結晶性熱可塑性樹脂(B2)、並びにこれらの好適態様については、樹脂組成物において記載したものと同じである。
 熱可塑性樹脂(B)が非晶性熱可塑性樹脂(B1)である場合、樹脂成形体の製造方法は、使用するポリイミド樹脂粒子(A)の形状を維持する観点から、ポリイミド樹脂粒子(A)と、非晶性熱可塑性樹脂(B1)とを含有する樹脂組成物をポリイミド樹脂粒子(A)の融点未満でかつ非晶性熱可塑性樹脂(B1)のガラス転移温度以上の温度で押し出す工程を有することが好ましい。
 該温度は、使用する成分(A)の形状を維持する観点から、成分(A)の融点をTm(℃)とした場合、(Tm-10)℃以下であることが好ましく、(Tm-20)℃以下であることがより好ましく、(Tm-30)℃以下であることが更に好ましい。該温度の下限値は、成分(B1)のガラス転移温度以上の温度であれば特に制限されないが、成分(B1)のガラス転移温度をTgB1(℃)とした場合、押出容易性の観点から、好ましくは(TgB1+5)℃以上、より好ましくは(TgB1+10)℃以上である。
 樹脂成形体の製造においては、少なくとも押出時の設定温度を上記範囲とすることが好ましく、該設定温度が多段的である場合は、すべての設定温度を上記範囲とすることが好ましい。また、押出時の樹脂温度が上記範囲となるよう調整することがより好ましい。
 また熱可塑性樹脂(B)が結晶性熱可塑性樹脂(B2)である場合、樹脂成形体の製造方法は、使用するポリイミド樹脂粒子(A)の形状を維持する観点から、ポリイミド樹脂粒子(A)と、結晶性熱可塑性樹脂(B2)とを含有する樹脂組成物をポリイミド樹脂粒子(A)の融点未満でかつ結晶性熱可塑性樹脂(B2)の融点以上の温度で押し出す工程を有することが好ましい。
 該温度は、使用する成分(A)の形状を維持する観点から、成分(A)の融点をTm(℃)とした場合、(Tm-10)℃以下であることが好ましく、(Tm-20)℃以下であることがより好ましく、(Tm-30)℃以下であることが更に好ましい。該温度の下限値は、成分(B2)の融点以上の温度であれば特に制限されないが、成分(B2)の融点をTmB2(℃)とした場合、押出容易性の観点から、好ましくは(TmB2+5)℃以上、より好ましくは(TmB2+10)℃以上である。
 前記と同様に、樹脂成形体の製造においては、少なくとも押出時の設定温度を上記範囲とすることが好ましく、該設定温度が多段的である場合は、すべての設定温度を上記範囲とすることが好ましい。また、押出時の樹脂温度が上記範囲となるよう調整することがより好ましい。
 樹脂組成物としてポリイミド樹脂粒子(A)及び熱可塑性樹脂(B)を含有する熱可塑性樹脂組成物を用いる場合、本発明の樹脂成形体の製造方法の具体的な手順としては、例えば以下の方法が挙げられる。
 まず、ポリイミド樹脂粒子(A)、熱可塑性樹脂(B)、及び、必要に応じて各種任意成分を添加してドライブレンドした後、これを押出機内に導入して、ポリイミド樹脂粒子(A)の融点未満の温度、好ましくは前記範囲の温度で混練して押出し、ペレットを作製する。あるいは、熱可塑性樹脂(B)を押出機内に導入して、ポリイミド樹脂粒子(A)の融点未満の温度、好ましくは前記範囲の温度で溶融させ、ここにポリイミド樹脂粒子(A)及び必要に応じて各種任意成分を導入して押出機内で混練し、押出すことで前述のペレットを作製してもよい。
 上記ペレットを、必要に応じ前記乾燥条件にて乾燥させた後、射出成型機等の各種成形機に導入してポリイミド樹脂粒子(A)の融点未満の温度で成形し、所望の形状を有する樹脂成形体を製造することができる。成形後、必要に応じて超音波により短時間加熱するなどして、成分(A)と成分(B)との界面を溶融、接着させる後加工を行ってもよい。
 樹脂組成物としてポリイミド樹脂粒子(A)及び熱硬化性樹脂(C)を含有する熱硬化性樹脂組成物を用いる場合は、樹脂成形体の製造方法は、使用する成分(A)の形状を維持する観点から、該樹脂組成物をポリイミド樹脂粒子(A)の融点未満の温度、好ましくは前記範囲の温度で硬化させて成形することが好ましい。該温度(硬化温度)は、使用する成分(A)の形状を維持する観点、及び熱硬化性樹脂(C)の硬化前の分解を抑制する観点から、成分(A)の融点をTm(℃)とした場合、(Tm-10)℃以下の温度であることが好ましく、(Tm-20)℃以下の温度であることがより好ましく、(Tm-30)℃以下であることが更に好ましく、(Tm-50)℃以下であることがより更に好ましく、(Tm-100)℃以下であることがより更に好ましい。該温度の下限値は、熱硬化性樹脂組成物を硬化し得る温度である限り特に制限されない。
<用途>
 本発明の樹脂組成物及び樹脂成形体は、樹脂由来の軽量性を維持しながら耐熱性、機械的特性等の諸特性を向上させたものであり、例えばプリプレグ、樹脂バインダー、繊維強化プラスチック(FRP)用マトリックス樹脂、コーティング剤、積層接着剤、3Dプリンター用材料等の工業用中間製品;摺動部材、航空機、船舶、又は車両用構造部材又はエンジン部材、調理器具、文房具、イヤホン振動板、空気枕、ファスナー等の各種成形品に適用できる。
 本発明の樹脂組成物を航空機、船舶、又は車両用構造部材に用いる場合は、弾性率、強度、及び靭性を共に向上させる観点から、該構造部材を構成する材料は、本発明の樹脂組成物又はその硬化物と、強化繊維とを含有する繊維強化複合材であることが好ましい。
 繊維強化複合材に用いる強化繊維としては、例えば、ガラス繊維、炭素繊維、ボロン繊維及び金属繊維等が挙げられ、これらのうち1種又は2種以上を用いることができる。これらの中でも、得られる複合材の強度及び軽量性の観点からは炭素繊維が好ましい。すなわち前記繊維強化複合材は、好ましくは前記樹脂組成物又はその硬化物と、炭素繊維とを含む炭素繊維強化複合材(CFRP)である。
 CFRPに用いられる炭素繊維は、レーヨンやポリアクリロニトリル(PAN)などを原料として製造したものであってもよいし、石油や石炭などのピッチを原料として紡糸して製造したものであってもよい。また、炭素繊維の端材を再利用した再生品や、CFRPから樹脂を除去した再生品の炭素繊維を用いることもできる。炭素繊維の形態は、例えば単にモノフィラメント又はマルチフィラメントを一方向又は交互に交差するように並べたもの、編織物等の布帛、不織布あるいはマット等の種々の形態が挙げられる。これらのうち、モノフィラメント、布帛、不織布あるいはマットの形態が好ましく、布帛の形態がより好ましい。
 炭素繊維の平均繊維径は、1~100μmであることが好ましく、3~50μmがより好ましく、4~20μmであることが更に好ましい。平均繊維径がこの範囲であると、加工が容易であり、得られるCFRPの弾性率及び強度が優れたものとなる。なお、平均繊維径は走査型電子顕微鏡(SEM)などによる観察によって測定することが可能である。50本以上の繊維を無作為に選んで長さを測定し、個数平均の平均繊維径を算出することができる。
 炭素繊維の繊度は、20~4,500texが好ましく、50~4,000texがより好ましい。繊度がこの範囲であると、樹脂組成物の含浸が容易であり、得られる複合材の弾性率及び強度が優れたものとなる。なお、繊度は任意の長さの長繊維の重量を求めて、1,000m当たりの重量に換算して求めることができる。フィラメント数は通常、500~60,000程度の炭素繊維を好ましく用いることができる。
 繊維強化複合材は、本発明の樹脂組成物を常法により強化繊維に含浸させ、次いで所望の形状に成形することにより製造できる。
 次に実施例を挙げて本発明をより詳しく説明するが、本発明はこれに限定されるものではない。また、各製造例、実施例における各種測定及び評価は以下のように行った。
<赤外線分光分析(IR測定)>
 ポリイミド樹脂粒子のIR測定は日本電子(株)製「JIR-WINSPEC50」を用いて行った。
<対数粘度μ>
 ポリイミド樹脂粒子を190~200℃で2時間乾燥した後、該ポリイミド樹脂0.100gを濃硫酸(96%、関東化学(株)製)20mLに溶解したポリイミド樹脂溶液を測定試料とし、キャノンフェンスケ粘度計を使用して30℃において測定を行った。対数粘度μは下記式により求めた。
μ=ln(ts/t)/C
:濃硫酸の流れる時間
ts:ポリイミド樹脂溶液の流れる時間
C:0.5g/dL
<融点、ガラス転移温度、結晶化温度、結晶化発熱量>
 製造例に記載のポリイミド樹脂粒子及び熱可塑性樹脂の融点Tm、ガラス転移温度Tg、並びに製造例に記載のポリイミド樹脂粒子の結晶化温度Tc、及び結晶化発熱量ΔHmは、示差走査熱量計装置(エスアイアイ・ナノテクノロジー(株)製「DSC-6220」)を用いて測定した。
 窒素雰囲気下、ポリイミド樹脂粒子又は熱可塑性樹脂に下記条件の熱履歴を課した。熱履歴の条件は、昇温1度目(昇温速度10℃/分)、その後冷却(降温速度20℃/分)、その後昇温2度目(昇温速度10℃/分)である。
 融点Tmは昇温2度目で観測された吸熱ピークのピークトップ値を読み取り決定した。ガラス転移温度Tgは昇温2度目で観測された値を読み取り決定した。結晶化温度Tcは冷却時に観測された発熱ピークのピークトップ値を読み取り決定した。
 また結晶化発熱量ΔHm(mJ/mg)は冷却時に観測された発熱ピークの面積から算出した。
<半結晶化時間>
 ポリイミド樹脂粒子の半結晶化時間は、示差走査熱量計装置(エスアイアイ・ナノテクノロジー(株)製「DSC-6220」)を用いて測定した。
 窒素雰囲気下、420℃で10分保持し、ポリイミド樹脂を完全に溶融させたのち、冷却速度70℃/分の急冷操作を行った際に、観測される結晶化ピークの出現時からピークトップに達するまでにかかった時間を計算した。なお表1中、半結晶化時間が20秒以下である場合は「<20」と表記した。
<重量平均分子量>
 ポリイミド樹脂粒子の重量平均分子量(Mw)は、昭和電工(株)製のゲルろ過クロマトグラフィー(GPC)測定装置「Shodex GPC-101」を用いて下記条件にて測定した。
 カラム:Shodex HFIP-806M
 移動相溶媒:トリフルオロ酢酸ナトリウム2mM含有HFIP
 カラム温度:40℃
 移動相流速:1.0mL/min
 試料濃度:約0.1質量%
 検出器:IR検出器
 注入量:100μm
 検量線:標準PMMA
<体積平均粒径(D50)>
 ポリイミド樹脂粒子及び比較例で使用した樹脂粒子のD50は、レーザー回折式粒度分布測定により求めた。
 測定装置としてマルバーン社製のレーザー回折光散乱式粒度分布測定器「LMS-2000e」を使用した。樹脂粒子のD50測定においては分散媒として水を使用し、超音波条件下により樹脂粒子が十分に分散する条件で行った。測定範囲は0.02~2000μmとした。
<真密度(気相法)>
 ポリイミド樹脂粒子の気相法による真密度測定は、測定装置として(株)セイシン企業製「VM-100」、気体としてヘリウムガスを使用し、JIS Z8807:2012で規定する「気体置換法による密度及び比重の測定方法」に準拠して行った。
<真密度(液相法)>
 ポリイミド樹脂粒子の液相法(ピクノメーター法)による真密度は、測定装置として(株)セイシン企業製の自動湿式真密度測定器「AUTO TRUE DENSER MAT-7000」、媒液としてn-ブチルアルコールを使用して測定し、下記式から真密度を求めた。
Figure JPOXMLDOC01-appb-M000016

