WO2021099879A1 - コンピュータシステム、及び情報処理装置の動作方法 - Google Patents

コンピュータシステム、及び情報処理装置の動作方法 Download PDF

Info

Publication number
WO2021099879A1
WO2021099879A1 PCT/IB2020/060503 IB2020060503W WO2021099879A1 WO 2021099879 A1 WO2021099879 A1 WO 2021099879A1 IB 2020060503 W IB2020060503 W IB 2020060503W WO 2021099879 A1 WO2021099879 A1 WO 2021099879A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
wiring
memory cell
insulator
memory
Prior art date
Application number
PCT/IB2020/060503
Other languages
English (en)
French (fr)
Inventor
山崎舜平
池田隆之
國武寛司
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2021558028A priority Critical patent/JPWO2021099879A1/ja
Priority to US17/773,887 priority patent/US20220375521A1/en
Priority to CN202080079582.0A priority patent/CN114730582A/zh
Priority to KR1020227018723A priority patent/KR20220103973A/ko
Publication of WO2021099879A1 publication Critical patent/WO2021099879A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C14/00Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down
    • G11C14/0054Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down in which the volatile element is a SRAM cell
    • G11C14/0063Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down in which the volatile element is a SRAM cell and the nonvolatile element is an EEPROM element, e.g. a floating gate or MNOS transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • G11C11/405Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with three charge-transfer gates, e.g. MOS transistors, per cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • G11C5/04Supports for storage elements, e.g. memory modules; Mounting or fixing of storage elements on such supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • G11C11/4087Address decoders, e.g. bit - or word line decoders; Multiple line decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C2029/0403Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals during or with feedback to manufacture
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/062Differential amplifiers of non-latching type, e.g. comparators, long-tailed pairs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • One aspect of the present invention relates to an operation method of a computer system and an information processing device.
  • one aspect of the present invention is not limited to the above technical fields.
  • the technical field of the invention disclosed in the present specification and the like relates to a product, an operation method, or a manufacturing method.
  • one aspect of the invention relates to a process, machine, manufacture, or composition (composition of matter). Therefore, more specifically, the technical fields of one aspect of the present invention disclosed in the present specification include semiconductor devices, display devices, liquid crystal display devices, light emitting devices, power storage devices, imaging devices, storage devices, signal processing devices, and sensors.
  • Processors, electronic devices, information processing devices, systems, their operation methods, their manufacturing methods, or their inspection methods can be given as an example.
  • ICs integrated circuits
  • static power increases by increasing the operating frequency for higher performance.
  • Most of the static power is the power consumed by the leakage current of the transistor.
  • Leakage currents include sub-shreshled leak currents, gate tunnel leak currents, gate-induced drain leak (GIDL) currents, and junction tunnel leak currents. Since these leakage currents increase with the miniaturization of transistors, the increase in power consumption is a major barrier to improving the performance and integration of ICs.
  • power gating, clock gating, etc. are used to stop circuits that do not need to be operated. There is. In power gating, the power supply is stopped, which has the effect of eliminating standby power. In order to enable power gating with a CPU, it is necessary to back up the stored contents such as registers and caches to a non-volatile memory.
  • Non-Patent Document 1 discloses an OS-SRAM (Static Random Access Memory) provided with a backup circuit using an OS transistor.
  • Non-Patent Document 1 discloses that a microprocessor equipped with an OS-SRAM can perform power gating with a short break-even time (BET) without affecting normal operation.
  • BET short break-even time
  • the speed of inputting data for writing (the amount of information input per unit time) is slower than the speed of writing data to the storage unit. Therefore, by temporarily holding the write data input to the storage device by using the cache memory included in the storage device, the write data input speed to the storage device is not reduced, and the data is input to the storage unit. Data can be written. Further, the reading speed of the data from the storage unit is slower than the output speed of the read data from the storage device (the amount of information output per unit time). Therefore, by temporarily holding the data read from the storage device by using the cache memory included in the storage device, the data read from the storage device can be read without slowing down the reading speed of the read data from the storage device. It can be performed.
  • the cache memory has a function of temporarily holding data when sorting data held in the storage unit, saving data not related to erasure, and the like.
  • DRAM Dynamic Random Access Memory
  • the cache memory and the NAND type storage device are created by different processes, they are created as separate chips. Therefore, it is necessary to provide bus wiring between the cache memory and the NAND type storage device, which may increase the circuit area of the storage device. Further, depending on the length of the bus wiring, the power consumption of the signal flowing through the bus wiring may increase.
  • One aspect of the present invention is to provide a computer system having a reduced circuit area.
  • one aspect of the present invention is to provide a computer system having low power consumption.
  • one aspect of the present invention is to provide a new computer system.
  • one aspect of the present invention is to provide a new operation method of the information processing apparatus.
  • the problem of one aspect of the present invention is not limited to the problems listed above.
  • the issues listed above do not preclude the existence of other issues.
  • Other issues are issues not mentioned in this item, which are described below. Issues not mentioned in this item can be derived from descriptions in the description, drawings, etc. by those skilled in the art, and can be appropriately extracted from these descriptions.
  • one aspect of the present invention solves at least one of the above-listed problems and other problems. It should be noted that one aspect of the present invention does not need to solve all of the above-listed problems and other problems.
  • One aspect of the present invention is a computer system having a processor and a memory.
  • the processor has a storage unit, the storage unit has a transistor having a metal oxide in a channel forming region, and the processor and the memory are located so as to overlap each other.
  • one aspect of the present invention may be a configuration in which the DRAM is not connected between the processor and the memory in the above (1).
  • one aspect of the present invention is a computer system having a computer node including a processor.
  • the processor has a storage unit, and the storage unit has a first transistor, a second transistor, and a capacitance. Further, each of the first transistor and the second transistor has a metal oxide in the channel forming region. The first terminal of the first transistor is electrically connected to the gate of the second transistor, and the gate of the second transistor is electrically connected to the first terminal of the capacitance.
  • the processor may have an SRAM and no flip-flop.
  • one aspect of the present invention is a computer system having a computer node, which comprises a processor and a NAND-type storage device having a three-dimensional structure.
  • the NAND type storage device having a three-dimensional structure has a transistor in which a metal oxide is contained in the channel forming region.
  • the computer node may have a configuration that does not have a DRAM.
  • one aspect of the present invention includes an arithmetic processing device, a storage device, and a plurality of wirings, the storage device has a plurality of strings, and one of the plurality of strings is one of the plurality of wirings.
  • This is an operation method of an information processing device that is electrically connected to an arithmetic processing device via a device, and converts the first data input by serial transmission into a plurality of second data, and converts the plurality of second data into a plurality of second data.
  • This is an operation method of an information processing device that distributes data for each of a plurality of wires and simultaneously supplies a plurality of second data to a plurality of strings according to a trigger signal.
  • the string may have a plurality of memory cells, and the memory cells may include an oxide semiconductor.
  • the storage device may be a NAND type storage device.
  • the semiconductor device is a device that utilizes semiconductor characteristics, and refers to a circuit including a semiconductor element (transistor, diode, photodiode, etc.), a device having the same circuit, and the like. It also refers to all devices that can function by utilizing semiconductor characteristics. For example, an integrated circuit, a chip having an integrated circuit, an electronic component in which the chip is housed in a package, and the like are examples of semiconductor devices. Further, the storage device, the display device, the light emitting device, the lighting device, the electronic device, the information processing device, and the like are themselves semiconductor devices, and may have the semiconductor device.
  • an element for example, a switch, a transistor, a capacitive element, an inductor, a resistance element, a diode, a display
  • One or more devices, light emitting devices, loads, etc. can be connected between X and Y.
  • the switch has a function of controlling on / off. That is, the switch is in a conducting state (on state) or a non-conducting state (off state), and has a function of controlling whether or not a current flows.
  • a circuit that enables functional connection between X and Y for example, a logic circuit (inverter, NAND circuit, NOR circuit, etc.), signal conversion, etc.) Circuits (digital-to-analog conversion circuit, analog-to-digital conversion circuit, gamma correction circuit, etc.), potential level conversion circuit (power supply circuit (boost circuit, step-down circuit, etc.), level shifter circuit that changes the signal potential level, etc.), voltage source, current source , Switching circuit, amplification circuit (circuit that can increase signal amplitude or current amount, operational amplifier, differential amplification circuit, source follower circuit, buffer circuit, etc.), signal generation circuit, storage circuit, control circuit, etc.) It is possible to connect one or more to and from. As an example, even if another circuit is sandwiched between X and Y, if the signal output from X is transmitted to Y, it is assumed that X and Y are functionally connected. To do.
  • X and Y are electrically connected, it means that X and Y are electrically connected (that is, another element between X and Y). Or when they are connected with another circuit in between) and when X and Y are directly connected (that is, they are connected without sandwiching another element or another circuit between X and Y). If there is) and.
  • X and Y, the source (or the first terminal, etc.) and the drain (or the second terminal, etc.) of the transistor are electrically connected to each other, and the X, the source (or the second terminal, etc.) of the transistor are connected to each other. (1 terminal, etc.), the drain of the transistor (or the 2nd terminal, etc.), and Y are electrically connected in this order.
  • the source of the transistor (or the first terminal, etc.) is electrically connected to X
  • the drain of the transistor (or the second terminal, etc.) is electrically connected to Y
  • the X, the source of the transistor (such as the second terminal).
  • the first terminal, etc.), the drain of the transistor (or the second terminal, etc.), and Y are electrically connected in this order.
  • X is electrically connected to Y via the source (or first terminal, etc.) and drain (or second terminal, etc.) of the transistor, and X, the source (or first terminal, etc.) of the transistor. (Terminals, etc.), transistor drains (or second terminals, etc.), and Y are provided in this connection order.
  • the source (or first terminal, etc.) and drain (or second terminal, etc.) of the transistor can be separated. Separately, the technical scope can be determined. Note that these expression methods are examples, and are not limited to these expression methods.
  • X and Y are assumed to be objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
  • circuit diagram shows that independent components are electrically connected to each other, one component has the functions of a plurality of components.
  • one component has the functions of a plurality of components.
  • the term "electrically connected” as used herein includes the case where one conductive film has the functions of a plurality of components in combination.
  • the “resistance element” can be, for example, a circuit element having a resistance value higher than 0 ⁇ , wiring, or the like. Therefore, in the present specification and the like, the “resistive element” includes a wiring having a resistance value, a transistor in which a current flows between a source and a drain, a diode, a coil, and the like. Therefore, the term “resistor element” can be paraphrased into terms such as “resistance”, “load”, and “region having a resistance value”, and conversely, “resistance", “load”, and “region having a resistance value”. Can be rephrased as a term such as “resistive element”.
  • the resistance value can be, for example, preferably 1 m ⁇ or more and 10 ⁇ or less, more preferably 5 m ⁇ or more and 5 ⁇ or less, and further preferably 10 m ⁇ or more and 1 ⁇ or less. Further, for example, it may be 1 ⁇ or more and 1 ⁇ 10 9 ⁇ or less.
  • the “capacitance element” means, for example, a circuit element having a capacitance value higher than 0F, a wiring region having a capacitance value, a parasitic capacitance, a transistor gate capacitance, and the like. Can be. Therefore, in the present specification and the like, the “capacitive element” is not only a circuit element containing a pair of electrodes and a dielectric contained between the electrodes, but also a parasitic capacitance appearing between the wirings. , The gate capacitance that appears between the gate and one of the source or drain of the transistor.
  • the terms “capacitive element”, “parasitic capacitance”, “gate capacitance” and the like can be paraphrased into terms such as “capacity”, and conversely, the term “capacity” is “capacitive element” and “parasitic It can be paraphrased into terms such as “capacity” and “gate capacitance”.
  • the term “pair of electrodes” in “capacity” can be rephrased as “pair of conductors", “pair of conductive regions", “pair of regions” and the like.
  • the value of the capacitance can be, for example, 0.05 fF or more and 10 pF or less. Further, for example, it may be 1 pF or more and 10 ⁇ F or less.
  • the transistor has three terminals called a gate, a source, and a drain.
  • the gate is a control terminal that controls the conduction state of the transistor.
  • the two terminals that function as sources or drains are the input and output terminals of the transistor.
  • One of the two input / output terminals becomes a source and the other becomes a drain depending on the high and low potentials given to the conductive type (n-channel type, p-channel type) of the transistor and the three terminals of the transistor. Therefore, in the present specification and the like, the terms source and drain can be paraphrased with each other.
  • the transistor when explaining the connection relationship of transistors, "one of the source or drain” (or the first electrode or the first terminal), “the other of the source or drain” (or the second electrode, or The notation (second terminal) is used.
  • it may have a back gate in addition to the above-mentioned three terminals.
  • one of the gate or the back gate of the transistor may be referred to as a first gate
  • the other of the gate or the back gate of the transistor may be referred to as a second gate.
  • the terms “gate” and “backgate” may be interchangeable.
  • the respective gates When the transistor has three or more gates, the respective gates may be referred to as a first gate, a second gate, a third gate, and the like in the present specification and the like.
  • a node can be paraphrased as a terminal, a wiring, an electrode, a conductive layer, a conductor, an impurity region, etc., depending on a circuit configuration, a device structure, and the like.
  • terminals, wiring, etc. can be paraphrased as nodes.
  • ground potential ground potential
  • the potentials are relative, and when the reference potential changes, the potential given to the wiring, the potential applied to the circuit or the like, the potential output from the circuit or the like also changes.
  • the terms “high level potential” and “low level potential” do not mean a specific potential.
  • both of the two wires “function as a wire that supplies a high level potential”
  • the high level potentials provided by both wires do not have to be equal to each other.
  • both of the two wires are described as “functioning as a wire that supplies a low level potential”
  • the low level potentials given by both wires do not have to be equal to each other. ..
  • the "current” is a charge transfer phenomenon (electrical conduction).
  • the description “electrical conduction of a positively charged body is occurring” means “electrical conduction of a negatively charged body in the opposite direction”. Is happening. " Therefore, in the present specification and the like, “current” refers to a charge transfer phenomenon (electrical conduction) accompanying the movement of carriers, unless otherwise specified.
  • the carrier here include electrons, holes, anions, cations, complex ions, and the like, and the carriers differ depending on the system in which the current flows (for example, semiconductor, metal, electrolyte, vacuum, etc.).
  • the "current direction” in the wiring or the like is the direction in which the carriers with positive charges move, and is described by the amount of positive current.
  • the direction in which the negatively charged carriers move is opposite to the direction of the current, and is expressed by the amount of negative current. Therefore, in the present specification and the like, if there is no notice about the positive or negative of the current (or the direction of the current), the description such as “current flows from element A to element B” means “current flows from element B to element A” or the like. It can be paraphrased as. Further, the description such as “a current is input to the element A” can be rephrased as "a current is output from the element A” or the like.
  • the ordinal numbers “first”, “second”, and “third” are added to avoid confusion of the components. Therefore, the number of components is not limited. Moreover, the order of the components is not limited. For example, the component referred to in “first” in one of the embodiments of the present specification and the like may be a component referred to in “second” in another embodiment or in the claims. There can also be. Further, for example, the component mentioned in “first” in one of the embodiments of the present specification and the like may be omitted in another embodiment or in the claims.
  • the terms “upper” and “lower” do not limit the positional relationship of the components to be directly above or directly below and to be in direct contact with each other.
  • the terms “electrode B on the insulating layer A” it is not necessary that the electrode B is formed in direct contact with the insulating layer A, and another configuration is formed between the insulating layer A and the electrode B. Do not exclude those that contain elements.
  • membrane and layer can be interchanged with each other depending on the situation.
  • the terms “insulating layer” and “insulating film” may be changed to the term "insulator”.
  • Electrode may be used as part of a “wiring” and vice versa.
  • terms such as “electrode” and “wiring” include a case where a plurality of “electrodes”, “wiring” and the like are integrally formed.
  • the “terminal” may be used as a part of the “wiring”, the “electrode” and the like, and vice versa.
  • the term “terminal” includes a case where a plurality of "electrodes”, “wiring”, “terminals” and the like are integrally formed.
  • the "electrode” can be a part of the “wiring” or the “terminal”, and for example, the “terminal” can be a part of the “wiring” or the “electrode”.
  • terms such as “electrode”, “wiring”, and “terminal” may be replaced with terms such as "area” in some cases.
  • terms such as “wiring”, “signal line”, and “power supply line” can be interchanged with each other in some cases or depending on the situation.
  • the reverse is also true, and it may be possible to change terms such as “signal line” and “power supply line” to the term “wiring”.
  • a term such as “power line” may be changed to a term such as "signal line”.
  • terms such as “signal line” may be changed to terms such as "power line”.
  • the term “potential” applied to the wiring may be changed to a term such as “signal” in some cases or depending on the situation.
  • the reverse is also true, and terms such as “signal” may be changed to the term “potential”.
  • semiconductor impurities refer to, for example, other than the main components constituting the semiconductor layer.
  • an element having a concentration of less than 0.1 atomic% is an impurity.
  • the inclusion of impurities may cause, for example, a high defect level density in a semiconductor, a decrease in carrier mobility, a decrease in crystallinity, and the like.
  • the impurities that change the characteristics of the semiconductor include, for example, group 1 element, group 2 element, group 13 element, group 14 element, group 15 element, and other than the main component.
  • transition metals and the like and in particular, hydrogen (also contained in water), lithium, sodium, silicon, boron, phosphorus, carbon, nitrogen and the like.
  • the impurities that change the characteristics of the semiconductor include, for example, Group 1 elements, Group 2 elements, Group 13 elements, and Group 15 elements (however, oxygen and hydrogen are used. Not included) and so on.
  • the switch means a switch that is in a conductive state (on state) or a non-conducting state (off state) and has a function of controlling whether or not a current flows.
  • the switch means a switch having a function of selecting and switching a path through which a current flows.
  • an electric switch, a mechanical switch, or the like can be used. That is, the switch is not limited to a specific switch as long as it can control the current.
  • Examples of electrical switches include transistors (for example, bipolar transistors, MOS transistors, etc.), diodes (for example, PN diodes, PIN diodes, Schottky diodes, MIM (Metal Insulator Metal) diodes, and MIS (Metal Insulator Semiconductor) diodes. , Diode-connected transistors, etc.), or logic circuits that combine these.
  • transistors for example, bipolar transistors, MOS transistors, etc.
  • diodes for example, PN diodes, PIN diodes, Schottky diodes, MIM (Metal Insulator Metal) diodes, and MIS (Metal Insulator Semiconductor) diodes. , Diode-connected transistors, etc.
  • the "conducting state" of the transistor means a state in which the source electrode and the drain electrode of the transistor can be regarded as being electrically short-circuited.
  • the "non-conducting state" of the transistor means a state in which the source electrode and the drain electrode of the transistor can be regarded as being electrically cut off.
  • the polarity (conductive type) of the transistor is not particularly limited.
  • An example of a mechanical switch is a switch that uses MEMS (Micro Electro Mechanical System) technology.
  • the switch has an electrode that can be moved mechanically, and by moving the electrode, it operates by controlling conduction and non-conduction.
  • parallel means a state in which two straight lines are arranged at an angle of -10 ° or more and 10 ° or less. Therefore, the case of ⁇ 5 ° or more and 5 ° or less is also included.
  • substantially parallel or approximately parallel means a state in which two straight lines are arranged at an angle of ⁇ 30 ° or more and 30 ° or less.
  • vertical means a state in which two straight lines are arranged at an angle of 80 ° or more and 100 ° or less. Therefore, the case of 85 ° or more and 95 ° or less is also included.
  • substantially vertical or “approximately vertical” means a state in which two straight lines are arranged at an angle of 60 ° or more and 120 ° or less.
  • one aspect of the present invention it is possible to provide a computer system in which the circuit area is reduced.
  • one aspect of the present invention can provide a computer system with low power consumption.
  • a novel computer system can be provided by one aspect of the present invention.
  • the effect of one aspect of the present invention is not limited to the effects listed above.
  • the effects listed above do not preclude the existence of other effects.
  • the other effects are the effects not mentioned in this item, which are described below. Effects not mentioned in this item can be derived from those described in the description, drawings, etc. by those skilled in the art, and can be appropriately extracted from these descriptions.
  • one aspect of the present invention has at least one of the above-listed effects and other effects. Therefore, one aspect of the present invention may not have the effects listed above in some cases.
  • FIG. 1 is a block diagram showing a configuration example of an information processing device.
  • FIG. 2 is a flowchart showing an example of an operation method of the information processing apparatus.
  • 3A to 3C are schematic views showing an example of an operation method of the information processing apparatus.
  • 4A to 4C are circuit diagrams showing a configuration example of a storage unit included in the information processing device.
  • 5A to 5C are circuit diagrams showing a configuration example of a storage unit included in the information processing device.
  • FIG. 6 is a circuit diagram showing a configuration example of a storage unit included in the information processing device.
  • FIG. 7 is a circuit diagram showing a configuration example of a storage unit included in the information processing device.
  • 8A and 8B are timing charts showing an example of the operation method of the storage unit included in the information processing apparatus.
  • FIG. 1 is a block diagram showing a configuration example of an information processing device.
  • FIG. 2 is a flowchart showing an example of an operation method of the information processing apparatus.
  • FIG. 9 is a circuit diagram showing a configuration example of a storage unit included in the information processing device.
  • FIG. 10 is a circuit diagram showing a configuration example of a storage unit included in the information processing device.
  • FIG. 11 is a schematic cross-sectional view illustrating a configuration example of the information processing apparatus.
  • FIG. 12 is a schematic cross-sectional view illustrating a configuration example of the transistor.
  • FIG. 13 is a schematic cross-sectional view illustrating a configuration example of the information processing apparatus.
  • FIG. 14A is a perspective view for explaining a configuration example of a computer
  • FIG. 14B is a perspective view for explaining a monolithic IC.
  • FIG. 15 is a schematic diagram showing a configuration example of a monolithic IC.
  • FIGS. 19C and 19D are perspective views showing an example of an electronic component.
  • 20A to 20J are perspective views or schematic views illustrating an example of the product.
  • 21A to 21C are perspective views illustrating an example of a computer.
  • FIG. 22 is a diagram illustrating an example of a computer.
  • FIG. 23 is a diagram showing an example of a computer system.
  • 24A and 24B are diagrams showing an example of a computer system.
  • 25A to 25D are circuit diagrams showing an example of a memory cell
  • FIG. 25E is a block diagram showing an example of a memory cell array and peripheral circuits.
  • FIG. 26 is a diagram showing an example of a computer system.
  • a metal oxide is a metal oxide in a broad sense. Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors, and the like. For example, when a metal oxide is used in the active layer of a transistor, the metal oxide may be referred to as an oxide semiconductor. That is, when the channel forming region of a transistor having at least one of an amplification action, a rectifying action, and a switching action can be composed of a metal oxide, the metal oxide is referred to as a metal oxide semiconductor. can do.
  • a metal oxide having nitrogen may also be collectively referred to as a metal oxide. Further, a metal oxide having nitrogen may be referred to as a metal oxynitride.
  • the configuration shown in each embodiment can be appropriately combined with the configuration shown in other embodiments to form one aspect of the present invention. Further, when a plurality of configuration examples are shown in one embodiment, the configuration examples can be appropriately combined with each other.
  • the content (may be a part of the content) described in one embodiment is the other content (may be a part of the content) described in the embodiment and one or more other implementations. It is possible to apply, combine, or replace at least one content with the content described in the form of (may be a part of the content).
  • figure (which may be a part) described in one embodiment is different from another part of the figure, another figure (which may be a part) described in the embodiment, and one or more other figures.
  • the figure (which may be a part) described in the embodiment is different from another part of the figure, another figure (which may be a part) described in the embodiment, and one or more other figures.
  • more figures can be formed.
  • FIG. 1 is a block diagram showing a configuration example of an information processing device.
  • the information processing device 50 has, for example, a storage unit 1196, a controller 1197, and a bus interface 1198.
  • the information processing device 50 has a function of acquiring a signal including instruction information from the outside and writing data to the storage unit 1196 in response to the instruction.
  • the storage unit 1196 has a memory cell as an example, and the data is written in the memory cell. Further, the storage unit 1196 may have a transistor or the like for selecting the memory cell.
  • the signal ISG including the instruction information input to the information processing device 50 is input to the controller 1197 via the bus interface 1198.
  • the controller 1197 has, for example, a function of decoding the signal ISG. Further, the controller 1197 has a function of performing various controls based on the instructions included in the decoded signal. Specifically, the controller 1197 generates the address of the memory cell included in the storage unit 1196, and reads or writes the data of the storage unit 1196 according to the state of the information processing device. When writing to the storage unit 1196, the data for writing may be data DT or the like input to the information processing device via the bus interface 1198. The data DT is transmitted to the controller 1197 via the bus interface 1198.
  • the controller 1197 has a circuit that decodes the signal ISG, a circuit that generates an address of a memory cell included in the storage unit 1196, and an on state and an off state of the transistor included in the storage unit 1196. It may have a circuit that outputs a signal for switching between and.
  • the controller 1197 may have a function of generating a signal for controlling the operation timing.
  • the controller 1197 may include an internal clock generator that generates an internal clock signal based on the reference clock signal, and may supply the internal clock signal to the various circuits.
  • the controller 1197 may have a function of performing an error check on the memory cell of the string included in the storage unit 1196.
  • the controller 1197 has this function, for example, before the controller 1197 writes data to the storage unit 1196, an error check can be performed on the memory cell of the string included in the storage unit 1196. At this time, if a defective cell is found in the writing destination string, the controller 1197 can change the data writing destination from the defective cell to another cell and perform the data writing operation.
  • the controller 1197 has a function of performing an error check on the memory cells of the string included in the storage unit 1196 at regular intervals and correcting the data when a defective cell is found in the string. You may.
  • the information processing device 50 has a function of acquiring data including instruction information from the outside and reading data from the storage unit 1196 in response to the instruction. Further, the information processing device 50 has a function of outputting the data read by the controller 1197 as a signal OSG to the outside of the information processing device 50.
  • a storage circuit having a NAND type string can be applied as the storage unit 1196.
  • the NAND type storage circuit it is preferable to apply a NAND type storage circuit having a three-dimensional structure using an OS transistor.
  • a NAND type string using an OS transistor is set as a horizontal type, and the string is laminated one layer at a time, and a NAND type string using an OS transistor is set as a vertical type, and the string is etched. There is a configuration that is formed collectively by such means.
  • a structure in which a NAND type string using an OS transistor is vertically formed may be referred to as a 3D OS NAND (registered trademark) type storage circuit.
  • the 3D OS NAND type storage circuit can form a large number of memory cells at the same time, the mounting density can be increased with a small number of manufacturing steps. That is, the cost per bit can be reduced, and a storage circuit having a high mounting density can be realized at low cost. Therefore, the storage unit 1196 has a plurality of NAND type strings. Note that FIG. 1 shows an example in which the storage unit 1196 has strings ST1 to ST3. Further, in the storage unit 1196 of FIG. 1, strings other than the strings ST1 to ST3 are omitted.
  • the string ST1 has a memory cell L [1] to a memory cell L [n] (n is an integer of 1 or more), and the string ST2 has a memory cell M [1] to a memory cell M [n].
  • the string ST3 has memory cells N [1] to N [n].
  • the memory cell L [1], the memory cell L [2], and the memory cell L [n] are excerpted and illustrated in the string ST1, and the memory in the string ST2.
  • the cell M [1], the memory cell M [2], and the memory cell M [n] are excerpted and illustrated, and in the string ST3, the memory cell N [1] and the memory cell N [n] are shown. 2] and memory cell N [n] are excerpted and illustrated.
  • the memory cells L [1] to the memory cells L [n] are electrically connected in series between the wiring SL1 and the wiring BL1.
  • the memory cells M [1] to the memory cells M [n] are electrically connected in series between the wiring SL2 and the wiring BL2, and in the string ST3, the memory cells N [1].
  • the memory cell N [n] is electrically connected in series between the wiring SL3 and the wiring BL3.
  • Each of the wiring SL1 to the wiring SL3 functions as a wiring that gives a predetermined potential to the strings ST1 to ST3. Further, each of the wiring BL1 to BL3 functions as a wiring for writing data to the memory cell included in the strings ST1 to ST3 and / or as a wiring for reading data from the memory cell.
  • strings (not shown) have the same connection configuration as strings ST1 to ST3.
  • Example of operation method> an example of an operation method in which a part of the memory cells included in the string of the storage unit 1196 is treated as a cache memory in the information processing apparatus 50 of FIG. 1 will be described.
  • FIG. 2 is a flowchart showing an example of an operation method of the information processing device 50 of FIG.
  • the operation method includes steps STP1 to STP8. Further, together with the flowchart, the movement of data in the strings ST1 and ST2 is shown in FIGS. 3A to 3C.
  • step STP1 is performed first.
  • Step STP1 has a step of writing data for rewriting to the memory cell L [6] to, for example, the memory cell N [1] of the string ST3.
  • the information processing device 50 in FIG. 1 acquires a data DT for rewriting and a signal ISG including an instruction for rewriting the data, and transmits a write signal to the storage unit 1196 from the controller 1197. Then, the data DT for writing is held in the memory cell N [1].
  • Step STP2 is performed after step STP1 is completed.
  • Step STP2 has a step of reading data held in each of memory cells L [1] to memory cells L [n] other than the memory cell to be rewritten in the string ST1.
  • the data held in each of the memory cells L [1] to the memory cells L [5] is read out (see FIG. 3A).
  • Step STP3 has a step of sequentially writing the respective data of the memory cells L [1] to the memory cells L [5] read in the step STP2 to the memory cells M [1] to the memory cells M [5] of the string ST2. (See FIG. 3A). That is, by the operation from step STP2 to step STP3, the respective data of the memory cell L [1] to the memory cell L [5] of the string ST1 is changed to the memory cell M [1] to the memory cell M [5] of the string ST2. Is copied to.
  • step STP3 is performed after step STP2
  • the operation method of the information processing apparatus according to one aspect of the present invention is not limited to this.
  • step STP2 the data held in each of the memory cells L [1] to the memory cell L [5] of the string ST1 is sequentially read, and the memory cells M [1] to the string ST2 of the string ST2 are read from the read data. You may write to the memory cell M [5] sequentially. That is, step STP2 and step STP3 may be combined as the same step.
  • Step STP4 is performed after step STP3 is completed.
  • Step STP4 has a step of erasing the data held in the memory cells L [1] to the memory cells L [5] of the string ST1.
  • the storage unit 1196 is a NAND type storage circuit
  • the data erasing operation is performed in string units, so that the data held in the memory cells L [1] to the memory cells L [5] of the string ST1 should be erased. Then, since all the data in the memory cells L [1] to the memory cells L [n] are erased, not only the memory cells L [1] to the memory cells L [5] but also the memory cells L [5] are deleted in step STP2 and step STP3. , The data of the memory cells L [7] to the memory cells L [n] also need to be written in the string ST2.
  • the storage unit 1196 is preferably an OS NAND type storage circuit having the circuit configurations shown in FIGS. 4A to 4C, 6 and 7, which will be described later.
  • the circuit configuration of the storage unit 1196 may be any one of FIGS. 5A to 5C as a configuration having a transistor (hereinafter, referred to as a Si transistor) containing silicon in the channel forming region. ..
  • a Si transistor a transistor containing silicon in the channel forming region.
  • Step STP5 has a step of reading data DT for rewriting from the memory cell N [1] of the string ST3.
  • Step STP6 has a step of writing the data DT for rewriting the memory cell N [1] read in step STP5 to the memory cell L [6] of the string ST1 (see FIG. 3B).
  • Step STP7 has a step of reading the data held in each of the memory cells M [1] to the memory cell M [5] of the string ST2.
  • the data corresponds to the data written in step STP3 (see FIG. 3C).
  • Step STP8 has a step of sequentially writing the respective data of the memory cells M [1] to the memory cells M [5] read in the step STP5 to the memory cells L [1] to the memory cells L [5] of the string ST1. (See FIG. 3C). That is, by the operation from step STP7 to step STP8, each data of the memory cell M [1] to the memory cell M [5] of the string ST1 is changed to the memory cell L [1] to the memory cell L [5] of the string ST2. Is copied to.
  • step STP8 is performed after step STP7
  • the operation method of the information processing apparatus is not limited to this.
  • step STP7 the data held in each of the memory cells M [1] to the memory cell M [5] of the string ST2 is sequentially read, and the memory cells L [1] to the string ST1 of the string ST1 are read from the read data. You may write to the memory cell L [5] sequentially. That is, step STP7 and step STP8 may be grouped together as the same step.
  • the memory cell of another string of the storage unit 1196 is treated as a cache memory. Can be done.
  • a semiconductor substrate for example, a single crystal substrate or a silicon substrate
  • the substrate includes, for example, an SOI substrate, a glass substrate, a quartz substrate, a plastic substrate, a sapphire glass substrate, a metal substrate, a stainless steel substrate, a substrate having a stainless steel still foil, a tungsten substrate, and a tungsten foil.
  • substrates flexible substrates, laminated films, papers containing fibrous materials, base films, and the like.
  • glass substrates include barium borosilicate glass, aluminoborosilicate glass, and soda lime glass.
  • Examples of the flexible substrate, the laminated film, the base film and the like are as follows.
  • plastics typified by polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES), and polytetrafluoroethylene (PTFE).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyether sulfone
  • PTFE polytetrafluoroethylene
  • acrylic examples include polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride, and the like.
  • a transistor using a semiconductor substrate, a single crystal substrate, an SOI substrate, or the like, it is possible to manufacture a transistor having a high current capacity and a small size with little variation in characteristics, size, or shape. ..
  • the circuit is composed of such transistors, the power consumption of the circuit can be reduced or the circuit can be highly integrated.
  • a flexible substrate may be used as the substrate, and a transistor may be formed directly on the flexible substrate.
  • a release layer may be provided between the substrate and the transistor. The release layer can be used for separating from the substrate and reprinting it on another substrate after the information processing apparatus is partially or completely completed on the release layer. At that time, the transistor can be reprinted on a substrate having inferior heat resistance, a flexible substrate, or the like.
  • a structure in which an inorganic film of a tungsten film and a silicon oxide film is laminated, a structure in which an organic resin film such as polyimide is formed on a substrate, or the like can be used.
  • a transistor may be formed using one substrate, then the transistor may be transposed to another substrate, and the transistor may be arranged on another substrate.
  • the substrate on which the transistor is translocated in addition to the substrate capable of forming the above-mentioned transistor, a paper substrate, a cellophane substrate, an aramid film substrate, a polyimide film substrate, a stone substrate, a wood substrate, and a cloth substrate (natural fiber). (Including silk, cotton, linen), synthetic fibers (nylon, polyurethane, polyester) or recycled fibers (including acetate, cupra, rayon, recycled polyester), leather substrates, rubber substrates, etc.
  • a transistor having good characteristics to form a transistor having low power consumption, to manufacture a device that is hard to break, to impart heat resistance, to reduce the weight, or to reduce the thickness.
  • a part of the circuit necessary for realizing the predetermined function is formed on one substrate, and another part of the circuit necessary for realizing the predetermined function is formed on another substrate. It is possible. For example, a part of the circuit necessary to realize a predetermined function is formed on a glass substrate, and another part of the circuit necessary to realize a predetermined function is a single crystal substrate (or SOI substrate). Can be formed into. Then, a single crystal substrate (also referred to as an IC chip) on which another part of the circuit necessary for realizing a predetermined function is formed is connected to the glass substrate by COG (Chip On Glass) to be connected to the glass substrate.
  • COG Chip On Glass
  • the IC chip can be connected to the glass substrate by using TAB (Tape Automated Bonding), COF (Chip On Film), SMT (Surface Mount Technology), a printed circuit board, or the like. Since a part of the circuit is formed on the same substrate as the pixel portion in this way, it is possible to reduce the cost by reducing the number of parts or improve the reliability by reducing the number of connection points with the circuit parts. .. In particular, a circuit having a large drive voltage or a circuit having a high drive frequency often consumes a large amount of power. Therefore, such a circuit is formed on a substrate (for example, a single crystal substrate) different from the pixel portion to form an IC chip. By using this IC chip, it is possible to prevent an increase in power consumption.
  • TAB Transmission Automated Bonding
  • COF Chip On Film
  • SMT Surface Mount Technology
  • a printed circuit board or the like. Since a part of the circuit is formed on the same substrate as the pixel portion in this way, it is possible to
  • one aspect of the present invention is not limited to the configuration of the information processing device 50 shown in FIG.
  • the configuration of the information processing apparatus 50 shown in FIG. 1 may be changed depending on the situation.
  • the string configuration of the storage unit 1196 included in the information processing device 50 shown in FIG. 1 may be changed to the string configuration described in the second embodiment.
  • FIG. 4A shows a circuit diagram of n memory cells (n is an integer of 1 or more). That is, the circuit shown in FIG. 4A includes memory cells of memory cells MC [1] to memory cells MC [n], wiring WWL [1] to wiring WWL [n], and wiring RWL [1] for controlling them. It has wiring RWL [n], wiring WBL, and wiring RBL.
  • the wiring WWL functions as a write word line
  • the wiring RWL functions as a read word line
  • the wiring WBL functions as a write bit line
  • the wiring RBL functions as a read bit line.
  • Each memory cell MC has a transistor WTr and a transistor RTr which are OS transistors, and a capacitance CS.
  • the transistor RTr shown in FIG. 4A is a transistor having a back gate, and the threshold voltage of the transistor RTr can be changed by applying a potential to the back gate.
  • the wiring BGL shown in FIG. 4A is electrically connected to the back gate of the transistor RTr of the memory cell MC [1] to the memory cell MC [n], respectively.
  • the semiconductor device shown in FIG. 4A does not have a configuration in which the wiring BGL is electrically connected to each of the back gates of the transistors RTr of the memory cells MC [1] to the memory cells MC [n], and the back gates are not. It may be configured to be electrically connected to each of them independently and to apply different potentials to each other.
  • the channel formation region of the transistor WTr can be, for example, the metal oxide described in the sixth embodiment.
  • indium and element M (element M includes, for example, aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, etc.
  • the metal oxide functions as a wide gap semiconductor, so that the metal oxide is included in the channel forming region.
  • the transistor has a characteristic that the off-current is very low.
  • the transistor WTr may be a transistor other than the OS transistor depending on the situation.
  • the transistor WTr may be a Si transistor.
  • the transistor RTr may be a transistor other than the OS transistor depending on the situation.
  • the transistor RTr may be a Si transistor. Since the Si transistor has a large field effect mobility, the drain current of the Si transistor can be increased. Therefore, by applying the Si transistor to the storage unit, the operation of the storage unit can be accelerated.