  Pd:試料の真密度
  Wa:測定セル質量
  Wb:(測定セル+試料)質量
  Wc:(測定セル+試料+媒液)質量
  Wd:(測定セル+媒液)質量
  Ld:媒液の密度
<比表面積>
 ポリイミド樹脂粒子の比表面積は、下記条件にて窒素吸着量を測定し、得られた吸着等温線(縦軸:窒素吸着量、横軸:相対圧力P/P)からBET法により求めた。測定試料は、180℃加熱下で6時間真空脱気して前処理したものを用いた。
 測定装置:Quantachrome社製 4連式比表面積・細孔分布測定装置 NOVA-TOUCH型
 使用ガス:窒素ガス
 冷媒:液体窒素(温度77.35K)
 測定相対圧力:5×10-3<P/P<0.99
 比表面積の計算に使用した等温線データ:0.05<P/P<0.3
<全細孔容積>
 ポリイミド樹脂粒子の全細孔容積は、細孔が液体窒素により充填されていると仮定して、前記吸着等温線におけるP/P0,maxでの吸着窒素量から求めた。
<平均細孔直径>
 ポリイミド樹脂粒子の平均細孔直径は以下の式から求めた。
 平均細孔直径Dave=(4Vtotal/S)
  Vtotal:全細孔容積
  S:比表面積(BET法)
<ストランドの状態>
 実施例1~3の熱可塑性樹脂組成物について、押出機から押し出したストランドの状態を目視観察し、下記基準で評価した。
 A:良好
 B:ストランドの押出は可能だが脆く切れやすい
 C:ストランドの押出不可
<比重>
 実施例1~3で使用した熱可塑性樹脂(B)単独、又は、実施例1~3で得られた熱可塑性樹脂組成物については、後述する方法により80mm×10mm×厚さ4mmの成形体を作製し、電子比重計(アルファーミラージュ(株)製「MDS-300」)により23℃における比重を求めた。
 ポリイミド樹脂粒子(A)の比重は、本実施例においては、前記方法で測定した真密度(液相法)の絶対値とした。製造例1で得られたポリイミド樹脂粒子1の比重は1.19であった。
 製造例1で得られたポリイミド樹脂粒子1をその融点以上の温度で溶融混練して得られたペレットの比重は、以下の方法で測定した。
 製造例1で得られたポリイミド樹脂粒子1を、ラボプラストミル((株)東洋精機製作所製)を用いてシリンダー設定温度350℃、スクリュー回転数70rpmで溶融混練してストランドを押出し、空冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化した。得られたペレットを150℃、12時間乾燥を行った後、前記方法により真密度(液相法)を測定し、この値を比重とした。該比重は1.29であった。
<樹脂成形体中の成分(A)の比重>
 実施例1~3で得られた樹脂成形体中の成分(A)の比重は、下記式より算出した。
[(樹脂成形体の比重)-(成分(B)の比重)×(成分(B)の質量分率)]/(成分(A)の質量分率)
<引張強度、引張弾性率及び引張破壊ひずみ>
 各例で使用した熱可塑性樹脂(B)単独、又は、各例で得られた熱可塑性樹脂組成物を用いて、後述する方法によりJIS K7161-2:2014で規定される1A型試験片を作製し、測定に使用した。引張試験機(東洋精機株式会社製「ストログラフVG-1E」)を用いて、JIS K7161-1:2014及びK7161-2:2014に準拠して、温度23℃、つかみ具間距離50mm、試験速度20mm/分で引張試験を行い、引張強度、引張弾性率及び引張破壊ひずみを測定した。
<曲げ弾性率>
 各例で使用した熱可塑性樹脂(B)単独、又は、各例で得られた熱可塑性樹脂組成物を用いて、それぞれ後述する方法によりISO316で規定される80mm×10mm×厚さ4mmの成形体を作製し、測定に使用した。ベンドグラフ((株)東洋精機製作所製)を用い、ISO178に準拠して、温度23℃、試験速度2mm/分で曲げ試験を行い、曲げ弾性率を測定した。
<熱変形温度(HDT)>
 各例で使用した熱可塑性樹脂(B)単独、又は、各例で得られた熱可塑性樹脂組成物を用いて、それぞれ後述する方法により80mm×10mm×厚さ4mmの樹脂成形体を製造し、測定に使用した。
 測定はJIS K7191-1,2:2015に準拠して、フラットワイズでの試験を実施した。具体的には、HDT試験装置「Auto-HDT3D-2」((株)東洋精機製作所製)を用いて、支点間距離64mm、荷重1.80MPa、昇温速度120℃/時間の条件にて熱変形温度を測定した。
<重量減少温度>
 各例で使用した熱可塑性樹脂(B)単独、又は、各例で得られた熱可塑性樹脂組成物のペレット又は熱硬化性樹脂組成物の硬化物を測定に使用した。
 測定には熱重量分析装置(セイコーインスツル(株)社製「TG/DTA6200」)を用いた。試料約10mgを採取して、窒素ガス流量100mL/分、昇温速度10℃/分の条件下で、常温~450℃まで昇温した。100℃時の試料重量100質量%に対し、重量が1質量%減少した温度を1%重量減少温度、5質量%減少した温度を5%重量減少温度、10質量%減少した温度を10%重量減少温度とした。
<動摩擦係数>
 各例で使用した熱可塑性樹脂(B)単独、又は、各例で得られた熱可塑性樹脂組成物を用いて、それぞれ後述する方法により樹脂成形体を製造し、30mm×30mm×厚さ3mmに切削加工したものを測定に使用した。
 測定には(株)エー・アンド・デイ製の摩擦摩耗試験機(MODEL EMF-III-F)を用いた。JIS K7218(1986)-A法に準拠して、23℃、50%R.H.下で相手材をS45Cリング(接触面積2cm)とし、初期荷重:50N、試験速度:0.5m/s、滑り距離:3kmの条件で滑り摩耗試験を行い、動摩擦係数を測定した。
<平面歪破壊靭性(K1C)、ポアソン比、ひずみエネルギー解放率(G1C)>
 以下の「曲げ破壊靭性試験」により平面歪破壊靭性K1Cを測定し、以下の「引張試験」によりポアソン比及び引張弾性率を測定した。
(曲げ破壊靭性試験)
 表7に記載の熱硬化性樹脂組成物の硬化物を用いて、それぞれ後述する方法により60mm×12mm×厚さ6mmの樹脂成形体を製造し、30°t1.0一等角フライス刃でノッチ加工後、予き裂加工を行って得られた試験片を測定に使用した。
 測定にはインストロン社製の万能材料試験機(5966型)を用いた。ASTM D5045-99に準拠して、23℃環境下で試験速度:1mm/分、支点間距離:48mm(初期)で曲げ破壊靭性試験を行った(n=5)。
(引張試験)
 表7に記載の熱硬化性樹脂組成物の硬化物を用いて、それぞれ後述する方法により樹脂成形体を製造し、150mm×12mm×厚さ3mmに切削加工して得られた試験片を測定に使用した。
 測定にはインストロン社製の万能材料試験機(5966型)を用いた。JIS K7161-2:2014に準拠して、温度23℃、チャック間距離115mm、試験速度1mm/分で引張試験を行った(n=3)。試験片片面中央に単軸ひずみゲージ((株)共和電業性「KFGS-5-120-C1-23」)を貼付してひずみ測定を行った。
 次いで、下記式より応力拡散係数Kを求めた。
Figure JPOXMLDOC01-appb-M000017

  K:応力拡散係数(MPa・m1/2
  P:Kに対する荷重(kN)
  B:試験片厚さ(cm)
  W:試験片幅(cm)
  a:亀裂長さ
  x:a/W
 また、S:支点間距離(cm)とし、S/W=4とした。
 ここで、下記式(1)を満たす場合はPを用いてKを求めた。
max/P<1.1   ・・・(1)
  Pmax:最大荷重
 また、下記(2)の条件を満たす場合は、K=K1Cとした。
B,a,W-a>2.5(K/σ   ・・・(2)
  σ:曲げオフセット0.2%応力(MPa)
 上記方法により求められたK1C、ポアソン比、及び引張弾性率から、下記式によりひずみエネルギー解放率(G1C)を算出した。
Figure JPOXMLDOC01-appb-M000018

  G1C:ひずみエネルギー解放率(J/m
  ν:ポアソン比
  E:引張弾性率(MPa)
<ガラス転移温度(Tg)>
 表7に記載の熱硬化性樹脂組成物の硬化物のTgは、動的粘弾性測定(DMA)により求めた。表7に記載の熱硬化性樹脂組成物を用いて、それぞれ後述する方法により50mm×10mm×厚さ3mmの樹脂成形体を製造し、測定に使用した。
 測定には動的粘弾性測定装置((株)日立ハイテクサイエンス製「EXSTAR DMS6100」)を用いた。JIS K7244:1998に準拠して、窒素気流(300mL/分)中、測定温度:室温~300℃、昇温速度:4.0℃/分、周波数:1Hz、測定モード:曲げモードにて、貯蔵弾性率E’、損失弾性率E’’、及びtanδを測定し、tanδの高温側のピークトップ温度(℃)をTgとして表7に示した。
<フィルムの引張強度、引張弾性率、最大点伸び率、破壊点伸び率>
 表8に示す組成の熱可塑性樹脂組成物を用いて、それぞれ後述する方法によりフィルムを作製し、幅10mmに切断したものを測定に使用した。
 引張試験機(東洋精機株式会社製「ストログラフVG-1E」)を用いて、JIS K7161-1:2014及びK7161-2:2014に準拠して、温度23℃、つかみ具間距離50mm、試験速度50mm/分で引張試験を行い、引張強度、引張弾性率、最大点伸び率、及び破壊点伸び率を測定した。
製造例1(ポリイミド樹脂粒子1の製造)
 ディーンスターク装置、リービッヒ冷却管、熱電対、4枚パドル翼を設置した2Lセパラブルフラスコ中に2-(2-メトキシエトキシ)エタノール(日本乳化剤(株)製)500gとピロメリット酸二無水物(三菱ガス化学(株)製)218.12g(1.00mol)を導入し、窒素フローした後、均一な懸濁溶液になるように150rpmで撹拌した。一方で、500mLビーカーを用いて、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学(株)製、シス/トランス比=7/3)49.79g(0.35mol)、1,8-オクタメチレンジアミン(関東化学(株)製)93.77g(0.65mol)を2-(2-メトキシエトキシ)エタノール250gに溶解させ、混合ジアミン溶液を調製した。この混合ジアミン溶液を、プランジャーポンプを使用して徐々に加えた。滴下により発熱が起こるが、内温は40~80℃に収まるよう調整した。混合ジアミン溶液の滴下中はすべて窒素フロー状態とし、撹拌翼回転数は250rpmとした。滴下が終わったのちに、2-(2-メトキシエトキシ)エタノール130gと、末端封止剤であるn-オクチルアミン(関東化学(株)製)1.284g(0.010mol)を加えさらに撹拌した。この段階で、淡黄色のポリアミド酸溶液が得られた。次に、撹拌速度を200rpmとした後に、2Lセパラブルフラスコ中のポリアミド酸溶液を190℃まで昇温した。昇温を行っていく過程において、液温度が120~140℃の間にポリイミド樹脂粒子の析出と、イミド化に伴う脱水が確認された。190℃で30分保持した後、室温まで放冷を行い、濾過を行った。得られたポリイミド樹脂粒子は2-(2-メトキシエトキシ)エタノール300gとメタノール300gにより洗浄、濾過を行った後、乾燥機で180℃、10時間乾燥を行い、317gのポリイミド樹脂粒子1を得た。
 ポリイミド樹脂粒子1のIRスペクトルを測定したところ、ν(C=O)1768、1697(cm-1)にイミド環の特性吸収が認められた。対数粘度は1.30dL/g、Tmは323℃、Tgは184℃、Tcは266℃、結晶化発熱量は21.0mJ/mg、半結晶化時間は20秒以下、Mwは55,000であった。
 製造例1で得られたポリイミド樹脂粒子1の組成を表1に示した。なお、表1中のテトラカルボン酸成分及びジアミン成分のモル%は、ポリイミド樹脂粒子製造時の各成分の仕込み量から算出した値である。
 またポリイミド樹脂粒子1のD50は17μm、比重は1.19であり、ポーラス状であった。ポリイミド樹脂粒子1の真密度、比表面積、全細孔容積、及び平均細孔直径の分析結果も表1に示した。
製造例2(ポリイミド樹脂粒子2の製造)
 製造例1において、末端封止剤であるn-オクチルアミンを用いなかったこと以外は、製造例1と同様の方法でポリイミド樹脂粒子2を製造し、前記方法で分析を行った。ポリイミド樹脂粒子2の組成及び分析結果を表1に示す。
Figure JPOXMLDOC01-appb-T000019
 表1中の略号は下記の通りである。
・PMDA;ピロメリット酸二無水物
・1,3-BAC;1,3-ビス(アミノメチル)シクロヘキサン
・OMDA;1,8-オクタメチレンジアミン
・n-OcA:n-オクチルアミン
製造例3(変性ポリエチレンテレフタレート樹脂1の製造)
 ジメチルテレフタレート(DMT)6449.5g(33.2モル)、エチレングリコール(EG)2747.1g(44.2モル)、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン(SPG)4727.4g(15.5モル)、及び、ジメチルテレフタレート100モルに対し酢酸マンガン四水和物0.03モルを添加した混合物を、窒素雰囲気下で200℃まで昇温してエステル交換反応を行った。メタノールの留出量が理論量に対して90%以上に達した後、ジメチルテレフタレート100モルに対し、酸化アンチモン(III)0.02モルとトリフェニルホスフェート0.05モルを加え、昇温と減圧を徐々に行い、最終的に280℃、0.1kPa以下で重合を行った。適度な溶融粘度になった時点で反応を終了し、ジオール成分のうちSPG残基を44モル%、EG残基を56モル%、ジカルボン酸成分のうちテレフタル酸残基を100モル%含有するポリエステルを調製した。
実施例1(熱可塑性樹脂組成物及び樹脂成形体の作製、評価)
 製造例1で得られたポリイミド樹脂粒子1と、結晶性熱可塑性樹脂(B2-1)であるポリプロピレン(PP)樹脂のペレット(日本ポリプロ(株)製「ノバテック FY6」、融点150~160℃、ガラス転移温度0℃)とを、表2に示す割合で用いた。同方向回転二軸混練押出機((株)パーカーコーポレーション製「HK-25D」、スクリュー径D=25mmΦ、L/D=41(L:スクリュー長))の入口側のホッパーからPP樹脂ペレットを導入し、ポリイミド樹脂粒子1をサイドフィーダーから押出機内に導入して、シリンダー設定温度200℃、フィード量6kg/h、スクリュー回転数200rpmの条件で混練し、ストランドを押し出した。この際、樹脂温度、トルク、樹脂圧、及びストランドの状態を確認した。樹脂温度は押出機の出口での温度である。