  • the transistor WTr functions as a write transistor, and the transistor RTr functions as a read transistor. Switching between the on state and the off state of the transistor WTr is performed by the potential applied to the wiring WWL.
  • the potential of one electrode of the capacitance CS is controlled by the wiring RWL.
  • the other electrode of the capacitance CS is electrically connected to the gate of the transistor RTr.
  • the other electrode of the capacitance CS can be paraphrased as a memory node.
  • the memory node of each memory cell MC is electrically connected to the first terminal of the transistor WTr of the memory cell MC.
  • the second terminal of the transistor WTr is electrically connected in series with the first terminal of the transistor WTr of the adjacent memory cell MC.
  • the first terminal of the transistor RTr is electrically connected in series with the second terminal of the transistor RTr of the adjacent memory cell.
  • the second terminal of the transistor WTr of the memory cell MC [n] is electrically connected to the wiring WBL, and the second terminal of the transistor RTr of the memory cell MC [n] is electrically connected to the wiring RBL.
  • the connection point between the second terminal of the transistor RTr of the memory cell MC [n] and the wiring RBL is referred to as a node N1, and the first terminal of the transistor RTr of the memory cell MC [1].
  • node N2 Is referred to as node N2.
  • a selection transistor may be connected in series with the transistor RTr of the memory cell MC [n].
  • a selection transistor may be connected in series with the transistor RTr of the memory cell MC [1].
  • one aspect of the present invention is not limited to the semiconductor device shown in FIG. 4A.
  • One aspect of the present invention can be a circuit configuration in which the semiconductor device shown in FIG. 4A is appropriately modified.
  • one aspect of the present invention may be a semiconductor device in which the transistor WTr is also provided with a back gate.
  • a back gate is provided in the transistor WTr of the memory cells MC [1] to the memory cells MC [n].
  • Each of the back gates is electrically connected to the wiring BGL.
  • one aspect of the present invention may be a semiconductor device in which the transistor RTr and the transistor WTr are not provided with a back gate.
  • one aspect of the present invention may be a semiconductor device in which the transistor WTr is an OS transistor and the transistor RTr is a Si transistor in the configuration of FIG. 4A.
  • a semiconductor device in which the transistor WTr is a Si transistor and the transistor RTr is an OS transistor may be used.
  • FIG. 5C in the configuration of FIG. 4A, a semiconductor device in which the transistor WTr is a Si transistor and the transistor RTr is a Si transistor may be used.
  • an OS transistor or a Si transistor may be selected as the transistor to be applied to the transistor WTr included in the semiconductor device depending on the purpose or application, and the transistor is also included in the semiconductor device.
  • the transistor to be applied to the transistor WTr may be an OS transistor or a Si transistor.
  • the semiconductor devices shown in FIGS. 4A to 4C, 5A to 5C and the like are arranged so as to form a matrix. Just place it.
  • the circuit configuration thereof is the configuration shown in FIG.
  • the semiconductor device shown in FIG. 6 is a device in which the semiconductor devices shown in FIG. 4B are arranged side by side in m columns (m is an integer of 1 or more) as one column, and the wiring RWL and the wiring WWL are arranged in a memory cell in the same row. It is electrically connected so that it can be shared with the MC. That is, the semiconductor device shown in FIG. 6 is a matrix-shaped semiconductor device having n rows and m columns, and has memory cells MC [1,1] to memory cells MC [n, m]. Therefore, the semiconductor device shown in FIG. 6 includes wiring RWL [1] to wiring RWL [n], wiring WWL [1] to wiring WWL [n], wiring RBL [1] to wiring RBL [m], and wiring.
  • one electrode of the capacitance CS of the memory cell MC [j, i] (j is an integer of 1 or more and n or less and i is an integer of 1 or more and m or less) is a wiring RWL [j]. ]
  • the gate of the transistor WTr of the memory cell MC [j, i] is electrically connected to the wiring WWL [j].
  • the wiring WBL [i] is electrically connected to the second terminal of the transistor WTr of the memory cell MC [n, i], and the wiring RBL [i] is the second terminal of the transistor RTr of the memory cell MC [n, i]. It is electrically connected to the terminal.
  • FIG. 6 shows memory cell MC [1,1], memory cell MC [1, i], memory cell MC [1, m], memory cell MC [j, 1], and memory cell MC [j, i].
  • Memory cell MC [j, m], memory cell MC [n, 1], memory cell MC [n, i], memory cell MC [n, m], wiring RWL [1], wiring RWL [j], wiring RWL [n], wiring WWL [1], wiring WWL [j], wiring WWL [n], wiring RBL [1], wiring RBL [i], wiring RBL [m], wiring WBL [1], wiring WBL [1] i], wiring WBL [m], wiring BGL [1], wiring BGL [i], wiring BGL [m], capacitance CS, transistor WTr, transistor RTr, node N1, and node N2 are shown. Wiring, elements, symbols, and symbols are omitted.
  • the memory cells MC [1, i] to the memory cells MC [n, i] electrically connected between the node N1 and the node N2 in the i-th row are referred to. It may be called the string in the i-th column.
  • the memory cells MC [j, 1] to the memory cells MC [j, m] electrically connected to the wiring RWL [j] and the wiring WWL [j] on the jth line are placed on the jth line. Sometimes called a page.
  • the memory cells MC [1,1] to the memory cells MC [n, m] arranged in a matrix of n rows and m columns shown in FIG. 6 may be collectively referred to as a block.
  • FIG. 7 shows the semiconductor devices shown in FIG. 4C arranged side by side in m rows (m is an integer of 1 or more) as one row.
  • the semiconductor device shown in FIG. 7 has a configuration in which each transistor of all the memory cell MCs does not have a back gate. Therefore, the semiconductor device shown in FIG. 7 does not have a wiring BGL. ..
  • the description of the semiconductor device shown in FIG. 6 is taken into consideration.
  • the low-level potential and high-level potential used in the following description do not mean a specific potential, and the specific potential may differ depending on the wiring.
  • the low-level potential and the high-level potential applied to the wiring WWL may be different from the low-level potential and the high-level potential applied to the wiring RWL, respectively.
  • FIG. 8A is a timing chart showing an operation example of writing data to the semiconductor device
  • FIG. 8B is a timing chart showing an operation example of reading data from the semiconductor device.
  • the timing charts of FIGS. 8A and 8B show wiring WWL [1], wiring WWL [2], wiring WWL [n], wiring RWL [1], wiring RWL [2], wiring RWL [n], and nodes. It shows the change in the magnitude of the potentials of N1 and node N2. Further, the wiring WBL indicates the data supplied to the wiring WBL.
  • FIG. 8A shows an example in which each of the data D [1] to the data D [n] is written to the memory cell MC [1] to the memory cell MC [n].
  • Each of the data D [1] to the data D [n] can be a binary value, a multi-value, an analog value, or the like.
  • the multi-value can be, for example, 4 bits, 8 bits, 16 bits, 32 bits, 64 bits, 128 bits, 256 bits and the like.
  • the data D [1] to the data D [n] are supplied from the wiring WBL. That is, in the circuit configuration of the semiconductor device shown in FIGS. 4A to 4C, data writing is sequentially performed from the memory cell MC [1] to the memory cell MC [n]. For example, when writing at high speed is desired, binary data may be used, and when writing at high speed is not necessary, writing may be performed using multi-valued data.
  • the data written to the memory cell MC [2] is read once and the data is read to another location. If it is not saved in the memory cell MC [2], the data held in the memory cell MC [2] will be lost at the stage of writing the data to the memory cell MC [1].
  • the wiring RBL can be controlled independently of other wiring, so that it is not necessary to set a specific potential, but for example, a low level potential is used. can do. That is, the potential of the node N1 can be a low level potential. In addition, the potential of node N2 can also be a low level potential.
  • the potentials of the wiring WWL [1] to the wiring WWL [n], the wiring RWL [1] to the wiring RWL [n], the wiring WBL, the node N1, and the node N2 are low level potentials. ..
  • the application of the low level potential to the wiring WWL [1] was started, and the high level potential was subsequently applied to the wiring WWL [2] to the wiring WWL [n].
  • the transistor WTr of the memory cell MC [1] is turned off, and the respective transistors WTr of the memory cell MC [2] to the memory cell MC [n] are sufficient.
  • the data D [2] is supplied to the wiring WBL. Since each transistor WTr of the memory cell MC [2] to the memory cell MC [n] is sufficiently turned on, the data D [2] reaches the memory node of the memory cell MC [2]. Is written. Further, since the transistor WTr of the memory cell MC [1] is in the off state, the data D [1] held in the memory cell MC [1] is lost due to the writing operation from the time T12 to the time T13. I can't.
  • the state is set, the transistor WTr of the memory cell MC [j] to the memory cell MC [n] to which the data is not written is sufficiently turned on, the data D [j] is supplied from the wiring WBL, and the memory cell MC [ It may be written to the memory node of [j]. Then, when the writing of the data D [j] to the memory cell MC [j] is completed, the transistor WTr of the memory cell MC [j] is turned off, and the data D [j + 1] is supplied from the wiring WBL.
  • the operation of writing to the memory node of the memory cell MC [j + 1] may be performed.
  • the writing operation when j is n-1 refers to the operation from time T14 to time T15 described below.
  • a low level potential is applied to the wiring WWL [1] to the wiring WWL [n-1], and a high level potential is continuously applied to the wiring WWL [n].
  • the transistor WTr of the memory cell MC [1] to the memory cell MC [n-1] is turned off, and the transistor WTr of the memory cell MC [n] is sufficient.
  • the data D [n] is supplied to the wiring WBL. Since the transistor WTr included in the memory cell MC [n] is sufficiently turned on, the data D [n] reaches the memory node of the memory cell MC [n] and is written.
  • the transistor WTr of the memory cell MC [1] to the memory cell MC [n-1] is in the off state, it is held in each of the memory cell MC [1] to the memory cell MC [n-1].
  • the existing data D [1] to data D [n-1] are not lost by the writing operation between the time T14 and the time T15.
  • FIG. 8B shows an example of a timing chart in which each of the data D [1] to the data D [n] is read from the memory cell MC [1] to the memory cell MC [n].
  • the transistor WTr is required to be in the off state. Therefore, the potential of the wiring WWL [1] to the wiring WWL [n] is set to a low level potential during the operation of reading data from the memory cell MC [1] to the memory cell MC [n].
  • the transistor RTr of the other memory cell MC when reading the data of the specific memory cell MC, the transistor RTr of the other memory cell MC is sufficiently turned on, and then the specific memory cell MC is turned on.
  • the transistor RTr possessed by the above is operated as a saturation region. That is, the current flowing between the source and drain of the transistor RTr of the specific memory cell MC is determined according to the source-drain voltage and the data held in the specific memory cell MC.
  • the wiring RWL [k] is the wiring when the data is written to the memory cell MC [k]. It is necessary to make the potential the same as RWL [k].
  • the potential of the wiring RWL [k] during the writing operation and the reading operation is considered as a low level potential.
  • a potential of + 3V is given to the node N1 and a potential of 0V is given to the node N2. Then, the node N2 is floated, and the potential of the subsequent node N2 is measured.
  • the potential of the wiring RWL [1] to the wiring RWL [n] excluding the wiring RWL [k] is set to a high level potential
  • the memory cell MC [1] to the memory cell MC [n] excluding the memory cell MC [k] ] Has a sufficient on state of the transistor RTr.
  • the voltage between the first terminal and the second terminal of the transistor RTr of the memory cell MC [k] is determined by the potential of the gate of the transistor RTr and the potential of the node N1, so that the potential of the node N2 is determined by the memory cell MC [k]. It is determined according to the data held in the memory node of [k].
  • the potentials of the wiring WWL [1] to the wiring WWL [n], the wiring RWL [1] to the wiring RWL [n], the wiring WBL, the node N1, and the node N2 are low level potentials. .. In particular, node N2 is in a floating state. Then, it is assumed that the data D [1] to the data D [n] are held in the memory nodes of the memory cells MC [1] to the memory cells MC [n], respectively.
  • the potential of the potential V R, and the node N2 of the node N1 is determined according to the data held in the memory node of the potential of the node N1 V R and the memory cell MC [1].
  • the potential of the node N2 is V D [1] . Then, by measuring the potential V D [1] of the node N2, the data D [1] held in the memory node of the memory cell MC [1] can be read out.
  • a low level potential is applied to the wiring RWL [2], and application of a high level potential is started to the wiring RWL [1] and the wiring RWL [3] to the wiring RWL [n]. ..
  • the respective transistors RTr of the memory cell MC [1], the memory cell MC [3], and the memory cell MC [n] are sufficiently turned on.
  • the transistor RTr of the memory cell MC [2] is turned on according to the data D [2] held in the memory node of the memory cell MC [2].
  • the potential V R is subsequently fed to the wiring RBL.
  • the potential of the node N2 is dependent on the data held at the potential V R and the memory node of the memory cell MC [2] of the node N1.
  • the potential of the node N2 is V D [2] . Then, by measuring the potential V D [2] of the node N2, the data D [2] held in the memory node of the memory cell MC [2] can be read out.
  • the potential of node N2 is set as a low level potential and After the node N2 is floated, a high level potential is supplied to the wiring RWL [1] to the wiring RWL [n] excluding the wiring RWL [j], and the memory cell MC [j] excluding the memory cell MC [j] is supplied. 1]
  • the transistor RTr of the memory cell MC [n] is turned on sufficiently, and the transistor RTr of the memory cell MC [j] is turned on according to the data D [j].
  • the potential of the node N1 to the V R, the potential of the node N2 becomes a potential corresponding to the data D [j], by measuring the potential, it is possible to read the data D [j] ..
  • a low level potential is applied to the wiring RWL [1] to the wiring RWL [n] in preparation for the next reading operation. Is started to bring the potential of node N2 to a low level potential, and then node N2 is put into a floating state.
  • this preparation refers to an operation between time T25 and time T26.
  • a low level potential is applied to the wiring RWL [n], and a high level potential is supplied to the wiring RWL [1] to the wiring RWL [n-1].
  • the respective transistors RTr of the memory cells MC [1] to the memory cells MC [n-1] are sufficiently turned on.
  • the transistor RTr of the memory cell MC [n] is turned on according to the data D [n] held in the memory node of the memory cell MC [n].
  • the potential V R is subsequently fed to the wiring RBL.
  • the potential of the node N2 is dependent on the data held in the memory node of the potential of the node N1 V R and the memory cell MC [n].
  • the potential of the node N2 is V D [n] .
  • the data D [n] held in the memory node of the memory cell MC [n] can be read out.
  • the operation of the information processing apparatus according to one aspect of the present invention is not limited to the above-mentioned operation example.
  • the operation of the information processing apparatus according to one aspect of the present invention may be appropriately changed depending on the situation. For example, in a read operation described above, by supplying the potential V R to the node N1, reads the potential V D corresponding to the data held by the node N2 to the memory node MC desired memory cell.
  • FIG. 9 is a configuration example of a storage unit having blocks BLK_1 to block BLK_k (k is an integer of 1 or more).
  • Each of the blocks BLK_1 to BLK_k has, for example, memory cells MC [1,1] to memory cells MC [n, m] in the form of a matrix of n rows and m columns shown in FIG. 6 or FIG.
  • the rows address of the matrix-shaped memory cell MC included in the block BLK is set as “[]”, the address of the block BLK is described as “_” in the code, and the address of the column to the code is described. Is omitted.
  • the back gate of each transistor shown in FIG. 9 is omitted.
  • the storage unit shown in FIG. 9 has a configuration in which a transistor BTr_1 to a transistor BTr_k and a transistor Str_1 to a transistor Str_k are provided for the storage unit shown in FIG. 6 or FIG.
  • the wiring RBL_1 is electrically connected to the first terminal of the transistor BTr_1 and the first terminal of the transistor STR_1. Further, the second terminal of the transistor Str_1 is electrically connected to the wiring WBL_1 and the first terminal of the switch SW_1.
  • the wiring RBL_h (h is an integer of 1 or more and k or less) is electrically connected to the first terminal of the transistor BTr_h and the first terminal of the transistor Str_h. Further, the second terminal of the transistor Str_h is electrically connected to the wiring WBL_h and the first terminal of the switch SW_h.
  • the wiring RBL_k is electrically connected to the first terminal of the transistor BTr_k and the first terminal of the transistor STR_k. Further, the second terminal of the transistor Str_k is electrically connected to the wiring WBL_k and the first terminal of the switch SW_k.
  • the second terminals of the switch SW_1 to the switch SW_k are electrically connected to the wiring LN1. Further, each third terminal of the switch SW_1 to the switch SW_k is electrically connected to the wiring LN2.
  • Each of the switch SW_1 to the switch SW_k has a function of making a conduction state between the first terminal and either the second terminal or the third terminal. That is, each of the switches SW_1 to SW_k can select whether to make each of the blocks BLK_1 to the block BLK_k conductive to the wiring LN1 or the wiring LN2.
  • the wiring LN1 functions as, for example, wiring for transmitting data for writing to the memory cells of the respective strings of the blocks BLK_1 to the block BLK_k. Further, the wiring LN2 functions as a wiring for transmitting data read from the memory cells of the respective strings of the blocks BLK_1 to the block BLK_k, for example.
  • the information processing device is not limited to this configuration.
  • the wiring LN1 and the wiring LN2 may be combined into one instead of two (in this case, the switch SW_1 to the switch SW_k may not be provided), or may be three or more (in this case, the switch). Each of SW_1 to switch SW_k may be replaced with a selector circuit or the like according to the number of wires).
  • Each of the transistors BTr_1 to the transistor BTr_k functions as a transistor for adjusting the potential of each node N1 of the wiring RBL_1 to the wiring RBL_k. Therefore, it is assumed that a predetermined potential is input to the second terminals and the gates of the transistors BTr_1 and the transistors BTr_k. Specifically, for example, when the potential is read from any one of the memory cell MC [1] _h to the memory cell MC [n] _h of the block BLK_h (h is an integer of 1 or more and k or less), the transistor The BTr [i] has a function of changing the potential of the node N1 of the wiring RBL_h to a writing potential. Therefore, the transistor BTr_1 to the transistor BTr_k may be replaced with an amplifier circuit such as a sense amplifier.
  • each of the transistor Str_1 to the transistor Str_k functions as a switching element. Therefore, each gate of the transistor STR_1 to the transistor STR_k is electrically connected to a wiring for transmitting a signal for switching the transistor STR_1 to the transistor STR_k to the on state or the off state, respectively.
  • the storage unit of FIG. 10 is a simple representation of the storage unit of FIG. Specifically, the storage unit of FIG. 10 has a configuration in which m is 3 and k is 3 in the storage unit of FIG.
  • the storage unit of FIG. 10 has blocks BLK_1 to block BLK_3, and each of blocks BLK_1 to block BLK_3 has one or more strings.
  • the block BLK_1 has memory cells MC [1] _1 to memory cells MC [3] _1 as one string
  • the block BLK_1 has memory cells MC [1] _1 to memory cells MC [1] _1 as one string. It has memory cell MC [3] _2, and block BLK_3 has memory cell MC [1] _3 to memory cell MC [3] _3 as one string.
  • each memory node of the memory cell MC [1] _2 to memory cell MC [3] _2 has V [1] _2, V [2] _2, and V [3] _2 as potentials. It shall be retained.
  • V [1] _2 held in the memory node of the memory cell MC [1] _2 is rewritten.
  • the memory cell MC [1] When rewriting the potential of the memory node of the memory cell MC [1] _2, the memory cell MC [1] is transmitted from the wiring WBL_2 via the respective transistors WTr of the memory cell MC [2] _2 and the memory cell MC [3] _2.
  • V [2] _2 and V [3] _2 which are stored in advance in the memory nodes of the memory cells MC [2] _2 and the memory cells MC [3] _2, are temporarily temporarily stored. It is necessary to evacuate.
  • the potential V REW is written to, for example, the memory node of the memory cell MC [3] _1 included in the string of the block BLK_1 as the data for rewriting.
  • the first terminal and the second terminal of the switch SW_1 are made conductive, a high level potential is input to the wiring WWL [3] _1, and the transistor WTr of the memory cell MC [3] _1 is turned on. And input V REW from wiring LN1.
  • the first terminal and the third terminal may be in a conductive state, that is, the first terminal and the second terminal may be in a non-conducting state.
  • the memory cell MC [3] _1 can be regarded as a cache memory.
  • V [3] _2 held in the memory node of the memory cell MC [3] _2 of the block BLK_2 is temporarily saved.
  • V [3] _2 of the memory node of the memory cell MC [3] _2 is saved in the memory node of the memory cell MC [2] _3 of the block BLK_3.
  • the first terminal and the second terminal of each of the switch SW_2 and the switch SW_3 are made conductive, and a high level potential is input to the wiring RWL [1] _2 and the wiring RWL [2] _2.
  • the memory cell MC [3] V [3] stored in the memory node of _2 _2 block BLK_2 can be a potential. Further, the potential of the node N1 can be changed to V [3] _2 by the transistor BTr_2.
  • V [2] _2 held in the memory node of the memory cell MC [2] _2 of the block BLK_2 is temporarily saved.
  • V [2] _2 of the memory node of the memory cell MC [2] _2 is saved in the memory node of the memory cell MC [3] _3 of the block BLK_3.
  • the first terminal and the second terminal of each of the switch SW_2 and the switch SW_3 are made conductive, and a high level potential is input to the wiring RWL [1] _2 and the wiring RWL [3] _2.
  • the memory cell MC [2] V stored in the memory node of _2 [2] _2 blocks BLK_2 Can be a potential. Further, the potential of the node N1 can be changed to V [2] _2 by the transistor BTr_2.
  • the first terminal and the second terminal of the switch SW_2 are brought into a conductive state, and a low level potential is input to each gate of the transistor STR_1 to the transistor STR_3 to input the low level potential of the transistor STR_1 to the transistor STR_3. Turn each off. Further, a low level potential is input to the wiring WWL [3] _1 of the block BLK_1 and the wiring WWL [3] _3 of the block BLK_3, and the memory cell MC [3] _1 of the block BLK_1 and the memory cell MC of the block BLK_3 [3] 3] Turn off each transistor WTr of _3. Further, the first terminal and the third terminal of the switch SW_1 and the switch SW_3 may be in a conductive state, that is, the first terminal and the second terminal may be in a non-conducting state.
  • a high level potential is input to each of the wiring WWL [1] _2 to the wiring WWL [3] _2 of the block BLK_2, and each of the memory cells MC [1] _2 to the memory cell MC [3] _2 of the block BLK_2 is input.
  • a data initialization potential for example, low level potential, ground potential, etc.
  • the potential held in each memory node of the memory cell MC [1] _2 to the memory cell MC [3] _2 is rewritten to the initialization potential.
  • a low level potential is input to each of the wiring WWL [1] _2 to the wiring WWL [3] _2 of the block BLK_2, and each of the memory cells MC [1] _2 to the memory cell MC [3] _2 of the block BLK_2 is input.
  • the erasure of the respective data of the memory cells MC [1] _2 to the memory cells MC [3] _2 of the block BLK_2 is completed.
  • the data is rewritten by turning on the transistor WTr of the memory cells MC [1] _2 to the memory cells MC [3] _2 at the timing of writing the data described below. The operation does not have to be performed.
  • write the V REW held in the memory node of the memory cell MC [3] _1 blocks BLK_1 the memory cell MC [2] _2 blocks BLK_2.
  • the first terminal and the second terminal of the switch SW_1 and the switch SW_2 are made conductive, and a high level potential is input to the wiring RWL [1] _1 and the wiring RWL [2] _1.
  • Memory cell MC [1] _1 and memory cell MC [2] _1 so that the respective transistors RTr of the memory cell MC [1] _1 are sufficiently turned on. Increase the potential of the memory node in. Further, a high level potential is input to the gate of the transistor Str_1 to turn on the transistor Str_1.
  • a low level potential is input to the gate of the transistor Str_2 to turn off the transistor Str_2
  • a high level potential is input to the wiring WWL [1] _3 to the wiring WWL [3] _3 of the block BLK_2, and the memory cell MC [ 1]
  • Each transistor WTr of _3 to memory cell MC [3] _3 is turned on.
  • a low level potential is input to the wiring WWL [3] _3 of the block BLK_3 to turn off the transistor WTr of the memory cell MC [3] _3, and a low level potential is input to the gate of the transistor Str_3 to press the transistor Str_3. It is necessary to turn it off to prevent writing of V REW from the block BLK_1 to the memory cell MC [3] _3 of the block BLK_3.
  • the first terminal and the third terminal of the switch SW_3 may be in a conductive state, that is, the first terminal and the second terminal may be in a non-conducting state.
  • the memory node of the memory cell MC [1] _2 of the block BLK_2 becomes conductive.
  • the potential becomes V REW .
  • V [2] _2 held in the memory node of the memory cell MC [3] _3 of the block BLK_3 is written back to the memory cell MC [2] _2 of the block BLK_2.
  • the first terminal and the second terminal of each of the switch SW_2 and the switch SW_3 are made conductive, and a high level potential is input to the wiring RWL [1] _3 and the wiring RWL [2] _3.
  • a high level potential is input to the gate of the transistor Str_3 to turn on the transistor Str_3.
  • a low level potential is input to the gate of the transistor Str_2 to turn off the transistor Str_2, and a high level potential is input to the wiring WWL [2] _2 and the wiring WWL [3] _2 of the block BLK_2 to input the memory cell MC. Turn on the respective transistors WTr of [2] _2 and memory cell MC [3] _2.
  • a low level potential is input to the wiring WWL [3] _1 of the block BLK_1 to turn off the transistor WTr of the memory cell MC [3] _1, and a low level potential is input to the gate of the transistor Str_1 to connect the transistor Str_1. It is necessary to turn it off to prevent the writing of V [2] _2 from the block BLK_3 to the memory cell MC [3] _1 of the block BLK_1.
  • the first terminal and the third terminal of the switch SW_1 may be in a conductive state, that is, the first terminal and the second terminal may be in a non-conducting state.
  • the memory cell MC [3] V [2] stored in the memory node of _3 _2 block BLK_3 can be a potential. Further, the potential of the node N1 can be changed to V [2] _2 by the transistor BTr_3.
  • the memory node of the memory cell MC [2] _2 of the block BLK_2 becomes conductive.
  • the potential becomes V [2] _2.
  • a low level potential is input to the wiring WWL [2] _2 to turn off the transistor WTr of the memory cell MC [2] _2, thereby causing V [2] to the memory node of the memory cell MC [2] _2.
  • the writing back of the potential of _2 is completed.
  • V [3] _2 held in the memory node of the memory cell MC [2] _3 of the block BLK_3 is written back to the memory cell MC [3] _2 of the block BLK_2.
  • the first terminal and the second terminal of each of the switch SW_2 and the switch SW_3 are made conductive, and a high level potential is input to the wiring RWL [1] _3 and the wiring RWL [3] _3.
  • a high level potential is input to the gate of the transistor Str_3 to turn on the transistor Str_3.
  • a low level potential is input to the gate of the transistor Str_2 to turn off the transistor Str_2, a high level potential is input to the wiring WWL [3] _2 of the block BLK_2, and each transistor of the memory cell MC [3] _2 is input. Turn on the WTr.
  • a low level potential is input to the wiring WWL [3] _1 of the block BLK_1 to turn off the transistor WTr of the memory cell MC [3] _1, and a low level potential is input to the gate of the transistor Str_1 to connect the transistor Str_1. It is necessary to turn it off to prevent the writing of V [3] _2 from the block BLK_3 to the memory cell MC [3] _1 of the block BLK_1.
  • the first terminal and the third terminal of the switch SW_1 may be in a conductive state, that is, the first terminal and the second terminal may be in a non-conducting state.
  • the memory cell MC [2] V [3] stored in the memory node of _3 _2 block BLK_3 can be a potential. Further, the potential of the node N1 can be changed to V [3] _2 by the transistor BTr_3.
  • the memory node of the memory cell MC [3] _2 of the block BLK_2 becomes conductive.
  • the potential becomes V [3] _2.
  • a low level potential is input to the wiring WWL [3] _2 to turn off the transistor WTr of the memory cell MC [3] _2, thereby causing V [3] to the memory node of the memory cell MC [3] _2.
  • the writing back of the potential of _2 is completed.
  • the storage unit shown in FIG. 9 or FIG. 10 is one of the storage units when writing data to the storage unit, rewriting the data held in the storage unit, or the like.
  • the part can be treated as a cache memory.
  • the controller 1197 of the information processing device 50 of FIG. 1 has a function of checking an error for a string (memory cell) included in the storage unit, whereby the storage unit shown in FIG. 9 or FIG. 10 is provided. Error checking can be performed on the string of. Further, even if the controller 1197 has a function of stopping access to the string including the memory cell and accessing another string when an error is found in the memory cell for which the error check has been performed. Good.
  • FIG. 11 has a storage unit 100 and a control unit 200.
  • FIG. 11 is a cross-sectional view of the transistor 300 in the channel length direction
  • FIG. 12 is a cross-sectional view of the transistor 300 in the channel width direction.
  • control unit 200 corresponds to the circuit including the controller 1197 in FIG. 1
  • storage unit 100 corresponds to the storage unit 1196 in FIG.
  • the transistor 300 included in the control unit 200 and the insulator, conductor, etc. formed around the transistor 300 will be described.
  • the transistor 300 is provided on the substrate 311 and is composed of a conductor 316, an insulator 315, a part of the substrate 311 in a semiconductor region 313, a low resistance region 314a that functions as a source region or a drain region, and a low resistance region. It has 314b.
  • the transistor 300 can be applied to, for example, the transistor included in the controller 1197.
  • a semiconductor substrate for example, a single crystal substrate or a silicon substrate
  • the substrate 311 it is preferable to use a semiconductor substrate (for example, a single crystal substrate or a silicon substrate) as the substrate 311.
  • the transistor 300 As shown in FIG. 12, in the transistor 300, the upper surface of the semiconductor region 313 and the side surface in the channel width direction are covered with the conductor 316 via the insulator 315.
  • the transistor 300 By making the transistor 300 a Fin type in this way, the on-characteristics of the transistor 300 can be improved by increasing the effective channel width. Further, since the contribution of the electric field of the gate electrode can be increased, the off characteristic of the transistor 300 can be improved.
  • the transistor 300 may be either a p-channel type or an n-channel type.
  • a semiconductor such as a silicon-based semiconductor in a region in which a channel of the semiconductor region 313 is formed, a region in the vicinity thereof, a low resistance region 314a serving as a source region or a drain region, a low resistance region 314b, and the like.
  • It preferably contains crystalline silicon.
  • it may be formed of a material having Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), GaN (gallium nitride), or the like.
  • a configuration using silicon in which the effective mass is controlled by applying stress to the crystal lattice and changing the lattice spacing may be used.
  • the transistor 300 may be a HEMT (High Electron Mobility Transistor) by using GaAs and GaAlAs or the like.
  • an element that imparts n-type conductivity such as arsenic and phosphorus, or a p-type conductivity such as boron is imparted.
  • the conductor 316 that functions as a gate electrode is a semiconductor material such as silicon, a metal material, or an alloy that contains an element that imparts n-type conductivity such as arsenic or phosphorus, or an element that imparts p-type conductivity such as boron.
  • a material or a conductive material such as a metal oxide material can be used.
  • the threshold voltage of the transistor can be adjusted by selecting the material of the conductor. Specifically, it is preferable to use a material such as titanium nitride or tantalum nitride for the conductor. Further, in order to achieve both conductivity and embedding property, it is preferable to use a metal material such as tungsten or aluminum as a laminate for the conductor, and it is particularly preferable to use tungsten in terms of heat resistance.
  • the transistor 300 shown in FIGS. 11 and 12 is an example, and the transistor 300 is not limited to its structure, and an appropriate transistor may be used depending on the circuit configuration, driving method, and the like.
  • the control unit 200 of the information processing device may be a unipolar circuit containing only OS transistors.
  • An insulator 320, an insulator 322, an insulator 324, and an insulator 326 are laminated in this order so as to cover the transistor 300.
  • the insulator 320, the insulator 322, the insulator 324, and the insulator 326 for example, silicon oxide, silicon oxide nitride, silicon nitride oxide, silicon nitride, aluminum oxide, aluminum oxide nitride, aluminum nitride, aluminum nitride and the like can be used. Just do it.
  • silicon oxide refers to a material whose composition has a higher oxygen content than nitrogen
  • silicon nitride refers to a material whose composition has a higher nitrogen content than oxygen. Is shown.
  • aluminum nitride refers to a material whose composition has a higher oxygen content than nitrogen
  • aluminum nitride refers to a material whose composition has a higher nitrogen content than oxygen. Is shown.
  • the insulator 322 may have a function as a flattening film for flattening a step generated by a transistor 300 or the like provided below the insulator 322.
  • the upper surface of the insulator 322 may be flattened by a flattening treatment using a chemical mechanical polishing (CMP) method or the like in order to improve the flatness.
  • CMP chemical mechanical polishing
  • a film having a barrier property is used so that impurities such as hydrogen do not diffuse from the substrate 311 or the transistor 300 to the storage unit 100 including the transistor 700, the plurality of transistors 800, and the transistor 900. Is preferable.
  • silicon nitride formed by the CVD method can be used as an example of a film having a barrier property against hydrogen.
  • the transistor 700, the plurality of transistors 800, and the transistor 900 are OS transistors
  • hydrogen diffuses into the semiconductor element having the transistor 700, the plurality of transistors 800, and the oxide semiconductor of the transistor 900, whereby the said.
  • the characteristics of the semiconductor element may deteriorate. Therefore, it is preferable to use a film that suppresses the diffusion of hydrogen between the transistor 700, the plurality of transistors 800, and the transistor 900 and the transistor 300.
  • the membrane that suppresses the diffusion of hydrogen is a membrane that desorbs a small amount of hydrogen.
  • the amount of hydrogen desorbed can be analyzed using, for example, a heated desorption gas analysis method (TDS).
  • TDS heated desorption gas analysis method
  • the amount of hydrogen desorbed from the insulator 324 is such that the amount desorbed in terms of hydrogen atoms is converted per area of the insulator 324 when the surface temperature of the film is in the range of 50 ° C. to 500 ° C. It may be 10 ⁇ 10 15 atoms / cm 2 or less, preferably 5 ⁇ 10 15 atoms / cm 2 or less.
  • the insulator 326 preferably has a lower relative permittivity than the insulator 324.
  • the relative permittivity of the insulator 326 is preferably less than 4, more preferably less than 3.
  • the relative permittivity of the insulator 326 is preferably 0.7 times or less, more preferably 0.6 times or less, the relative permittivity of the insulator 324.
  • the conductor 328, the conductor 330, and the like are embedded in the insulator 320, the insulator 322, the insulator 324, and the insulator 326.
  • the conductor 328 and the conductor 330 have a function as a plug or wiring.
  • a conductor having a function as a plug or wiring may collectively give a plurality of structures the same reference numerals.
  • the wiring and the plug connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
  • each plug and wiring As the material of each plug and wiring (conductor 328, conductor 330, etc.), a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material is used as a single layer or laminated. be able to. It is preferable to use a refractory material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is preferable to use tungsten. Alternatively, it is preferably formed of a low resistance conductive material such as aluminum or copper. Wiring resistance can be reduced by using a low resistance conductive material.
  • a wiring layer may be provided on the insulator 326 and the conductor 330.
  • the insulator 350, the insulator 352, and the insulator 354 are laminated in this order.
  • a conductor 356 is formed on the insulator 350, the insulator 352, and the insulator 354.
  • the conductor 356 has a function as a plug or wiring for connecting to the transistor 300.
  • the conductor 356 can be provided by using the same material as the conductor 328 and the conductor 330.
  • the insulator 350 it is preferable to use an insulator having a barrier property against hydrogen, similarly to the insulator 324.
  • the conductor 356 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in the opening of the insulator 350 having a barrier property against hydrogen.
  • the conductor having a barrier property against hydrogen for example, tantalum nitride or the like may be used. Further, by laminating tantalum nitride and tungsten having high conductivity, it is possible to suppress the diffusion of hydrogen from the transistor 300 while maintaining the conductivity as wiring. In this case, it is preferable that the tantalum nitride layer having a barrier property against hydrogen has a structure in contact with the insulator 350 having a barrier property against hydrogen.
  • the insulator 360 is provided on the insulator 354 and the conductor 356.
  • An opening may be provided in the insulator 360, and the conductor may be formed so as to be electrically connected to the conductor 356.
  • the conductor has a function as a plug or wiring.
  • the conductor can be provided by using the same material as the conductor 328 and the conductor 330.
  • the conductor preferably contains a conductor having a barrier property against hydrogen.
  • a transistor 300, a transistor 700 described later, and a plurality of transistors 800 can be used.
  • the transistor 900 can be separated by a barrier layer. Therefore, it is possible to suppress the diffusion of hydrogen from the transistor 300 to the transistor 700, the plurality of transistors 800, and the transistor 900.
  • the transistor 700 included in the storage unit 100, the plurality of transistors 800, the transistor 900, and the insulator, conductor, and the like formed around the transistor 900 will be described.
  • FIG. 11 shows an example in which the storage unit 100 has a NAND type storage circuit having a three-dimensional structure.
  • the storage unit 100 of the information processing apparatus shown in FIG. 11 includes a transistor 700, a plurality of transistors 800, and a transistor 900 as components of a NAND-type storage circuit having a three-dimensional structure.
  • the transistor 700 and the transistor 900 correspond to a transistor for selecting a plurality of transistors 800 located in the same opening as them, and the transistor 800 corresponds to a cell transistor for storing data.
  • the transistor 700, the plurality of transistors 800, and the transistor 900 located in the same opening may be referred to as a string.
  • the storage unit 100 shown in FIG. 11 is provided on the control unit 200. Further, in the storage unit 100, above the control unit 200, the insulator 111 to the insulator 117, the insulator 121, the insulator 122, the insulator 131, the insulator 132, the insulator 133, the conductor 151 to the conductor 156, It has semiconductors 141 to 143.
  • the insulator 111 is provided above the control unit 200. Therefore, the insulator 360 located below the insulator 111 is preferably formed by a film forming method having good flatness. Further, it is preferable that the insulator 360 is subjected to CMP treatment.
  • the insulator 111 for example, a material containing silicon oxide or silicon oxide nitride can be used. Also, for example, insulation including materials selected from boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, lantern, neodymium, hafnium, tantalum and the like.
  • the body can be used in a single layer or in layers.