 押出機より押し出されたストランドを水冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化し、射出成形に使用した。
 射出成形機(ファナック(株)製「ロボショットα-S30iA」)を使用して、シリンダー設定温度200℃、金型温度50℃、射出速度62.5mm/sの条件で射出成形し、各種評価に用いる所定の形状の樹脂成形体を作製した。
 得られたペレット及び樹脂成形体を用いて、前記方法により各種評価を行った。結果を表2に示す。
実施例2~3、比較例1
 樹脂組成物の組成、ストランド押出条件及び成形条件を表2に示す通りに変更したこと以外は、実施例1と同様の方法でペレット及び樹脂成形体を製造し、前記方法により各種評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000020
 表2より、以下のことが判る。
 成分(A)であるポリイミド樹脂粒子1及び結晶性熱可塑性樹脂(B2-1)であるPP樹脂を含有する実施例1~3の樹脂成形体は、PP樹脂のみからなる比較例1の樹脂成形体と比較して引張弾性率、曲げ弾性率、HDT、及び1%重量減少温度が向上した。
 実施例1~3の樹脂成形体において、該成形体中の成分(A)の比重は1.19~1.22であった。該比重は、ポリイミド樹脂粒子1を溶融混練して得られたペレットの比重(1.29)より低く、樹脂組成物に配合したポリイミド樹脂粒子1の比重(1.19)と同じか又は若干高い値を示した。このことから、実施例1~3の樹脂組成物及び樹脂成形体の製造過程で成分(A)は溶融せず、該樹脂組成物及び樹脂成形体中で、使用したポリイミド樹脂粒子1の形状を維持した状態で含まれていると考えられる。
 なお実施例1で得られた樹脂組成物(ペレット)をミクロトーム(REICHERT-JUNG LIMITED製「ULTRACUT E」)を用いて切断し、平滑にした後、ルテニウム系染色剤により染色を行った。この切断面をフィールドエミッション型走査型電子顕微鏡(ZEISS「GeminiSEM500」)を用いて、加速電圧1.00kV、観察倍率100倍で観察した(図1)。図1より、実施例1で得られた樹脂組成物において、ポリイミド樹脂粒子1はPP樹脂からなるマトリックス中に分散されていることがわかる。
 また、実施例1~3の樹脂組成物(ペレット)の製造においてストランドの押出性を確認した。表2に示すように、実施例1~3の樹脂組成物はいずれもストランドの押出は可能であったが、実施例1,2と比較して実施例3では樹脂温度、トルク及び樹脂圧の上昇が見られ、得られるストランドも脆かった。したがって実施例1,2の樹脂組成物の方がストランド押出性に優れるといえる。
実施例4(熱可塑性樹脂組成物及び樹脂成形体の作製、評価)
 製造例1で得られたポリイミド樹脂粒子1と、非晶性熱可塑性樹脂(B1-1)であるポリカーボネート(PC)樹脂(三菱エンジニアリングプラスチックス(株)製「ユーピロン S2000」、ガラス転移温度145~150℃)とを、表3に示す割合で用いた。PC樹脂を120℃の乾燥器内で5時間乾燥させた後、同方向回転二軸混練押出機((株)パーカーコーポレーション製「HK-25D」)の入口側のホッパーから該PC樹脂を導入し、ポリイミド樹脂粒子1をサイドフィーダーから押出機内に導入して、シリンダー設定温度275℃、フィード量6kg/h、スクリュー回転数150rpmの条件で混練し、ストランドを押し出した。
 押出機より押し出されたストランドを空冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化し、射出成形に使用した。
 得られたペレットを120℃の乾燥器内で4時間乾燥させた後、射出成形機(ファナック(株)製「ロボショットα-S30iA」)を使用して、シリンダー設定温度270℃、金型温度100℃、射出速度62.5mm/sの条件で射出成形し、各種評価に用いる所定の形状の樹脂成形体を作製した。
 得られたペレット及び樹脂成形体を用いて、前記方法によりHDT測定を行った。結果を表3に示す。
比較例2
 非晶性熱可塑性樹脂(B1-1)であるポリカーボネート樹脂を単独で用いて、120℃の乾燥器内で4時間乾燥させた後、実施例4と同様の方法で樹脂成形体を作製した。
 得られた樹脂成形体を用いて、前記方法によりHDT測定を行った。結果を表3に示す。
実施例5(熱可塑性樹脂組成物及び樹脂成形体の作製、評価)
 製造例1で得られたポリイミド樹脂粒子1と、結晶性熱可塑性樹脂(B2-2)であるポリフェニレンサルファイド(PPS)樹脂(東レ(株)製「トレリナA900」、融点278℃、ガラス転移温度90℃)とを、表3に示す割合で用いた。同方向回転二軸混練押出機((株)パーカーコーポレーション製「HK-25D」)の入口側のホッパーからPPS樹脂を導入し、ポリイミド樹脂粒子1をサイドフィーダーから押出機内に導入して、シリンダー設定温度290℃、フィード量6kg/h、スクリュー回転数200rpmの条件で混練し、ストランドを押し出した。
 押出機より押し出されたストランドを水冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化し、射出成形に使用した。
 得られたペレットを130℃の乾燥器内で3時間乾燥させた後、射出成形機(ファナック(株)製「ロボショットα-S30iA」)を使用して、シリンダー設定温度310℃、金型温度150℃、射出速度62.5mm/sの条件で射出成形し、各種評価に用いる所定の形状の樹脂成形体を作製した。
 得られた樹脂成形体を用いて、前記方法によりHDT測定を行った。結果を表3に示す。
比較例3
 結晶性熱可塑性樹脂(B2-2)であるPPS樹脂を単独で用いて、130℃の乾燥器内で3時間乾燥させた後、実施例5と同様の方法で樹脂成形体を作製した。
 得られた樹脂成形体を用いて、前記方法によりHDT測定を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000021
実施例6(熱可塑性樹脂組成物及び樹脂成形体の製造、評価)
 製造例1で得られたポリイミド樹脂粒子1と、結晶性熱可塑性樹脂(B2-3)であるポリアミド樹脂PA6(宇部興産(株)製「UBEナイロン 1030B」、融点215~225℃、ガラス転移温度50℃)とを、表4に示す割合で用いた。同方向回転二軸混練押出機((株)パーカーコーポレーション製「HK-25D」)の根元側のホッパーからPA6を導入し、ポリイミド樹脂粒子1をサイドフィーダーから押出機内に導入して、シリンダー設定温度260℃、フィード量6kg/h、スクリュー回転数200rpmの条件で混練し、ストランドを押し出した。
 押出機より押し出されたストランドを水冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化し、射出成形に使用した。
 得られたペレットを80℃の乾燥器内で6時間乾燥させた後、射出成形機(ファナック(株)製「ロボショットα-S30iA」)を使用して、シリンダー設定温度250℃、金型温度80℃、射出速度62.5mm/sの条件で射出成形した。得られた射出成形品を120℃の乾燥機内で1時間アニール処理し、各種評価に用いる所定の形状の樹脂成形体を作製した。
 得られた樹脂成形体を用いて、前記方法によりHDT測定及び引張試験を行った。結果を表4に示す。