  • the conductor 151 is provided so as to be laminated on the insulator 111.
  • the conductor 151 functions as a wiring that applies a predetermined potential to all the strings of the storage unit 100.
  • the conductor 151 is selected from, for example, aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium and the like.
  • a material containing one or more of the above-mentioned metal elements can be used.
  • a semiconductor having high electrical conductivity typified by polycrystalline silicon containing an impurity element such as phosphorus, and silicide such as nickel silicide may be used.
  • a conductive material containing a metal element and oxygen contained in the metal oxide described in the sixth embodiment may be used.
  • a conductive material containing a metal element such as titanium or tantalum and nitrogen may be used.
  • a conductive material containing nitrogen such as titanium nitride and tantalum nitride may be used.
  • the added indium tin oxide or the like may be used.
  • indium gallium zinc oxide containing nitrogen may be used. By using such a material, it may be possible to capture hydrogen or water mixed in from a surrounding insulator or the like.
  • a sputtering method including a thermal CVD method, a MOCVD method, a PECVD method, etc.
  • an MBE Molecular Beam Epitaxy
  • an ALD Atomic Layer Deposition
  • a PLD Pulsed Laser Deposition
  • the same material as the insulator 111 can be used.
  • the insulator 112 to the insulator 117 for example, it is preferable to use a material having a low dielectric constant. By using a material having a low dielectric constant as the insulator 112 to the insulator 117, the value of the parasitic capacitance generated by the conductor 152 to the conductor 156 and the insulator 112 to the insulator 117 can be lowered. Therefore, the driving speed of the storage unit 100 can be improved.
  • the film can be formed by a sputtering method, a CVD method (including a thermal CVD method, a MOCVD method, a PECVD method, etc.), an MBE method, an ALD method, a PLD method, or the like.
  • the conductor 152 functions as a gate of the transistor 900 and wiring electrically connected to the gate. Further, the conductors 153 to 155 function as gates of the plurality of transistors 800 and wirings electrically connected to the gates. Further, the conductor 156 functions as a gate of the transistor 700 and a wiring electrically connected to the gate.
  • the same material as the conductor 151 can be used. Further, as a method for forming the conductor 152 to the conductor 156, the same method as that for the conductor 151 can be used.
  • the insulator 112 to the insulator 117 and the conductor 152 to the conductor 156 are provided with openings.
  • Insulator 121, insulator 122, insulator 131 to insulator 133, and semiconductor 141 to semiconductor 143 are provided in the opening.
  • the semiconductor 141 is provided so as to be in contact with a part of the side surface and the bottom surface of the opening. Specifically, the semiconductor 141 is provided on a part of the conductor 151 and is provided so as to cover a part of the insulator 112 on the side surface of the opening.
  • the semiconductor 141 for example, silicon in which impurities are diffused is preferable.
  • an n-type impurity (donor) can be used.
  • the n-type impurity for example, phosphorus, arsenic and the like can be used.
  • a p-type impurity (acceptor) can be used as the impurity.
  • the p-type impurity for example, boron, aluminum, gallium and the like can be used.
  • the silicon for example, single crystal silicon, hydrogenated amorphous silicon, microcrystalline silicon, polycrystalline silicon and the like can be used.
  • a metal oxide having a high carrier concentration may be applied other than silicon. In some cases, semiconductors such as Ge and compound semiconductors such as ZnSe, CdS, GaAs, InP, GaN, and SiGe can be applied.
  • the material applied to the semiconductor 142 and the semiconductor 143 which will be described later, is preferably the same material as the semiconductor 141, and the carrier concentration of the semiconductor 142 may be lower than that of the semiconductor 141 and the semiconductor 143.
  • n-type impurities such as boron, aluminum, and gallium are added to the semiconductor 141 after the semiconductor 141 is formed on the conductor 151. Is preferable. As a result, a p-type region is formed in the semiconductor 141. Further, for example, when applying silicon in which n-type impurities are diffused, it is preferable to add n-type impurities such as phosphorus and arsenic to the semiconductor 141 after forming the semiconductor 141 on the conductor 151. As a result, an n-type region is formed in the semiconductor 141.
  • a metal oxide when a metal oxide is applied as the semiconductor 141, it is preferable to add a metal element or the like to the semiconductor 141 after forming the semiconductor 141 on the conductor 151. Thereby, the carrier concentration can be increased in the semiconductor 141.
  • an n-type region (n + region) is formed in the semiconductor 141.
  • heat treatment instead of adding a metal element or the like to the semiconductor 141, heat treatment may be performed after adding water, hydrogen or the like to cause oxygen deficiency in the semiconductor 141. Since an n-type region is formed in the region where oxygen deficiency occurs in the semiconductor 141, the carrier concentration of the semiconductor 141 increases as a result.
  • the insulator 121 is provided so as to be in contact with the bottom surface of a part of the opening. Specifically, the insulator 121 is provided so as to cover a part of the semiconductor 141 and the conductor 152 on the side surface of the opening.
  • the insulator 121 functions as a gate insulating film of the transistor 900.
  • the insulator 121 for example, silicon oxide, silicon oxide nitride, or the like can be used.
  • the insulator 121 is preferably a material that releases oxygen by heating.
  • the method for forming the insulator 121 is not particularly limited, but the insulator 121 is formed on the side surfaces of the openings provided in the insulator 112, the conductor 152, and the insulator 113, and thus has a high film property.
  • a membrane method is required.
  • Examples of the film forming method having a high film property include the ALD method.
  • the insulator 131 is provided so as to be in contact with a part of the side surface of the opening. Specifically, the insulator 131 is provided so as to cover the conductors 153 to 155 on the side surface of the opening. Therefore, the insulator 131 is provided so as to cover the insulator 114 and the insulator 115 on the side surface of the opening.
  • the insulator 132 is provided so as to be in contact with the insulator 131. Further, the insulator 133 is provided so as to be in contact with the insulator 132. That is, the insulator 131 to the insulator 133 are laminated in order from the side surface to the center of the opening.
  • the insulator 131 functions as a gate insulating film of the transistor 800. Further, the insulator 132 functions as a charge storage layer of the transistor 800. Further, the insulator 133 functions as a tunnel insulating film of the transistor 800.
  • the insulator 131 for example, silicon oxide, silicon oxide nitride, or the like is preferably used. Further, as the insulator 131, for example, aluminum oxide, hafnium oxide, or an oxide having aluminum and hafnium can be used. Further, the insulator 131 may be an insulator in which these are laminated. Then, by making the insulator 131 thicker than the insulator 133, it is possible to transfer the electric charge from the semiconductor 142, which will be described later, to the insulator 132 via the insulator 133.
  • the insulator 132 for example, silicon nitride, silicon nitride or the like can be used. However, the materials applicable to the insulator 132 are not limited to these.
  • the insulator 133 for example, silicon oxide or silicon oxide nitride is preferably used. Further, as the insulator 133, for example, aluminum oxide, hafnium oxide, or an oxide having aluminum and hafnium may be used. Further, the insulator 133 may be an insulator in which these are laminated.
  • the insulator 122 is provided so as to be in contact with a part of the side surface of the opening. Specifically, it is provided so as to cover the conductor 156 on the side surface of the opening.
  • the insulator 122 functions as a gate insulating film of the transistor 700.
  • the same material as the insulator 121 can be used. Further, the method for forming the insulator 122 can be the same as that for the insulator 121.
  • the semiconductor 142 is provided at the opening so as to be in contact with the side surfaces of the formed insulator 121, insulator 133, and insulator 122.
  • the semiconductor 142 functions as a wiring for electrically connecting the transistor 700, the transistor 800, and the channel forming region of the transistor 900, and the transistor 700, the transistor 800, and the transistor 900 in series.
  • the semiconductor 142 for example, it is preferable to use silicon. Further, as the silicon, for example, single crystal silicon, hydrogenated amorphous silicon, microcrystalline silicon, polycrystalline silicon and the like can be used. Further, as the semiconductor 142, a metal oxide may be applied other than silicon. In some cases, semiconductors such as Ge and compound semiconductors such as ZnSe, CdS, GaAs, InP, GaN, and SiGe can be applied.
  • the semiconductor 143 is provided so as to fill the opening after the semiconductor 141, the semiconductor 142, the insulator 121, the insulator 122, the insulator 131, the insulator 132, and the insulator 133 are formed in the opening. Specifically, the semiconductor 143 is provided so as to be in contact with the insulator 122 and the semiconductor 142, and to be in contact with the side surface of the insulator 117.
  • the semiconductor 143 for example, it is preferable to use the same material as the semiconductor 141. Therefore, it is preferable that the polarities of the semiconductor 141 and the semiconductor 143 are the same.
  • a wiring layer may be provided on the insulator 117 and the semiconductor 143.
  • an insulator 382 and an insulator 384 are sequentially laminated and provided.
  • a conductor 386 is formed on the insulator 382 and the insulator 384.
  • the conductor 386 has a function as a plug or wiring.
  • the conductor 386 can be provided by using the same material as the conductor 328 and the conductor 330.
  • the information processing device is not limited to the configuration of the NAND type storage circuit included in the storage unit 100 shown in FIG.
  • the NAND-type storage circuit applied to the information processing apparatus of one aspect of the present invention may have a configuration different from that of the NAND-type storage circuit shown in FIG.
  • FIG. 13 shows a configuration example of the information processing device, which is different from that of FIG.
  • the information processing device shown in FIG. 13 has a configuration in which the configuration of the storage unit 100 of the information processing device of FIG. 11 is changed.
  • the storage unit 100 of the information processing device of FIG. 13 has an embodiment. It has the structure of the storage unit of FIG. 4A described with reference to 2.
  • the memory cell MC [1] included in the NAND type storage circuit having a three-dimensional structure includes a transistor RTr, a transistor WTr, a capacitance CS, and the like. Has.
  • the storage unit 100 shown in FIG. 13 is provided on the control unit 200, similarly to the information processing device of FIG. Further, in the storage unit 100, above the control unit 200, the insulator 211 to the insulator 215, the insulator 240 to the insulator 243, the conductor 221 and the conductor 222, the conductor 250 to the conductor 253, the semiconductor 231 and the semiconductor It has 232.
  • the insulator 240 is provided above the control unit 200. Therefore, the insulator 360 located below the insulator 240 is preferably formed by a film forming method having good flatness. Further, it is preferable that the insulator 360 is subjected to CMP treatment.
  • insulator 240 for example, a material applicable to the insulator 111 can be used.
  • the insulator 241 is provided by being laminated on the insulator 240.
  • insulator 241 for example, a material applicable to the insulator 111 can be used as in the insulator 240.
  • the conductor 250 is embedded in the insulator 240, and the conductor 251 is embedded in the insulator 241.
  • the conductor 250 and the conductor 251 have a function as a plug or a wiring.
  • the conductor having a function as a plug or wiring shown in FIG. 13 may collectively give a plurality of structures the same reference numerals.
  • the wiring and the plug connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
  • conductor 250 and the conductor 251 for example, materials applicable to the conductor 328 and the conductor 330 can be used.
  • the insulator 211 is provided on the insulator 241. Further, the conductor 221 is provided on the insulator 211. Further, the insulator 212 is provided on the conductor 221. Further, the conductor 222 is provided on the insulator 212. That is, the insulator 211, the conductor 221 and the insulator 212, and the conductor 222 are laminated in this order (these are referred to as laminates). Further, the storage unit 100 of the information processing apparatus shown in FIG. 13 has as many layers as the number of memory cells MC included in one string.
  • openings are provided in the insulator 211, the conductor 221, the insulator 212, and the conductor 222 by forming a resist mask, etching, or the like. Further, at this time, the conductor 221 is selectively removed so that the insulator 211, the conductor 221 and the insulator 212 form a recess.
  • the conductor 221 is preferably made of a material having a higher etching rate than the insulator 211, the insulator 212, and the conductor 222.
  • the resist mask can be formed by appropriately using, for example, a lithography method, a printing method, an inkjet method, or the like.
  • the etching process may be a dry etching method or a wet etching method, or both may be used.
  • an insulator 213, a semiconductor 231 and an insulator 214, an insulator 215, a semiconductor 232, an insulator 216, and a conductor 223 are formed in this order in the opening formed by the etching process.
  • the insulator 211 and the insulator 212 as an example, it is preferable to use a film having a barrier property so that hydrogen, impurities, etc. do not diffuse. Therefore, as the insulator 211 and the insulator 212, for example, the same material as the insulator 111 can be used.
  • the conductor 221 and the conductor 222 for example, it is preferable to use a material applicable to the conductor 151.
  • a conductive material having a function of suppressing the permeation of impurities such as water and hydrogen.
  • Insulator 213 and semiconductor 231 are formed in this order on the side surface of the opening formed by the etching process described above.
  • the insulator 214 is formed so as to fill the recess of the opening.
  • the insulator 214 is formed on the side surface of the opening to the extent that the recess of the opening is first filled, and then the insulator 214 is left in the recess and the semiconductor is formed. A part of the insulator 214 may be removed by an etching process so that the 231 is exposed.
  • the insulator 213 for example, silicon oxide, silicon oxide nitride, or the like can be used. Further, as the insulator 213, for example, aluminum oxide, hafnium oxide, or an oxide having aluminum and hafnium can be used. Further, the insulator 213 may be an insulator in which these are laminated.
  • the metal oxide described in the sixth embodiment it is preferable to use the metal oxide described in the sixth embodiment.
  • the metal oxide it is assumed that the metal oxide is subsequently applied as the semiconductor 231.
  • CAAC-OS it is preferable to use CAAC-OS, which will be described later.
  • the electron trap density may increase due to the grain boundaries that can be formed in the polycrystalline silicon, and the transistor characteristics may vary greatly.
  • CAAC-OS since a clear grain boundary is not confirmed, it is possible to suppress variations in transistor characteristics.
  • the metal oxide of the semiconductor 231 is supplied with impurities and the like to reduce the resistance of the region exposed to the opening of the semiconductor 231. That is, the region of the semiconductor 231 in contact with the insulator 214 is a high resistance region, and the region of the semiconductor 231 not in contact with the insulator 214 is a low resistance region.
  • the supply treatment of impurities and the like to the metal oxide of the semiconductor 231 for example, the formation of a conductor on the side surface of the opening after the insulator 214 is embedded in the recess of the opening, and the conductor. Removal of.
  • the metal elements contained in the conductive film may diffuse into the semiconductor 231 to form a constituent element of the semiconductor 231 and a metal compound. ..
  • the metal compound forms a low resistance region in the semiconductor 231.
  • the insulator 214 is not a component that forms a compound with a component contained in the semiconductor 231 at the interface with the previously formed semiconductor 231 and in the vicinity of the interface.
  • the insulator 214 for example, silicon oxide or the like can be used.
  • the insulator 215, the semiconductor 232, the insulator 216, and the conductor 223 are formed in this order on the forming surface of the semiconductor 231 and the insulator 214. It is assumed that the opening provided in the laminated body is filled by the formation of the conductor 223.
  • the insulator 215 and the insulator 216 for example, it is preferable to use a material applicable to the insulator 213.
  • the semiconductor 232 for example, it is preferable to use the metal oxide described in the sixth embodiment as in the semiconductor 231.
  • the conductor 223 for example, it is preferable to use a material applicable to the conductor 151.
  • a conductive material having a function of suppressing the permeation of impurities such as water and hydrogen.
  • Insulator 242 and insulator 243 are provided in order on the upper part of the formed string.
  • a material applicable to the insulator 111 can be used.
  • the conductor 252 is embedded in the insulator 242, and the conductor 253 is embedded in the insulator 243.
  • the conductor 252 and the conductor 253 have a function as a plug or a wiring.
  • conductor 252 and the conductor 253 for example, materials applicable to the conductor 328 and the conductor 330 can be used.
  • an information processing device having the storage unit 100 of FIG. 4A can be manufactured.
  • each of the wiring WBL, wiring RBL, and wiring BGL in the storage unit of FIG. 4A corresponds to the semiconductor 231 and the semiconductor 232 and the conductor 223 of FIG.
  • the wiring WWL and the wiring RWL in the storage unit of FIG. 4A correspond to the conductor 221 and the conductor 222, respectively.
  • a capacitive CS is configured in which the conductor 222 is used as one electrode, the region of the insulator 213 in contact with the conductor 222 is used as a dielectric, and the region of the semiconductor 231 that overlaps with the conductor 222 is used as the other electrode. .. Further, the region of the semiconductor 231 that overlaps with the conductor 222 is used as a gate, the region of the insulator 215 that overlaps with the conductor 222 is used as a gate insulating film, and the region of the semiconductor 232 that overlaps with the conductor 222 is used as a channel forming region.
  • a transistor RTr is configured in which the region of the insulator 216 that overlaps the body 222 is the gate insulating film, and the region of the conductor 223 that overlaps the conductor 222 is the back gate. Further, a transistor WTr is configured in which the conductor 221 is used as a gate, the insulator 213 superimposing on the conductor 221 is used as a gate insulating film, and the region of the semiconductor 231 superimposing on the conductor 221 is used as a channel forming region.
  • the insulator, conductor, semiconductor, etc. disclosed in the present specification and the like can be formed by a PVD (Physical Vapor Deposition) method and a CVD (Chemical Vapor Deposition) method.
  • the PVD method include a sputtering method, a resistance heating vapor deposition method, an electron beam vapor deposition method, and a PLD (Pulsed Laser Deposition) method.
  • the CVD method include a plasma CVD method and a thermal CVD method.
  • examples of the thermal CVD method include a MOCVD (Metalorganic Chemical Vapor Deposition) method and an ALD (Atomic Layer Deposition) method.
  • the thermal CVD method is a film forming method that does not use plasma, it has an advantage that defects are not generated due to plasma damage.
  • a raw material gas and an oxidizing agent may be sent into the chamber at the same time, the inside of the chamber is placed under atmospheric pressure or reduced pressure, and the reaction may be carried out in the vicinity of the substrate or on the substrate to deposit the film on the substrate. ..
  • the inside of the chamber may be under atmospheric pressure or reduced pressure
  • the raw material gas for the reaction is sequentially introduced into the chamber
  • the film formation may be performed by repeating the order of gas introduction.
  • each switching valve also called a high-speed valve
  • the first raw material gas is not mixed at the same time or after that so that the multiple kinds of raw materials gas are not mixed.
  • An active gas argon, nitrogen, etc. or the like is introduced, and a second raw material gas is introduced.
  • the inert gas becomes a carrier gas, and the inert gas may be introduced at the same time when the second raw material gas is introduced.
  • the first raw material gas may be discharged by vacuum exhaust, and then the second raw material gas may be introduced.
  • the first raw material gas is adsorbed on the surface of the substrate to form a first thin layer, and reacts with the second raw material gas introduced later, so that the second thin layer is on the first thin layer.
  • a thin film is formed by being laminated on.
  • the thermal CVD method such as the MOCVD method and the ALD method can form various films such as the metal film, the semiconductor film, and the inorganic insulating film disclosed in the embodiments described so far, and for example, In-Ga-Zn.
  • the metal film such as the MOCVD method and the ALD method
  • the inorganic insulating film disclosed in the embodiments described so far, and for example, In-Ga-Zn.
  • dimethylzinc (Zn (CH 3 ) 2 ) are used.
  • triethylgallium Ga (C 2 H 5 ) 3
  • diethylzinc Zn (C 2 H 5 ) 2
  • dimethylzinc can also be used.
  • a liquid containing a solvent and a hafnium precursor compound hafnium alkoxide, tetrakis (dimethylamide) hafnium (TDMAH, Hf [N (CH 3 )) 2 ] 4
  • source gas obtained by vaporizing the hafnium amide such as, using the two kinds of gases ozone (O 3) as an oxidizing agent.
  • other materials include tetrakis (ethylmethylamide) hafnium and the like.
  • a raw material gas obtained by vaporizing a liquid containing a solvent and an aluminum precursor compound (trimethylaluminum (TMA, Al (CH 3 ) 3), etc.).
  • TMA trimethylaluminum
  • H 2 O gases
  • Other materials include tris (dimethylamide) aluminum, triisobutylaluminum, and aluminum tris (22,6,6-tetramethyl-3,5-heptaneto).
  • a silicon oxide film using a deposition apparatus employing ALD is hexachlorodisilane adsorbed on the film-forming surface, and supplying radicals for oxidizing gas (O 2, dinitrogen monoxide) adsorption React with things.
  • oxidizing gas O 2, dinitrogen monoxide
  • tungsten film when a tungsten film is formed by a film forming apparatus using ALD, WF 6 gas and B 2 H 6 gas are sequentially and repeatedly introduced to form an initial tungsten film, and then WF 6 gas and H 2 are formed. The gas is sequentially and repeatedly introduced to form a tungsten film.
  • SiH 4 gas may be used instead of B 2 H 6 gas.
  • an oxide semiconductor film for example, an In-Ga-Zn-O film is formed by a film forming apparatus using ALD
  • In (CH 3 ) 3 gas and O 3 gas are sequentially and repeatedly introduced into In.
  • a ⁇ O layer is formed, and then Ga (CH 3 ) 3 gas and O 3 gas are sequentially and repeatedly introduced to form a GaO layer, and then Zn (CH 3 ) 2 gas and O 3 gas are sequentially and repeatedly introduced.
  • Zn (CH 3 ) 2 gas and O 3 gas are sequentially and repeatedly introduced.
  • ZnO layer ZnO layer.
  • these gases may be used to form a mixed oxide layer such as an In—Ga—O layer, an In—Zn—O layer, and a Ga—Zn—O layer.
  • O 3 may be used of H 2 O gas obtained by bubbling water with an inert gas such as Ar in place of the gas, but better to use an O 3 gas containing no H are preferred.
  • In (C 2 H 5 ) 3 gas may be used instead of In (CH 3 ) 3 gas.
  • Ga (C 2 H 5 ) 3 gas may be used instead of Ga (CH 3 ) 3 gas.
  • Zn (CH 3 ) 2 gas may be used.
  • a computer has a processor, main memory, storage, etc. on a motherboard as components, and each component is electrically connected by bus wiring as an example. Therefore, the longer the bus wiring, the larger the parasitic resistance, and the higher the power consumption required for signal transmission.
  • the computer has a configuration as shown in FIG. 14A, for example.
  • the computer has a motherboard BD, and on the motherboard BD, there are 10 arithmetic processing units (processors, CPUs, etc.), 30 main memories (DRAM (Dynamic Random Access Memory), etc.), and storage (NAND type with a three-dimensional structure).
  • a storage device (3D OS NAND type storage device, etc.) 40, an interface 60, etc. are provided.
  • FIG. 14A also shows an SRAM (Static Random Access Memory) 20 that also functions as a main memory, it does not necessarily have to be provided on the motherboard BD.
  • SRAM Static Random Access Memory
  • FIG. 14A illustrates a configuration in which the arithmetic processing unit 10 has a register 11.
  • the arithmetic processing unit 10 is electrically connected to the SRAM 20, the main memory 30, the storage 40, and the interface 60. Further, the main memory 30 is electrically connected to the SRAM 20 and the storage 40.
  • each component of the computer shown in FIG. 14A is electrically connected by the bus wiring BSH. That is, as the number of computer components increases or the size of the motherboard BD increases, the bus wiring BSH routed becomes longer, so that the power consumption required for signal transmission increases.
  • each component of the computer may be integrated into one chip and integrated into a monolithic IC (Integrated Circuit).
  • the information processing device 50 as shown in FIG. 1 described in the above embodiment can be applied as the main memory 30 and the storage 40.
  • the computer of FIG. 14A as a monolithic IC is shown in FIG. 14B.
  • the monolithic IC of FIG. 14B has a circuit layer LGC on a semiconductor substrate having Si. Further, the storage layer STR is provided above the circuit layer LGC, and the circuit layer OSC is provided above the storage layer STR.
  • the circuit layer LGC has, for example, a plurality of circuits including a Si transistor formed on a semiconductor substrate SBT having Si.
  • the arithmetic processing unit 10 and the SRAM 20 in FIG. 14A can be used.
  • the controller 1197 included in the information processing device 50 can be used as a part of the plurality of circuits.
  • the SRAM 20 can increase the drive frequency of the SRAM by using a Si transistor as an example.
  • the storage layer STR functions as a storage unit having a Si transistor and / or an OS transistor.
  • the storage layer STR may be, for example, a NAND-type storage circuit having a three-dimensional structure, a 3D OS NAND-type storage circuit, or the like. Therefore, the storage layer STR has a storage unit 1196 in the information processing apparatus of FIG. 1, a storage 40 in FIG. 14A, and the like.
  • the power consumption of the monolithic IC shown in FIG. 14B can be reduced.
  • the circuit layer OSC has, for example, a plurality of circuits including an OS transistor. As a part of the plurality of circuits, for example, a circuit different from the circuit included in the circuit layer LGC such as the arithmetic processing unit 10 and the SRAM 20 can be used.
  • the monolithic IC of FIG. 14B has an information processing device 50. Therefore, the information processing device 50 functions as the storage 40 and the main memory 30 in FIG. 14A. Therefore, in the monolithic IC of FIG. 14B, the main memory 30 can be used as the storage unit 1196 of the storage layer STR.
  • the monolithic IC of FIG. 14B can reduce the circuit area as compared with the computer of FIG. 14A because the bus wiring BSH is not provided and the storage unit 1196 is used as a substitute for the main memory 30.
  • FIG. 15 A specific schematic diagram of the monolithic IC of FIG. 14B is shown in FIG.
  • the monolithic IC 1500 shown in FIG. 15 has a 3D OS NAND type storage device described in the previous embodiment.
  • the monolithic IC 1500 of FIG. 15 shows a circuit layer LGC, a storage layer STR, and a circuit layer OSC.
  • the semiconductor substrate SBT is omitted from the monolithic IC 1500 of FIG.
  • the storage layer STR has a plurality of string STGs.
  • the plurality of string STGs correspond to the strings ST1 to ST3 in the first embodiment.
  • the conductor ME1 included in the storage layer STR functions as a wiring for electrically connecting the circuit layer LGC and the circuit layer OSC.
  • the conductor ME2 included in the storage layer STR functions as a wiring for electrically connecting the circuit layer OSC and the plurality of conductors ME3.
  • the conductor ME3 included in the storage layer STR functions as a gate of a cell transistor included in a plurality of string STGs and a wiring electrically connected to the gate. That is, the conductor ME3 is the conductor 152 of FIG. 11, the conductor 153, the conductor 154, the conductor 155, the conductor 156, and the conductor 2221 of FIG. 13 (for example, the wiring RWL [1) in the above-described embodiment. ], Etc.), conductor 221 (for example, wiring WWL [1], etc.) and the like.
  • FIGS. 16A and 16B an example of the storage hierarchy of the computer of FIG. 14A and the monolithic IC of FIG. 14B is shown in FIGS. 16A and 16B, respectively.
  • the storage layer located in the upper layer is required to have a faster operating speed, and the storage device located in the lower layer is required to have a larger storage capacity and a higher recording density.
  • FIG. 16A as an example, the registers included in the CPU (arithmetic processing unit 10), the SRAM, the DRAM included in the main memory 30, and the three-dimensional structure included in the storage 40 in order from the top layer.
  • the NAND type storage circuit of the above is shown.
  • the registers and SRAM included in the arithmetic processing unit 10 are used for temporary storage of arithmetic results and the like, the frequency of access from the arithmetic processing unit 10 is high. Therefore, an operation speed faster than the storage capacity is required.
  • the register also has a function of holding setting information of the arithmetic processing unit.
  • the DRAM included in the main memory 30 has, for example, a function of holding programs, data, and the like read from the storage 40.
  • the recording density of the DRAM is approximately 0.1 to 0.3 Gbit / mm 2 .
  • the storage 40 has a function of holding data that needs to be stored for a long period of time, various programs used in the arithmetic processing unit, and the like. Therefore, the storage 40 is required to have a storage capacity larger than the operating speed and a high recording density.
  • the recording density of the storage device used for the storage 40 is approximately 0.6 to 6.0 Gbit / mm 2 . Therefore, as the storage 40, a NAND-type storage circuit (3D OS NAND) having a three-dimensional structure, a hard disk drive (HDD), or the like is used.
  • 3D OS NAND 3D OS NAND
  • HDD hard disk drive
  • FIG. 16B the storage hierarchy of the monolithic IC of FIG. 14B is shown in FIG. 16B. It will be as follows.
  • the memory cell included in the storage unit 100 of the information processing apparatus 50 of FIG. 1 is treated not only as the cache memory of the storage unit 100 but also as the main memory 30 in the computer of FIG. 14A. Can be done. Therefore, in the monolithic IC of FIG. 14B, it is not necessary to provide the main memory 30 of the DRAM or the like. Therefore, the circuit area of the monolithic IC of FIG. 14B can be reduced, and the main memory 30 of the DRAM or the like can be operated. The power consumption required for the above can be reduced.
  • the configuration of the monolithic IC shown in FIG. 14B is an example, and is not limited to one aspect of the present invention.
  • the configuration of the monolithic IC shown in FIG. 14B may be changed depending on the situation.
  • the SRAM may be mixedly mounted on the arithmetic processing unit.
  • FIG. 17A shows the electrical connection between the arithmetic processing device (processor, CPU, etc.) 70 and the storage device (three-dimensional structure NAND type storage device, 3D OS NAND type storage device) 80. Specifically, the arithmetic processing unit 70 is electrically connected to the storage device 80 via a plurality of wirings 90.
  • the arithmetic processing unit 70 is electrically connected to the storage device 80 via a plurality of wirings 90.
  • the arithmetic processing unit 70 has a function of transmitting data for writing to a memory cell included in the storage device 80 to the storage device 80 via a plurality of wirings 90. That is, the plurality of wirings 90 function as write bit lines corresponding to the wiring WBL and the like of the above-described embodiment.
  • the storage device 80 is a storage device having a NAND structure and has a plurality of strings
  • each of the plurality of wires 90 is electrically connected to the plurality of strings.
  • the length of the wiring 90 is shortened, and the like.
  • the number of wirings 90 may be increased. That is, by increasing the number of wires 90 (the number of strings of the storage device 80 electrically connected to the wires 90), the number of data in the memory cells that can be written at one time can be increased.
  • the arithmetic processing unit 70 includes a latch circuit LT1 [1] to a latch circuit LT1 [z] (z is an integer of 2 or more), a latch circuit LT2 [1] to a latch circuit LT2 [z], and the like. It has wiring 90 [1] to wiring 90 [z]. Further, the storage device 80 has a string STG [1] to a string STG [z] as a NAND type storage device as an example.
  • the latch circuit LT1 [1] to the latch circuit LT1 [z] constitute a shift register. Therefore, a wiring CLK for transmitting a clock signal is electrically connected to each clock input terminal of the latch circuit LT1 [1] to the latch circuit LT1 [z].
  • the shift register sequentially applies the data DA for writing input to the input terminal of the latch circuit LT1 [1] according to the number of pulse voltages input as a clock signal from the wiring CLK. It can be transmitted to the latch circuit LT1 [z].
  • the output terminal of the latch circuit LT1 [v] (where v is an integer of 1 or more and z or less) is electrically connected to the input terminal of the latch circuit LT2 [v]. Therefore, the data DA output from the latch circuit LT1 [v] is input to the latch circuit LT2 [v]. Further, the latch circuit LT2 [v] is electrically connected to the string STG [v] via the wiring 90 [v].
  • a wiring ENL is electrically connected to each clock input terminal of the latch circuit LT2 [1] to the latch circuit LT2 [z].
  • the wiring ENL functions as wiring for transmitting a trigger signal for transmitting data DA from the arithmetic processing unit 70 to the storage device 80.
  • the data DA is input to the latch circuit LT1 [1], so that the data DA is sequentially input to the latch circuit LT1 [1].
  • data DA is sequentially input to the latch circuit LT1 [1] to the latch circuit LT1 [z]
  • the data DA [1] to the data DA are input to the latch circuit LT1 [1] to the latch circuit LT1 [z], respectively. It is assumed that [z] is stored.
  • data DA [1] to data DA [z] are output from the respective output terminals of the latch circuit LT1 [1] to the latch circuit LT1 [z]. Further, each of the data DA [1] to the data DA [z] is input to the latch circuit LT2 [1] to the latch circuit LT2 [z].
  • the data DA input by serial transmission can be distributed to the latch circuit LT1 [1] to the latch circuit LT1 [z] as the data DA [1] to the data DA [z].
  • the data DA input by serial transmission can be distributed to the wiring 90 [1] to the wiring 90 [z] as the data DA [1] to the data DA [z].
  • the wiring ENL gives a trigger signal to each of the latch circuits LT2 [1] to the latch circuit LT2 [z] to the clock signal input terminal, so that each of the latch circuits LT2 [1] to the latch circuit LT2 [z].
  • the data DA [1] to the data DA [z] are input to the strings STG [1] to STG [z] of the storage device 80 in parallel via the wiring 90 [1] to the wiring 90 [z]. Can be done.
  • data for writing to the serially transmitted storage device 80 can be sent in parallel to the strings STG [1] to string STG [z] of the storage device 80.
  • the metal oxide preferably contains at least indium or zinc. In particular, it preferably contains indium and zinc. In addition to them, it is preferable that aluminum, gallium, yttrium, tin and the like are contained. It may also contain one or more selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt and the like. ..
  • FIG. 18A is a diagram illustrating classification of crystal structures of oxide semiconductors, typically IGZO (metal oxides containing In, Ga, and Zn).
  • IGZO metal oxides containing In, Ga, and Zn
  • oxide semiconductors are roughly classified into “Amorphous”, “Crystalline”, and “Crystal”.
  • Amorphous includes complete amorphous.
  • “Crystalline” includes CAAC (c-axis-aligned crystalline), nc (nanocrystalline), and CAC (cloud-aligned crystal) (extracting single crystal and crystal).
  • single crystal, poly crystal, and single crystal amorphous are excluded from the classification of "Crystalline”.
  • “Crystal” includes single crystal and poly crystal.
  • the structure in the thick frame shown in FIG. 18A is an intermediate state between "Amorphous” and “Crystal", and belongs to a new boundary region (New crystal line phase). .. That is, the structure can be rephrased as a structure completely different from the energetically unstable "Amorphous” and "Crystal".
  • the crystal structure of the film or substrate can be evaluated using an X-ray diffraction (XRD) spectrum.
  • XRD X-ray diffraction
  • the GIXD spectrum obtained by GIXD (Glazing-Incidence XRD) measurement of a CAAC-IGZO film classified as "Crystalline" is shown in FIG. 18B.
  • the GIXD method is also referred to as a thin film method or a Seemann-Bohlin method.
  • the XRD spectrum obtained by the GIXD measurement shown in FIG. 18B will be simply referred to as an XRD spectrum.
  • the thickness of the CAAC-IGZO film shown in FIG. 18B is 500 nm.
  • a peak showing clear crystallinity is detected in the XRD spectrum of the CAAC-IGZO film.
  • the crystal structure of the film or substrate can be evaluated by a diffraction pattern (also referred to as a microelectron diffraction pattern) observed by a micro electron diffraction method (NBED: Nano Beam Electron Diffraction).
  • the diffraction pattern of the CAAC-IGZO film is shown in FIG. 18C.
  • FIG. 18C is a diffraction pattern observed by the NBED in which the electron beam is incident parallel to the substrate.
  • electron diffraction is performed with the probe diameter set to 1 nm.
  • oxide semiconductors may be classified differently from FIG. 18A.
  • oxide semiconductors are divided into single crystal oxide semiconductors and other non-single crystal oxide semiconductors.
  • the non-single crystal oxide semiconductor include the above-mentioned CAAC-OS and nc-OS.
  • the non-single crystal oxide semiconductor includes a polycrystalline oxide semiconductor, a pseudo-amorphous oxide semiconductor (a-like OS: amorphous-like oxide semiconductor), an amorphous oxide semiconductor, and the like.
  • CAAC-OS CAAC-OS
  • nc-OS nc-OS
  • a-like OS the details of the above-mentioned CAAC-OS, nc-OS, and a-like OS will be described.
  • CAAC-OS is an oxide semiconductor having a plurality of crystal regions, and the plurality of crystal regions are oriented in a specific direction on the c-axis.
  • the specific direction is the thickness direction of the CAAC-OS film, the normal direction of the surface to be formed of the CAAC-OS film, or the normal direction of the surface of the CAAC-OS film.
  • the crystal region is a region having periodicity in the atomic arrangement. When the atomic arrangement is regarded as a lattice arrangement, the crystal region is also a region in which the lattice arrangement is aligned. Further, the CAAC-OS has a region in which a plurality of crystal regions are connected in the ab plane direction, and the region may have distortion.
  • the strain refers to a region in which a plurality of crystal regions are connected in which the orientation of the lattice arrangement changes between a region in which the lattice arrangement is aligned and a region in which another grid arrangement is aligned. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and not clearly oriented in the ab plane direction.
  • Each of the plurality of crystal regions is composed of one or a plurality of minute crystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystal region is less than 10 nm.
  • the size of the crystal region may be about several tens of nm.
  • In-M-Zn oxide (element M is aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, In one or more selected from tantalum, gallium, etc.), CAAC-OS contains indium (In) and a layer having oxygen (hereinafter, In layer), and elements M, zinc (Zn), and oxygen. It tends to have a layered crystal structure (also referred to as a layered structure) in which the layers (hereinafter, (M, Zn) layers) are laminated. Indium and element M can be replaced with each other.
  • the (M, Zn) layer may contain indium.
  • the In layer may contain the element M.
  • the In layer may contain Zn.
  • the layered structure is observed as a lattice image in, for example, a high-resolution TEM image.
  • the position of the peak indicating the c-axis orientation may vary depending on the type and composition of the metal elements constituting CAAC-OS.
  • a plurality of bright spots are observed in the electron diffraction pattern of the CAAC-OS film.
  • a certain spot and another spot are observed at point-symmetrical positions with the spot of the incident electron beam passing through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is based on a hexagonal lattice, but the unit lattice is not limited to a regular hexagon and may be a non-regular hexagon. Further, in the above strain, it may have a lattice arrangement such as a pentagon or a heptagon.
  • a clear grain boundary cannot be confirmed even in the vicinity of strain. That is, it can be seen that the formation of grain boundaries is suppressed by the distortion of the lattice arrangement. This is because CAAC-OS can tolerate distortion due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction and that the bond distance between atoms changes due to the replacement of metal atoms. it is conceivable that.
  • CAAC-OS for which no clear crystal grain boundary is confirmed, is one of the crystalline oxides having a crystal structure suitable for the semiconductor layer of the transistor.
  • a configuration having Zn is preferable.
  • In-Zn oxide and In-Ga-Zn oxide are more suitable than In oxide because they can suppress the generation of grain boundaries.
  • CAAC-OS is an oxide semiconductor that has high crystallinity and no clear grain boundary is confirmed. Therefore, it can be said that CAAC-OS is unlikely to cause a decrease in electron mobility due to grain boundaries. Further, since the crystallinity of the oxide semiconductor may be lowered due to the mixing of impurities and the generation of defects, CAAC-OS can be said to be an oxide semiconductor having few impurities and defects (oxygen deficiency, etc.). Therefore, the oxide semiconductor having CAAC-OS has stable physical properties. Therefore, the oxide semiconductor having CAAC-OS is resistant to heat and has high reliability. CAAC-OS is also stable against high temperatures (so-called thermal budgets) in the manufacturing process. Therefore, when CAAC-OS is used for the OS transistor, the degree of freedom in the manufacturing process can be expanded.
  • nc-OS has periodicity in the atomic arrangement in a minute region (for example, a region of 1 nm or more and 10 nm or less, particularly a region of 1 nm or more and 3 nm or less).
  • nc-OS has tiny crystals. Since the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also referred to as a nanocrystal.
  • nc-OS does not show regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • the nc-OS may be indistinguishable from the a-like OS and the amorphous oxide semiconductor depending on the analysis method. For example, when a structural analysis is performed on an nc-OS film using an XRD apparatus, a peak indicating crystallinity is not detected in the Out-of-plane XRD measurement using a ⁇ / 2 ⁇ scan. Further, when electron beam diffraction (also referred to as selected area electron diffraction) using an electron beam having a probe diameter larger than that of nanocrystals (for example, 50 nm or more) is performed on the nc-OS film, a diffraction pattern such as a halo pattern is performed. Is observed.
  • electron beam diffraction also referred to as selected area electron diffraction
  • nanocrystals for example, 50 nm or more
  • electron diffraction also referred to as nanobeam electron diffraction
  • an electron beam having a probe diameter for example, 1 nm or more and 30 nm or less
  • An electron diffraction pattern in which a plurality of spots are observed in a ring-shaped region centered on a direct spot may be acquired.
  • the a-like OS is an oxide semiconductor having a structure between nc-OS and an amorphous oxide semiconductor.
  • the a-like OS has a void or low density region. That is, a-like OS has lower crystallinity than nc-OS and CAAC-OS. In addition, a-like OS has a higher hydrogen concentration in the membrane than nc-OS and CAAC-OS.
  • CAC-OS relates to the material composition.
  • CAC-OS is, for example, a composition of a material in which the elements constituting the metal oxide are unevenly distributed in a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the mixed state is also called a mosaic shape or a patch shape.
  • CAC-OS has a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the membrane (hereinafter, also referred to as a cloud shape). It says.). That is, CAC-OS is a composite metal oxide having a structure in which the first region and the second region are mixed.
  • the atomic number ratios of In, Ga, and Zn with respect to the metal elements constituting CAC-OS in the In-Ga-Zn oxide are expressed as [In], [Ga], and [Zn], respectively.
  • the first region is a region in which [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region in which [Ga] is larger than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region in which indium oxide, indium zinc oxide, or the like is the main component.
  • the second region is a region in which gallium oxide, gallium zinc oxide, or the like is the main component. That is, the first region can be rephrased as a region containing In as a main component. Further, the second region can be rephrased as a region containing Ga as a main component.
  • an region containing In as a main component (No. It can be confirmed that the region (1 region) and the region containing Ga as a main component (second region) have a structure in which they are unevenly distributed and mixed.
  • CAC-OS When CAC-OS is used for a transistor, the conductivity caused by the first region and the insulating property caused by the second region act in a complementary manner to switch the switching function (On / Off function). Can be added to CAC-OS. That is, the CAC-OS has a conductive function in a part of the material and an insulating function in a part of the material, and has a function as a semiconductor in the whole material. By separating the conductive function and the insulating function, both functions can be maximized. Therefore, by using CAC-OS as a transistor, high on-current ( Ion ), high field-effect mobility ( ⁇ ), and good switching operation can be realized.
  • Ion on-current
  • high field-effect mobility
  • Oxide semiconductors have various structures, and each has different characteristics.
  • the oxide semiconductor of one aspect of the present invention has two or more of amorphous oxide semiconductor, polycrystalline oxide semiconductor, a-like OS, CAC-OS, nc-OS, and CAAC-OS. You may.
  • the oxide semiconductor as a transistor, a transistor with high field effect mobility can be realized. Moreover, a highly reliable transistor can be realized.
  • the carrier concentration of the oxide semiconductor is 1 ⁇ 10 17 cm -3 or less, preferably 1 ⁇ 10 15 cm -3 or less, more preferably 1 ⁇ 10 13 cm -3 or less, more preferably 1 ⁇ 10 11 cm ⁇ . It is 3 or less, more preferably less than 1 ⁇ 10 10 cm -3 , and more than 1 ⁇ 10 -9 cm -3.
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density is referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • An oxide semiconductor having a low carrier concentration may be referred to as a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • the charge captured at the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor in which a channel formation region is formed in an oxide semiconductor having a high trap level density may have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon and the like.
  • the concentration of silicon, carbon, etc. in the oxide semiconductor and the concentration of silicon, carbon, etc. near the interface with the oxide semiconductor are determined. 2, 2 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor contains an alkali metal or an alkaline earth metal
  • defect levels may be formed and carriers may be generated. Therefore, a transistor using an oxide semiconductor containing an alkali metal or an alkaline earth metal tends to have a normally-on characteristic. Therefore, the concentration of the alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less.
  • the nitrogen concentration in the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms / cm 3 , preferably 5 ⁇ 10 18 atoms / cm 3 or less, and more preferably 1 ⁇ 10 18 atoms / cm 3 or less. , More preferably 5 ⁇ 10 17 atoms / cm 3 or less.
  • hydrogen contained in an oxide semiconductor reacts with oxygen bonded to a metal atom to become water, which may form an oxygen deficiency.
  • oxygen deficiency When hydrogen enters the oxygen deficiency, electrons that are carriers may be generated.
  • a part of hydrogen may be combined with oxygen that is bonded to a metal atom to generate an electron as a carrier. Therefore, a transistor using an oxide semiconductor containing hydrogen tends to have a normally-on characteristic. Therefore, it is preferable that hydrogen in the oxide semiconductor is reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms / cm 3 , preferably less than 1 ⁇ 10 19 atoms / cm 3 , and more preferably 5 ⁇ 10 18 atoms / cm. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • the semiconductor wafer 4800 shown in FIG. 19A has a wafer 4801 and a plurality of circuit units 4802 provided on the upper surface of the wafer 4801.
  • the portion without the circuit portion 4802 is the spacing 4803, which is a dicing region.
  • the semiconductor wafer 4800 can be manufactured by forming a plurality of circuit portions 4802 on the surface of the wafer 4801 by the previous process. Further, after that, the surface on the opposite side on which the plurality of circuit portions 4802 of the wafer 4801 are formed may be ground to reduce the thickness of the wafer 4801. By this step, the warp of the wafer 4801 can be reduced and the size of the wafer can be reduced.
  • a dicing process is performed. Dicing is performed along the scribing line SCL1 and the scribing line SCL2 (sometimes referred to as a dicing line or a cutting line) indicated by an alternate long and short dash line.
  • the spacing 4803 is provided so that a plurality of scribe lines SCL1 are parallel to each other and a plurality of scribe lines SCL2 are parallel to each other so that the dicing process can be easily performed. It is preferable to provide it so that it is vertical.
  • the chip 4800a as shown in FIG. 19B can be cut out from the semiconductor wafer 4800.
  • the chip 4800a has a wafer 4801a, a circuit unit 4802, and a spacing 4803a.
  • the spacing 4803a is preferably made as small as possible. In this case, the width of the spacing 4803 between the adjacent circuit units 4802 may be substantially the same as the cutting margin of the scribe line SCL1 or the cutting margin of the scribe line SCL2.
  • the shape of the element substrate of one aspect of the present invention is not limited to the shape of the semiconductor wafer 4800 shown in FIG. 19A.
  • the shape of the element substrate can be appropriately changed depending on the process of manufacturing the device and the device for manufacturing the device.
  • FIG. 19C shows a perspective view of a substrate (mounting substrate 4704) on which the electronic component 4700 and the electronic component 4700 are mounted.
  • the electronic component 4700 shown in FIG. 19C has a chip 4800a in the mold 4711.
  • the chip 4800a shown in FIG. 19C shows a configuration in which circuit units 4802 are laminated. That is, the information processing apparatus described in the above embodiment can be applied as the circuit unit 4802. In FIG. 19C, a part is omitted in order to show the inside of the electronic component 4700.
  • the electronic component 4700 has a land 4712 on the outside of the mold 4711.
  • the land 4712 is electrically connected to the electrode pad 4713, and the electrode pad 4713 is electrically connected to the chip 4800a by a wire 4714.
  • the electronic component 4700 is mounted on, for example, a printed circuit board 4702. A plurality of such electronic components are combined and electrically connected to each other on the printed circuit board 4702 to complete the mounting board 4704.
  • FIG. 19D shows a perspective view of the electronic component 4730.
  • the electronic component 4730 is an example of SiP (System in Package) or MCM (Multi Chip Module).
  • an interposer 4731 is provided on a package substrate 4732 (printed circuit board), and a semiconductor device 4735 and a plurality of semiconductor devices 4710 are provided on the interposer 4731.
  • the electronic component 4730 has a semiconductor device 4710.
  • the semiconductor device 4710 can be, for example, the semiconductor device described in the above embodiment, a wideband memory (HBM: High Bandwidth Memory), or the like.
  • HBM High Bandwidth Memory
  • an integrated circuit semiconductor device such as a CPU, GPU, FPGA, or storage device can be used.
  • the package substrate 4732 a ceramic substrate, a plastic substrate, a glass epoxy substrate, or the like can be used.
  • the interposer 4731 a silicon interposer, a resin interposer, or the like can be used.
  • the interposer 4731 has a plurality of wirings and has a function of electrically connecting a plurality of integrated circuits having different terminal pitches.
  • the plurality of wirings are provided in a single layer or multiple layers.
  • the interposer 4731 has a function of electrically connecting the integrated circuit provided on the interposer 4731 to the electrode provided on the package substrate 4732.
  • the interposer may be referred to as a "rewiring board” or an "intermediate board”.
  • a through electrode may be provided on the interposer 4731, and the integrated circuit and the package substrate 4732 may be electrically connected using the through electrode.
  • a TSV Through Silicon Via
  • interposer 4731 It is preferable to use a silicon interposer as the interposer 4731. Since it is not necessary to provide an active element in the silicon interposer, it can be manufactured at a lower cost than an integrated circuit. On the other hand, since the wiring of the silicon interposer can be formed by a semiconductor process, it is easy to form fine wiring, which is difficult with a resin interposer.
  • the interposer on which the HBM is mounted is required to form fine and high-density wiring. Therefore, it is preferable to use a silicon interposer as the interposer on which the HBM is mounted.
  • the reliability is unlikely to decrease due to the difference in the expansion coefficient between the integrated circuit and the interposer. Further, since the surface of the silicon interposer is high, poor connection between the integrated circuit provided on the silicon interposer and the silicon interposer is unlikely to occur. In particular, in a 2.5D package (2.5-dimensional mounting) in which a plurality of integrated circuits are arranged side by side on an interposer, it is preferable to use a silicon interposer.
  • a heat sink may be provided so as to be overlapped with the electronic component 4730.
  • the heat sink it is preferable that the heights of the integrated circuits provided on the interposer 4731 are the same.
  • the heights of the semiconductor device 4710 and the semiconductor device 4735 are the same.
  • an electrode 4733 may be provided on the bottom of the package substrate 4732.
  • FIG. 19D shows an example in which the electrode 4733 is formed of solder balls. By providing solder balls in a matrix on the bottom of the package substrate 4732, BGA (Ball Grid Array) mounting can be realized. Further, the electrode 4733 may be formed of a conductive pin. By providing conductive pins in a matrix on the bottom of the package substrate 4732, PGA (Pin Grid Array) mounting can be realized.
  • the electronic component 4730 can be mounted on another substrate by using various mounting methods, not limited to BGA and PGA.
  • BGA Band-GPU
  • PGA Stimble Pin Grid Array
  • LGA Land-GPU
  • QFP Quad Flat Package
  • QFJ Quad Flat J-leaded package
  • QFN QuadFN
  • the information terminal 5500 shown in FIG. 20A is a mobile phone (smartphone) which is a kind of information terminal.
  • the information terminal 5500 has a housing 5510 and a display unit 5511, and as an input interface, a touch panel is provided in the display unit 5511 and buttons are provided in the housing 5510.
  • the information terminal 5500 can hold a temporary file (for example, a cache when using a web browser) generated when the application is executed. ..
  • FIG. 20B shows an information terminal 5900 which is an example of a wearable terminal.
  • the information terminal 5900 has a housing 5901, a display unit 5902, an operation button 5903, an operator 5904, a band 5905, and the like.
  • the wearable terminal can hold a temporary file generated when the application is executed by applying the information processing device described in the above embodiment.
  • FIG. 20C shows a desktop information terminal 5300.
  • the desktop information terminal 5300 has a main body 5301 of the information terminal, a display 5302, and a keyboard 5303.
  • the desktop information terminal 5300 can hold a temporary file generated when the application is executed by applying the information processing device described in the above embodiment.
  • a smartphone and a desktop information terminal are taken as examples of the information processing device, which are shown in FIGS. 20A and 20C, respectively, but information terminals other than the smartphone and the desktop information terminal can be applied.
  • information terminals other than smartphones and desktop information terminals include PDAs (Personal Digital Assistants), notebook information terminals, workstations, and the like.
  • FIG. 20D shows an electric freezer / refrigerator 5800 as an example of an electric appliance.
  • the electric freezer / refrigerator 5800 has a housing 5801, a refrigerator door 5802, a freezer door 5803, and the like.
  • the electric freezer / refrigerator 5800 can be used as, for example, IoT (Internet of Things).
  • IoT Internet of Things
  • the electric freezer / refrigerator 5800 can send / receive information such as the foodstuffs stored in the electric freezer / refrigerator 5800 and the expiration date of the foodstuffs to the above-mentioned information terminal or the like via the Internet or the like. it can. Further, when the electric refrigerator / freezer 5800 transmits the information, the information can be held in the information processing apparatus as a temporary file.
  • an electric refrigerator / freezer has been described as an electric appliance, but other electric appliances include, for example, a vacuum cleaner, a microwave oven, an electric oven, a rice cooker, a water heater, an IH cooker, a water server, and an air conditioner. Equipment, washing machines, dryers, audiovisual equipment, etc. can be mentioned.
  • FIG. 20E shows a portable game machine 5200, which is an example of a game machine.
  • the portable game machine 5200 has a housing 5201, a display unit 5202, a button 5203, and the like.
  • FIG. 20F shows a stationary game machine 7500, which is an example of a game machine.
  • the stationary game machine 7500 has a main body 7520 and a controller 7522.
  • the controller 7522 can be connected to the main body 7520 wirelessly or by wire.
  • the controller 7522 can be provided with a display unit for displaying a game image, a touch panel serving as an input interface other than buttons, a stick, a rotary knob, a slide type knob, and the like.
  • the controller 7522 is not limited to the shape shown in FIG. 20F, and the shape of the controller 7522 may be variously changed according to the genre of the game.
  • a controller shaped like a gun can be used by using a trigger as a button.
  • a controller having a shape imitating a musical instrument, a music device, or the like can be used.
  • the stationary game machine may be in a form in which a controller is not used and instead a camera, a depth sensor, a microphone and the like are provided and operated by the gesture and / or voice of the game player.
  • the above-mentioned video of the game machine can be output by a display device such as a television device, a personal computer display, a game display, or a head-mounted display.
  • a display device such as a television device, a personal computer display, a game display, or a head-mounted display.
  • the portable game machine 5200 with low power consumption can be realized. Further, since the heat generation from the circuit can be reduced due to the low power consumption, the influence of the heat generation on the circuit itself, the peripheral circuit, and the module can be reduced.
  • the information processing device of one aspect of the present invention includes, for example, a stationary game machine for home use, an arcade game machine installed in an entertainment facility (game center, an amusement park, etc.), and a batting practice device installed in a sports facility. Examples include pitching machines.
  • the information processing device described in the above embodiment can be applied to a moving vehicle and the vicinity of the driver's seat of the vehicle.
  • FIG. 20G shows an automobile 5700 which is an example of a moving body.
  • an instrument panel that provides various information by displaying speedometer, tachometer, mileage, fuel gauge, gear status, air conditioner setting, etc. is provided. Further, a display device for displaying such information may be provided around the driver's seat.
  • the information processing device described in the above embodiment can temporarily hold information, for example, the computer is used in an automatic driving system for an automobile 5700, the computer is used for road guidance, danger prediction, and the like. , Can be used to retain necessary temporary information.
  • the display device may be configured to display temporary information such as road guidance and danger prediction. Further, the image of the driving recorder installed in the automobile 5700 may be held.
  • moving objects include trains, monorails, ships, and flying objects (helicopters, unmanned aerial vehicles (drones), airplanes, rockets), and the like.
  • FIG. 20H shows a digital camera 6240, which is an example of an imaging device.
  • the digital camera 6240 has a housing 6241, a display unit 6242, an operation button 6243, a shutter button 6244, and the like, and a removable lens 6246 is attached to the digital camera 6240.
  • the digital camera 6240 has a configuration in which the lens 6246 can be removed from the housing 6241 and replaced here, the lens 6246 and the housing 6241 may be integrated. Further, the digital camera 6240 may be configured so that a strobe device, a viewfinder, and the like can be separately attached.
  • the digital camera 6240 with low power consumption can be realized. Further, since the heat generation from the circuit can be reduced due to the low power consumption, the influence of the heat generation on the circuit itself, the peripheral circuit, and the module can be reduced.
  • Video camera The information processing apparatus described in the above embodiment can be applied to a video camera.
  • FIG. 201 shows a video camera 6300, which is an example of an imaging device.
  • the video camera 6300 includes a first housing 6301, a second housing 6302, a display unit 6303, an operation key 6304, a lens 6305, a connection unit 6306, and the like.
  • the operation key 6304 and the lens 6305 are provided in the first housing 6301, and the display unit 6303 is provided in the second housing 6302.
  • the first housing 6301 and the second housing 6302 are connected by a connecting portion 6306, and the angle between the first housing 6301 and the second housing 6302 can be changed by the connecting portion 6306. is there.
  • the image on the display unit 6303 may be switched according to the angle between the first housing 6301 and the second housing 6302 on the connecting unit 6306.
  • the video camera 6300 When recording the video captured by the video camera 6300, it is necessary to encode according to the data recording format. By using the information processing device described above, the video camera 6300 can hold a temporary file generated during encoding.
  • ICD implantable cardioverter defibrillator
  • FIG. 20J is a schematic cross-sectional view showing an example of ICD.
  • the ICD body 5400 has at least a battery 5401, an electronic component 4700, a regulator, a control circuit, an antenna 5404, a wire 5402 to the right atrium, and a wire 5403 to the right ventricle.
  • the ICD body 5400 is surgically placed in the body, and two wires are passed through the subclavian vein 5405 and the superior vena cava 5406 of the human body, and one wire tip is placed in the right ventricle and the other wire tip is placed in the right atrium. To be done.
  • the ICD main body 5400 has a function as a pacemaker and performs pacing to the heart when the heart rate deviates from the specified range. Also, if pacing does not improve heart rate (fast ventricular tachycardia, ventricular fibrillation, etc.), treatment with electric shock is given.
  • the ICD body 5400 needs to constantly monitor the heart rate in order to properly perform pacing and electric shock. Therefore, the ICD main body 5400 has a sensor for detecting the heart rate. Further, the ICD main body 5400 can store the heart rate data acquired by the sensor or the like, the number of times of treatment by pacing, the time, etc. in the electronic component 4700.
  • the ICD main body 5400 has a plurality of batteries, so that the safety can be enhanced. Specifically, even if a part of the battery of the ICD main body 5400 becomes unusable, the remaining battery can function, so that it also functions as an auxiliary power source.
  • the antenna 5404 that can receive power it may have an antenna that can transmit physiological signals.
  • physiological signals such as pulse, respiratory rate, heart rate, and body temperature can be confirmed by an external monitoring device.
  • a system for monitoring various cardiac activities may be configured.
  • the computer 9600 shown in FIG. 21A is an example of a large-scale computer.
  • a plurality of rack-mounted computers 9620 are stored in the rack 9610.
  • the computer 9620 can have, for example, the configuration of the perspective view shown in FIG. 21B.
  • the computer 9620 has a motherboard 9630, which has a plurality of slots 9631 and a plurality of connection terminals.
  • a PC card 9621 is inserted in slot 9631.
  • the PC card 9621 has a connection terminal 9623, a connection terminal 9624, and a connection terminal 9625, each of which is connected to the motherboard 9630.
  • the PC card 9621 shown in FIG. 21C is an example of a processing board provided with a CPU, GPU, storage device, and the like.
  • the PC card 9621 has a board 9622.
  • the board 9622 has a connection terminal 9623, a connection terminal 9624, a connection terminal 9625, a semiconductor device 9626, a semiconductor device 9627, a semiconductor device 9628, and a connection terminal 9629.
  • FIG. 21C illustrates semiconductor devices other than the semiconductor device 9626, the semiconductor device 9627, and the semiconductor device 9628. Regarding these semiconductor devices, the semiconductor device 9626, the semiconductor device 9627, and the semiconductor device 9627 described below are shown. The description of the semiconductor device 9628 may be taken into consideration.
  • connection terminal 9629 has a shape that can be inserted into the slot 9631 of the motherboard 9630, and the connection terminal 9629 functions as an interface for connecting the PC card 9621 and the motherboard 9630.
  • Examples of the standard of the connection terminal 9629 include PCIe and the like.
  • connection terminal 9623, the connection terminal 9624, and the connection terminal 9625 can be, for example, interfaces for supplying power to the PC card 9621, inputting signals, and the like. Further, for example, it can be an interface for outputting a signal calculated by the PC card 9621.
  • Examples of the standards of the connection terminal 9623, the connection terminal 9624, and the connection terminal 9625 include USB (Universal Serial Bus), SATA (Serial ATA), and SCSI (Small Computer System Interface).
  • USB Universal Serial Bus
  • SATA Serial ATA
  • SCSI Serial Computer System Interface
  • the semiconductor device 9626 has a terminal (not shown) for inputting / outputting signals, and by inserting the terminal into a socket (not shown) included in the board 9622, the semiconductor device 9626 and the board 9622 can be inserted. Can be electrically connected.
  • the semiconductor device 9627 has a plurality of terminals, and the semiconductor device 9627 and the board 9622 are electrically connected to each other by soldering the terminals to the wiring provided by the board 9622, for example, by a reflow method. be able to.
  • Examples of the semiconductor device 9627 include FPGA (Field Programmable Gate Array), GPU, CPU, and the like.
  • an electronic component 4730 can be used as the semiconductor device 9627.
  • the semiconductor device 9628 has a plurality of terminals, and the semiconductor device 9628 and the board 9622 are electrically connected to the wiring provided by the board 9622 by, for example, reflowing soldering. be able to.
  • Examples of the semiconductor device 9628 include a storage device and an information processing device.
  • an electronic component 4700 can be used as the semiconductor device 9628.
  • the computer 9600 can also function as a parallel computer. By using the computer 9600 as a parallel computer, for example, large-scale calculations necessary for learning artificial intelligence and inference can be performed.
  • the semiconductor device of one aspect of the present invention for the above-mentioned various electronic devices, it is possible to reduce the size, speed, or power consumption of the electronic devices. Further, since the semiconductor device of one aspect of the present invention has low power consumption, heat generation from the circuit can be reduced. Therefore, it is possible to reduce the adverse effect of the heat generation on the circuit itself, the peripheral circuits, and the module. Further, by using the semiconductor device of one aspect of the present invention, it is possible to realize an electronic device whose operation is stable even in a high temperature environment. Therefore, the reliability of the electronic device can be improved.
  • FIG. 22 is a diagram illustrating a configuration example of the computer system 1000.
  • the computer system 1000 includes software (Software) and hardware (Hardware).
  • the hardware included in the computer system may be referred to as an information processing device.
  • the software that constitutes the computer system 1000 includes an operating system including a device driver, middleware, various development environments, an application program related to AI (AI Application), an application program unrelated to AI, and the like.
  • the device driver includes an auxiliary storage device, a display device, and an application program for controlling an externally connected device such as a printer.
  • the hardware constituting the computer system 1000 includes a first arithmetic processing unit, a second arithmetic processing unit, a first storage device, and the like. Further, the second arithmetic processing unit has a second storage device.
  • a central arithmetic processing unit such as an Off OS CPU may be used.
  • the Noff OS CPU has a storage means (for example, a non-volatile memory) using an OS transistor, and when operation is not required, the necessary information is held in the storage means and power is supplied to the central processing unit. Has a function to stop.
  • the second arithmetic processing unit for example, GPU, FPGA, or the like can be used. It is preferable to use AI OS Accelerator as the second arithmetic processing unit.
  • the AI OS Accelerator is configured by using an OS transistor and has a calculation means such as a product-sum calculation circuit. AI OS Accelerator consumes less power than general GPUs. By using the AI OS Accelerator as the second arithmetic processing unit, the power consumption of the computer system 1000 can be reduced.
  • the semiconductor device of one aspect of the present invention may have, for example, a 3D OS NAND type storage device, in this case, the 3D OS NAND type storage device may function as a cache, a main memory, and a storage. it can. Further, by using a 3D OS NAND type storage device, it becomes easy to realize a non-Von Neumann type computer system.
  • the 3D OS NAND type storage device consumes less power than the 3D NAND type storage device using a Si transistor.
  • the power consumption of the computer system 1000 can be reduced.
  • the 3D OS NAND type storage device can function as a universal memory, the number of parts for configuring the computer system 1000 can be reduced.
  • the semiconductor device that constitutes the hardware With the semiconductor device including the OS transistor, it becomes easy to monolithicize the hardware including the central processing unit, the arithmetic processing unit, and the storage device.
  • the hardware monolithic not only miniaturization, weight reduction, and thinning, but also further reduction of power consumption becomes easy.
  • FIG. 23 shows a configuration example of the computer system 2000 on the right side, and shows an example of the storage hierarchy of the computer node 2100 and the storage node 2200 on the left side.
  • the computer system 2000 has a plurality of computer nodes 2100 and a storage node 2200.
  • the computer system 2000 has a configuration in which a plurality of computer nodes 2100 and a storage node 2200 can electrically communicate with each other via a network 2900.
  • the computer node 2100 has a processor (for example, CPU, GPU, Noff OS CPU, etc.) 2110, a main memory 2120, and a storage memory 2130.
  • the storage node 2200 has a processor 2210, a main memory 2220, and a storage memory 2230 as an example.
  • the processor 2110 included in the computer node 2100 has a core 2111, a register 2112, and a cache memory 2113 as an example.
  • the processor 2210 included in the storage node 2200 has, for example, a core 2211, a register 2212, and a cache memory 2213.
  • register 2112 and / or the register 2212 for example, a flip-flop can be applied.
  • cache memory 2113 and / or the cache memory 2213 for example, SRAM can be applied.
  • main memory 2120 included in the computer node 2100 for example, a DRAM or the like can be applied.
  • storage memory 2130 included in the computer node 2100 for example, a NAND type storage device, a hard disk drive (HDD), or the like can be applied.
  • the storage area included in the core 2111 is located on the uppermost layer. Subsequently, from the upper layer, flip-flops, SRAM, gap area, DRAM, SCM (storage class memory) (gap area), and NAND type storage device (hard disk drive) are located in this order.
  • the storage layer located in the upper layer is required to have a faster operating speed, and the storage device located in the lower layer is required to have a larger storage capacity and a higher recording density.
  • the storage device located at the lowest layer is required to retain data for a long period of time.
  • FIG. 24A shows a configuration example of the computer system 2000A on the right side, and shows an example of the storage hierarchy of the computer node 2500A (computer node 2500B) on the left side.
  • FIG. 24A computer system 2000A has a plurality of computer nodes 2500A and an overall management host 2400 as an example.
  • the computer system 2000A has a configuration in which a plurality of computer nodes 2500A can electrically communicate with each other via the overall management host 2400. Therefore, the overall management host 2400 has, for example, a function of transmitting and receiving signals including data, instructions, and the like to a plurality of computer nodes 2500A.
  • the computer system 2000A can be referred to as a network having an overall management host 2400 and a plurality of computer nodes 2500A.
  • the computer node 2500A can be, for example, the monolithic IC of FIG. 15 described in the fourth embodiment.
  • the wiring for electrically connecting the components included in the monolithic IC is shortened, so that the power consumption required for signal transmission can be reduced. Can be done.
  • the computer node 2500A can be configured as a block diagram of the computer node 2500B as an example.
  • the computer node 2500B has, for example, a processor 2600 and a storage device 2700.
  • processor 2600 for example, a processor applicable to the processor 2110 included in the computer node 2100 shown in FIG. 23 can be used.
  • the storage device 2700 is a storage device having the respective functions of the main memory 2120 and the storage memory 2130 included in the computer node 2100 of FIG. 23. Specifically, the storage device 2700 may be, for example, the information processing device 50 described in the first embodiment.
  • the information processing device 50 has a storage circuit including a plurality of NAND type strings, and has a function of changing the treatment of some strings as a cache memory in the information processing device 50.
  • the function of the main memory 2120 in the computer node 2100 of FIG. 23 can be operated by the storage device 2700. Therefore, unlike the computer node 2100 of FIG. 23, the computer node 2500B of FIG. 24A can be configured not to be provided with the main memory 2120 corresponding to the DRAM.
  • the storage device 2700 can be, for example, a 3D OS NAND type storage device. Further, the 3D OS NAND type storage device has a cache unit 2711 and a storage unit 2712 as an example.
  • the cache unit 2711 corresponds to, for example, the strings ST2 and ST3 described in the operation method example of the first embodiment. Further, the storage unit 2712 corresponds to, for example, the string ST1 described in the operation method example of the first embodiment.
  • the storage hierarchy in the computer node 2500B is as shown on the left side of FIG. 24A.
  • the storage layer in the computer node 2500B has a configuration in which the layer from the NAND type storage device / HDD to the DRAM is replaced with the 3D OS NAND type storage device in the storage layer of the computer node 2100 in FIG. 23.
  • the storage layer of FIG. 24 is shown as "3D OS NAND memory" in each of the corresponding layers of the cache unit 2711 and the storage unit 2712, but these storage layers are combined into one layer. It may be a summary.
  • the circuit included in the computer node 2500A for example, a processor and a storage device has an OS transistor.
  • an OS transistor is less likely to change its transistor characteristics, field effect mobility, etc. due to temperature changes, so it is included in the circuit included in the computer node 2500A (computer node 2500B).
  • the computer node 2500A (computer node 2500B) can be made into a device resistant to heat generation due to driving.
  • the computer system according to one aspect of the present invention is not limited to the configuration shown in FIG. 24A.
  • the computer system according to one aspect of the present invention may have its configuration shown in FIG. 24A changed depending on the situation.
  • the flip-flop provided in the processor 2600 may be replaced with a NOSRAM (Nonvolature Oxide Semiconductor Random Access Memory) (registered trademark).
  • NOSRAM Nonvolature Oxide Semiconductor Random Access Memory
  • the computer system 2000B of FIG. 24B shows a configuration in which the flip-flop is replaced with NO SRAM, a configuration in which the SRAM is replaced with NO SRAM may be used, or a configuration in which the SRAM and the flip-flop are replaced with NO SRAM may be used.
  • the NO SRAM is, for example, a storage device having a memory cell shown in FIGS. 25A to 25D.
  • the memory cell is a gain cell type memory cell having a 2-transistor and 1-capacity element, and is a storage element capable of holding data for a long time.
  • the memory cell 1440 shown in FIG. 25A has a transistor M2, a transistor M3, and a capacitance C2.
  • the transistor M2 has a front gate (sometimes referred to simply as a gate) and a back gate.
  • each of the transistor M2 and the transistor M3 is an OS transistor.
  • the metal oxide contained in the channel forming region of the OS transistor will be described in the sixth embodiment.
  • the first terminal of the transistor M2 is electrically connected to the first terminal of the capacitance C2, the second terminal of the transistor M2 is electrically connected to the wiring WBLL, and the gate of the transistor M2 is electrically connected to the wiring WL. Connected, the back gate of the transistor M2 is electrically connected to the wiring BGLL. The second terminal of the capacitance C2 is electrically connected to the wiring CL.
  • the first terminal of the transistor M3 is electrically connected to the wiring RBLL, the second terminal of the transistor M3 is electrically connected to the wiring SL, and the gate of the transistor M3 is electrically connected to the first terminal of the capacitance C2. It is connected.
  • the wiring WBLL functions as a write bit line
  • the wiring RBLL functions as a read bit line
  • the wiring WL functions as a word line.
  • the wiring CL functions as wiring for applying a predetermined potential to the second terminal of the capacitance C2. For example, it is preferable that a low level potential (sometimes referred to as a reference potential) is applied to the wiring CL during data retention, and the wiring CL is subjected to data writing and data reading. , It is preferable that a high level potential is applied.
  • the wiring BGLL functions as wiring for applying an electric potential to the back gate of the transistor M2.
  • the threshold voltage of the transistor M2 can be increased or decreased by applying an arbitrary potential to the wiring BGLL.
  • a high level potential is applied to the wiring SL.
  • a high level potential is applied to the wiring WL, the transistor M2 is turned on, and the wiring WBLL and the first terminal of the capacitance C2 are brought into a conductive state.
  • the potential corresponding to the information recorded in the wiring WBLL is applied, so that the potential is written to the first terminal of the capacitance C2 and the gate of the transistor M3.
  • a low level potential is applied to the wiring WL to turn off the transistor M2, thereby holding the potential of the first terminal of the capacitance C2 and the potential of the gate of the transistor M3.
  • a high level potential is applied to the wiring SL. Since the current flowing between the source and drain of the transistor M3 and the potential of the first terminal of the transistor M3 are determined by the potential of the gate of the transistor M3 and the potential of the second terminal of the transistor M3, they are connected to the first terminal of the transistor M3.
  • the potential held in the first terminal (or the gate of the transistor M3) of the capacitance C2 can be read out. That is, the information written in this memory cell can be read from the potential held in the first terminal (or the gate of the transistor M3) of the capacitance C2.
  • the memory cell applicable to the NO SRAM of FIG. 24B is not limited to the memory cell 1440. Depending on the situation, the circuit configuration can be changed.
  • the memory cell included in the semiconductor device described in the above embodiment may have a memory cell configuration as shown in FIG. 25B.
  • the memory cell 1450 has a configuration in which the back gate of the transistor M2 is electrically connected to the wiring WL instead of the wiring BGLL. With such a configuration, the same potential as the gate of the transistor M2 can be applied to the back gate of the transistor M2, so that the current flowing through the transistor M2 can be increased when the transistor M2 is in the ON state. it can.
  • the memory cell included in the semiconductor device described in the above embodiment may be a memory cell composed of a transistor M2 having no back gate.
  • An example of the circuit configuration of the memory cell is shown in FIG. 25C.
  • the memory cell 1460 has a configuration in which a back gate is not provided from the transistor M2 of the memory cell 1440.
  • the wiring WBLL and the wiring RBLL may be combined into one wiring BL.
  • An example of the circuit configuration of the memory cell is shown in FIG. 25D.
  • the memory cell 1470 has a configuration in which the wiring WBLL and the wiring RBLL of the memory cell 1440 are used as one wiring BL, and the second terminal of the transistor M2 and the first terminal of the transistor M3 are electrically connected to the wiring BL. It has become. That is, the memory cell 1470 has a configuration in which the write bit line and the read bit line operate as one wiring BL.
  • each memory cell shown in FIGS. 25A to 25D can function as a storage device by arranging them in a matrix.
  • the storage device shown in FIG. 25E can be configured.
  • the storage device shown in FIG. 25E has a cell array CA, a circuit WBD, a circuit CD, a circuit WD, and a circuit RBD.
  • the cell array CA has, for example, a plurality of memory cells 1440 arranged in a matrix as described above.
  • the circuit WBD is electrically connected to the wiring WBLL.
  • the circuit WBD functions as a write circuit for writing data to a memory cell included in the cell array CA, for example.
  • the circuit WD is electrically connected to the wiring WL.
  • the circuit WD functions as a selection circuit for selecting a memory cell for writing data, for example.
  • the circuit RBD is electrically connected to the wiring RBLL and the wiring SL.
  • the circuit RBD functions as a read circuit for reading data from a memory cell included in the cell array CA, for example.
  • the circuit CD is electrically connected to the wiring CL.
  • the circuit CD functions as a selection circuit for selecting a memory cell for reading data, for example.
  • the circuit configuration of the storage device shown in FIG. 25E is an example, and the circuit configuration can be changed as appropriate.
  • the configuration of the computer system 2000 shown in FIG. 23 may be changed.
  • main memory 2120 main memory 2220
  • main memory 2220 main memory 2220
  • storage memory 2130 storage memory 2230
  • the storage memory 2130 (storage memory 2230) is preferably the storage device 2700 described in the computer system 2000A of FIG. 24A, that is, the information processing device 50 described in the first embodiment.
  • the processor 2110 processing unit 2210
  • the storage device 2700 storage memory 2130
  • the main memory 2120 main memory 2220
  • the storage memory 2230 can be electrically connected, and the computer system 2000C can be operated without the main memory 2120 (main memory 2220).