実施例7
 実施例6において、ポリイミド樹脂粒子1と、ポリアミド樹脂PA6との配合量(質量部)を表4に記載の量に変更したこと以外は、実施例6と同様の方法で樹脂成形体を作製した。
 得られた樹脂成形体を用いて、前記方法によりHDT測定及び引張試験を行った。結果を表4に示す。
比較例4
 結晶性熱可塑性樹脂(B2-3)であるポリアミド樹脂PA6を単独で用いて、80℃の乾燥器内で6時間乾燥させた後、実施例6と同様の方法で樹脂成形体を作製した。
 得られた樹脂成形体を用いて、前記方法によりHDT測定及び引張試験を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000022
 表4より、ポリイミド樹脂粒子1及びポリアミド樹脂PA6を含有する実施例6及び7の樹脂成形体は、PA6のみからなる比較例4の樹脂成形体と比較してHDTが向上し、また引張破壊ひずみの顕著な向上が見られた。
実施例8(熱可塑性樹脂組成物及び樹脂成形体の製造、評価)
 製造例1で得られたポリイミド樹脂粒子1と、結晶性熱可塑性樹脂(B2-4)であるポリエチレンテレフタレート(PET)樹脂(三菱ケミカル(株)製「RT553C」、融点250℃、ガラス転移温度81℃)とを、表5に示す割合で用いた。同方向回転二軸混練押出機((株)パーカーコーポレーション製「HK-25D」)の根元側のホッパーからPET樹脂を導入し、ポリイミド樹脂粒子1をサイドフィーダーから押出機内に導入して、シリンダー設定温度280℃、フィード量6kg/h、スクリュー回転数200rpmの条件で混練し、ストランドを押し出した。
 押出機より押し出されたストランドを水冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化し、射出成形に使用した。
 得られたペレットを80℃の乾燥器内で6時間乾燥させた後、射出成形機(ファナック(株)製「ロボショットα-S30iA」)を使用して、シリンダー設定温度250℃、金型温度80℃、射出速度62.5mm/sの条件で射出成形し、各種評価に用いる所定の形状の樹脂成形体を作製した。
 得られた樹脂成形体を用いて、前記方法により各種評価を行った。結果を表5に示す。
比較例5
 結晶性熱可塑性樹脂(B2-4)であるPET樹脂を単独で用いて、130℃の乾燥器内で3時間乾燥させた後、実施例8と同様の方法で樹脂成形体を作製した。
 得られた樹脂成形体を用いて、前記方法により各種評価を行った。結果を表5に示す。
実施例9(熱可塑性樹脂組成物及び樹脂成形体の製造、評価)
 製造例1で得られたポリイミド樹脂粒子1と、製造例3で得られた結晶性熱可塑性樹脂(B2-5)である変性ポリエチレンテレフタレート(PET)樹脂1(融点220~230℃、ガラス転移温度110℃)とを、表5に示す割合で用いた。同方向回転二軸混練押出機((株)パーカーコーポレーション製「HK-25D」)の根元側のホッパーからPET樹脂を導入し、ポリイミド樹脂粒子1をサイドフィーダーから押出機内に導入して、シリンダー設定温度265℃、フィード量6kg/h、スクリュー回転数200rpmの条件で混練し、ストランドを押し出した。
 押出機より押し出されたストランドを水冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化し、射出成形に使用した。
 得られたペレットを80℃の乾燥器内で6時間乾燥させた後、射出成形機(ファナック(株)製「ロボショットα-S30iA」)を使用して、シリンダー設定温度250℃、金型温度80℃、射出速度62.5mm/sの条件で射出成形し、各種評価に用いる所定の形状の樹脂成形体を作製した。
 得られた樹脂成形体を用いて、前記方法により各種評価を行った。結果を表5に示す。
比較例6
 結晶性熱可塑性樹脂(B2-5)であるPET樹脂を単独で用いて、130℃の乾燥器内で3時間乾燥させた後、実施例9と同様の方法で樹脂成形体を作製した。
 得られた樹脂成形体を用いて、前記方法により各種評価を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000023
 表5より、ポリイミド樹脂粒子1及びPET樹脂又は変性PET樹脂1を含有する実施例8及び9の樹脂成形体は、PET樹脂又は変性PET樹脂1のみからなる比較例5,6の樹脂成形体と比較してHDT、曲げ強度及び曲げ弾性率の向上が見られた。
実施例10(熱硬化性樹脂組成物及び樹脂成形体の作製、評価)
 熱硬化性樹脂(C)として2液硬化型エポキシ樹脂組成物(C-1)を用いて、下記方法で熱硬化性樹脂組成物及び硬化物を作製し、評価した。
 100ccのディスポカップに、40℃に調温した主剤のエポキシ基含有化合物であるビスフェノールA型液状エポキシ樹脂(三菱ケミカル(株)製「jER828」、エポキシ当量186g/当量)を18.6g加えた。ここに、製造例1で得られたポリイミド樹脂粒子1を9.5g添加し、次いで、硬化剤である1,3-ビス(アミノメチル)シクロヘキサン(三菱瓦斯化学(株)製「1,3-BAC」)を3.55g添加して、200rpm/minとなる回転速度で木べらを用いて1分間混合し、ポリイミド樹脂粒子1と、前記主剤及び硬化剤からなる2液硬化型エポキシ樹脂組成物(C-1)とを含有する熱硬化性樹脂組成物を調製した。2液硬化型エポキシ樹脂組成物(C-1)において、主剤中のエポキシ基数と、硬化剤中の活性アミン水素数とのモル比は1/1である。
 得られた熱硬化性樹脂組成物を、80℃の熱風乾燥器内で1時間保持して硬化させ、前記方法により、硬化物の5%重量減少温度及び10%重量減少温度を測定した。結果を表6に示す。
実施例11
 実施例10において、ポリイミド樹脂粒子1の添加量を22.1gに変更したこと以外は、実施例10と同様の方法で熱硬化性樹脂組成物及びその硬化物を作製し、前記方法により、硬化物の5%重量減少温度及び10%重量減少温度を測定した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000024
実施例12(熱硬化性樹脂組成物及び樹脂成形体の作製、評価)
 熱硬化性樹脂(C)として2液硬化型エポキシ樹脂組成物(C-2)を用いて、下記方法で熱硬化性樹脂組成物及び硬化物を作製し、評価した。
 500mLセパラブルフラスコに、主剤のエポキシ基含有化合物であるテトラグリシジルジアミノジフェニルメタン(TGDDM)(住友化学(株)製「スミエポキシ ELM-434」)を計量し、オイルバスで130℃に加熱して溶融させた。次に、予め150℃で1時間乾燥させたポリイミド樹脂粒子1を表7に記載の量添加し、加熱を継続しながら3時間攪拌した。撹拌後、110℃まで冷却し、ディスカップに移して計量した。ここに、硬化剤である4,4’-ジアミノジフェニルスルホン(DDS)を、主剤中のエポキシ基の数に対する硬化剤中の活性アミン水素数の比(硬化剤中の活性アミン水素数/主剤中のエポキシ基数)=1/1.43の当量比で加え、オーブン中、110℃で攪拌、混合してエポキシ樹脂組成物を調製した。
 得られたエポキシ樹脂組成物を減圧脱泡し、予め110℃に加熱した所定形状の注型鋳型にエポキシ樹脂組成物を流し込み、昇温速度2℃/分で150℃まで昇温し、2時間加熱後に180℃まで昇温し、さらに2時間加熱して硬化させ、所望の形状の試験片を得た。
 試験片寸法は下記のとおりである。