Abstract

回路面積が小さく、消費電力が低減されたコンピュータシステムを適用する。 プロセッサと、3次元構造のNAND型の記憶装置と、を含むコンピュータノードを有するコンピュータシステムである。また、3次元構造のNAND型の記憶装置は、それぞれブロックの異なる、第1ストリングと、第2ストリングと、を有する。第1ストリングは、第1メモリセルを有し、第2ストリングは、第2メモリセルを有する。コントローラは、第1データと、第1データを書き込む命令を含む信号と、を受け取ることで、第1データを第1メモリセルに書き込みを行う。また、コントローラは、その後、第1メモリセルから第1データを読み出して、第2メモリセルに第1データを書き込む。これによって、コンピュータノードは、DRAMなどのメインメモリを設けない構成とすることができる。

Description

コンピュータシステム、及び情報処理装置の動作方法
 本発明の一態様は、コンピュータシステム、及び情報処理装置の動作方法に関する。
 なお本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の技術分野は、物、動作方法、又は、製造方法に関するものである。又は、本発明の一態様は、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、蓄電装置、撮像装置、記憶装置、信号処理装置、センサ、プロセッサ、電子機器、情報処理装置、システム、それらの動作方法、それらの製造方法、又はそれらの検査方法を一例として挙げることができる。
 情報処理装置の低消費電力化が重視されている。そのため、CPU等の集積回路(IC)、記憶装置などの低消費電力化は回路設計の大きな課題となっている。ICの消費電力は大きく分けると、動作時の消費電力(ダイナミック電力)と、動作していない時(スタンバイ時)の消費電力(スタティック電力)との2つになる。高性能化のため動作周波数を高めることで、ダイナミック電力が増大する。スタティック電力の大部分はトランジスタのリーク電流によって消費される電力である。リーク電流には、サブシュレッシュルド・リーク電流、ゲート・トンネル・リーク電流、ゲート誘導ドレインリーク(GIDL:Gate−induced drain leakage)電流、ジャンクション・トンネル・リーク電流がある。これらのリーク電流は、トランジスタの微細化によって増大するため、消費電力の増大が、ICの高性能化、高集積化などの大きな壁となっている。
 集積回路、記憶装置などの半導体装置、又は当該半導体装置を含む情報処理装置の消費電力の低減のため、パワーゲーティング、クロックゲーティングなどにより、動作させる必要のない回路を停止させることが行われている。パワーゲーティングでは電源供給を停止するため、スタンバイ電力を無くす効果がある。CPUでパワーゲーティングを可能とするには、レジスタ、キャッシュなどの記憶内容を不揮発性メモリにバックアップすることが必要になる。
 チャネル形成領域に酸化物半導体(Oxide Semiconductor又は単にOSともいう)が含まれているトランジスタ(以下、「酸化物半導体トランジスタ」または「OSトランジスタ」と呼ぶ場合がある。)のオフ電流が極めて小さいという特性を利用して、電源オフ状態でもデータを保持することが可能なメモリ回路が提案されている。例えば、非特許文献1には、OSトランジスタを用いたバックアップ回路を備えたOS−SRAM(スタティック・ランダム・アクセス・メモリ)が開示されている。非特許文献1には、OS−SRAMを搭載したマイクロプロセッサは、通常動作に影響なく、短い損益分岐時間(BET)でのパワーゲーティングが可能であることが開示されている。
T.Ishizu et al.、Int.Memory Workshop、2014、pp.106−103. S.Bartling et al.、ISSCC Dig.Tech.Papers、pp.432−434、2013. N.Sakimura et al.、ISSCC Dig.Tech.Papers、pp.184−185、2014. VK.Singhal et al.、ISSCC Dig.Tech.Papers、pp.148−149、2015.
 一例として、記憶部と、キャッシュメモリと、を有するNAND型の記憶装置について考える。NAND型の記憶装置において、書き込み用データの入力の速度(単位時間あたりに入力される情報量)は記憶部へのデータの書き込み速度よりも遅い。そのため、当該記憶装置に含まれるキャッシュメモリを用いて、記憶装置に入力された書き込み用データを一時的に保持することで、記憶装置への書き込み用データの入力速度を下げることなく、記憶部へのデータの書き込みを行うことができる。また、記憶部からのデータの読み出し速度は、記憶装置からの読み出しデータの出力の速度(単位時間あたりに出力される情報量)よりも遅い。そのため、当該記憶装置に含まれるキャッシュメモリを用いて、記憶装置から読み出したデータを一時的に保持することで、記憶装置からの読み出しデータの読み出し速度を下げることなく、記憶部からのデータの読み出しを行うことができる。
 また、一例として、キャッシュメモリは、記憶部に保持されているデータの並び替え、消去に関係ないデータの退避などを行うときに、データを一時的に保持する機能を有する。
 キャッシュメモリには、例えば、DRAM(Dynamic Random Access Memory)が適用されている。そのため、キャッシュメモリと、NAND型の記憶装置とは、それぞれ別のプロセスで作成されるため、別々のチップとして作成される。このため、キャッシュメモリと、NAND型の記憶装置と、の間にはバス配線を設ける必要があり、記憶装置の回路面積が大きくなる場合がある。また、バス配線の長さによっては、バス配線に流れる信号の消費電力が大きくなる場合がある。
 本発明の一態様は、回路面積が低減されたコンピュータシステムを提供することを課題の一とする。又は、本発明の一態様は、消費電力が低いコンピュータシステムを提供することを課題の一とする。
 又は、本発明の一態様は、新規なコンピュータシステムを提供することを課題の一とする。又は、本発明の一態様は、新規な情報処理装置の動作方法を提供することを課題の一とする。
 なお、本発明の一態様の課題は、上記列挙した課題に限定されない。上記列挙した課題は、他の課題の存在を妨げるものではない。なお、他の課題は、以下の記載で述べる、本項目で言及していない課題である。本項目で言及していない課題は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した課題、及び他の課題のうち、少なくとも一つの課題を解決するものである。なお、本発明の一態様は、上記列挙した課題、及び他の課題の全てを解決する必要はない。
(1)
 本発明の一態様は、プロセッサと、メモリと、を有するコンピュータシステムである。プロセッサは、記憶部を有し、記憶部は、チャネル形成領域に金属酸化物を有するトランジスタを有し、プロセッサと、メモリと、は、互いに重畳するように、位置している。
(2)
 又は、本発明の一態様は、上記(1)において、プロセッサと、メモリとの間には、DRAMが接続されない構成としてもよい。
(3)
 又は、本発明の一態様は、プロセッサを含むコンピュータノードを有するコンピュータシステムである。プロセッサは、記憶部を有し、記憶部は、第1トランジスタと、第2トランジスタと、容量と、を有する。また、第1トランジスタと、前記第2トランジスタと、のそれぞれは、チャネル形成領域に金属酸化物を有する。第1トランジスタの第1端子は、第2トランジスタのゲートに電気的に接続され、第2トランジスタのゲートは、容量の第1端子に電気的に接続されている。
(4)
 又は、本発明の一態様は、上記(3)の構成において、プロセッサは、SRAMを有し、かつフリップフロップを有さないものとしてもよい。
(5)
 又は、本発明の一態様は、コンピュータノードを有するコンピュータシステムであって、コンピュータノードは、プロセッサと、3次元構造のNAND型の記憶装置と、を有する。また、3次元構造のNAND型の記憶装置は、金属酸化物がチャネル形成領域に含まれているトランジスタを有する。更に、コンピュータノードは、DRAMを有さない構成としてもよい。
(6)
 又は、本発明の一態様は、演算処理装置と、記憶装置と、複数の配線と、を有し、記憶装置は複数のストリングを有し、複数のストリングの一つは、複数の配線の一つを介して演算処理装置と電気的に接続された情報処理装置の動作方法であって、シリアル伝送によって入力された第1データを、複数の第2データに変換し、複数の第2データを複数の配線毎に分配し、トリガー信号に応じて複数の第2データを複数のストリングに同時に供給する情報処理装置の動作方法である。
(7)
 又は、本発明の一態様は、上記(6)の構成において、ストリングは、複数のメモリセルを有し、メモリセルは、酸化物半導体を含んでもよい。
(8)
 又は、本発明の一態様は、上記(6)または(7)の構成において、記憶装置は、NAND型の記憶装置であってもよい。
 なお、本明細書等において、半導体装置とは、半導体特性を利用した装置であり、半導体素子(トランジスタ、ダイオード、フォトダイオード等)を含む回路、同回路を有する装置等をいう。また、半導体特性を利用することで機能しうる装置全般をいう。例えば、集積回路、集積回路を備えたチップ、パッケージにチップを収納した電子部品などは半導体装置の一例である。また、記憶装置、表示装置、発光装置、照明装置、電子機器、情報処理装置等は、それ自体が半導体装置であり、半導体装置を有している場合がある。
 また、本明細書等において、XとYとが接続されていると記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図又は文章に示された接続関係に限定されず、図又は文章に示された接続関係以外のものも、図又は文章に開示されているものとする。X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層など)であるとする。
 XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示デバイス、発光デバイス、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイッチは、導通状態(オン状態)、又は、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。
 XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(デジタルアナログ変換回路、アナログデジタル変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、切り替え回路、増幅回路(信号振幅又は電流量などを大きく出来る回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。
 なお、XとYとが電気的に接続されている、と明示的に記載する場合は、XとYとが電気的に接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟んで接続されている場合)と、XとYとが直接接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟まずに接続されている場合)とを含むものとする。
 また、例えば、「XとYとトランジスタのソース(又は第1の端子など)とドレイン(又は第2の端子など)とは、互いに電気的に接続されており、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yの順序で電気的に接続されている。」と表現することができる。又は、「トランジスタのソース(又は第1の端子など)は、Xと電気的に接続され、トランジスタのドレイン(又は第2の端子など)はYと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yは、この順序で電気的に接続されている」と表現することができる。又は、「Xは、トランジスタのソース(又は第1の端子など)とドレイン(又は第2の端子など)とを介して、Yと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yは、この接続順序で設けられている」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続の順序について規定することにより、トランジスタのソース(又は第1の端子など)と、ドレイン(又は第2の端子など)とを、区別して、技術的範囲を決定することができる。なお、これらの表現方法は、一例であり、これらの表現方法に限定されない。ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
 なお、回路図上は独立している構成要素同士が電気的に接続しているように図示されている場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もある。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、及び電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における電気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場合も、その範疇に含める。
 また、本明細書等において、「抵抗素子」とは、例えば、0Ωよりも高い抵抗値を有する回路素子、配線などとすることができる。そのため、本明細書等において、「抵抗素子」は、抵抗値を有する配線、ソース−ドレイン間に電流が流れるトランジスタ、ダイオード、コイルなどを含むものとする。そのため、「抵抗素子」という用語は、「抵抗」、「負荷」、「抵抗値を有する領域」などの用語に言い換えることができ、逆に「抵抗」、「負荷」、「抵抗値を有する領域」という用語は、「抵抗素子」などの用語に言い換えることができる。抵抗値としては、例えば、好ましくは1mΩ以上10Ω以下、より好ましくは5mΩ以上5Ω以下、更に好ましくは10mΩ以上1Ω以下とすることができる。また、例えば、1Ω以上1×10Ω以下としてもよい。
 また、本明細書等において、「容量素子」とは、例えば、0Fよりも高い静電容量の値を有する回路素子、静電容量の値を有する配線の領域、寄生容量、トランジスタのゲート容量などとすることができる。そのため、本明細書等において、「容量素子」は、一対の電極と、当該電極の間に含まれている誘電体と、を含む回路素子だけでなく、配線と配線との間に現れる寄生容量、トランジスタのソース又はドレインの一方とゲートとの間に現れるゲート容量などを含むものとする。また、「容量素子」、「寄生容量」、「ゲート容量」などという用語は、「容量」などの用語に言い換えることができ、逆に、「容量」という用語は、「容量素子」、「寄生容量」、「ゲート容量」などの用語に言い換えることができる。また、「容量」の「一対の電極」という用語は、「一対の導電体」、「一対の導電領域」、「一対の領域」などに言い換えることができる。なお、静電容量の値としては、例えば、0.05fF以上10pF以下とすることができる。また、例えば、1pF以上10μF以下としてもよい。
 また、本明細書等において、トランジスタは、ゲート、ソース、及びドレインと呼ばれる3つの端子を有する。ゲートは、トランジスタの導通状態を制御する制御端子である。ソース又はドレインとして機能する2つの端子は、トランジスタの入出力端子である。2つの入出力端子は、トランジスタの導電型(nチャネル型、pチャネル型)及びトランジスタの3つの端子に与えられる電位の高低によって、一方がソースとなり他方がドレインとなる。このため、本明細書等においては、ソースとドレインの用語は、互いに言い換えることができるものとする。また、本明細書等では、トランジスタの接続関係を説明する際、「ソース又はドレインの一方」(又は第1電極、又は第1端子)、「ソース又はドレインの他方」(又は第2電極、又は第2端子)という表記を用いる。なお、トランジスタの構造によっては、上述した3つの端子に加えて、バックゲートを有する場合がある。この場合、本明細書等において、トランジスタのゲート又はバックゲートの一方を第1ゲートと呼称し、トランジスタのゲート又はバックゲートの他方を第2ゲートと呼称することがある。更に、同じトランジスタにおいて、「ゲート」と「バックゲート」の用語は互いに入れ換えることができる場合がある。また、トランジスタが、3以上のゲートを有する場合は、本明細書等においては、それぞれのゲートを第1ゲート、第2ゲート、第3ゲートなどと呼称することがある。
 また、本明細書等において、ノードは、回路構成、デバイス構造等に応じて、端子、配線、電極、導電層、導電体、不純物領域等と言い換えることが可能である。また、端子、配線等をノードと言い換えることが可能である。
 また、本明細書等において、「電圧」と「電位」は、適宜言い換えることができる。「電圧」は、基準となる電位からの電位差のことであり、例えば基準となる電位をグラウンド電位(接地電位)とすると、「電圧」を「電位」に言い換えることができる。なお、グラウンド電位は必ずしも0Vを意味するとは限らない。また、電位は相対的なものであり、基準となる電位が変わることによって、配線に与えられる電位、回路などに印加される電位、回路などから出力される電位なども変化する。
 また、本明細書等において、「高レベル電位」、「低レベル電位」という用語は、特定の電位を意味するものではない。例えば、2本の配線において、両方とも「高レベル電位を供給する配線として機能する」と記載されていた場合、両方の配線が与えるそれぞれの高レベル電位は、互いに等しくなくてもよい。また、同様に、2本の配線において、両方とも「低レベル電位を供給する配線として機能する」と記載されていた場合、両方の配線が与えるそれぞれの低レベル電位は、互いに等しくなくてもよい。
「電流」とは、電荷の移動現象(電気伝導)のことであり、例えば、「正の荷電体の電気伝導が起きている」という記載は、「その逆向きに負の荷電体の電気伝導が起きている」と換言することができる。そのため、本明細書等において、「電流」とは、特に断らない限り、キャリアの移動に伴う電荷の移動現象(電気伝導)をいうものとする。ここでいうキャリアとは、電子、正孔、アニオン、カチオン、錯イオン等が挙げられ、電流の流れる系(例えば、半導体、金属、電解液、真空中など)によってキャリアが異なる。また、配線等における「電流の向き」は、正の電荷としたキャリアが移動する方向とし、正の電流量で記載する。換言すると、負の電荷としたキャリアが移動する方向は、電流の向きと逆の方向となり、負の電流量で表現される。そのため、本明細書等において、電流の正負(又は電流の向き)について断りがない場合、「素子Aから素子Bに電流が流れる」等の記載は「素子Bから素子Aに電流が流れる」等に言い換えることができるものとする。また、「素子Aに電流が入力される」等の記載は「素子Aから電流が出力される」等に言い換えることができるものとする。
 また、本明細書等において、「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものである。従って、構成要素の数を限定するものではない。また、構成要素の順序を限定するものではない。例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素が、他の実施の形態、あるいは特許請求の範囲において「第2」に言及された構成要素とすることもありうる。また例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素を、他の実施の形態、あるいは特許請求の範囲において省略することもありうる。
 また、本明細書等において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている場合がある。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書等で説明した語句に限定されず、状況に応じて適切に言い換えることができる。例えば、「導電体の上面に位置する絶縁体」の表現では、示している図面の向きを180度回転することによって、「導電体の下面に位置する絶縁体」と言い換えることができる。
 また、「上」、又は「下」の用語は、構成要素の位置関係が直上又は直下で、かつ、直接接していることを限定するものではない。例えば、「絶縁層A上の電極B」の表現であれば、絶縁層Aの上に電極Bが直接接して形成されている必要はなく、絶縁層Aと電極Bとの間に他の構成要素を含むものを除外しない。
 また、本明細書等において、「膜」、「層」などの語句は、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。又は、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。又は、場合によっては、又は、状況に応じて、「膜」、「層」などの語句を使わずに、別の用語に入れ替えることが可能である。例えば、「導電層」又は「導電膜」という用語を、「導電体」という用語に変更することが可能な場合がある。又は、例えば、「絶縁層」、「絶縁膜」という用語を、「絶縁体」という用語に変更することが可能な場合がある。
 また、本明細書等において「電極」、「配線」、「端子」などの用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」、「配線」などの用語は、複数の「電極」、「配線」などが一体となって形成されている場合なども含む。また、例えば、「端子」は「配線」、「電極」などの一部として用いられることがあり、その逆もまた同様である。更に、「端子」の用語は、複数の「電極」、「配線」、「端子」などが一体となって形成されている場合なども含む。そのため、例えば、「電極」は「配線」又は「端子」の一部とすることができ、また、例えば、「端子」は「配線」又は「電極」の一部とすることができる。また、「電極」、「配線」、「端子」などの用語は、場合によって、「領域」などの用語に置き換える場合がある。
 また、本明細書等において、「配線」、「信号線」、「電源線」などの用語は、場合によっては、又は、状況に応じて、互いに入れ替えることが可能である。例えば、「配線」という用語を、「信号線」という用語に変更することが可能な場合がある。また、例えば、「配線」という用語を、「電源線」などの用語に変更することが可能な場合がある。また、その逆も同様で、「信号線」、「電源線」などの用語を、「配線」という用語に変更することが可能な場合がある。「電源線」などの用語は、「信号線」などの用語に変更することが可能な場合がある。また、その逆も同様で「信号線」などの用語は、「電源線」などの用語に変更することが可能な場合がある。また、配線に印加されている「電位」という用語を、場合によっては、又は、状況に応じて、「信号」などという用語に変更することが可能な場合がある。また、その逆も同様で、「信号」などの用語は、「電位」という用語に変更することが可能な場合がある。
 本明細書等において、半導体の不純物とは、例えば、半導体層を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物である。不純物が含まれることにより、例えば、半導体において欠陥準位密度が高くなること、キャリア移動度が低下すること、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、主成分以外の遷移金属などがあり、特に、例えば、水素(水にも含まれる)、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。具体的には、半導体がシリコンである場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第15族元素(但し、酸素、水素は含まない)などがある。
 本明細書等において、スイッチとは、導通状態(オン状態)、又は、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有するものをいう。又は、スイッチとは、電流を流す経路を選択して切り替える機能を有するものをいう。一例としては、電気的なスイッチ、機械的なスイッチなどを用いることができる。つまり、スイッチは、電流を制御できるものであればよく、特定のものに限定されない。
 電気的なスイッチの一例としては、トランジスタ(例えば、バイポーラトランジスタ、MOSトランジスタなど)、ダイオード(例えば、PNダイオード、PINダイオード、ショットキーダイオード、MIM(Metal Insulator Metal)ダイオード、MIS(Metal Insulator Semiconductor)ダイオード、ダイオード接続のトランジスタなど)、又はこれらを組み合わせた論理回路などがある。なお、スイッチとしてトランジスタを用いる場合、トランジスタの「導通状態」とは、トランジスタのソース電極とドレイン電極が電気的に短絡されているとみなせる状態をいう。また、トランジスタの「非導通状態」とは、トランジスタのソース電極とドレイン電極が電気的に遮断されているとみなせる状態をいう。なおトランジスタを単なるスイッチとして動作させる場合には、トランジスタの極性(導電型)は特に限定されない。
 機械的なスイッチの一例としては、MEMS(マイクロ・エレクトロ・メカニカル・システム)技術を用いたスイッチがある。そのスイッチは、機械的に動かすことが可能な電極を有し、その電極が動くことによって、導通と非導通とを制御して動作する。
 本明細書において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。また、「略平行」又は「概略平行」とは、二つの直線が−30°以上30°以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。また、「略垂直」又は「概略垂直」とは、二つの直線が60°以上120°以下の角度で配置されている状態をいう。
 本発明の一態様によって、回路面積が低減されたコンピュータシステムを提供することができる。又は、本発明の一態様によって、消費電力が低いコンピュータシステムを提供することができる。
 又は、本発明の一態様によって、新規なコンピュータシステムを提供することができる。又は、本発明の一態様によって、新規な情報処理装置の動作方法を提供することを課題の一とする。
 なお本発明の一態様の効果は、上記列挙した効果に限定されない。上記列挙した効果は、他の効果の存在を妨げるものではない。なお他の効果は、以下の記載で述べる、本項目で言及していない効果である。本項目で言及していない効果は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した効果、及び他の効果のうち、少なくとも一つの効果を有するものである。従って本発明の一態様は、場合によっては、上記列挙した効果を有さない場合もある。
図1は、情報処理装置の構成例を示すブロック図である。
図2は、情報処理装置の動作方法例を示すフローチャートである。
図3A乃至図3Cは、情報処理装置の動作方法例を示す模式図である。
図4A乃至図4Cは、情報処理装置に含まれている記憶部の構成例を示す回路図である。
図5A乃至図5Cは、情報処理装置に含まれている記憶部の構成例を示す回路図である。
図6は、情報処理装置に含まれている記憶部の構成例を示す回路図である。
図7は、情報処理装置に含まれている記憶部の構成例を示す回路図である。
図8A、及び図8Bは、情報処理装置に含まれている記憶部の動作方法例を示すタイミングチャートある。
図9は、情報処理装置に含まれている記憶部の構成例を示す回路図である。
図10は、情報処理装置に含まれている記憶部の構成例を示す回路図である。
図11は、情報処理装置の構成例を説明する断面模式図である。
図12は、トランジスタの構成例を説明する断面模式図である。
図13は、情報処理装置の構成例を説明する断面模式図である。
図14Aはコンピュータの構成例を説明する斜視図であり、図14BはモノリシックICを説明する斜視図である。
図15は、モノリシックICの構成例を示す模式図である。
図16A、及び図16Bのそれぞれは、コンピュータ、モノリシックICの記憶階層を説明する図である。
図17A、及び図17Bは、情報処理装置の構成、及びその動作方法を説明するブロック図である。
図18AはIGZOの結晶構造の分類を説明する図であり、図18Bは結晶性IGZOのXRDスペクトルを説明する図であり、図18Cは結晶性IGZOの極微電子線回折パターンを説明する図である。
図19Aは半導体ウェハの一例を示す斜視図であり、図19Bはチップの一例を示す斜視図であり、図19C、及び図19Dは電子部品の一例を示す斜視図である。
図20A乃至図20Jは、製品の一例を説明する斜視図、又は、模式図である。
図21A乃至図21Cは、計算機の一例を説明する斜視図である。
図22は、計算機の一例を説明する図である。
図23は、コンピュータシステムの一例を示す図である。
図24A、及び図24Bは、コンピュータシステムの一例を示す図である。
図25A乃至図25Dはメモリセルの一例を示す回路図であり、図25Eはメモリセルアレイと周辺回路の一例を示すブロック図である。
図26は、コンピュータシステムの一例を示す図である。
 本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体などに分類される。例えば、トランジスタの活性層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、増幅作用、整流作用、及びスイッチング作用の少なくとも1つを有するトランジスタのチャネル形成領域が、金属酸化物によって構成し得る場合、当該金属酸化物を、金属酸化物半導体(metal oxide semiconductor)と呼称することができる。
 また、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
 また、本明細書等において、各実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて、本発明の一態様とすることができる。また、1つの実施の形態の中に、複数の構成例が示される場合は、互いに構成例を適宜組み合わせることが可能である。
 なお、ある一つの実施の形態の中で述べる内容(一部の内容でもよい)は、その実施の形態で述べる別の内容(一部の内容でもよい)と、一つ若しくは複数の別の実施の形態で述べる内容(一部の内容でもよい)との少なくとも一つの内容に対して、適用、組み合わせ、又は置き換えなどを行うことができる。
 なお、実施の形態の中で述べる内容とは、各々の実施の形態(又は実施例)において、様々な図を用いて述べる内容、又は明細書に記載される文章を用いて述べる内容のことである。
 なお、ある一つの実施の形態において述べる図(一部でもよい)は、その図の別の部分、その実施の形態において述べる別の図(一部でもよい)と、一つ若しくは複数の別の実施の形態において述べる図(一部でもよい)との少なくとも一つの図に対して、組み合わせることにより、さらに多くの図を構成させることができる。
 本明細書に記載の実施の形態については、図面を参照しながら説明する。但し、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなく、その形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、実施の形態の記載内容に限定して解釈されるものではない。なお、実施の形態の発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、斜視図などにおいて、図面の明確性を期すために、一部の構成要素の記載を省略している場合がある。
 本明細書等において、複数の要素に同じ符号を用いる場合、特に、それらを区別する必要があるときには、符号に“_1”、“[n]”、“[m,n]”等の識別用の符号を付記して記載する場合がある。
 また、本明細書の図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状又は値などに限定されない。例えば、ノイズによる信号、電圧、若しくは電流のばらつき、又は、タイミングのずれによる信号、電圧、若しくは電流のばらつきなどを含むことが可能である。
(実施の形態1)
 本実施の形態では、記憶装置としての機能を有する、本発明の一態様の情報処理装置について説明する。
<構成例>
 図1は、情報処理装置の構成例を示すブロック図である。情報処理装置50は、一例として、記憶部1196と、コントローラ1197と、バスインターフェース1198と、を有する。
 情報処理装置50は、一例として、命令情報を含む信号を外部から取得することによって、当該命令に応じて記憶部1196へのデータの書き込みを行う機能を有する。なお、記憶部1196は、一例として、メモリセルを有しており、当該データは当該メモリセルに書き込まれるものとする。また、記憶部1196は、当該メモリセルを選択するためのトランジスタなどを有する場合がある。
 具体的には、例えば、情報処理装置50に入力された命令情報を含む信号ISGは、バスインターフェース1198を介して、コントローラ1197に入力される。
 コントローラ1197は、例えば、信号ISGをデコードする機能を有する。また、コントローラ1197は、デコードされた信号に含まれる命令に基づき、各種制御を行なう機能を有する。具体的に、コントローラ1197は、記憶部1196に含まれているメモリセルのアドレスを生成し、情報処理装置の状態に応じて記憶部1196のデータの読み出し、又は書き込みを行う。なお、記憶部1196に書き込みを行うとき、書き込み用のデータとしては、情報処理装置に、バスインターフェース1198を介して入力されたデータDTなどとすることができる。なお、データDTは、バスインターフェース1198を介して、コントローラ1197に送信される。
 そのため、コントローラ1197は、一例として、信号ISGをデコードする回路と、記憶部1196に含まれているメモリセルのアドレスを生成する回路と、記憶部1196に含まれているトランジスタのオン状態とオフ状態とを切り替えるための信号を出力する回路と、を有する場合がある。
 また、コントローラ1197は、動作のタイミングを制御する信号を生成する機能を有してもよい。例えば、コントローラ1197は、基準クロック信号を元に、内部クロック信号を生成する内部クロック生成部を備えて、内部クロック信号を上記各種回路に供給する構成としてもよい。
 また、コントローラ1197は、記憶部1196に含まれているストリングのメモリセルに対して、エラーチェックを行う機能を有してもよい。コントローラ1197がこの機能を有することで、例えば、コントローラ1197が記憶部1196にデータの書き込みを行う前に、記憶部1196に含まれているストリングのメモリセルに対してエラーチェックを行うことができる。このとき、書き込み先のストリングに不良セルを見つけた場合、コントローラ1197は、データの書き込み先を不良セルから別のセルに変更して、データの書き込み動作を行うことができる。また、コントローラ1197は、記憶部1196に含まれているストリングのメモリセルに対して、一定の間隔で、エラーチェックを行って、ストリングに不良セルを見つけたときに、データを訂正する機能を有してもよい。
 また、情報処理装置50は、一例として、命令情報を含む信号を外部から取得することによって、当該命令に応じて記憶部1196からデータの読み出しを行う機能を有する。また、情報処理装置50は、コントローラ1197によって、読み出したデータを信号OSGとして、情報処理装置50の外部に出力する機能を有する。
 本発明の一態様の情報処理装置において、記憶部1196としては、例えば、NAND型のストリングを有する記憶回路を適用することができる。特に、NAND型の記憶回路としては、OSトランジスタを用いた3次元構造のNAND型の記憶回路を適用することが好ましい。なお、メモリセルの構成として、OSトランジスタを用いたNAND型のストリングを横型として、当該ストリングを1層ずつ積層する構成と、OSトランジスタを用いたNAND型のストリングを縦型として、当該ストリングをエッチングなどにより一括で形成する構成と、が挙げられる。本明細書等では、OSトランジスタを用いたNAND型のストリングを縦型とした構造を、3D OS NAND(登録商標)型の記憶回路と呼称する場合がある。3D OS NAND型の記憶回路は、多数のメモリセル同時に形成することができるため、少ない作製工程で実装密度を高めることができる。すなわち、1bitあたりのコストを低減し、実装密度の高い記憶回路を低コストで実現できる。このため、記憶部1196は、NAND型の複数のストリングを有する。なお、図1には、記憶部1196は、ストリングST1乃至ストリングST3を有する例を示している。また、図1の記憶部1196では、ストリングST1乃至ストリングST3以外のストリングについては省略している。
 一例として、ストリングST1はメモリセルL[1]乃至メモリセルL[n](nは1以上の整数とする。)を有し、ストリングST2はメモリセルM[1]乃至メモリセルM[n]を有し、ストリングST3はメモリセルN[1]乃至メモリセルN[n]を有する。なお、図1では、ストリングST1において、メモリセルL[1]と、メモリセルL[2]と、メモリセルL[n]と、を抜粋して図示しており、また、ストリングST2において、メモリセルM[1]と、メモリセルM[2]と、メモリセルM[n]と、を抜粋して図示しており、また、ストリングST3において、メモリセルN[1]と、メモリセルN[2]と、メモリセルN[n]と、を抜粋して図示している。
 また、ストリングST1において、メモリセルL[1]乃至メモリセルL[n]は、配線SL1と配線BL1との間に、直列に電気的に接続されている。同様に、ストリングST2において、メモリセルM[1]乃至メモリセルM[n]は、配線SL2と配線BL2との間に、直列に電気的に接続され、ストリングST3において、メモリセルN[1]乃至メモリセルN[n]は、配線SL3と配線BL3との間に、直列に電気的に接続されている。
 配線SL1乃至配線SL3のそれぞれは、ストリングST1乃至ストリングST3に対して、所定の電位を与える配線として機能する。また、配線BL1乃至配線BL3のそれぞれは、ストリングST1乃至ストリングST3に含まれているメモリセルへのデータを書き込むための配線、及び/又はメモリセルからのデータを読み出すための配線として機能する。
 なお、図示されていないストリングについても、ストリングST1乃至ストリングST3と同様の接続構成とする。
<動作方法例>
 ここで、図1の情報処理装置50において、記憶部1196のストリングに含まれている一部のメモリセルをキャッシュメモリとして扱う動作方法の一例を説明する。
 図2は、図1の情報処理装置50の動作方法の例を示したフローチャートである。当該動作方法は、ステップSTP1乃至ステップSTP8を有する。また、当該フローチャートと併せて、ストリングST1、及びストリングST2におけるデータの動きを図3A乃至図3Cに示す。
 また、本動作方法としては、一例として、ストリングST1のメモリセルL[1]乃至メモリセルL[n]のそれぞれにデータが保持されているものとして、メモリセルL[6]のデータを書き換える場合を考える。また、少なくともストリングST2、及びストリングST3にはデータが保持されていないものとする。
 図1の情報処理装置50において、動作が開始すると、初めにステップSTP1が行われる。
 ステップSTP1は、メモリセルL[6]への書き換え用のデータを、例えば、ストリングST3のメモリセルN[1]に書き込むステップを有する。具体的には、例えば、図1の情報処理装置50は、書き換え用のデータDTと、データを書き換える命令を含む信号ISGと、を取得して、コントローラ1197からの記憶部1196に書き込み信号が送信されて、メモリセルN[1]に書き込み用のデータDTを保持する。
 ステップSTP1が終了した後にステップSTP2が行われる。ステップSTP2は、ストリングST1において、書き換えを行うメモリセル以外のメモリセルL[1]乃至メモリセルL[n]のそれぞれに保持されているデータを読み出すステップを有する。ここでは、例えば、メモリセルL[1]乃至メモリセルL[5]のそれぞれに保持されているデータを読み出すものとする(図3A参照)。
 ステップSTP3は、ステップSTP2において読み出したメモリセルL[1]乃至メモリセルL[5]のそれぞれのデータを、ストリングST2のメモリセルM[1]乃至メモリセルM[5]に順次書き込むステップを有する(図3A参照)。つまり、ステップSTP2からステップSTP3までの動作によって、ストリングST1のメモリセルL[1]乃至メモリセルL[5]のそれぞれのデータが、ストリングST2のメモリセルM[1]乃至メモリセルM[5]にコピーされる。
 なお、図2のフローチャートでは、ステップSTP2の次にステップSTP3が行われるように記載しているが、本発明の一態様の情報処理装置の動作方法は、これに限定さない。例えば、ステップSTP2において、ストリングST1のメモリセルL[1]乃至メモリセルL[5]のそれぞれに保持されているデータを順次読み出していき、読み出したデータからストリングST2のメモリセルM[1]乃至メモリセルM[5]に順次書き込んでもよい。つまり、ステップSTP2及びステップSTP3は、同じステップとしてまとめてもよい。
 ステップSTP3が終了した後にステップSTP4が行われる。ステップSTP4は、ストリングST1のメモリセルL[1]乃至メモリセルL[5]に保持されているデータを消去するステップを有する。
 記憶部1196がNAND型の記憶回路である場合、データの消去動作はストリング単位で行われるため、ストリングST1のメモリセルL[1]乃至メモリセルL[5]に保持されているデータを消去しようとすると、メモリセルL[1]乃至メモリセルL[n]の全てのデータの消去が行われるため、ステップSTP2及びステップSTP3において、メモリセルL[1]乃至メモリセルL[5]だけでなく、メモリセルL[7]乃至メモリセルL[n]のデータもストリングST2に書き込む必要がある。
 このため、記憶部1196としては、後述する図4A乃至図4C、図6、図7に図示している回路構成を有するOS NAND型の記憶回路であることが好ましい。又は、状況によっては、記憶部1196の回路構成は、シリコンをチャネル形成領域に含むトランジスタ(以後、Siトランジスタと呼称する)を有する構成として、図5A乃至図5Cのいずれか一の構成としてもよい。詳しくは後述するが、当該記憶装置を用いることによって、ストリングST1のメモリセルL[1]から任意のメモリセルまでのデータを消去することができる。このため、本動作例では、メモリセルL[6]のデータを書き換えるため、ストリングST1のメモリセルL[1]乃至メモリセルL[6]のデータのみ消去を行うこととする(図3B参照)。
 ステップSTP5は、ストリングST3のメモリセルN[1]から書き換え用のデータDTを読み出すステップを有する。
 ステップSTP6は、ステップSTP5において読み出したメモリセルN[1]の書き換え用のデータDTをストリングST1のメモリセルL[6]に書き込むステップを有する(図3B参照)。
 ステップSTP7は、ストリングST2のメモリセルM[1]乃至メモリセルM[5]のそれぞれに保持されているデータを読み出すステップを有する。当該データは、ステップSTP3において、書き込まれたデータに相当する(図3C参照)。
 ステップSTP8は、ステップSTP5において読み出したメモリセルM[1]乃至メモリセルM[5]のそれぞれのデータを、ストリングST1のメモリセルL[1]乃至メモリセルL[5]に順次書き込むステップを有する(図3C参照)。つまり、ステップSTP7からステップSTP8までの動作によって、ストリングST1のメモリセルM[1]乃至メモリセルM[5]のそれぞれのデータが、ストリングST2のメモリセルL[1]乃至メモリセルL[5]にコピーされる。
 なお、図2のフローチャートでは、ステップSTP7の次にステップSTP8が行われるように記載しているが、本発明の一態様の情報処理装置の動作方法は、これに限定さない。例えば、ステップSTP7において、ストリングST2のメモリセルM[1]乃至メモリセルM[5]のそれぞれに保持されているデータを順次読み出していき、読み出したデータからストリングST1のメモリセルL[1]乃至メモリセルL[5]に順次書き込んでもよい。つまり、ステップSTP7及びステップSTP8は、同じステップとしてまとめてもよい。
 上述したステップSTP1乃至ステップSTP8のとおり、記憶部1196のストリングにデータを書き込むとき、ストリングに保持されたデータを書き換えるとき、などにおいて、記憶部1196の別のストリングのメモリセルをキャッシュメモリとして扱うことができる。
 ところで、図1に示す情報処理装置50において、回路を形成するための基板としては、例えば、半導体基板(例えば単結晶基板又はシリコン基板)を用いることが好ましい。また、当該基板としては、例えば、SOI基板、ガラス基板、石英基板、プラスチック基板、サファイアガラス基板、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、又は基材フィルムなどがある。ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、又はソーダライムガラスなどがある。可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、以下のものがあげられる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリテトラフルオロエチレン(PTFE)に代表されるプラスチックがある。または、一例としては、アクリル等の合成樹脂などがある。または、一例としては、ポリプロピレン、ポリエステル、ポリフッ化ビニル、又はポリ塩化ビニルなどがある。または、一例としては、ポリアミド、ポリイミド、アラミド、エポキシ樹脂、無機蒸着フィルム、又は紙類などがある。特に、半導体基板、単結晶基板、又はSOI基板などを用いてトランジスタを製造することによって、特性、サイズ、又は形状などのばらつきが少なく、電流能力が高く、サイズの小さいトランジスタを製造することができる。このようなトランジスタによって回路を構成すると、回路の低消費電力化、又は回路の高集積化を図ることができる。
 また、基板として、可撓性基板を用い、可撓性基板上に直接、トランジスタを形成してもよい。または、基板とトランジスタの間に剥離層を設けてもよい。剥離層は、その上に情報処理装置を一部あるいは全部完成させた後、基板より分離し、他の基板に転載するために用いることができる。その際、トランジスタは耐熱性の劣る基板、可撓性の基板などにも転載できる。なお、上述の剥離層には、例えば、タングステン膜と酸化シリコン膜との無機膜の積層構造の構成、基板上にポリイミド等の有機樹脂膜が形成された構成等を用いることができる。
 つまり、ある基板を用いてトランジスタを形成し、その後、別の基板にトランジスタを転置し、別の基板上にトランジスタを配置してもよい。トランジスタが転置される基板の一例としては、上述したトランジスタを形成することが可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィルム基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、又はゴム基板などがある。これらの基板を用いることにより、特性のよいトランジスタの形成、消費電力の小さいトランジスタの形成、壊れにくい装置の製造、耐熱性の付与、軽量化、又は薄型化を図ることができる。
 なお、所定の機能を実現させるために必要な回路の全てを、同一の基板(例えば、ガラス基板、プラスチック基板、単結晶基板、又はSOI基板など)に形成することが可能である。こうして、部品点数の削減によるコストの低減、又は回路部品との接続点数の低減による信頼性の向上を図ることができる。
 なお、所定の機能を実現させるために必要な回路の全てを同じ基板に形成しないことが可能である。つまり、所定の機能を実現させるために必要な回路の一部は、ある基板に形成され、所定の機能を実現させるために必要な回路の別の一部は、別の基板に形成されていることが可能である。例えば、所定の機能を実現させるために必要な回路の一部は、ガラス基板に形成され、所定の機能を実現させるために必要な回路の別の一部は、単結晶基板(又はSOI基板)に形成されることが可能である。そして、所定の機能を実現させるために必要な回路の別の一部が形成される単結晶基板(ICチップともいう)を、COG(Chip On Glass)によって、ガラス基板に接続して、ガラス基板にそのICチップを配置することが可能である。または、ICチップを、TAB(Tape Automated Bonding)、COF(Chip On Film)、SMT(Surface Mount Technology)、又はプリント基板などを用いてガラス基板と接続することが可能である。このように、回路の一部が画素部と同じ基板に形成されていることにより、部品点数の削減によるコストの低減、又は回路部品との接続点数の低減による信頼性の向上を図ることができる。特に、駆動電圧が大きい部分の回路、又は駆動周波数が高い部分の回路などは、消費電力が大きくなってしまう場合が多い。そこで、このような回路を、画素部とは別の基板(例えば単結晶基板)に形成して、ICチップを構成する。このICチップを用いることによって、消費電力の増加を防ぐことができる。
 なお、本発明の一態様は、図1に示す情報処理装置50の構成に限定されない。本発明の一態様は、状況に応じて、図1に示す情報処理装置50の構成を変更してもよい。例えば、図1に示す情報処理装置50に含まれている記憶部1196のストリングの構成は、実施の形態2で説明するストリングの構成に変更してもよい。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態2)
 本実施の形態では、実施の形態1の記憶部1196に適用できる記憶部(NAND型の記憶回路)の構成例について説明する。
<記憶部(記憶回路)の構成例>
 記憶部の一例について、図4Aを参照して説明する。図4Aには、n個(nは1以上の整数である。)のメモリセルの回路図が示されている。すなわち、図4Aに示す回路は、メモリセルMC[1]乃至メモリセルMC[n]のメモリセルと、それらを制御するための配線WWL[1]乃至配線WWL[n]、配線RWL[1]乃至配線RWL[n]、配線WBL、配線RBLを有する。なお、配線WWLは書き込みワード線として機能し、配線RWLは読み出しワード線として機能し、配線WBLは書き込みビット線として機能し、配線RBLは読み出しビット線として機能する。
 それぞれのメモリセルMCは、OSトランジスタであるトランジスタWTr及びトランジスタRTrと、容量CSと、を有する。図4Aに図示しているトランジスタRTrは、バックゲートを有するトランジスタであり、バックゲートに電位を印加することにより、トランジスタRTrのしきい値電圧を変動することができる。なお、図4Aに図示している配線BGLは、それぞれメモリセルMC[1]乃至メモリセルMC[n]が有するトランジスタRTrのバックゲートと電気的に接続されている。また、図4Aに示す半導体装置は、配線BGLがメモリセルMC[1]乃至メモリセルMC[n]が有するトランジスタRTrのバックゲートのそれぞれと電気的に接続されている構成でなく、当該バックゲートに対してそれぞれ独立に電気的に接続して、それぞれ互いに異なった電位を印加する構成としてもよい。
 トランジスタWTrはOSトランジスタであるため、トランジスタWTrのチャネル形成領域は、例えば、実施の形態6で説明する金属酸化物とすることができる。特に、インジウム、元素M(元素Mとしては、例えば、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなど)、亜鉛から一、又は複数選ばれた元素を有する金属酸化物の場合、当該金属酸化物は、ワイドギャップ半導体として機能するため、当該金属酸化物がチャネル形成領域に含まれているトランジスタは、オフ電流が非常に低い特性を有する。
 なお、トランジスタWTrは、状況に応じて、OSトランジスタ以外のトランジスタとしてもよい。例えば、トランジスタWTrは、Siトランジスタとしてもよい。
 また、トランジスタRTrも、状況に応じて、OSトランジスタ以外のトランジスタとしてもよい。例えば、トランジスタRTrは、Siトランジスタとしてもよい。Siトランジスタは電界効果移動度が大きいため、Siトランジスタのドレイン電流を大きくすることができる。このため、記憶部にSiトランジスタを適用することによって、記憶部の動作を速めることができる。
 トランジスタWTrは、書き込みトランジスタとして機能し、トランジスタRTrは読み出しトランジスタとして機能する。トランジスタWTrのオン状態、オフ状態の切り替えは、配線WWLに印加される電位によって行われる。容量CSの一方の電極の電位は、配線RWLで制御される。容量CSの他方の電極は、トランジスタRTrのゲートに電気的に接続されている。容量CSの他方の電極をメモリノードと言い換えることができる。各メモリセルMCのメモリノードは、そのメモリセルMCが有するトランジスタWTrの第1端子に電気的に接続されている。
 また、トランジスタWTrの第2端子は、隣接するメモリセルMCのトランジスタWTrの第1端子と直列に、電気的に接続されている。同様に、トランジスタRTrの第1端子は、隣接するメモリセルのトランジスタRTrの第2端子と直列に、電気的に接続されている。そして、メモリセルMC[n]が有するトランジスタWTrの第2端子は、配線WBLと電気的に接続され、メモリセルMC[n]が有するトランジスタRTrの第2端子は、配線RBLと電気的に接続されている。なお、本実施の形態では、メモリセルMC[n]が有するトランジスタRTrの第2端子と配線RBLとの接続点をノードN1と呼称し、メモリセルMC[1]が有するトランジスタRTrの第1端子をノードN2と呼称する。なお、ノードN1と配線RBLとの間の導通状態を制御するために、メモリセルMC[n]のトランジスタRTrと直列に、選択用トランジスタを接続してもよい。同様に、ノードN2と接続された配線と、ノードN2との間の導通状態を制御するために、メモリセルMC[1]のトランジスタRTrと直列に、選択用トランジスタを接続してもよい。
 なお、本発明の一態様は、図4Aに示す半導体装置に限定されない。本発明の一態様は、図4Aに示す半導体装置を適宜変更した回路構成とすることができる。例えば、本発明の一態様は、図4Bに示すとおり、トランジスタWTrにもバックゲートを設けた半導体装置としてもよい。なお、図4Bに図示している半導体装置は、図4Aに図示している半導体装置の構成に加え、メモリセルMC[1]乃至メモリセルMC[n]が有するトランジスタWTrにバックゲートを設けて、当該バックゲートのそれぞれに配線BGLと電気的に接続した構成となっている。また、例えば、本発明の一態様は、図4Cに示すとおり、トランジスタRTr、及びトランジスタWTrにバックゲートを設けない半導体装置としてもよい。
 又は、本発明の一態様は、図5Aに示すとおり、図4Aの構成において、トランジスタWTrをOSトランジスタとし、トランジスタRTrをSiトランジスタとした半導体装置としてもよい。又は、図5Bに示すとおり、図4Aの構成において、トランジスタWTrをSiトランジスタとし、トランジスタRTrをOSトランジスタとした半導体装置としてもよい。又は、図5Cに示すとおり、図4Aの構成において、トランジスタWTrをSiトランジスタとし、トランジスタRTrをSiトランジスタとした半導体装置としてもよい。このように、本発明の一態様は、目的または用途などによって、半導体装置に含まれているトランジスタWTrに適用するトランジスタをOSトランジスタ又はSiトランジスタを選択すればよく、同様に、半導体装置に含まれているトランジスタWTrに適用するトランジスタをOSトランジスタ又はSiトランジスタを選択すればよい。
 ところで、図4A乃至図4C、図5A乃至図5Cに示す半導体装置の記憶容量を更に増やしたい場合、図4A乃至図4C、図5A乃至図5Cなどに示す半導体装置をマトリクス状となるように並べて配置すればよい。例えば、図4Bに示す半導体装置をマトリクス状となるように並べて配置した場合、その回路構成は、図6に示す構成となる。
 図6に示す半導体装置は、図4Bに示した半導体装置を1列としてm列(mは1以上の整数である。)並べて配置したもので、配線RWL、及び配線WWLを同じ行のメモリセルMCと共有するように電気的に接続した構成となっている。つまり、図6に示す半導体装置は、n行m列のマトリクス状の半導体装置であり、メモリセルMC[1,1]乃至メモリセルMC[n,m]を有する。そのため、図6に示す半導体装置は、配線RWL[1]乃至配線RWL[n]と、配線WWL[1]乃至配線WWL[n]と、配線RBL[1]乃至配線RBL[m]と、配線WBL[1]乃至配線WBL[m]と、配線BGL[1]乃至配線BGL[m]と、によって、電気的に接続されている。具体的には、メモリセルMC[j,i](jは1以上n以下の整数であり、iは1以上m以下の整数である。)の容量CSの一方の電極は、配線RWL[j]と電気的に接続され、メモリセルMC[j,i]のトランジスタWTrのゲートは、配線WWL[j]と電気的に接続されている。配線WBL[i]は、メモリセルMC[n,i]のトランジスタWTrの第2端子と電気的に接続され、配線RBL[i]は、メモリセルMC[n,i]のトランジスタRTrの第2端子と電気的に接続されている。
 なお、図6は、メモリセルMC[1,1]、メモリセルMC[1,i]、メモリセルMC[1,m]、メモリセルMC[j,1]、メモリセルMC[j,i]、メモリセルMC[j,m]、メモリセルMC[n,1]、メモリセルMC[n,i]、メモリセルMC[n,m]、配線RWL[1]、配線RWL[j]、配線RWL[n]、配線WWL[1]、配線WWL[j]、配線WWL[n]、配線RBL[1]、配線RBL[i]、配線RBL[m]、配線WBL[1]、配線WBL[i]、配線WBL[m]、配線BGL[1]、配線BGL[i]、配線BGL[m]、容量CS、トランジスタWTr、トランジスタRTr、ノードN1、ノードN2のみ図示しており、それ以外の配線、素子、記号、及び符号は省略している。
 なお、本明細書等では、一例として、i列目のノードN1とノードN2との間に電気的に接続されているメモリセルMC[1,i]乃至メモリセルMC[n,i]を、i列目のストリングと呼ぶ場合がある。また、一例として、j行目の配線RWL[j]及び配線WWL[j]に電気的に接続されているメモリセルMC[j,1]乃至メモリセルMC[j,m]をj行目のページと呼ぶ場合がある。また、一例として、図6に示すn行m列のマトリクス状に配置されたメモリセルMC[1,1]乃至メモリセルMC[n,m]をまとめてブロックと呼ぶ場合がある。
 また、図4Cに示した半導体装置を1列としてm列(mは1以上の整数である。)並べて配置したものを、図7に示す。なお、図7に示す半導体装置は、全てのメモリセルMCが有するそれぞれのトランジスタにバックゲートを設けていない構成となっており、そのため、図7に示す半導体装置は、配線BGLを有していない。なお、図7に示す半導体装置については、図6に示す半導体装置の説明の記載を参酌する。
<<動作方法例>>
 次に、図4A乃至図4C、図5A乃至図5Cに示した半導体装置の動作方法の一例について説明する。なお、以下の説明で用いられる低レベル電位、高レベル電位は、特定の電位を意味するものではなく、配線が異なれば、具体的な電位も異なる場合がある。例えば、配線WWLに印加される低レベル電位、高レベル電位のそれぞれは、配線RWLに印加される低レベル電位、高レベル電位と異なる電位であってもよい。
 また、本動作方法例において、図4A、及び図4Bに示した配線BGLには、トランジスタRTr、トランジスタWTrが正常に動作する範囲内の電位があらかじめ印加されているものとする。そのため、図4A乃至図4Cに示す半導体装置の動作は、それぞれ互いに同様に考えることができる。
 図8Aは、半導体装置にデータを書き込む動作例を示したタイミングチャートであり、図8Bは、半導体装置からデータを読み出す動作例を示したタイミングチャートである。図8A、及び図8Bのそれぞれのタイミングチャートは、配線WWL[1]、配線WWL[2]、配線WWL[n]、配線RWL[1]、配線RWL[2]、配線RWL[n]、ノードN1、及びノードN2の電位の大きさの変化を示している。また、配線WBLは、配線WBLに供給されるデータについて示している。
 図8Aは、データD[1]乃至データD[n]のそれぞれをメモリセルMC[1]乃至メモリセルMC[n]に書き込む例を示している。なお、データD[1]乃至データD[n]のそれぞれは、2値、多値、アナログ値などとすることができる。また、多値としては、例えば、4ビット、8ビット、16ビット、32ビット、64ビット、128ビット、256ビットなどとすることができる。そして、データD[1]乃至データD[n]は、配線WBLから供給されるものとする。つまり、図4A乃至図4Cに示す半導体装置の回路構成において、データの書き込みは、メモリセルMC[1]からメモリセルMC[n]に順次行われる。例えば、高速で書き込みを行いたい場合には、2値のデータを用い、高速での書き込みの必要がない場合には、多値のデータを用いて書き込みを行えばよい。
 また、例えば、メモリセルMC[2]にデータを書き込んだ後に、メモリセルMC[1]にデータを書き込もうとすると、一度、メモリセルMC[2]に書き込まれているデータを読み出して別の場所に保存しなければ、メモリセルMC[2]に保持されているデータは、メモリセルMC[1]にデータを書き込む段階で失われてしまう。
 図4A乃至図4Cに示す半導体装置の回路構成において、メモリセルMC[i](ここでのiは2以上n以下の整数とする。)にデータを書き込む場合、メモリセルMC[1]乃至メモリセルMC[i−1]に保持されているデータの書き換えを防ぐために、配線WWL[1]乃至配線WWL[i−1]に低レベル電位を供給して、メモリセルMC[1]乃至メモリセルMC[i−1]が有するそれぞれのトランジスタWTrをオフ状態にする。これにより、メモリセルMC[1]乃至メモリセルMC[i−1]に保持されているそれぞれのデータを保護することができる。
 また、メモリセルMC[i]にデータを書きこむ場合、データは配線WBLから供給されるため、配線WWL[i]乃至配線WWL[n]に高レベル電位を供給して、メモリセルMC[i]乃至メモリセルMC[n]が有するそれぞれのトランジスタWTrを十分なオン状態にする。これにより、メモリセルMC[i]のメモリノードにデータを保持することができる。
 なお、図4A乃至図4Cに示す半導体装置の回路構成にデータを書き込む場合、配線RBLは他の配線とは独立に制御できるため、特定の電位にする必要は無いが、例えば、低レベル電位とすることができる。すなわち、ノードN1の電位は、低レベル電位とすることができる。加えて、ノードN2の電位も、低レベル電位とすることができる。
 上記を踏まえた上で、図8Aのタイミングチャートに示す動作例について説明する。時刻T10において、配線WWL[1]乃至配線WWL[n]、配線RWL[1]乃至配線RWL[n]、配線WBL、ノードN1、及びノードN2のそれぞれの電位は、低レベル電位となっている。
 時刻T11において、配線WWL[1]乃至配線WWL[n]に高レベル電位の印加が開始される。これにより、時刻T11から時刻T12までの間において、メモリセルMC[1]乃至メモリセルMC[n]が有するそれぞれのトランジスタWTrが十分なオン状態となる。そして、配線WBLには、データD[1]が供給される。メモリセルMC[1]乃至メモリセルMC[n]が有するそれぞれのトランジスタWTrは十分なオン状態となっているため、データD[1]は、メモリセルMC[1]のメモリノードにまで到達して書き込まれる。
 時刻T12において、配線WWL[1]に低レベル電位の印加が開始され、配線WWL[2]乃至配線WWL[n]には、引き続き、高レベル電位が印加されている。これにより、時刻T12から時刻T13までの間において、メモリセルMC[1]が有するトランジスタWTrがオフ状態となり、メモリセルMC[2]乃至メモリセルMC[n]が有するそれぞれのトランジスタWTrが十分なオン状態となる。そして、配線WBLには、データD[2]が供給される。メモリセルMC[2]乃至メモリセルMC[n]が有するそれぞれのトランジスタWTrは十分なオン状態となっているため、データD[2]は、メモリセルMC[2]のメモリノードにまで到達して書き込まれる。また、メモリセルMC[1]のトランジスタWTrはオフ状態となっているため、メモリセルMC[1]に保持されているデータD[1]は、この時刻T12から時刻T13までの書き込み動作によって失われない。
 時刻T13から時刻T14までの間では、時刻T11から時刻T12までの間のメモリセルMC[1]へのデータD[1]の書き込み動作と、時刻T12から時刻T13までの間のメモリセルMC[2]へのデータD[2]の書き込み動作と、のそれぞれと同様に、メモリセルMC[3]乃至メモリセルMC[n−1]のそれぞれに順次データD[3]乃至データD[n−1]が書き込まれる。具体的には、既にデータが書き込まれたメモリセルMC[1]乃至メモリセルMC[j−1](ここでのjは3以上n−1以下の整数とする。)が有するトランジスタWTrをオフ状態とし、データが書き込まれていないメモリセルMC[j]乃至メモリセルMC[n]が有するトランジスタWTrを十分なオン状態とし、データD[j]を配線WBLから供給して、メモリセルMC[j]のメモリノードに書き込めばよい。そして、メモリセルMC[j]へのデータD[j]の書き込みが終了した場合、メモリセルMC[j]が有するトランジスタWTrをオフ状態として、配線WBLからデータD[j+1]を供給して、メモリセルMC[j+1]のメモリノードに書き込む動作を行えばよい。特に、jがn−1のときの書き込み動作は、次に記載する、時刻T14から時刻T15までの動作を指す。
 時刻T14において、配線WWL[1]乃至配線WWL[n−1]に低レベル電位が印加され、配線WWL[n]には、引き続き、高レベル電位が印加されている。これにより、時刻T14から時刻T15までの間において、メモリセルMC[1]乃至メモリセルMC[n−1]が有するトランジスタWTrがオフ状態となり、メモリセルMC[n]が有するトランジスタWTrが十分なオン状態となる。そして、配線WBLには、データD[n]が供給される。メモリセルMC[n]が有するトランジスタWTrは十分なオン状態となっているため、データD[n]は、メモリセルMC[n]のメモリノードにまで到達して書き込まれる。また、メモリセルMC[1]乃至メモリセルMC[n−1]のトランジスタWTrはオフ状態となっているため、メモリセルMC[1]乃至メモリセルMC[n−1]のそれぞれに保持されているデータD[1]乃至データD[n−1]は、この時刻T14から時刻T15までの間の書き込み動作によって失われることはない。
 上述の動作によって、図4A乃至図4Cに示す半導体装置のいずれか一において、その半導体装置の有するメモリセルMCに対してデータを書き込むことができる。
 図8Bは、データD[1]乃至データD[n]のそれぞれをメモリセルMC[1]乃至メモリセルMC[n]から読み出すタイミングチャートの例を示している。なお、このとき、各メモリセルMCに保持されたデータを維持するために、トランジスタWTrは、オフ状態であることが求められる。そのため、メモリセルMC[1]乃至メモリセルMC[n]からデータを読み出す動作時において、配線WWL[1]乃至配線WWL[n]の電位は低レベル電位とする。
 図4A乃至図4Cに示す半導体装置の回路構成において、特定のメモリセルMCのデータを読み出す場合、他のメモリセルMCが有するトランジスタRTrを十分なオン状態とした上で、当該特定のメモリセルMCが有するトランジスタRTrを飽和領域として動作させる。つまり、当該特定のメモリセルMCが有するトランジスタRTrのソース−ドレイン間に流れる電流は、ソース−ドレイン間電圧と、当該特定のメモリセルMCに保持されているデータと、に応じて決定される。
 例えば、メモリセルMC[k](ここでのkは1以上n以下の整数とする。)に保持されているデータを読み出す場合を考える。このとき、メモリセルMC[k]を除いたメモリセルMC[1]乃至メモリセルMC[n]が有するそれぞれのトランジスタRTrを十分なオン状態にするため、配線RWL[k]を除いた配線RWL[1]乃至配線RWL[n]に高レベル電位が供給される。
 一方、メモリセルMC[k]が有するトランジスタRTrは、保持されているデータに応じたオン状態にするため、配線RWL[k]は、メモリセルMC[k]に当該データを書き込んだときの配線RWL[k]と同じ電位にする必要がある。なお、ここでは、書き込み動作時及び読み出し動作時における配線RWL[k]の電位を低レベル電位として考える。
 例えば、ノードN1に+3V、ノードN2に0Vの電位を与える。そして、ノードN2をフローティングにして、その後のノードN2の電位を測定する。配線RWL[k]を除いた配線RWL[1]乃至配線RWL[n]の電位を高レベル電位とした場合、メモリセルMC[k]を除いたメモリセルMC[1]乃至メモリセルMC[n]が有するトランジスタRTrが十分なオン状態となる。一方、メモリセルMC[k]が有するトランジスタRTrの第1端子−第2端子間の電圧は、当該トランジスタRTrのゲートの電位とノードN1の電位によって定まるため、ノードN2の電位はメモリセルMC[k]のメモリノードに保持されたデータに応じて決まる。
 このようにして、メモリセルMC[k]に保持されているデータを読み出すことができる。
 上述を踏まえた上で、図8Bのタイミングチャートに示す動作例について説明する。時刻T20において、配線WWL[1]乃至配線WWL[n]、配線RWL[1]乃至配線RWL[n]、配線WBL、ノードN1、及びノードN2のそれぞれの電位は、低レベル電位となっている。特に、ノードN2は、フローティング状態となっている。そして、メモリセルMC[1]乃至メモリセルMC[n]のメモリノードには、それぞれデータD[1]乃至データD[n]が保持されているものとする。
 時刻T21から時刻T22までの間において、配線RWL[1]に低レベル電位の印加が開始され、配線RWL[2]乃至配線RWL[n]に高レベル電位の印加が開始される。これにより、時刻T21から時刻T22までの間において、メモリセルMC[2]乃至メモリセルMC[n]が有するそれぞれのトランジスタRTrが十分なオン状態となる。そして、メモリセルMC[1]のトランジスタRTrは、メモリセルMC[1]のメモリノードに保持されているデータD[1]に応じたオン状態となる。また、配線RBLに電位Vを供給する。これにより、ノードN1の電位はVとなり、ノードN2の電位は、ノードN1の電位VとメモリセルMC[1]のメモリノードに保持されたデータとに応じて決まる。ここでは、ノードN2の電位を、VD[1]とする。そして、ノードN2の電位VD[1]を測定することによって、メモリセルMC[1]のメモリノードに保持されたデータD[1]を読み出すことができる。
 時刻T22から時刻T23までの間において、配線RWL[1]乃至配線RWL[n]に低レベル電位の印加が開始される。また、ノードN2には、低レベル電位が供給され、その後、ノードN2はフローティング状態となる。つまり、時刻T22から時刻T23までの間において、配線RWL[1]乃至配線RWL[n]、ノードN2のそれぞれの電位は、時刻T20から時刻T21までの間の状況と同じになる。なお、配線RBLには、引き続き、電位Vを供給してもよく、又は、低レベル電位を供給してもよい。本動作例では、配線RBLは、時刻T21以降、電位Vが供給され続けるものとする。
 時刻T23から時刻T24までの間において、配線RWL[2]に低レベル電位が印加され、配線RWL[1]、配線RWL[3]乃至配線RWL[n]に高レベル電位の印加が開始される。これにより、時刻T23から時刻T24までの間において、メモリセルMC[1]、メモリセルMC[3]乃至メモリセルMC[n]が有するそれぞれのトランジスタRTrが十分なオン状態となる。そして、メモリセルMC[2]のトランジスタRTrは、メモリセルMC[2]のメモリノードに保持されているデータD[2]に応じたオン状態となる。また、配線RBLには電位Vが引き続き供給されている。これにより、ノードN2の電位は、ノードN1の電位VとメモリセルMC[2]のメモリノードに保持されたデータとに応じて決まる。ここでは、ノードN2の電位を、VD[2]とする。そして、ノードN2の電位VD[2]を測定することによって、メモリセルMC[2]のメモリノードに保持されたデータD[2]を読み出すことができる。
 時刻T24から時刻T25までの間では、時刻T20から時刻T22までの間のメモリセルMC[1]からのデータD[1]の読み出し動作と、時刻T22から時刻T24までの間のメモリセルMC[2]からのデータD[2]の読み出し動作と、のそれぞれと同様に、メモリセルMC[3]乃至メモリセルMC[n−1]のそれぞれから順次データD[3]乃至データD[n−1]が読み出される。具体的には、メモリセルMC[j](ここでのjは3以上n−1以下の整数とする。)からデータD[j]を読み出す場合、ノードN2の電位を低レベル電位として、且つノードN2をフローティング状態にした後に、配線RWL[j]を除いた配線RWL[1]乃至配線RWL[n]に高レベル電位を供給して、メモリセルMC[j]を除いたメモリセルMC[1]乃至メモリセルMC[n]が有するトランジスタRTrを十分なオン状態にし、メモリセルMC[j]が有するトランジスタRTrをデータD[j]に応じたオン状態にする。次に、ノードN1の電位をVにすることで、ノードN2の電位は、データD[j]に応じた電位となり、この電位を測定することで、データD[j]を読み出すことができる。なお、メモリセルMC[j]に保持されたデータD[j]の読み出しが終わった後は、次の読み出し動作の準備として、配線RWL[1]乃至配線RWL[n]に低レベル電位の印加を開始して、ノードN2の電位を低レベル電位とし、その後、ノードN2はフローティング状態にする。特に、jがn−1のとき、この準備は、時刻T25から時刻T26までの間の動作を指す。
 時刻T25から時刻T26までの間において、配線RWL[1]乃至配線RWL[n]に低レベル電位の印加が開始される。また、ノードN2に低レベル電位の印加が開始され、ノードN2の電位が低レベル電位になった後、ノードN2はフローティング状態となる。つまり、時刻T25から時刻T26までの間において、配線RWL[1]乃至配線RWL[n]、ノードN2のそれぞれの電位は、時刻T20から時刻T21までの間の状況と同じになる。なお、配線RBLには、引き続き、電位Vを供給してもよく、又は、低レベル電位を印加してもよい。本動作例では、時刻T21に、配線RBLに電位Vの印加が開始されており、時刻T22以降は、配線RBLに電位Vが印加され続けるものとする。
 時刻T26において、配線RWL[n]に低レベル電位が印加され、配線RWL[1]乃至配線RWL[n−1]には、高レベル電位が供給される。これにより、時刻T26から時刻T27までの間において、メモリセルMC[1]乃至メモリセルMC[n−1]が有するそれぞれのトランジスタRTrが十分なオン状態となる。そして、メモリセルMC[n]のトランジスタRTrは、メモリセルMC[n]のメモリノードに保持されているデータD[n]に応じたオン状態となる。また、配線RBLには電位Vが引き続き供給されている。これにより、ノードN2の電位は、ノードN1の電位VとメモリセルMC[n]のメモリノードに保持されたデータとに応じて決まる。ここでは、ノードN2の電位を、VD[n]とする。そして、ノードN2の電位VD[n]を測定することによって、メモリセルMC[n]のメモリノードに保持されたデータD[n]を読み出すことができる。
 上記の動作によって、図4A乃至図4Cに示す半導体装置のそれぞれのメモリセルMCからデータを読み出すことができる。
 なお、本発明の一態様の情報処理装置における動作は、上述した動作例に限定されない。本発明の一態様の情報処理装置における動作は、状況に応じて、上述した動作例を適宜変更してもよい。例えば、上述した読み出し動作では、ノードN1に電位Vを供給することで、ノードN2から所望のメモリセルのMCのメモリノードに保持されたデータに応じた電位Vを読み出す。
 次に、図6、又は図7に示したNAND型の記憶回路を図1の記憶部1196に適用するために、キャッシュメモリとして扱う方法の一例について説明する。
 図9は、ブロックBLK_1乃至ブロックBLK_k(kは1以上の整数である。)を有する記憶部の構成例である。ブロックBLK_1乃至ブロックBLK_kのそれぞれは、例えば、図6、又は図7に示したn行m列のマトリクス状のメモリセルMC[1,1]乃至メモリセルMC[n,m]を有する。なお、図9に示すブロックBLK_1乃至ブロックBLK_kには、ある列について着目したメモリセルMCのみを図示している。そのため、図9では、ブロックBLKに含まれているマトリクス状のメモリセルMCの行のアドレスを“[ ]”とし、ブロックBLKのアドレスを“_ ”として符号に記載し、符号への列のアドレスを省略している。また、図6に示す記憶部を図9に示す記憶部に構成を適用した場合、図9に示している各トランジスタのバックゲートは省略しているものとする。
 図9に示した記憶部は、図6、又は図7に示した記憶部に対して、トランジスタBTr_1乃至トランジスタBTr_kと、トランジスタSTr_1乃至トランジスタSTr_kと、を設けた構成となっている。
 具体的には、図9の記憶部において、配線RBL_1は、トランジスタBTr_1の第1端子と、トランジスタSTr_1の第1端子と、に電気的に接続されている。また、トランジスタSTr_1の第2端子は、配線WBL_1と、スイッチSW_1の第1端子と、に電気的に接続されている。配線RBL_h(hは1以上k以下の整数である。)は、トランジスタBTr_hの第1端子と、トランジスタSTr_hの第1端子と、に電気的に接続されている。また、トランジスタSTr_hの第2端子は、配線WBL_hと、スイッチSW_hの第1端子と、に電気的に接続されている。配線RBL_kは、トランジスタBTr_kの第1端子と、トランジスタSTr_kの第1端子と、に電気的に接続されている。また、トランジスタSTr_kの第2端子は、配線WBL_kと、スイッチSW_kの第1端子と、に電気的に接続されている。
 スイッチSW_1乃至スイッチSW_kのそれぞれの第2端子は、配線LN1に電気的に接続されている。また、スイッチSW_1乃至スイッチSW_kのそれぞれの第3端子は、配線LN2に電気的に接続されている。
 スイッチSW_1乃至スイッチSW_kのそれぞれは、第1端子と第2端子又は第3端子のどちらか一方との間を導通状態にする機能を有する。つまり、スイッチSW_1乃至スイッチSW_kのそれぞれは、ブロックBLK_1乃至ブロックBLK_kのそれぞれを、配線LN1又は配線LN2のどちらに導通状態にするかを選択することができる。
 配線LN1は、例えば、ブロックBLK_1乃至ブロックBLK_kのそれぞれのストリングのメモリセルに対して、書き込み用のデータを送信する配線として機能する。また、配線LN2は、例えば、ブロックBLK_1乃至ブロックBLK_kのそれぞれのストリングのメモリセルから読み出したデータを送信する配線として機能する。なお、本発明の一態様の情報処理装置は、この構成に限定されない。例えば、配線LN1、配線LN2は2本でなく、1本にまとめもよいし(この場合、スイッチSW_1乃至スイッチSW_kは設けなくてもよい。)、3本以上にしてもよい(この場合、スイッチSW_1乃至スイッチSW_kのそれぞれを、配線の数に応じたセレクタ回路などに置き換えればよい)。
 トランジスタBTr_1乃至トランジスタBTr_kのそれぞれは、配線RBL_1乃至配線RBL_kのそれぞれのノードN1の電位を調整するためのトランジスタとして機能する。このため、トランジスタBTr_1乃至トランジスタBTr_kのそれぞれの第2端子、及びゲートには、所定の電位が入力されているものとする。具体的には、例えば、ブロックBLK_h(hは1以上k以下の整数である。)のメモリセルMC[1]_h乃至メモリセルMC[n]_hのいずれか一から電位を読み出したとき、トランジスタBTr[i]は、配線RBL_hのノードN1の当該電位を書き込み用の電位に変動させる機能を有する。そのため、トランジスタBTr_1乃至トランジスタBTr_kは、センスアンプなどの増幅回路に置き換えてもよい。
 トランジスタSTr_1乃至トランジスタSTr_kのそれぞれは、スイッチング素子として機能する。そのため、トランジスタSTr_1乃至トランジスタSTr_kのそれぞれのゲートには、トランジスタSTr_1乃至トランジスタSTr_kのそれぞれのオン状態又はオフ状態への切り替えを行うための信号を送信する配線に電気的に接続されている。
 次に、図9の記憶部の一部がキャッシュメモリとして機能するときの、当該記憶部の動作方法について説明する。また、当該動作方法の説明については、図10に示す記憶部を用いることとする。
 図10の記憶部は、図9の記憶部を簡易的に示したものである。具体的には、図10の記憶部は、図9の記憶部において、mを3とし、kを3とした構成となっている。
 図10の記憶部は、ブロックBLK_1乃至ブロックBLK_3を有し、ブロックBLK_1乃至ブロックBLK_3のそれぞれは、1個以上のストリングを有する。具体的には、ブロックBLK_1は、1個のストリングとしてメモリセルMC[1]_1乃至メモリセルMC[3]_1を有し、ブロックBLK_2は、1個のストリングとしてメモリセルMC[1]_2乃至メモリセルMC[3]_2を有し、ブロックBLK_3は、1個のストリングとしてメモリセルMC[1]_3乃至メモリセルMC[3]_3を有する。
 ブロックBLK_2のストリングに含まれているメモリセルMC[1]_2乃至メモリセルMC[3]_2のそれぞれのメモリノードにはデータが保持されているものとする。具体的には、例えば、メモリセルMC[1]_2乃至メモリセルMC[3]_2のそれぞれのメモリノードには、電位としてV[1]_2、V[2]_2、V[3]_2が保持されているものとする。
 また、ブロックBLK_1のストリングに含まれているメモリセルMC[1]_1乃至メモリセルMC[3]_1、ブロックBLK_3のストリングに含まれているメモリセルMC[1]_3乃至メモリセルMC[3]_3のそれぞれのメモリノードにはデータが保持されていないものとする。
 ここで、メモリセルMC[1]_2のメモリノードに保持されているV[1]_2を書き換える場合を考える。
 メモリセルMC[1]_2のメモリノードの電位を書き換える場合、配線WBL_2から、メモリセルMC[2]_2及びメモリセルMC[3]_2のそれぞれのトランジスタWTrを介して、メモリセルMC[1]_2に書き換え用のデータを送るため、メモリセルMC[2]_2及びメモリセルMC[3]_2のそれぞれのメモリノードにあらかじめ保持されている、V[2]_2、V[3]_2を一時的に退避する必要がある。
 初めに、書き換え用のデータとして電位VREWを、例えば、ブロックBLK_1のストリングに含まれているメモリセルMC[3]_1のメモリノードに書き込む。具体的には、スイッチSW_1の第1端子と第2端子との間を導通状態にし、配線WWL[3]_1に高レベル電位を入力してメモリセルMC[3]_1のトランジスタWTrをオン状態にし、配線LN1からVREWを入力する。このとき、ブロックBLK_2の配線WWL[3]_2、及びブロックBLK_3の配線WWL[3]_3に低レベル電位を入力して、メモリセルMC[3]_2、及びメモリセルMC[3]_3のそれぞれのトランジスタWTrをオフ状態にして、配線WBL_1からブロックBLK_2及びブロックBLK_3のそれぞれのメモリセルMCへのVREWの書き込みを防ぐ必要がある。または、スイッチSW_2及びスイッチSW_3のそれぞれにおいて、第1端子と第3端子との間を導通状態、つまり、第1端子と第2端子との間を非導通状態にすればよい。
 なお、このとき、メモリセルMC[3]_1はキャッシュメモリとしてみなすことができる。
 次に、ブロックBLK_2のメモリセルMC[3]_2のメモリノードに保持されているV[3]_2を一時的に退避させる。本動作例では、メモリセルMC[3]_2のメモリノードのV[3]_2をブロックBLK_3のメモリセルMC[2]_3のメモリノードに退避させるものとする。具体的には、スイッチSW_2及びスイッチSW_3のそれぞれの第1端子と第2端子との間を導通状態にし、配線RWL[1]_2、及び配線RWL[2]_2に高レベル電位を入力して、メモリセルMC[1]_2、及びメモリセルMC[2]_2のそれぞれのトランジスタRTrが十分なオン状態となるように、メモリセルMC[1]_2、及びメモリセルMC[2]_2のそれぞれのメモリノードの電位を高くする。また、トランジスタSTr_2のゲートに高レベル電位を入力してトランジスタSTr_2をオン状態にする。また、トランジスタSTr_3のゲートに低レベル電位を入力してトランジスタSTr_3をオフ状態にし、ブロックBLK_3の配線WWL[2]_3、及び配線WWL[3]_3に高レベル電位を入力して、メモリセルMC[2]_3、及びメモリセルMC[3]_3のそれぞれのトランジスタWTrをオン状態にする。
 ここで、ブロックBLK_2のノードN2にVを供給することによって、ブロックBLK_2のノードN1の電位を、ブロックBLK_2のメモリセルMC[3]_2のメモリノードに保持されたV[3]_2に応じた電位とすることができる。また、トランジスタBTr_2によってノードN1の電位をV[3]_2に変動させることができる。
 また、このとき、ブロックBLK_2のノードN1と、ブロックBLK_3のメモリセルMC[2]_3のメモリノードと、の間が導通状態となるため、ブロックBLK_3のメモリセルMC[2]_3のメモリノードの電位がV[3]_2となる。その後、配線WWL[2]_3に低レベル電位を入力して、メモリセルMC[2]_3のトランジスタWTrをオフ状態にすることによって、メモリセルMC[2]_3のメモリノードにV[3]_2の電位を保持することができる。
 次に、ブロックBLK_2のメモリセルMC[2]_2のメモリノードに保持されているV[2]_2を一時的に退避させる。本動作例では、メモリセルMC[2]_2のメモリノードのV[2]_2をブロックBLK_3のメモリセルMC[3]_3のメモリノードに退避させるものとする。具体的には、スイッチSW_2及びスイッチSW_3のそれぞれの第1端子と第2端子との間を導通状態にし、配線RWL[1]_2、及び配線RWL[3]_2に高レベル電位を入力して、メモリセルMC[1]_2、及びメモリセルMC[3]_2のそれぞれのトランジスタRTrが十分なオン状態となるように、メモリセルMC[1]_2、及びメモリセルMC[3]_2のそれぞれのメモリノードの電位を高くする。また、トランジスタSTr_2のゲートに高レベル電位を入力してトランジスタSTr_2をオン状態にする。また、トランジスタSTr_3のゲートに低レベル電位を入力してトランジスタSTr_3をオフ状態にし、ブロックBLK_3の配線WWL[3]_3に高レベル電位を入力して、メモリセルMC[3]_3のそれぞれのトランジスタWTrをオン状態にする。
 ここで、ブロックBLK_2のノードN2にVを供給することによって、ブロックBLK_2のノードN1の電位を、ブロックBLK_2のメモリセルMC[2]_2のメモリノードに保持されたV[2]_2に応じた電位とすることができる。また、トランジスタBTr_2によってノードN1の電位をV[2]_2に変動させることができる。
 また、このとき、ブロックBLK_2のノードN1と、ブロックBLK_3のメモリセルMC[3]_3のメモリノードと、の間が導通状態となるため、ブロックBLK_3のメモリセルMC[3]_3のメモリノードの電位がV[2]_2となる。その後、配線WWL[3]_3に低レベル電位を入力して、メモリセルMC[3]_3のトランジスタWTrをオフ状態にすることによって、メモリセルMC[3]_3のメモリノードにV[2]_2の電位を保持することができる。
 次に、ブロックBLK_2のメモリセルMC[1]_2乃至メモリセルMC[3]_2のそれぞれのメモリノードに保持されているデータを消去する。
 具体的には、初めに、スイッチSW_2の第1端子と第2端子との間を導通状態にし、トランジスタSTr_1乃至トランジスタSTr_3のそれぞれのゲートに低レベル電位を入力して、トランジスタSTr_1乃至トランジスタSTr_3のそれぞれをオフ状態にする。また、ブロックBLK_1の配線WWL[3]_1、及びブロックBLK_3の配線WWL[3]_3に低レベル電位を入力して、ブロックBLK_1のメモリセルMC[3]_1、及びブロックBLK_3のメモリセルMC[3]_3のそれぞれのトランジスタWTrをオフ状態にする。また、スイッチSW_1、スイッチSW_3のそれぞれの第1端子と第3端子との間を導通状態、つまり、第1端子と第2端子との間を非導通状態にしてもよい。