  曲げ破壊靭性試験用:125mm×115mm×6mm
  動的粘弾性、ポアソン比測定用:220mm×100mm×3mm
 得られた試験片を用いて、前記方法により、平面歪破壊靭性(K1C)、ひずみエネルギー解放率(G1C)、ポアソン比、及びDMAによるガラス転移温度を測定した。結果を表7に示す。
実施例13~15、比較例7~9
 使用した樹脂粒子の種類、量、及び乾燥条件を表7に記載の通りに変更したこと以外は、実施例12と同様の方法でエポキシ樹脂組成物及び硬化物を作製し、評価を行った。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000025
 表7中に記載の成分は下記である。
(A1)ポリイミド樹脂粒子1:製造例1で得られたポリイミド樹脂粒子
(A2)ポリイミド樹脂粒子2:製造例2で得られたポリイミド樹脂粒子(末端封止なし)
(a1)ポリエーテルスルホン樹脂粒子:住友化学(株)製「スミカエクセル 4800P」、D50=560μm
(a2)ポリエーテルエーテルケトン樹脂粒子:Jilin Joinature Polymer Co.,ltd.製「330UPF」、D50=14μm
(C-2)2液硬化型エポキシ樹脂組成物:主剤のエポキシ基含有化合物であるテトラグリシジルジアミノジフェニルメタン(TGDDM)と、硬化剤である4,4’-ジアミノジフェニルスルホン(DDS)を、主剤中のエポキシ基の数に対する硬化剤中の活性アミン水素数の比(硬化剤中の活性アミン水素数/主剤中のエポキシ基数)=1/1.43の当量比で混合したエポキシ樹脂組成物
 表7より、実施例12~15の熱硬化性樹脂組成物の硬化物は、耐熱性を維持しつつ、平面歪破壊靭性及びひずみエネルギー解放率を比較例の硬化物よりも向上させることができたことが判る。また、ポリイミド樹脂粒子として末端封止されていないポリイミド樹脂粒子2を用いることで、平面歪破壊靭性及びひずみエネルギー解放率がより向上する。
参考例1~2(熱可塑性樹脂フィルムの作製)
 製造例1で得られたポリイミド樹脂粒子1と、結晶性熱可塑性樹脂(B2-1)であるポリプロピレン(PP)樹脂のペレット(日本ポリプロ(株)製「ノバテック FY6」)とを表8に示す割合で用いた。PP樹脂は予め80℃で6時間以上熱風乾燥してから用いた。
 同方向回転二軸混練押出機((株)パーカーコーポレーション製「HK-25D」、スクリュー径D=25mmΦ、L/D=41(L:スクリュー長))の入口側のホッパーからPP樹脂ペレットを導入し、ポリイミド樹脂粒子1をサイドフィーダーから押出機内に導入して、シリンダー設定温度200℃、フィード量6kg/h、スクリュー回転数200rpmの条件で混練し、ストランドを押し出した。押出機より押し出されたストランドを水冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化し、該ペレットを用いて押出成形により単層フィルムを作製した。
 押出成形は、押出機、Tダイ、冷却ロール、及び引き取り機を備えたラボプラTダイ押出成形装置((株)東洋精機製作所製)を用い、下記条件で行った。
押出機
 スクリュー径D:20mmΦ、L/D=25(L:スクリュー長)
 スクリュー回転数:14rpm
 設定温度:190~210℃
Tダイ
 ダイス幅:150mm、リップ幅:0.4mm
 設定温度:205℃
冷却ロール
 設定温度:50℃
引き取り機
 引き取り速度:1.0m/分
 得られたフィルムを用いて、前記方法によりフィルムの評価を行った。結果を表8に示す。
参考例3~7(熱可塑性樹脂フィルムの作製)
 製造例1で得られたポリイミド樹脂粒子1と、結晶性熱可塑性樹脂(B2-3)であるポリアミド樹脂PA6(宇部興産(株)製「UBEナイロン 1030B」)とを表8に示す割合で用いた。PA6は予め80℃で10時間以上予備乾燥してから用いた。
 同方向回転二軸混練押出機((株)パーカーコーポレーション製「HK-25D」)の根元側のホッパーからPA6を導入し、ポリイミド樹脂粒子1をサイドフィーダーから押出機内に導入して、シリンダー設定温度260℃、フィード量6kg/h、スクリュー回転数200rpmの条件で混練し、ストランドを押し出した。押出機より押し出されたストランドを水冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化し、該ペレットを用いて押出成形により単層フィルムを作製した。
 押出成形は、押出機、Tダイ、冷却ロール、及び引き取り機を備えたラボプラTダイ押出成形装置((株)東洋精機製作所製)を用い、下記条件で行った。
押出機
 スクリュー径D:20mmΦ、L/D=25
 スクリュー回転数:16rpm
 設定温度:240~265℃
Tダイ
 ダイス幅:150mm、リップ幅:0.4mm
 設定温度:260℃
冷却ロール
 設定温度:48℃
引き取り機
 引き取り速度:1.0m/分
 得られたフィルムを用いて、前記方法によりフィルムの評価を行った。結果を表8に示す。
参考例8~9(熱可塑性樹脂フィルムの作製)
 製造例1で得られたポリイミド樹脂粒子1と、結晶性熱可塑性樹脂(B2-6)であるポリアミド樹脂MXD6:ポリメタキシリレンアジパミド、三菱ガス化学(株)製「S6011」、融点237℃、ガラス転移温度85℃)とを表8に示す割合で用いた。MXD6は予め80℃で10時間以上予備乾燥してから用いた。
 同方向回転二軸混練押出機((株)パーカーコーポレーション製「HK-25D」)の根元側のホッパーからMXD6を導入し、ポリイミド樹脂粒子1をサイドフィーダーから押出機内に導入して、シリンダー設定温度260℃、フィード量6kg/h、スクリュー回転数200rpmの条件で混練し、ストランドを押し出した。押出機より押し出されたストランドを水冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化し、該ペレットを用いて押出成形により単層フィルムを作製した。
 押出成形は、押出機、Tダイ、冷却ロール、及び引き取り機を備えたラボプラTダイ押出成形装置((株)東洋精機製作所製)を用い、下記条件で行った。
押出機
 スクリュー径D:20mmΦ、L/D=25
 スクリュー回転数:40rpm
 設定温度:240~260℃
Tダイ
 ダイス幅:150mm、リップ幅:0.4mm
 設定温度:260℃
冷却ロール
 設定温度:75℃
引き取り機
 引き取り速度:1.8m/分(参考例8)、1.2m/分(参考例9)
 得られたフィルムを用いて、前記方法によりフィルムの評価を行った。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000026
 表8中に記載の成分は下記である。
(A1)ポリイミド樹脂粒子1:製造例1で得られたポリイミド樹脂粒子
(B2-1)ポリプロピレン樹脂:日本ポリプロ(株)製「ノバテック FY6」
(B2-3)ポリアミド樹脂PA6:宇部興産(株)製「UBEナイロン 1030B」
(B2-6)ポリアミド樹脂MXD6:ポリメタキシリレンアジパミド、三菱ガス化学(株)製「S6011」
 本発明によれば、低融点の結晶性熱可塑性樹脂、低ガラス転移温度の非晶性熱可塑性樹脂等の熱可塑性樹脂、又は熱硬化性樹脂において、樹脂由来の軽量性を維持しながら耐熱性、機械的特性等の諸特性を向上させた樹脂組成物、樹脂成形体及びその製造方法を提供することができる。