 その後に、ブロックBLK_2の配線WWL[1]_2乃至配線WWL[3]_2のそれぞれに高レベル電位を入力して、ブロックBLK_2のメモリセルMC[1]_2乃至メモリセルMC[3]_2のそれぞれのトランジスタWTrをオン状態にする。このとき、配線LN1から、メモリセルMC[1]_2乃至メモリセルMC[3]_2のそれぞれのメモリノードにデータの初期化用の電位(例えば、低レベル電位、接地電位など)を与えることによって、メモリセルMC[1]_2乃至メモリセルMC[3]_2のそれぞれのメモリノードに保持された電位を初期化用の電位に書き換える。その後、ブロックBLK_2の配線WWL[1]_2乃至配線WWL[3]_2のそれぞれに低レベル電位を入力して、ブロックBLK_2のメモリセルMC[1]_2乃至メモリセルMC[3]_2のそれぞれのトランジスタWTrをオフ状態にすることによって、ブロックBLK_2のメモリセルMC[1]_2乃至メモリセルMC[3]_2のそれぞれのデータの消去が完了する。なお、以下に説明するデータの書き込みのタイミングで、メモリセルMC[1]_2乃至メモリセルMC[3]_2のトランジスタWTrをオン状態にすることで、データが書き換わるため、先に説明した消去動作は、行わなくてもよい。
 次に、ブロックBLK_1のメモリセルMC[3]_1のメモリノードに保持されているVREWをブロックBLK_2のメモリセルMC[2]_2に書き込む。具体的には、スイッチSW_1及びスイッチSW_2のそれぞれの第1端子と第2端子との間を導通状態にし、配線RWL[1]_1、及び配線RWL[2]_1に高レベル電位を入力して、メモリセルMC[1]_1、及びメモリセルMC[2]_1のそれぞれのトランジスタRTrが十分なオン状態となるように、メモリセルMC[1]_1、及びメモリセルMC[2]_1のそれぞれのメモリノードの電位を高くする。また、トランジスタSTr_1のゲートに高レベル電位を入力してトランジスタSTr_1をオン状態にする。また、トランジスタSTr_2のゲートに低レベル電位を入力してトランジスタSTr_2をオフ状態にし、ブロックBLK_2の配線WWL[1]_3乃至配線WWL[3]_3に高レベル電位を入力して、メモリセルMC[1]_3乃至メモリセルMC[3]_3のそれぞれのトランジスタWTrをオン状態にする。
 このとき、ブロックBLK_3の配線WWL[3]_3に低レベル電位を入力してメモリセルMC[3]_3のトランジスタWTrをオフ状態にし、トランジスタSTr_3のゲートに低レベル電位を入力してトランジスタSTr_3をオフ状態にして、ブロックBLK_1からブロックBLK_3のメモリセルMC[3]_3へのVREWの書き込みを防ぐ必要がある。又は、スイッチSW_3の第1端子と第3端子との間を導通状態、つまり、第1端子と第2端子との間を非導通状態にしてもよい。
 ここで、ブロックBLK_1のノードN2にVを供給することによって、ブロックBLK_1のノードN1の電位を、ブロックBLK_1のメモリセルMC[3]_1のメモリノードに保持されたVREWに応じた電位とすることができる。また、トランジスタBTr_2によってノードN1の電位をVREWに変動させることができる。
 また、このとき、ブロックBLK_1のノードN1と、ブロックBLK_2のメモリセルMC[1]_2のメモリノードと、の間が導通状態となるため、ブロックBLK_2のメモリセルMC[1]_2のメモリノードの電位がVREWとなる。その後、配線WWL[1]_2に低レベル電位を入力して、メモリセルMC[1]_2のトランジスタWTrをオフ状態にすることによって、メモリセルMC[1]_2のメモリノードにVREWの電位を保持することができる。
 次に、ブロックBLK_3のメモリセルMC[3]_3のメモリノードに保持されているV[2]_2を、ブロックBLK_2のメモリセルMC[2]_2に書き戻す。具体的には、スイッチSW_2及びスイッチSW_3のそれぞれの第1端子と第2端子との間を導通状態にし、配線RWL[1]_3、及び配線RWL[2]_3に高レベル電位を入力して、メモリセルMC[1]_3、及びメモリセルMC[2]_3のそれぞれのトランジスタRTrが十分なオン状態となるように、メモリセルMC[1]_3、及びメモリセルMC[2]_3のそれぞれのメモリノードの電位を高くする。また、トランジスタSTr_3のゲートに高レベル電位を入力してトランジスタSTr_3をオン状態にする。また、トランジスタSTr_2のゲートに低レベル電位を入力してトランジスタSTr_2をオフ状態にし、ブロックBLK_2の配線WWL[2]_2、及び配線WWL[3]_2に高レベル電位を入力して、メモリセルMC[2]_2、及びメモリセルMC[3]_2のそれぞれのトランジスタWTrをオン状態にする。
 このとき、ブロックBLK_1の配線WWL[3]_1に低レベル電位を入力してメモリセルMC[3]_1のトランジスタWTrをオフ状態にし、トランジスタSTr_1のゲートに低レベル電位を入力してトランジスタSTr_1をオフ状態にして、ブロックBLK_3からブロックBLK_1のメモリセルMC[3]_1へのV[2]_2の書き込みを防ぐ必要がある。又は、スイッチSW_1の第1端子と第3端子との間を導通状態、つまり、第1端子と第2端子との間を非導通状態にしてもよい。
 ここで、ブロックBLK_3のノードN2にVを供給することによって、ブロックBLK_3のノードN1の電位を、ブロックBLK_3のメモリセルMC[3]_3のメモリノードに保持されたV[2]_2に応じた電位とすることができる。また、トランジスタBTr_3によってノードN1の電位をV[2]_2に変動させることができる。
 また、このとき、ブロックBLK_3のノードN1と、ブロックBLK_2のメモリセルMC[2]_2のメモリノードと、の間が導通状態となるため、ブロックBLK_2のメモリセルMC[2]_2のメモリノードの電位がV[2]_2となる。その後、配線WWL[2]_2に低レベル電位を入力して、メモリセルMC[2]_2のトランジスタWTrをオフ状態にすることによって、メモリセルMC[2]_2のメモリノードへのV[2]_2の電位の書き戻しが完了する。
 次に、ブロックBLK_3のメモリセルMC[2]_3のメモリノードに保持されているV[3]_2を、ブロックBLK_2のメモリセルMC[3]_2に書き戻す。具体的には、スイッチSW_2及びスイッチSW_3のそれぞれの第1端子と第2端子との間を導通状態にし、配線RWL[1]_3、及び配線RWL[3]_3に高レベル電位を入力して、メモリセルMC[1]_3、及びメモリセルMC[3]_3のそれぞれのトランジスタRTrが十分なオン状態となるように、メモリセルMC[1]_3、及びメモリセルMC[3]_3のそれぞれのメモリノードの電位を高くする。また、トランジスタSTr_3のゲートに高レベル電位を入力してトランジスタSTr_3をオン状態にする。また、トランジスタSTr_2のゲートに低レベル電位を入力してトランジスタSTr_2をオフ状態にし、ブロックBLK_2の配線WWL[3]_2に高レベル電位を入力して、メモリセルMC[3]_2のそれぞれのトランジスタWTrをオン状態にする。
 このとき、ブロックBLK_1の配線WWL[3]_1に低レベル電位を入力してメモリセルMC[3]_1のトランジスタWTrをオフ状態にし、トランジスタSTr_1のゲートに低レベル電位を入力してトランジスタSTr_1をオフ状態にして、ブロックBLK_3からブロックBLK_1のメモリセルMC[3]_1へのV[3]_2の書き込みを防ぐ必要がある。又は、スイッチSW_1の第1端子と第3端子との間を導通状態、つまり、第1端子と第2端子との間を非導通状態にしてもよい。
 ここで、ブロックBLK_3のノードN2にVを供給することによって、ブロックBLK_3のノードN1の電位を、ブロックBLK_3のメモリセルMC[2]_3のメモリノードに保持されたV[3]_2に応じた電位とすることができる。また、トランジスタBTr_3によってノードN1の電位をV[3]_2に変動させることができる。
 また、このとき、ブロックBLK_3のノードN1と、ブロックBLK_2のメモリセルMC[3]_2のメモリノードと、の間が導通状態となるため、ブロックBLK_2のメモリセルMC[3]_2のメモリノードの電位がV[3]_2となる。その後、配線WWL[3]_2に低レベル電位を入力して、メモリセルMC[3]_2のトランジスタWTrをオフ状態にすることによって、メモリセルMC[3]_2のメモリノードへのV[3]_2の電位の書き戻しが完了する。
 上述した動作を行うことにより、図9、又は図10に示した記憶部は、当該記憶部にデータを書き込むとき、当該記憶部に保持されたデータを書き換えるとき、などにおいて、当該記憶部の一部をキャッシュメモリとして扱うことができる。
 ところで、情報処理装置の環境(温度、湿度など)、自然放射線に起因するソフトエラーなどで、図9、又は図10に示した記憶部のストリングのそれぞれのメモリセルに含まれているトランジスタWTr、トランジスタRTr、トランジスタBTr、トランジスタSTrの少なくとも一のトランジスタ特性が劣化する(例えば、オフ状態でのトランジスタのソース−ドレイン間電流が大きくなる)場合がある。この場合、図1の情報処理装置50のコントローラ1197に、記憶部に含まれているストリング(メモリセル)へのエラーチェックを行う機能を有することで、図9、又は図10に示した記憶部のストリングに対して、エラーチェックを行うことができる。また、コントローラ1197は、エラーチェックを行ったメモリセルにエラーが発見されたときに、そのメモリセルを含むストリングへのアクセスを中止して、他のストリングへのアクセスを行う機能を有してもよい。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態3)
 本実施の形態では、実施の形態1で説明した情報処理装置の構成例、及び当該情報処理装置に適用可能なトランジスタの構成例について説明する。
<情報処理装置の構成例1>
 図11に示す情報処理装置は、記憶部100と、制御部200と、を有する。図11はトランジスタ300のチャネル長方向の断面図であり、図12はトランジスタ300のチャネル幅方向の断面図である。
 図11において、制御部200は、図1におけるコントローラ1197を含む回路に相当し、記憶部100は、図1における記憶部1196に相当する。
 初めに、制御部200に含まれているトランジスタ300と、その周辺に形成されている絶縁体、導電体などと、について説明する。
 トランジスタ300は、一例として、基板311上に設けられ、導電体316、絶縁体315、基板311の一部からなる半導体領域313、ソース領域又はドレイン領域として機能する低抵抗領域314a、及び低抵抗領域314bを有する。なお、トランジスタ300は、例えば、コントローラ1197に含まれているトランジスタなどに適用することができる。
 また、基板311としては、半導体基板(例えば単結晶基板又はシリコン基板)を用いることが好ましい。
 トランジスタ300は、図12に示すように、半導体領域313の上面及びチャネル幅方向の側面が絶縁体315を介して導電体316に覆われている。このように、トランジスタ300をFin型とすることにより、実効上のチャネル幅が増大することによりトランジスタ300のオン特性を向上させることができる。また、ゲート電極の電界の寄与を高くすることができるため、トランジスタ300のオフ特性を向上させることができる。
 なお、トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。
 半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、又はドレイン領域となる低抵抗領域314a、及び低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。又は、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)、GaN(窒化ガリウム)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。又はGaAsとGaAlAs等を用いることで、トランジスタ300をHEMT(High Electron Mobility Transistor)としてもよい。
 低抵抗領域314a、及び低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、又はホウ素などのp型の導電性を付与する元素を含む。
 ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、又は金属酸化物材料などの導電性材料を用いることができる。
 なお、導電体の材料によって仕事関数が決まるため、当該導電体の材料を選択することで、トランジスタのしきい値電圧を調整することができる。具体的には、導電体に窒化チタン、窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステン、アルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
 なお、図11、図12に示すトランジスタ300は一例であり、その構造に限定されず、回路構成、駆動方法などに応じて適切なトランジスタを用いればよい。例えば、情報処理装置の制御部200をOSトランジスタのみの単極性回路としてもよい。
 トランジスタ300を覆って、絶縁体320、絶縁体322、絶縁体324、及び絶縁体326が順に積層して設けられている。
 絶縁体320、絶縁体322、絶縁体324、及び絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
 なお、本明細書中において、酸化窒化シリコンとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。また、本明細書中において、酸化窒化アルミニウムとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化アルミニウムとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。
 絶縁体322は、その下方に設けられるトランジスタ300などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
 また、絶縁体324には、基板311、又はトランジスタ300などから、トランジスタ700、複数のトランジスタ800、トランジスタ900を含む記憶部100に、水素などの不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。
 水素に対するバリア性を有する膜の一例としては、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ700、複数のトランジスタ800、及びトランジスタ900がOSトランジスタである場合、トランジスタ700、複数のトランジスタ800、及びトランジスタ900の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ700、複数のトランジスタ800、及びトランジスタ900と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
 水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、10×1015atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。
 なお、絶縁体326は、絶縁体324よりも比誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。比誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
 また、絶縁体320、絶縁体322、絶縁体324、及び絶縁体326には、一例として、導電体328、及び導電体330等が埋め込まれている。なお、導電体328、及び導電体330は、プラグ又は配線としての機能を有する。また、プラグ又は配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、及び導電体の一部がプラグとして機能する場合もある。
 各プラグ、及び配線(導電体328、導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、又は金属酸化物材料などの導電性材料を、単層又は積層して用いることができる。耐熱性と導電性を両立するタングステン、モリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。又は、アルミニウム、や銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
 絶縁体326、及び導電体330上に、配線層を設けてもよい。例えば、図11において、絶縁体350、絶縁体352、及び絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、及び絶縁体354には、導電体356が形成されている。導電体356は、トランジスタ300と接続するプラグ、又は配線としての機能を有する。なお導電体356は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300と、トランジスタ700、複数のトランジスタ800、及びトランジスタ900を含む記憶部100とは、バリア層により分離することができ、トランジスタ300から記憶部100への水素の拡散を抑制することができる。
 なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ300からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構造であることが好ましい。
 絶縁体354、及び導電体356上に、水素に対するバリア性を有する絶縁体を用いることが好ましい。例えば、図11において、絶縁体354、及び導電体356上に、絶縁体360が設けられている。なお、絶縁体360に開口部を設けて、導電体356に電気的に接続されるように導電体が形成されていてもよい。このとき、当該導電体は、プラグ又は配線としての機能を有する。また、当該導電体は、導電体328、及び導電体330と同様の材料を用いて設けることができる。特に、当該導電体は、水素に対するバリア性を有する導電体を含むことが好ましい。
 また、絶縁体360に水素に対するバリア性を有する絶縁体を用いて、かつ当該導電体に水素に対するバリア性を有する導電体を用いることによって、トランジスタ300と、後述するトランジスタ700、複数のトランジスタ800、及びトランジスタ900と、の間をバリア層により分離することができる。このため、トランジスタ300から、トランジスタ700、複数のトランジスタ800、及びトランジスタ900への水素の拡散を抑制することができる。
 次に、記憶部100に含まれているトランジスタ700と、複数のトランジスタ800と、トランジスタ900と、その周辺に形成されている絶縁体、導電体などと、について説明する。
 図11には、記憶部100が3次元構造のNAND型の記憶回路を有する例を示している。図11に示す情報処理装置の記憶部100は、3次元構造のNAND型の記憶回路の構成要素として、トランジスタ700と、複数のトランジスタ800と、トランジスタ900と、を有する。なお、トランジスタ700、及びトランジスタ900は、それらと同じ開口部に位置する複数のトランジスタ800を選択するためのトランジスタに相当し、トランジスタ800は、データを記憶するセルトランジスタに相当する。なお、本明細書等において、同じ開口部に位置するトランジスタ700、複数のトランジスタ800、トランジスタ900をストリングと呼ぶ場合がある。
 図11に示す記憶部100は、制御部200上に設けられている。また、記憶部100は、制御部200の上方において、絶縁体111乃至絶縁体117、絶縁体121、絶縁体122、絶縁体131、絶縁体132、絶縁体133、導電体151乃至導電体156、半導体141乃至半導体143を有する。
 絶縁体111は、制御部200の上方に設けられている。このため、絶縁体111の下部に位置する絶縁体360は、平坦性のよい成膜方法によって、形成されることが好ましい。また、絶縁体360に対してCMP処理が行われていることが好ましい。
 絶縁体111としては、例えば、酸化シリコン又は酸化窒化シリコンを含む材料を用いることができる。また、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、タンタルなどから選ばれた材料を含む絶縁体を、単層で、又は積層で用いることができる。
 導電体151は、絶縁体111に積層して設けられている。導電体151は、一例として、記憶部100の全てのストリングに対して所定の電位を与える配線として機能する。
 導電体151としては、例えば、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。また、実施の形態6で説明する金属酸化物に含まれる金属元素及び酸素を含む導電性材料を用いてもよい。また、チタン、タンタルなどの金属元素及び窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、例えば、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物などを用いてもよい。また、例えば、窒素を含むインジウムガリウム亜鉛酸化物などを用いてもよい。このような材料を用いることで、周辺の絶縁体などから混入する水素、又は水を捕獲することができる場合がある。
 導電体151の形成方法に特に限定は無い。例えば、スパッタリング法、CVD法(熱CVD法、MOCVD法、PECVD法等を含む)、MBE(Molecular Beam Epitaxy)法、ALD(Atomic Layer Deposition)法、PLD(Pulsed Laser Deposition)法などによって成膜することができる。
 絶縁体112乃至絶縁体117としては、例えば、絶縁体111と同様の材料を用いることができる。また、絶縁体112乃至絶縁体117としては、例えば、誘電率の低い材料を用いることが好ましい。絶縁体112乃至絶縁体117として、誘電率の低い材料を用いることで、導電体152乃至導電体156と、絶縁体112乃至絶縁体117によって生じる寄生容量の値を低くすることができる。そのため、記憶部100の駆動速度を向上させることができる。
 絶縁体112乃至絶縁体117の形成方法に特に限定は無い。例えば、スパッタリング法、CVD法(熱CVD法、MOCVD法、PECVD法等を含む)、MBE法、ALD法、PLD法などによって成膜することができる。
 導電体152は、トランジスタ900のゲート、及び当該ゲートに電気的に接続されている配線として機能する。また、導電体153乃至導電体155は、複数のトランジスタ800のゲート、及び当該ゲートに電気的に接続されている配線として機能する。また、導電体156は、トランジスタ700のゲート、及び当該ゲートに電気的に接続されている配線として機能する。
 導電体152乃至導電体156としては、例えば、導電体151と同様の材料を用いることができる。また、導電体152乃至導電体156の形成方法としては、導電体151と同様の方法を用いることができる。
 また、絶縁体112乃至絶縁体117、導電体152乃至導電体156には、開口部が設けられている。当該開口部には、絶縁体121、絶縁体122、絶縁体131乃至絶縁体133、半導体141乃至半導体143が設けられている。
 半導体141は、当該開口部の一部の側面、及び底面に接するように設けられている。具体的には、半導体141は、一部の導電体151上に設けられ、かつ開口部の側面の絶縁体112の一部を覆うように設けられている。
 半導体141としては、例えば、不純物が拡散されたシリコンとするのが好ましい。当該不純物としては、n型不純物(ドナー)を用いることができる。n型不純物としては、例えば、リン、ヒ素などを用いることができる。また、当該不純物としてp型不純物(アクセプタ)を用いることができる。p型不純物としては、例えば、ボロン、アルミニウム、ガリウムなどを用いることができる。また、シリコンとしては、例えば、単結晶シリコン、水素化アモルファスシリコン、微結晶シリコン、または多結晶シリコン等を用いることができる。また、半導体141としては、シリコン以外では、キャリア濃度の高い金属酸化物を適用できる場合がある。また、Geなどの半導体、ZnSe、CdS、GaAs、InP、GaN、SiGeなどの化合物半導体を適用できる場合がある。
 なお、後述する半導体142、半導体143に適用する材料は、半導体141と同じ材料であることが好ましく、半導体142のキャリア濃度は、半導体141、半導体143よりも低いことが好ましい場合がある。
 例えば、半導体141として、p型不純物が拡散されたシリコンを適用する場合、半導体141を導電体151上に形成した後に、半導体141に対して、ボロン、アルミニウム、ガリウムなどのp型不純物を添加するのが好ましい。これにより、半導体141にはp型領域が形成される。また、例えば、n型不純物が拡散されたシリコンを適用する場合、半導体141を導電体151上に形成した後に、半導体141に対して、リン、ヒ素などのn型不純物を添加するのが好ましい。これにより、半導体141にはn型領域が形成される。
 また、半導体141として、一例として、金属酸化物を適用する場合、半導体141を導電体151上に形成した後に、半導体141に対して、金属元素などを添加するのが好ましい。これにより、半導体141においてキャリア濃度を増やすことができる。特に、半導体141として実施の形態6で説明する金属酸化物を適用する場合、半導体141にはn型領域(n領域)が形成される。また、半導体141に対して、金属元素などを添加するのではなく、水、水素などを添加後に熱処理を行って、半導体141に酸素欠損を生じさせてもよい。半導体141において酸素欠損が生じた領域にはn型領域が形成されるため、結果的に半導体141のキャリア濃度が増えることになる。
 絶縁体121は、当該開口部の一部の底面に接するように設けられている。具体的には、絶縁体121は、半導体141上の一部と、開口部の側面の導電体152を覆うように設けられている。
 絶縁体121は、トランジスタ900のゲート絶縁膜として機能する。
 絶縁体121としては、例えば、酸化シリコン、酸化窒化シリコンなどを用いることができる。特に、後述する半導体142として金属酸化物を用いる場合、絶縁体121は、加熱によって酸素を離脱する材料であることが好ましい。酸素を含む絶縁体121を半導体142として適用している金属酸化物に接して設けることにより、当該金属酸化物中の酸素欠損を低減し、トランジスタ900の信頼性を向上させることができる。
 絶縁体121の成膜方法に特に限定は無いが、絶縁体121は、絶縁体112、導電体152、及び絶縁体113に設けられた開口部の側面に形成されるため、被膜性の高い成膜方法が求められる。被膜性の高い成膜方法としては、例えば、ALD法などが挙げられる。
 絶縁体131は、当該開口部の一部の側面に接するように設けられている。具体的には、絶縁体131は、当該開口部の側面の導電体153乃至導電体155を覆うように設けられている。そのため、絶縁体131は、開口部の側面の絶縁体114、絶縁体115も覆うように設けられている。
 絶縁体132は、絶縁体131に接するように設けられている。また、絶縁体133は、絶縁体132に接するように設けられている。つまり、絶縁体131乃至絶縁体133は、当該開口部の側面から中心に向かって、順に積層されている。
 絶縁体131は、トランジスタ800のゲート絶縁膜として機能する。また、絶縁体132は、トランジスタ800の電荷蓄積層として機能する。また、絶縁体133は、トランジスタ800のトンネル絶縁膜として機能する。
 絶縁体131としては、例えば、酸化シリコン、酸化窒化シリコンなどを用いることが好ましい。また、絶縁体131としては、例えば、酸化アルミニウム、酸化ハフニウム、またはアルミニウムおよびハフニウムを有する酸化物などを用いることができる。また、絶縁体131としては、これらを積層した絶縁体としてもよい。そして、絶縁体131を絶縁体133よりも厚くすることで、後述する半導体142から、絶縁体133を介して、絶縁体132に電荷の移動を行わせることができる。
 絶縁体132としては、例えば、窒化シリコン、窒化酸化シリコンなどを用いることができる。ただし、絶縁体132に適用できる材料は、これらに限定されない。
 絶縁体133としては、例えば、酸化シリコン、又は酸化窒化シリコンを用いることが好ましい。また、絶縁体133としては、例えば、酸化アルミニウム、酸化ハフニウム、又は、アルミニウム及びハフニウムを有する酸化物などを用いてもよい。また、絶縁体133としては、これらを積層した絶縁体としてもよい。
 絶縁体122は、当該開口部の一部の側面に接するように設けられている。具体的には、開口部の側面の導電体156を覆うように設けられている。
 絶縁体122は、トランジスタ700のゲート絶縁膜として機能する。
 絶縁体122としては、例えば、絶縁体121と同様の材料を用いることができる。また、絶縁体122の形成方法としては、絶縁体121と同様の方法とすることができる。
 半導体142は、当該開口部において、形成された絶縁体121、絶縁体133、及び絶縁体122の側面に接するように、設けられている。
 半導体142は、トランジスタ700、トランジスタ800、トランジスタ900のチャネル形成領域、及びトランジスタ700、トランジスタ800、トランジスタ900を直列に電気的に接続するための配線として機能する。
 半導体142としては、例えば、シリコンを用いることが好ましい。また、シリコンとしては、例えば、単結晶シリコン、水素化アモルファスシリコン、微結晶シリコン、または多結晶シリコン等を用いることができる。また、半導体142としては、シリコン以外では、金属酸化物を適用できる場合がある。また、Geなどの半導体、ZnSe、CdS、GaAs、InP、GaN、SiGeなどの化合物半導体を適用できる場合がある。
 半導体143は、当該開口部に半導体141、半導体142、絶縁体121、絶縁体122、絶縁体131、絶縁体132、絶縁体133が形成された後に、当該開口部を埋めるように設けられる。具体的には、半導体143は、絶縁体122上、及び、半導体142上に接し、絶縁体117の側面に接するように、設けられる。
 半導体143としては、例えば、半導体141と同様の材料にすることが好ましい。そのため、半導体141と半導体143のそれぞれの極性は等しくすることが好ましい。
 絶縁体117、及び半導体143上に、配線層を設けてもよい。例えば、図11において、配線層として、絶縁体382、及び絶縁体384が順に積層して設けられている。また、絶縁体382、及び絶縁体384には、導電体386が形成されている。導電体386は、プラグ又は配線としての機能を有する。なお導電体386は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
 なお、本発明の一態様の情報処理装置は、図11に示した記憶部100が有するNAND型の記憶回路の構成に限定されない。本発明の一態様の情報処理装置に適用するNAND型の記憶回路は、図11に示したNAND型の記憶回路とは異なる構成としてもよい。
<情報処理装置の構成例2>
 図13に、図11と異なる、情報処理装置の構成例を示している。図13に示す情報処理装置は、図11の情報処理装置の記憶部100の構成を変更した構成となっており、具体的には、図13の情報処理装置の記憶部100は、実施の形態2で説明した図4Aの記憶部の構成となっている。
 図13に示す情報処理装置の記憶部100において、一例として、3次元構造のNAND型の記憶回路に含まれているメモリセルMC[1]は、トランジスタRTrと、トランジスタWTrと、容量CSと、を有する。
 また、図13に示す記憶部100は、図11の情報処理装置と同様に、制御部200上に設けられている。また、記憶部100は、制御部200の上方において、絶縁体211乃至絶縁体215、絶縁体240乃至絶縁体243、導電体221、導電体222、導電体250乃至導電体253、半導体231、半導体232を有する。
 絶縁体240は、制御部200の上方に設けられている。このため、絶縁体240の下部に位置する絶縁体360は、平坦性のよい成膜方法によって、形成されることが好ましい。また、絶縁体360に対してCMP処理が行われていることが好ましい。
 絶縁体240としては、例えば、絶縁体111に適用できる材料を用いることができる。
 絶縁体241は、絶縁体240に積層して設けられている。
 絶縁体241としては、例えば、絶縁体240と同様に、絶縁体111に適用できる材料を用いることができる。
 また、絶縁体240には導電体250が埋め込まれており、絶縁体241には導電体251が埋め込まれている。導電体250、及び導電体251は、プラグ又は配線としての機能を有する。また、図11と同様に、図13に示すプラグ又は配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、及び導電体の一部がプラグとして機能する場合もある。
 導電体250、及び導電体251としては、例えば、導電体328、及び導電体330に適用できる材料を用いることができる。
 絶縁体211は、絶縁体241上に設けられている。また、導電体221は、絶縁体211上に設けられている。また、絶縁体212は、導電体221上に設けられている。また、導電体222は、絶縁体212上に設けられている。つまり、絶縁体211、導電体221、絶縁体212、導電体222は、この順に積層されている(これらを積層体と呼称する。)。また、図13の情報処理装置の記憶部100は、1個のストリングに含まれているメモリセルMCの数だけ積層体を有する。
 また、図13の情報処理装置の作製工程上、絶縁体211、導電体221、絶縁体212、導電体222には、レジストマスク形成とエッチング処理などによって開口部が設けられる。また、このとき、導電体221が選択的に除去されて、絶縁体211、導電体221、絶縁体212によって凹部が形成されるようにする。この場合、導電体221としては、絶縁体211、絶縁体212、及び導電体222よりもエッチングレートが高くなるような材料とすることが好ましい。
 なお、レジストマスクの形成は、例えば、リソグラフィ法、印刷法、インクジェット法等を適宜用いて行うことができる。レジストマスクをインクジェット法で形成するとフォトマスクを使用しないため、製造コストを低減できる。また、エッチング処理については、ドライエッチング法でもウェットエッチング法でもよく、両方を用いてもよい。
 また、詳しくは後述するが、エッチング処理によって形成された開口部には、絶縁体213、半導体231、絶縁体214、絶縁体215、半導体232、絶縁体216、導電体223が順に形成される。
 絶縁体211、絶縁体212としては、一例として、水素、不純物などが拡散しないようなバリア性を有する膜を用いることが好ましい。そのため、絶縁体211、絶縁体212としては、例えば、絶縁体111と同様の材料を用いることができる。
 導電体221、導電体222としては、例えば、導電体151に適用できる材料を用いることが好ましい。特に、導電体221、導電体222としては、水または水素などの不純物の透過を抑制する機能を有する導電性材料を用いることが好ましい。
 前述したエッチング処理によって形成された開口部の側面には、絶縁体213、半導体231が順に形成される。また、当該開口部の凹部を埋めるように、絶縁体214が形成される。
 絶縁体214の形成方法としては、例えば、初めに当該開口部の凹部が埋まる程度に、当該開口部の側面に絶縁体214を形成し、その後に、当該凹部に絶縁体214を残し、かつ半導体231が露出するように、絶縁体214の一部をエッチング処理によって除去すればよい。
 絶縁体213としては、例えば、酸化シリコン、酸化窒化シリコンなどを用いることができる。また、絶縁体213としては、例えば、酸化アルミニウム、酸化ハフニウム、またはアルミニウムおよびハフニウムを有する酸化物などを用いることができる。また、絶縁体213としては、これらを積層した絶縁体としてもよい。
 半導体231としては、実施の形態6で説明する金属酸化物を用いることが好ましい。本実施の形態では、以後、半導体231として金属酸化物が適用されたものとする。特に金属酸化物としては、後述するCAAC−OSを用いると好適である。例えば、半導体231に多結晶シリコンを用いる場合、当該多結晶シリコン中に形成されうるグレインバウンダリーによって、電子トラップ密度が上昇し、トランジスタ特性が大きくばらつく可能性がある。一方でCAAC−OSは、明確な結晶粒界が確認されないため、トランジスタ特性のばらつきを抑制することができる。
 また、絶縁体214を形成する前において、形成された半導体231に対して、酸素雰囲気で熱処理を行うことで、半導体231の金属酸化物に酸素を供給することができる。その後、絶縁体214を形成した後に、半導体231の金属酸化物に不純物などの供給処理を行うことで、半導体231の開口部に露出した領域の抵抗を下げることができる。つまり、半導体231の絶縁体214に接する領域は高抵抗領域となり、半導体231の絶縁体214に接しない領域は低抵抗領域となる。
 また、半導体231の金属酸化物への不純物などの供給処理としては、例えば、開口部の凹部に絶縁体214を埋めた後での、開口部の側面への導電体の形成、及び当該導電体の除去が挙げられる。半導体231の金属酸化物に当該導電膜が接することによって、当該導電膜に含まれている金属元素が、半導体231に拡散して、半導体231の構成元素と、金属化合物が形成される場合がある。この金属化合物によって、半導体231に低抵抗領域が形成される。
 絶縁体214としては、先に形成した半導体231との界面、及び界面近傍において、半導体231に含まれる成分と化合物を形成する成分でないことが好ましい。具体的には、例えば、絶縁体214としては、例えば、酸化シリコンなどを用いることができる。
 その後、半導体231、絶縁体214の形成面上に、絶縁体215、半導体232、絶縁体216、導電体223が順に形成される。なお、導電体223の形成によって、積層体に設けられた開口部が埋まるものとする。
 絶縁体215、及び絶縁体216としては、例えば、絶縁体213に適用できる材料を用いることが好ましい。
 半導体232としては、例えば、半導体231と同様に、実施の形態6で説明する金属酸化物を用いることが好ましい。
 導電体223としては、例えば、導電体151に適用できる材料を用いることが好ましい。特に、導電体223としては、水または水素などの不純物の透過を抑制する機能を有する導電性材料を用いることが好ましい。
 形成されたストリングの上部には、絶縁体242、及び絶縁体243が順に設けられている。
 絶縁体242、及び絶縁体243としては、例えば、絶縁体111に適用できる材料を用いることができる。
 また、絶縁体242には導電体252が埋め込まれており、絶縁体243には導電体253が埋め込まれている。導電体252、及び導電体253は、プラグ又は配線としての機能を有する。
 導電体252、及び導電体253としては、例えば、導電体328、及び導電体330に適用できる材料を用いることができる。
 上述した工程を行うことにより、図4Aの記憶部100を有する情報処理装置を作製することができる。
 具体的には、図4Aの記憶部における配線WBL、配線RBL、配線BGLのそれぞれは、図13の半導体231、半導体232、導電体223に対応する。また、図4Aの記憶部における配線WWL、配線RWLのそれぞれは、導電体221、導電体222に対応する。
 このため、導電体222を一方の電極とし、導電体222に接する絶縁体213の領域を誘電体とし、導電体222と重畳する半導体231の領域を他方の電極とする、容量CSが構成される。また、導電体222と重畳する半導体231の領域をゲートとし、導電体222と重畳する絶縁体215の領域をゲート絶縁膜とし、導電体222と重畳する半導体232の領域をチャネル形成領域とし、導電体222と重畳する絶縁体216の領域をゲート絶縁膜とし、導電体222と重畳する導電体223の領域をバックゲートとする、トランジスタRTrが構成される。また、導電体221をゲートとし、導電体221と重畳する絶縁体213をゲート絶縁膜とし、導電体221と重畳する半導体231の領域をチャネル形成領域とする、トランジスタWTrが構成される。
 なお、本明細書等で開示された、絶縁体、導電体、半導体などは、PVD(Physical Vapor Deposition)法、CVD(Chemical Vapor Deposition)法により形成することができる。PVD法としては、例えば、スパッタリング法、抵抗加熱蒸着法、電子ビーム蒸着法、PLD(Pulsed Laser Deposition)法などが挙げられる。また、CVD法として、プラズマCVD法、熱CVD法などが挙げられる。特に、熱CVD法としては、例えば、MOCVD(Metal Organic Chemical Vepor Deposition)法、ALD(Atomic Layer Deposition)法などが挙げられる。
 熱CVD法は、プラズマを使わない成膜方法のため、プラズマダメージにより欠陥が生成されることが無いという利点を有する。
 熱CVD法は、原料ガスと酸化剤を同時にチャンバー内に送り、チャンバー内を大気圧または減圧下とし、基板近傍または基板上で反応させて基板上に堆積させることで成膜を行ってもよい。
 また、ALD法は、チャンバー内を大気圧または減圧下とし、反応のための原料ガスが順次にチャンバーに導入され、そのガス導入の順序を繰り返すことで成膜を行ってもよい。例えば、それぞれのスイッチングバルブ(高速バルブとも呼ぶ)を切り替えて2種類以上の原料ガスを順番にチャンバーに供給し、複数種の原料ガスが混ざらないように第1の原料ガスと同時またはその後に不活性ガス(アルゴン、或いは窒素など)などを導入し、第2の原料ガスを導入する。なお、同時に不活性ガスを導入する場合には、不活性ガスはキャリアガスとなり、また、第2の原料ガスの導入時にも同時に不活性ガスを導入してもよい。また、不活性ガスを導入する代わりに真空排気によって第1の原料ガスを排出した後、第2の原料ガスを導入してもよい。第1の原料ガスが基板の表面に吸着して第1の薄い層を成膜し、後から導入される第2の原料ガスと反応して、第2の薄い層が第1の薄い層上に積層されて薄膜が形成される。このガス導入順序を制御しつつ所望の厚さになるまで複数回繰り返すことで、段差被覆性に優れた薄膜を形成することができる。薄膜の厚さは、ガス導入順序を繰り返す回数によって調節することができるため、精密な膜厚調節が可能であり、微細なFETを作製する場合に適している。
 MOCVD法、ALD法などの熱CVD法は、これまでに記載した実施形態に開示された金属膜、半導体膜、無機絶縁膜など様々な膜を形成することができ、例えば、In−Ga−Zn−O膜を成膜する場合には、トリメチルインジウム(In(CH)、トリメチルガリウム(Ga(CH)、及びジメチル亜鉛(Zn(CH)を用いる。また、これらの組み合わせに限定されず、トリメチルガリウムに代えてトリエチルガリウム(Ga(C)を用いることもでき、ジメチル亜鉛に代えてジエチル亜鉛(Zn(C)を用いることもできる。
 例えば、ALDを利用する成膜装置により酸化ハフニウム膜を形成する場合には、溶媒とハフニウム前駆体化合物を含む液体(ハフニウムアルコキシド、テトラキス(ジメチルアミド)ハフニウム(TDMAH、Hf[N(CH)などのハフニウムアミド)を気化させた原料ガスと、酸化剤としてオゾン(O)の2種類のガスを用いる。また、他の材料としては、テトラキス(エチルメチルアミド)ハフニウムなどがある。
 例えば、ALDを利用する成膜装置により酸化アルミニウム膜を形成する場合には、溶媒とアルミニウム前駆体化合物を含む液体(トリメチルアルミニウム(TMA、Al(CH)など)を気化させた原料ガスと、酸化剤としてHOの2種類のガスを用いる。また、他の材料としては、トリス(ジメチルアミド)アルミニウム、トリイソブチルアルミニウム、アルミニウムトリス(22,6,6−テトラメチル−3,5−ヘプタンジオナート)などがある。
 例えば、ALDを利用する成膜装置により酸化シリコン膜を形成する場合には、ヘキサクロロジシランを被成膜面に吸着させ、酸化性ガス(O、一酸化二窒素)のラジカルを供給して吸着物と反応させる。
 例えば、ALDを利用する成膜装置によりタングステン膜を成膜する場合には、WFガスとBガスを順次繰り返し導入して初期タングステン膜を形成し、その後、WFガスとHガスを順次繰り返し導入してタングステン膜を形成する。なお、Bガスに代えてSiHガスを用いてもよい。
 例えば、ALDを利用する成膜装置により酸化物半導体膜、例えばIn−Ga−Zn−O膜を成膜する場合には、In(CHガスとOガスを順次繰り返し導入してIn−O層を形成し、その後、Ga(CHガスとOガスを順次繰り返し導入してGaO層を形成し、更にその後Zn(CHガスとOガスを順次繰り返し導入してZnO層を形成する。なお、これらの層の順番はこの例に限らない。また、これらのガスを用いてIn−Ga−O層、In−Zn−O層、Ga−Zn−O層などの混合酸化物層を形成しても良い。なお、Oガスに替えてAr等の不活性ガスで水をバブリングして得られたHOガスを用いても良いが、Hを含まないOガスを用いる方が好ましい。また、In(CHガスにかえて、In(Cガスを用いても良い。また、Ga(CHガスにかえて、Ga(Cガスを用いても良い。また、Zn(CHガスを用いても良い。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態4)