 

Claims (13)

  1.  下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%であり、体積平均粒径D50が5~200μmのポリイミド樹脂粒子(A)と、熱可塑性樹脂(B)及び熱硬化性樹脂(C)からなる群から選ばれる少なくとも1種とを含有する樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
  2.  前記ポリイミド樹脂粒子(A)がポーラス状であり、平均細孔直径が5~85nmである、請求項1に記載の樹脂組成物。
  3.  前記ポリイミド樹脂粒子(A)と、前記熱可塑性樹脂(B)及び前記熱硬化性樹脂(C)の合計量との質量比[(A)/{(B)+(C)}]が1/99~99/1の範囲である、請求項1又は2に記載の樹脂組成物。
  4.  前記熱可塑性樹脂(B)が下記(B1)及び(B2)からなる群から選ばれる少なくとも1種である、請求項1~3のいずれか1項に記載の樹脂組成物。
     (B1)ガラス転移温度が、ポリイミド樹脂粒子(A)の融点未満である非晶性熱可塑性樹脂
     (B2)融点が、ポリイミド樹脂粒子(A)の融点未満であるか、又はガラス転移温度が、ポリイミド樹脂粒子(A)のガラス転移温度未満である結晶性熱可塑性樹脂
  5.  前記熱可塑性樹脂(B)が、ポリスチレン樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメタクリル酸メチル、アクリロニトリル-ブタジエン-スチレン樹脂、ポリカーボネート樹脂、ポリスルホン樹脂、ポリフェニルスルホン樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリフェニレンサルファイド樹脂、ポリエステル樹脂、液晶ポリマー、フッ素樹脂、ポリメチルペンテン樹脂、及びポリウレタン樹脂からなる群から選ばれる少なくとも1種である、請求項4に記載の樹脂組成物。
  6.  前記熱硬化性樹脂(C)がエポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリイミド樹脂、ビスマレイミド樹脂、ケイ素樹脂、ウレタン樹脂、カゼイン樹脂、フラン樹脂、アルキド樹脂、及びキシレン樹脂からなる群から選ばれる少なくとも1種である、請求項1~3のいずれか1項に記載の樹脂組成物。
  7.  前記エポキシ樹脂が、主剤がテトラグリシジルジアミノジフェニルメタンであり、硬化剤がジアミノジフェニルスルホンである2液硬化型のエポキシ樹脂組成物である、請求項6に記載の樹脂組成物。
  8.  前記ポリイミド樹脂粒子(A)を構成するポリイミド樹脂が末端封止されていないポリイミド樹脂である、請求項1~7のいずれか1項に記載の樹脂組成物。
  9.  下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%であり、体積平均粒径D50が5~200μmのポリイミド樹脂粒子(A)と、熱可塑性樹脂(B)及び熱硬化性樹脂(C)の硬化物からなる群から選ばれる少なくとも1種とを含有する樹脂成形体。
    Figure JPOXMLDOC01-appb-C000002

    (Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
  10.  請求項9に記載の樹脂成形体の製造方法であって、
     前記ポリイミド樹脂粒子(A)と、前記熱可塑性樹脂(B)及び前記熱硬化性樹脂(C)からなる群から選ばれる少なくとも1種とを含有する樹脂組成物を、該ポリイミド樹脂粒子(A)の融点未満の温度で成形する工程を有する、樹脂成形体の製造方法。
  11.  前記熱可塑性樹脂(B)が下記(B1)及び(B2)からなる群から選ばれる少なくとも1種である、請求項10に記載の樹脂成形体の製造方法。
     (B1)ガラス転移温度が、ポリイミド樹脂粒子(A)の融点未満である非晶性熱可塑性樹脂
     (B2)融点が、ポリイミド樹脂粒子(A)の融点未満であるか、又はガラス転移温度が、ポリイミド樹脂粒子(A)のガラス転移温度未満である結晶性熱可塑性樹脂
  12.  前記熱可塑性樹脂(B)が前記非晶性熱可塑性樹脂(B1)であり、前記ポリイミド樹脂粒子(A)と、前記非晶性熱可塑性樹脂(B1)とを含有する樹脂組成物を前記ポリイミド樹脂粒子(A)の融点未満でかつ前記非晶性熱可塑性樹脂(B1)のガラス転移温度以上の温度で押し出す工程を有する、請求項11に記載の樹脂成形体の製造方法。
  13.  前記熱可塑性樹脂(B)が前記結晶性熱可塑性樹脂(B2)であり、前記ポリイミド樹脂粒子(A)と、前記結晶性熱可塑性樹脂(B2)とを含有する樹脂組成物を前記ポリイミド樹脂粒子(A)の融点未満でかつ前記結晶性熱可塑性樹脂(B2)の融点以上の温度で押し出す工程を有する、請求項11に記載の樹脂成形体の製造方法。

     
PCT/JP2020/042852 2019-11-19 2020-11-17 樹脂組成物、樹脂成形体及びその製造方法 WO2021100716A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227014716A KR20220104687A (ko) 2019-11-19 2020-11-17 수지 조성물, 수지 성형체 및 그의 제조방법
JP2021558401A JPWO2021100716A1 (ja) 2019-11-19 2020-11-17
EP20888816.4A EP4063092A4 (en) 2019-11-19 2020-11-17 RESIN COMPOSITION, RESIN MOLDED ARTICLE AND METHOD OF MAKING IT
US17/776,771 US20220403169A1 (en) 2019-11-19 2020-11-17 Resin composition, resin molded article and method for producing same
CN202080079312.XA CN114729187B (zh) 2019-11-19 2020-11-17 树脂组合物、树脂成型体和其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019208941 2019-11-19
JP2019-208941 2019-11-19

Publications (1)

Publication Number Publication Date
WO2021100716A1 true WO2021100716A1 (ja) 2021-05-27

Family

ID=75980815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042852 WO2021100716A1 (ja) 2019-11-19 2020-11-17 樹脂組成物、樹脂成形体及びその製造方法

Country Status (6)

Country Link
US (1) US20220403169A1 (ja)
EP (1) EP4063092A4 (ja)
JP (1) JPWO2021100716A1 (ja)
KR (1) KR20220104687A (ja)
TW (1) TW202128840A (ja)
WO (1) WO2021100716A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122349A1 (ja) * 2022-12-05 2024-06-13 三菱瓦斯化学株式会社 樹脂組成物及び成形体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12107297B2 (en) * 2020-03-20 2024-10-01 Samsung Sdi Co., Ltd. Composition for coating layer including heat-resistant binder, hydroxy-containing polyimide particle, and silane crosslinker, separator for rechargeable lithium battery including coating layer formed therefrom and rechargeable lithium battery including the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199176A (ja) * 1989-01-30 1990-08-07 Asahi Chem Ind Co Ltd 潤滑性樹脂組成物
JPH02206652A (ja) * 1989-02-06 1990-08-16 Asahi Chem Ind Co Ltd 潤滑性樹脂組成物
JPH03137153A (ja) * 1989-01-04 1991-06-11 Basf Corp 強化熱硬化性構造材料
JPH04277551A (ja) * 1991-03-05 1992-10-02 Matsushita Electric Ind Co Ltd 樹脂組成物およびその樹脂成形品のめっき方法
JP2004051672A (ja) * 2002-07-16 2004-02-19 Nippon Shokubai Co Ltd ポリイミド微粒子およびその用途
WO2016147996A1 (ja) * 2015-03-19 2016-09-22 三菱瓦斯化学株式会社 ポリイミド樹脂
WO2016147997A1 (ja) * 2015-03-19 2016-09-22 三菱瓦斯化学株式会社 ポリイミド樹脂
JP2017210593A (ja) * 2016-02-12 2017-11-30 富士電機株式会社 樹脂組成物および電子部品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4443870B2 (ja) 2003-07-07 2010-03-31 克雄 庄司 超砥粒ホイール及びその製造方法
JP5496382B2 (ja) 2013-03-08 2014-05-21 三菱電機株式会社 表示装置の色調整システム
US10131748B2 (en) * 2013-08-06 2018-11-20 Mitsubishi Gas Chemical Company, Inc. Polyimide resin
JP6502695B2 (ja) 2015-02-13 2019-04-17 住友ゴム工業株式会社 ミクロフィブリル化植物繊維・ゴム複合体及びその製造方法、並びに、ゴム組成物及び空気入りタイヤ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137153A (ja) * 1989-01-04 1991-06-11 Basf Corp 強化熱硬化性構造材料
JPH02199176A (ja) * 1989-01-30 1990-08-07 Asahi Chem Ind Co Ltd 潤滑性樹脂組成物
JPH02206652A (ja) * 1989-02-06 1990-08-16 Asahi Chem Ind Co Ltd 潤滑性樹脂組成物
JPH04277551A (ja) * 1991-03-05 1992-10-02 Matsushita Electric Ind Co Ltd 樹脂組成物およびその樹脂成形品のめっき方法
JP2004051672A (ja) * 2002-07-16 2004-02-19 Nippon Shokubai Co Ltd ポリイミド微粒子およびその用途
WO2016147996A1 (ja) * 2015-03-19 2016-09-22 三菱瓦斯化学株式会社 ポリイミド樹脂
WO2016147997A1 (ja) * 2015-03-19 2016-09-22 三菱瓦斯化学株式会社 ポリイミド樹脂
JP2017210593A (ja) * 2016-02-12 2017-11-30 富士電機株式会社 樹脂組成物および電子部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4063092A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122349A1 (ja) * 2022-12-05 2024-06-13 三菱瓦斯化学株式会社 樹脂組成物及び成形体

Also Published As

Publication number Publication date
CN114729187A (zh) 2022-07-08
US20220403169A1 (en) 2022-12-22
KR20220104687A (ko) 2022-07-26
JPWO2021100716A1 (ja) 2021-05-27
EP4063092A1 (en) 2022-09-28
EP4063092A4 (en) 2023-01-11
TW202128840A (zh) 2021-08-01

Similar Documents

Publication Publication Date Title
TWI601761B (zh) 聚醯亞胺樹脂
JP6037088B1 (ja) ポリイミド樹脂
KR20160040183A (ko) 폴리이미드 수지조성물 및 폴리이미드 수지-섬유복합재
WO2015020016A1 (ja) ポリイミド樹脂
WO2021100716A1 (ja) 樹脂組成物、樹脂成形体及びその製造方法
JPWO2019220967A1 (ja) ポリイミドパウダー組成物
WO2020179391A1 (ja) ポリイミド樹脂組成物
WO2021024624A1 (ja) 難燃性ポリイミド成形材料及び成形体
EP4083137A1 (en) Polyimide resin composition and molded body
JP6879438B1 (ja) ポリイミド樹脂組成物及び成形体
JP6856173B2 (ja) 難燃性ポリイミド成形材料及び成形体
WO2021229985A1 (ja) 繊維強化複合材の製造方法
CN114729187B (zh) 树脂组合物、树脂成型体和其制造方法
WO2022004471A1 (ja) 樹脂組成物及び成形体
JP7259852B2 (ja) ポリイミド樹脂組成物
WO2023105969A1 (ja) ポリイミド樹脂組成物及び成形体
TWI857187B (zh) 聚醯亞胺樹脂組成物及成形體
JP6962513B1 (ja) 繊維強化複合材の製造方法
WO2023120303A1 (ja) 発光成形体及び波長変換部材
WO2022220007A1 (ja) 熱可塑性ポリイミド樹脂組成物及び成形品
WO2020241185A1 (ja) ポリイミド樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558401

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020888816

Country of ref document: EP

Effective date: 20220620