 本実施の形態では、本発明の一態様の情報処理装置の応用例について説明する。
 一般に、コンピュータは、構成要素として、マザーボード上にプロセッサ、メインメモリ、ストレージなどを有し、それぞれの構成要素は、一例として、バス配線によって、電気的に接続されている。このため、バス配線が長くなるほど寄生抵抗が大きくなるため、信号の送信に必要な消費電力も高くなる。
 具体的には、コンピュータとしては、例えば、図14Aに示すような構成となる。コンピュータは、マザーボードBDを有し、またマザーボードBD上には、演算処理装置(プロセッサ、CPUなど)10、メインメモリ(DRAM(Dynamic Random Access Memory)など)30、ストレージ(三次元構造のNAND型の記憶装置、3D OS NAND型の記憶装置など)40、インターフェース60などが設けられている。なお、図14Aには、メインメモリとしても機能するSRAM(Static Random Access Memory)20も図示しているが、マザーボードBD上に必ずしも設けなくてもよい。
 なお、図14Aには、演算処理装置10がレジスタ11を有する構成を図示している。
 図14Aにおいて、演算処理装置10は、SRAM20と、メインメモリ30と、ストレージ40と、インターフェース60と、に電気的に接続されている。また、メインメモリ30は、SRAM20と、ストレージ40と、に電気的に接続されている。
 なお、図14Aのコンピュータの各構成要素は、バス配線BSHによって電気的に接続されている。つまり、コンピュータの構成要素が増えるほど、又は、マザーボードBDが大きくなるほど、引き回されるバス配線BSHが長くなるため、信号の送信に必要な消費電力が高くなる。
 ところで、図14Aのコンピュータは、当該コンピュータの各構成要素を1個のチップにまとめて、モノリシックIC(Integrated Circuit)にまとめてもよい。また、このとき、上記の実施の形態で説明した、図1などの情報処理装置50をメインメモリ30及びストレージ40として適用することができる。このように、図14AのコンピュータをモノリシックICとしたものを図14Bに示す。
 図14BのモノリシックICは、Siを有する半導体基板上に、回路層LGCを有する。また、回路層LGCの上部に記憶層STRを有し、記憶層STRの上部に回路層OSCを有する。
 回路層LGCは、例えば、Siを有する半導体基板SBTに形成されるSiトランジスタを含む複数の回路を有する。当該複数の回路の一部としては、例えば、図14Aにおける、演算処理装置10、SRAM20などとすることができる。また、図1などの情報処理装置をメインメモリ30及びストレージ40として適用した場合、当該複数の回路の一部としては、情報処理装置50に含まれているコントローラ1197とすることができる。
 特に、SRAM20は、一例として、Siトランジスタを用いることによって、SRAMの駆動周波数を高くすることができる。
 記憶層STRは、Siトランジスタ、及び/又はOSトランジスタを有する記憶部として機能する。記憶層STRとしては、例えば、三次元構造のNAND型の記憶回路、3D OS NAND型の記憶回路などとすることができる。そのため、記憶層STRは、図1の情報処理装置における記憶部1196、図14Aにおけるストレージ40などを有する。
 なお、3D OS NAND型の記憶回路を用いることによって、図14BのモノリシックICの消費電力を低減することができる。
 回路層OSCは、例えば、OSトランジスタを含む複数の回路を有する。当該複数の回路の一部としては、例えば、演算処理装置10、SRAM20など回路層LGCに含まれている回路とは異なる、回路とすることができる。
 図14BのモノリシックICでは、マザーボード上に引き回すためのバス配線BSHを設けていないため、それぞれの構成要素同士を電気的に接続する配線が短くなる。このため、信号の送信に必要な消費電力を低くすることができる。
 また、図14BのモノリシックICは、情報処理装置50を有している。このため、情報処理装置50は、図14Aにおけるストレージ40と、メインメモリ30と、の役割として機能する。このため、図14BのモノリシックICは、メインメモリ30を記憶層STRの記憶部1196とすることができる。
 バス配線BSHを設けていない点、メインメモリ30の代替として記憶部1196を用いる点によって、図14BのモノリシックICは、図14Aのコンピュータよりも回路面積を低減することができる。
 図14BのモノリシックICの具体的な模式図を図15に示す。図15に示すモノリシックIC1500は、先の実施の形態で説明した3D OS NAND型の記憶装置を有する。
 図15のモノリシックIC1500には、回路層LGCと、記憶層STRと、回路層OSCと、を示している。なお、図15のモノリシックIC1500には、半導体基板SBTを省略している。
 記憶層STRには、複数のストリングSTGを有する。なお、複数のストリングSTGは、実施の形態1におけるストリングST1乃至ストリングST3に相当する。
 また、記憶層STRに含まれている導電体ME1は、回路層LGCと、回路層OSCと、を電気的に接続する配線として機能する。
 また、記憶層STRに含まれている導電体ME2は、回路層OSCと、複数の導電体ME3と、を電気的に接続する配線として機能する。
 また、記憶層STRに含まれている導電体ME3は、複数のストリングSTGに含まれているセルトランジスタのゲート、及び当該ゲートに電気的に接続されている配線として機能する。つまり、導電体ME3は、上述した実施の形態における、図11の導電体152、導電体153、導電体154、導電体155、導電体156、図13の導電体2221(例えば、配線RWL[1]など)、導電体221(例えば、配線WWL[1]など)などとすることができる。
 次に、図14Aのコンピュータ、及び図14BのモノリシックICの記憶階層の一例をそれぞれ図16A、及び図16Bに示す。
 一般に、記憶階層は、上層に位置する記憶装置ほど速い動作速度が求められ、下層に位置する記憶装置ほど大きな記憶容量と高い記録密度が求められる。図16Aでは、一例として、最上層から順にCPU(演算処理装置10)に含まれているレジスタと、SRAMと、メインメモリ30に含まれているDRAMと、ストレージ40に含まれている三次元構造のNAND型の記憶回路と、を示している。
 演算処理装置10に含まれているレジスタと、SRAMと、は、演算結果の一時保存などに用いられるため、演算処理装置10からのアクセス頻度が高い。よって、記憶容量よりも速い動作速度が求められる。また、レジスタは演算処理装置の設定情報などを保持する機能も有する。
 メインメモリ30に含まれているDRAMは、一例として、ストレージ40から読み出されたプログラム、データなどを保持する機能を有する。DRAMの記録密度は、おおよそ0.1乃至0.3Gbit/mmである。
 ストレージ40は、長期保存が必要なデータ、演算処理装置で使用する各種のプログラムなどを保持する機能を有する。よって、ストレージ40には動作速度よりも大きな記憶容量と高い記録密度が求められる。ストレージ40に用いられる記憶装置の記録密度は、おおよそ0.6乃至6.0Gbit/mmである。このため、ストレージ40としては、三次元構造のNAND型の記憶回路(3D OS NAND)、ハードディスクドライブ(HDD)などが用いられる。
 ところで、図14BのモノリシックICでは、前述した通り、図1の情報処理装置50が図14Aのストレージ40、及びメインメモリ30の役割を有するため、図14BのモノリシックICの記憶階層は図16Bに示すとおりとなる。
 つまり、図14BのモノリシックICにおいて、図1の情報処理装置50の記憶部100に含まれているメモリセルは、記憶部100のキャッシュメモリだけでなく、図14Aのコンピュータにおけるメインメモリ30として扱うことができる。このため、図14BのモノリシックICでは、DRAMなどのメインメモリ30を設ける必要がなくなるため、図14BのモノリシックICの回路面積を低減することができ、また、DRAMなどのメインメモリ30を動作させることに必要な消費電力を低減することができる。
 なお、図14Bに示したモノリシックICの構成は、一例であり、本発明の一態様に限定されない。図14Bに示したモノリシックICは、状況に応じて、構成を変更してもよい。例えば、図14BのモノリシックICにおいて、例えば、SRAMとして1GHz以上の高速なメモリが求められる場合には、SRAMは、演算処理装置に混載されてもよい。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態5)
 本実施の形態では、本明細書などのNAND型の記憶装置への書き込み方法の一例について説明する。
 図17Aは、演算処理装置(プロセッサ、CPUなど)70と、記憶装置(三次元構造のNAND型の記憶装置、3D OS NAND型の記憶装置)80と、の電気的な接続を示している。具体的には、演算処理装置70は、複数の配線90を介して、記憶装置80に電気的に接続されている。
 演算処理装置70は、複数の配線90を介して、記憶装置80に、記憶装置80に含まれているメモリセルに書き込むためのデータを送信する機能を有する。つまり、複数の配線90は、上述した実施の形態の配線WBLなどに相当する、書き込みビット線として機能する。例えば、記憶装置80がNAND構造の記憶装置であって、複数のストリングを有している場合、複数の配線90のそれぞれは、複数のストリングに電気的に接続されている。
 ところで、記憶装置80に含まれているメモリセルへのデータの書き込み速度を速めるには、配線90の形成として抵抗値の低い材料を用いる、配線90の長さを短くする、などが挙げられる。
 また、記憶装置80に含まれているメモリセルへのデータの書き込み速度を速める手段としては、配線90の本数を増やせばよい。つまり、配線90の本数(配線90に電気的に接続されている記憶装置80のストリングの数)を増やすことによって、1回に書き込めるメモリセルへのデータの数を増やすことができる。
 次に、図17Bを用いて、書き込みデータの送信方法について説明する。
 演算処理装置70は、一例として、ラッチ回路LT1[1]乃至ラッチ回路LT1[z](zは2以上の整数とする。)と、ラッチ回路LT2[1]乃至ラッチ回路LT2[z]と、配線90[1]乃至配線90[z]と、を有する。また、記憶装置80は、一例として、NAND型の記憶装置として、ストリングSTG[1]乃至ストリングSTG[z]を有する。
 演算処理装置70において、ラッチ回路LT1[1]乃至ラッチ回路LT1[z]は、シフトレジスタを構成している。そのため、ラッチ回路LT1[1]乃至ラッチ回路LT1[z]のそれぞれのクロック入力端子には、クロック信号を送信する配線CLKが電気的に接続されている。当該シフトレジスタは、ラッチ回路LT1[1]の入力端子に入力された書き込み用のデータDAを、配線CLKからクロック信号として入力されたパルス電圧の回数に応じて、順次、ラッチ回路LT1[2]乃至ラッチ回路LT1[z]に送信することができる。
 また、ラッチ回路LT1[v](ここでのvは1以上z以下の整数とする。)の出力端子は、ラッチ回路LT2[v]の入力端子に電気的に接続されている。そのため、ラッチ回路LT1[v]から出力されたデータDAは、ラッチ回路LT2[v]に入力される。また、ラッチ回路LT2[v]は、配線90[v]を介してストリングSTG[v]と電気的に接続される。
 ラッチ回路LT2[1]乃至ラッチ回路LT2[z]のそれぞれのクロック入力端子には、配線ENLが電気的に接続されている。配線ENLは、演算処理装置70から記憶装置80にデータDAを送信するためのトリガー信号を送信する配線として機能する。
 シリアル伝送によって、ラッチ回路LT1[1]にデータDAが入力されることで、ラッチ回路LT1[1]にデータDAが順次入力されていく。ここでは、ラッチ回路LT1[1]乃至ラッチ回路LT1[z]に順次データDAが入力されていき、ラッチ回路LT1[1]乃至ラッチ回路LT1[z]のそれぞれにデータDA[1]乃至データDA[z]が格納されたものとする。
 このとき、ラッチ回路LT1[1]乃至ラッチ回路LT1[z]のそれぞれの出力端子からは、データDA[1]乃至データDA[z]が出力される。また、データDA[1]乃至データDA[z]のそれぞれは、ラッチ回路LT2[1]乃至ラッチ回路LT2[z]に入力される。
 このようにして、シリアル伝送によって入力されたデータDAを、データDA[1]乃至データDA[z]としてラッチ回路LT1[1]乃至ラッチ回路LT1[z]に分配することができる。言い換えると、シリアル伝送によって入力されたデータDAを、データDA[1]乃至データDA[z]として配線90[1]乃至配線90[z]に分配することができる。
 その後、配線ENLによって、ラッチ回路LT2[1]乃至ラッチ回路LT2[z]のそれぞれにクロック信号入力端子にトリガー信号が与えられることによって、ラッチ回路LT2[1]乃至ラッチ回路LT2[z]のそれぞれから、データDA[1]乃至データDA[z]を、配線90[1]乃至配線90[z]を介してパラレルに記憶装置80のストリングSTG[1]乃至ストリングSTG[z]に入力することができる。
 上述した構成と駆動方法を適用することによって、シリアル伝送された記憶装置80に書き込むためのデータを、パラレルに記憶装置80のストリングSTG[1]乃至ストリングSTG[z]に送ることができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態6)
 本実施の形態では、上記の実施の形態で説明したOSトランジスタに用いることができる金属酸化物(以下、酸化物半導体ともいう。)について説明する。
 金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、スズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどから選ばれた一種、または複数種が含まれていてもよい。
<結晶構造の分類>
 まず、酸化物半導体における、結晶構造の分類について、図18Aを用いて説明を行う。図18Aは、酸化物半導体、代表的にはIGZO(Inと、Gaと、Znと、を含む金属酸化物)の結晶構造の分類を説明する図である。
 図18Aに示すように、酸化物半導体は、大きく分けて「Amorphous(無定形)」と、「Crystalline(結晶性)」と、「Crystal(結晶)」と、に分類される。また、「Amorphous」の中には、completely amorphousが含まれる。また、「Crystalline」の中には、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、及びCAC(cloud−aligned composite)が含まれる(excluding single crystal and poly crystal)。なお、「Crystalline」の分類には、single crystal、poly crystal、及びcompletely amorphousは除かれる。また、「Crystal」の中には、single crystal、及びpoly crystalが含まれる。
 なお、図18Aに示す太枠内の構造は、「Amorphous(無定形)」と、「Crystal(結晶)」との間の中間状態であり、新しい境界領域(New crystalline phase)に属する構造である。すなわち、当該構造は、エネルギー的に不安定な「Amorphous(無定形)」、及び「Crystal(結晶)」とは全く異なる構造と言い換えることができる。
 なお、膜または基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価することができる。ここで、「Crystalline」に分類されるCAAC−IGZO膜のGIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを図18Bに示す。なお、GIXD法は、薄膜法またはSeemann−Bohlin法ともいう。以降、図18Bに示すGIXD測定で得られるXRDスペクトルを、単にXRDスペクトルと記す。なお、図18Bに示すCAAC−IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、図18Bに示すCAAC−IGZO膜の厚さは、500nmである。
 図18Bに示すように、CAAC−IGZO膜のXRDスペクトルでは、明確な結晶性を示すピークが検出される。具体的には、CAAC−IGZO膜のXRDスペクトルでは、2θ=31°近傍に、c軸配向を示すピークが検出される。なお、図18Bに示すように、2θ=31°近傍のピークは、ピーク強度(Intensity)が検出された角度を軸に左右非対称である。
 また、膜または基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう。)にて評価することができる。CAAC−IGZO膜の回折パターンを、図18Cに示す。図18Cは、電子線を基板に対して平行に入射するNBEDによって観察される回折パターンである。なお、図18Cに示すCAAC−IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、極微電子線回折法では、プローブ径を1nmとして電子線回折が行われる。
 図18Cに示すように、CAAC−IGZO膜の回折パターンでは、c軸配向を示す複数のスポットが観察される。
<<酸化物半導体の構造>>
 なお、酸化物半導体は、結晶構造に着目した場合、図18Aとは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体、などが含まれる。
 ここで、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
 CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
 なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
 また、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどから選ばれた一種、または複数種)において、CAAC−OSは、インジウム(In)、及び酸素を有する層(以下、In層)と、元素M、亜鉛(Zn)、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能である。よって、(M,Zn)層にはインジウムが含まれる場合がある。また、In層には元素Mが含まれる場合がある。なお、In層にはZnが含まれる場合もある。当該層状構造は、例えば、高分解能TEM像において、格子像として観察される。
 CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°またはその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、組成などにより変動する場合がある。
 また、例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう。)を対称中心として、点対称の位置に観測される。
 上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないこと、金属原子が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
 なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、電界効果移動度の低下などを引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、及びIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
 CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入、及び欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物、及び欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。したがって、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OS、及び非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆又は低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
<<酸化物半導体の構成>>
 次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
 CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
 さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
 ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、およびZnの原子数比のそれぞれを、[In]、[Ga]、および[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
 具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
 なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
 例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
 CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、および良好なスイッチング動作を実現することができる。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
 続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
 上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
 トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のキャリア濃度は1×1017cm−3以下、好ましくは1×1015cm−3以下、さらに好ましくは1×1013cm−3以下、より好ましくは1×1011cm−3以下、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性又は実質的に高純度真性な酸化物半導体を呼称する場合がある。
 また、高純度真性又は実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
 また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
 ここで、酸化物半導体中における各不純物の影響について説明する。
 酸化物半導体において、第14族元素の一つであるシリコン、炭素などが含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコン、炭素などの濃度と、酸化物半導体との界面近傍のシリコン、炭素などの濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
 また、酸化物半導体にアルカリ金属又はアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属又はアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体中のアルカリ金属又はアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
 また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
 また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
 不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態7)
 本実施の形態では、上記実施の形態に示す情報処理装置などが形成された半導体ウェハ、及び当該情報処理装置が組み込まれた電子部品の一例について説明する。
<半導体ウェハ>
 初めに、情報処理装置などが形成された半導体ウェハの例を、図19Aを用いて説明する。
 図19Aに示す半導体ウェハ4800は、ウェハ4801と、ウェハ4801の上面に設けられた複数の回路部4802と、を有する。なお、ウェハ4801の上面において、回路部4802の無い部分は、スペーシング4803であり、ダイシング用の領域である。
 半導体ウェハ4800は、ウェハ4801の表面に対して、前工程によって複数の回路部4802を形成することで作製することができる。また、その後に、ウェハ4801の複数の回路部4802が形成された反対側の面を研削して、ウェハ4801の薄膜化してもよい。この工程により、ウェハ4801の反りなどを低減し、部品としての小型化を図ることができる。
 次の工程としては、ダイシング工程が行われる。ダイシングは、一点鎖線で示したスクライブラインSCL1及びスクライブラインSCL2(ダイシングライン、又は切断ラインと呼ぶ場合がある)に沿って行われる。なお、スペーシング4803は、ダイシング工程を容易に行うために、複数のスクライブラインSCL1が平行になるように設け、複数のスクライブラインSCL2が平行になるように設け、スクライブラインSCL1とスクライブラインSCL2が垂直になるように設けるのが好ましい。
 ダイシング工程を行うことにより、図19Bに示すようなチップ4800aを、半導体ウェハ4800から切り出すことができる。チップ4800aは、ウェハ4801aと、回路部4802と、スペーシング4803aと、を有する。なお、スペーシング4803aは、極力小さくなるようにするのが好ましい。この場合、隣り合う回路部4802の間のスペーシング4803の幅が、スクライブラインSCL1の切りしろと、又はスクライブラインSCL2の切りしろとほぼ同等の長さであればよい。
 なお、本発明の一態様の素子基板の形状は、図19Aに図示した半導体ウェハ4800の形状に限定されない。例えば、矩形の形状の半導体ウェハあってもよい。素子基板の形状は、素子の作製工程、及び素子を作製するための装置に応じて、適宜変更することができる。
<電子部品>
 図19Cに電子部品4700および電子部品4700が実装された基板(実装基板4704)の斜視図を示す。図19Cに示す電子部品4700は、モールド4711内にチップ4800aを有している。なお、図19Cに示すチップ4800aには、回路部4802が積層された構成を示している。つまり、回路部4802として、上記の実施の形態で説明した情報処理装置を適用することができる。図19Cは、電子部品4700の内部を示すために、一部を省略している。電子部品4700は、モールド4711の外側にランド4712を有する。ランド4712は電極パッド4713と電気的に接続され、電極パッド4713はチップ4800aとワイヤ4714によって電気的に接続されている。電子部品4700は、例えばプリント基板4702に実装される。このような電子部品が複数組み合わされて、それぞれがプリント基板4702上で電気的に接続されることで実装基板4704が完成する。
 図19Dに電子部品4730の斜視図を示す。電子部品4730は、SiP(System in Package)またはMCM(Multi Chip Module)の一例である。電子部品4730は、パッケージ基板4732(プリント基板)上にインターポーザ4731が設けられ、インターポーザ4731上に半導体装置4735、および複数の半導体装置4710が設けられている。
 電子部品4730では、半導体装置4710を有する。半導体装置4710としては、例えば、上記実施の形態で説明した半導体装置、広帯域メモリ(HBM:High Bandwidth Memory)などとすることができる。また、半導体装置4735は、CPU、GPU、FPGA、記憶装置などの集積回路(半導体装置)を用いることができる。
 パッケージ基板4732は、セラミック基板、プラスチック基板、またはガラスエポキシ基板などを用いることができる。インターポーザ4731は、シリコンインターポーザ、樹脂インターポーザなどを用いることができる。
 インターポーザ4731は、複数の配線を有し、端子ピッチの異なる複数の集積回路を電気的に接続する機能を有する。複数の配線は、単層または多層で設けられる。また、インターポーザ4731は、インターポーザ4731上に設けられた集積回路をパッケージ基板4732に設けられた電極と電気的に接続する機能を有する。これらのことから、インターポーザを「再配線基板」または「中間基板」と呼ぶ場合がある。また、インターポーザ4731に貫通電極を設けて、当該貫通電極を用いて集積回路とパッケージ基板4732を電気的に接続する場合もある。また、シリコンインターポーザでは、貫通電極として、TSV(Through Silicon Via)を用いることも出来る。
 インターポーザ4731としてシリコンインターポーザを用いることが好ましい。シリコンインターポーザでは能動素子を設ける必要が無いため、集積回路よりも低コストで作製することができる。一方で、シリコンインターポーザの配線形成は半導体プロセスで行なうことができるため、樹脂インターポーザでは難しい微細配線の形成が容易である。
 HBMでは、広いメモリバンド幅を実現するために多くの配線を接続する必要がある。このため、HBMを実装するインターポーザには、微細かつ高密度の配線形成が求められる。よって、HBMを実装するインターポーザには、シリコンインターポーザを用いることが好ましい。
 また、シリコンインターポーザを用いたSiP、MCMなどでは、集積回路とインターポーザ間の膨張係数の違いによる信頼性の低下が生じにくい。また、シリコンインターポーザは表面の平坦性が高いため、シリコンインターポーザ上に設ける集積回路とシリコンインターポーザ間の接続不良が生じにくい。特に、インターポーザ上に複数の集積回路を横に並べて配置する2.5Dパッケージ(2.5次元実装)では、シリコンインターポーザを用いることが好ましい。
 また、電子部品4730と重ねてヒートシンク(放熱板)を設けてもよい。ヒートシンクを設ける場合は、インターポーザ4731上に設ける集積回路の高さを揃えることが好ましい。例えば、本実施の形態に示す電子部品4730では、半導体装置4710と半導体装置4735の高さを揃えることが好ましい。
 電子部品4730を他の基板に実装するため、パッケージ基板4732の底部に電極4733を設けてもよい。図19Dでは、電極4733を半田ボールで形成する例を示している。パッケージ基板4732の底部に半田ボールをマトリクス状に設けることで、BGA(Ball Grid Array)実装を実現できる。また、電極4733を導電性のピンで形成してもよい。パッケージ基板4732の底部に導電性のピンをマトリクス状に設けることで、PGA(Pin Grid Array)実装を実現できる。
 電子部品4730は、BGAおよびPGAに限らず様々な実装方法を用いて他の基板に実装することができる。例えば、SPGA(Staggered Pin Grid Array)、LGA(Land Grid Array)、QFP(Quad Flat Package)、QFJ(Quad Flat J−leaded package)、またはQFN(Quad Flat Non−leaded package)などの実装方法を用いることができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態8)
 本実施の形態では、上記実施の形態で説明した情報処理装置を有する電子機器の一例について説明する。なお、図20A乃至図20Jには、当該情報処理装置を有する電子部品4700が各電子機器に含まれている様子を図示している。
[携帯電話]
 図20Aに示す情報端末5500は、情報端末の一種である携帯電話(スマートフォン)である。情報端末5500は、筐体5510と、表示部5511と、を有しており、入力用インターフェースとして、タッチパネルが表示部5511に備えられ、ボタンが筐体5510に備えられている。
 情報端末5500は、上記実施の形態で説明した情報処理装置を適用することで、アプリケーションの実行時に生成される一時的なファイル(例えば、ウェブブラウザの使用時のキャッシュなど)を保持することができる。
[ウェアラブル端末]
 また、図20Bには、ウェアラブル端末の一例である情報端末5900が図示されている。情報端末5900は、筐体5901、表示部5902、操作ボタン5903、操作子5904、バンド5905などを有する。
 ウェアラブル端末は、先述した情報端末5500と同様に、上記実施の形態で説明した情報処理装置を適用することで、アプリケーションの実行時に生成される一時的なファイルを保持することができる。
[情報端末]
 また、図20Cには、デスクトップ型情報端末5300が図示されている。デスクトップ型情報端末5300は、情報端末の本体5301と、ディスプレイ5302と、キーボード5303と、を有する。
 デスクトップ型情報端末5300は、先述した情報端末5500と同様に、上記実施の形態で説明した情報処理装置を適用することで、アプリケーションの実行時に生成される一時的なファイルを保持することができる。
 なお、上述では、情報処理装置としてスマートフォン、及びデスクトップ用情報端末を例として、それぞれ図20A、及び図20Cに図示したが、スマートフォン、及びデスクトップ用情報端末以外の情報端末を適用することができる。スマートフォン、及びデスクトップ用情報端末以外の情報端末としては、例えば、PDA(Personal Digital Assistant)、ノート型情報端末、ワークステーションなどが挙げられる。
[電化製品]
 また、図20Dには、電化製品の一例として電気冷凍冷蔵庫5800が図示されている。電気冷凍冷蔵庫5800は、筐体5801、冷蔵室用扉5802、冷凍室用扉5803等を有する。
 電気冷凍冷蔵庫5800に上記実施の形態で説明した情報処理装置を適用することによって、電気冷凍冷蔵庫5800を、例えば、IoT(Internet of Things)として利用することができる。IoTを利用することによって、電気冷凍冷蔵庫5800は、電気冷凍冷蔵庫5800に保存されている食材、その食材の消費期限などの情報を、インターネットなどを通じて、上述したような情報端末などに送受信することができる。また、電気冷凍冷蔵庫5800は、当該情報を送信する際に、当該情報を一時ファイルとして、当該情報処理装置に保持することができる。
 本一例では、電化製品として電気冷凍冷蔵庫について説明したが、その他の電化製品としては、例えば、掃除機、電子レンジ、電気オーブン、炊飯器、湯沸かし器、IH調理器、ウォーターサーバ、エアーコンディショナーを含む冷暖房器具、洗濯機、乾燥機、オーディオビジュアル機器などが挙げられる。
[ゲーム機]
 また、図20Eには、ゲーム機の一例である携帯ゲーム機5200が図示されている。携帯ゲーム機5200は、筐体5201、表示部5202、ボタン5203等を有する。
 更に、図20Fには、ゲーム機の一例である据え置き型ゲーム機7500が図示されている。据え置き型ゲーム機7500は、本体7520と、コントローラ7522を有する。なお、本体7520には、無線または有線によってコントローラ7522を接続することができる。また、図20Fには示していないが、コントローラ7522は、ゲームの画像を表示する表示部、ボタン以外の入力インターフェースとなるタッチパネル、スティック、回転式つまみ、スライド式つまみなどを備えることができる。また、コントローラ7522は、図20Fに示す形状に限定されず、ゲームのジャンルに応じて、コントローラ7522の形状を様々に変更してもよい。例えば、FPS(First Person Shooter)などのシューティングゲームでは、トリガーをボタンとし、銃を模した形状のコントローラを用いることができる。また、例えば、音楽ゲームなどでは、楽器、音楽機器などを模した形状のコントローラを用いることができる。更に、据え置き型ゲーム機は、コントローラを使わず、代わりにカメラ、深度センサ、マイクロフォンなどを備えて、ゲームプレイヤーのジェスチャー、及び/又は音声によって操作する形式としてもよい。
 また、上述したゲーム機の映像は、テレビジョン装置、パーソナルコンピュータ用ディスプレイ、ゲーム用ディスプレイ、ヘッドマウントディスプレイなどの表示装置によって、出力することができる。
 携帯ゲーム機5200に上記実施の形態で説明した情報処理装置を適用することによって、低消費電力の携帯ゲーム機5200を実現することができる。また、低消費電力により、回路からの発熱を低減することができるため、発熱によるその回路自体、周辺回路、及びモジュールへの影響を少なくすることができる。
 更に、携帯ゲーム機5200に上記実施の形態で説明した情報処理装置を適用することによって、ゲームの実行中に発生する演算に必要な一時ファイルなどの保持をおこなうことができる。
 図20E、及び図20Fでは、ゲーム機の一例として携帯ゲーム機を図示しているが、本発明の一態様の情報処理装置はこれに限定されない。本発明の一態様の情報処理装置としては、例えば、家庭用の据え置き型ゲーム機、娯楽施設(ゲームセンター、遊園地など)に設置されるアーケードゲーム機、スポーツ施設に設置されるバッティング練習用の投球マシンなどが挙げられる。
[移動体]
 上記実施の形態で説明した情報処理装置は、移動体である自動車、及び自動車の運転席周辺に適用することができる。
 図20Gには移動体の一例である自動車5700が図示されている。
 自動車5700の運転席周辺には、スピードメーター、タコメーター、走行距離、燃料計、ギア状態、エアコンの設定などを表示することで、様々な情報を提供するインストゥルメントパネルが備えられている。また、運転席周辺には、それらの情報を示す表示装置が備えられていてもよい。
 特に当該表示装置には、自動車5700に設けられた撮像装置(図示しない。)からの映像を映し出すことによって、ピラーなどで遮られた視界、運転席の死角などを補うことができ、安全性を高めることができる。
 上記実施の形態で説明した情報処理装置は、情報を一時的に保持することができるため、例えば、当該コンピュータを自動車5700の自動運転システム、当該コンピュータを道路案内、危険予測などを行うシステムなどにおける、必要な一時的な情報の保持に用いることができる。当該表示装置には、道路案内、危険予測などの一時的な情報を表示する構成としてもよい。また、自動車5700に備え付けられたドライビングレコーダの映像を保持する構成としてもよい。
 なお、上述では、移動体の一例として自動車について説明しているが、移動体は自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)なども挙げることができる。
[カメラ]
 上記実施の形態で説明した情報処理装置は、カメラに適用することができる。
 図20Hには、撮像装置の一例であるデジタルカメラ6240が図示されている。デジタルカメラ6240は、筐体6241、表示部6242、操作ボタン6243、シャッターボタン6244等を有し、また、デジタルカメラ6240には、着脱可能なレンズ6246が取り付けられている。なお、ここではデジタルカメラ6240を、レンズ6246を筐体6241から取り外して交換することが可能な構成としたが、レンズ6246と筐体6241とが一体となっていてもよい。また、デジタルカメラ6240は、ストロボ装置、ビューファインダー等を別途装着することができる構成としてもよい。
 デジタルカメラ6240に上記実施の形態で説明した情報処理装置を適用することによって、低消費電力のデジタルカメラ6240を実現することができる。また、低消費電力により、回路からの発熱を低減することができるため、発熱によるその回路自体、周辺回路、及びモジュールへの影響を少なくすることができる。
[ビデオカメラ]
 上記実施の形態で説明した情報処理装置は、ビデオカメラに適用することができる。
 図201には、撮像装置の一例であるビデオカメラ6300が図示されている。ビデオカメラ6300は、第1筐体6301、第2筐体6302、表示部6303、操作キー6304、レンズ6305、接続部6306等を有する。操作キー6304及びレンズ6305は第1筐体6301に設けられており、表示部6303は第2筐体6302に設けられている。そして、第1筐体6301と第2筐体6302とは、接続部6306により接続されており、第1筐体6301と第2筐体6302の間の角度は、接続部6306により変更が可能である。表示部6303における映像を、接続部6306における第1筐体6301と第2筐体6302との間の角度に従って切り替える構成としてもよい。
 ビデオカメラ6300で撮影した映像を記録する際、データの記録形式に応じたエンコードを行う必要がある。上述した情報処理装置を利用することによって、ビデオカメラ6300は、エンコードの際に発生する一時的なファイルの保持を行うことができる。
[ICD]
 上記実施の形態で説明した情報処理装置は、植え込み型除細動器(ICD)に適用することができる。
 図20Jは、ICDの一例を示す断面模式図である。ICD本体5400は、バッテリー5401と、電子部品4700と、レギュレータと、制御回路と、アンテナ5404と、右心房へのワイヤ5402、右心室へのワイヤ5403とを少なくとも有している。
 ICD本体5400は手術により体内に設置され、二本のワイヤは、人体の鎖骨下静脈5405及び上大静脈5406を通過させて一方のワイヤ先端が右心室、もう一方のワイヤ先端が右心房に設置されるようにする。
 ICD本体5400は、ペースメーカのとしての機能を有し、心拍数が規定の範囲から外れた場合に心臓に対してペーシングを行う。また、ペーシングによって心拍数が改善しない場合(速い心室頻拍、心室細動など)、電気ショックによる治療が行われる。
 ICD本体5400は、ペーシング及び電気ショックを適切に行うため、心拍数を常に監視する必要がある。そのため、ICD本体5400は、心拍数を検知するためのセンサを有する。また、ICD本体5400は、当該センサなどによって取得した心拍数のデータ、ペーシングによる治療を行った回数、時間などを電子部品4700に記憶することができる。
 また、アンテナ5404で電力が受信でき、その電力はバッテリー5401に充電される。また、ICD本体5400は複数のバッテリーを有することにより、安全性を高くすることができる。具体的には、ICD本体5400の一部のバッテリーが使えなくなったとしても残りのバッテリーが機能させることができるため、補助電源としても機能する。
 また、電力を受信できるアンテナ5404とは別に、生理信号を送信できるアンテナを有していてもよく、例えば、脈拍、呼吸数、心拍数、体温などの生理信号を外部のモニタ装置で確認できるような心臓活動を監視するシステムを構成してもよい。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態9)
 本実施の形態では、上記実施の形態で説明した情報処理装置を有する計算機について説明する。
 図21Aに示す計算機9600は、大型の計算機の例である。計算機9600には、ラック9610にラックマウント型の計算機9620が複数格納されている。
 計算機9620は、例えば、図21Bに示す斜視図の構成とすることができる。図21Bにおいて、計算機9620は、マザーボード9630を有し、マザーボード9630は、複数のスロット9631、複数の接続端子を有する。スロット9631には、PCカード9621が挿されている。加えて、PCカード9621は、接続端子9623、接続端子9624、接続端子9625を有し、それぞれ、マザーボード9630に接続されている。
 図21Cに示すPCカード9621は、CPU、GPU、記憶装置などを備えた処理ボードの一例である。PCカード9621は、ボード9622を有する。また、ボード9622は、接続端子9623と、接続端子9624と、接続端子9625と、半導体装置9626と、半導体装置9627と、半導体装置9628と、接続端子9629と、を有する。なお、図21Cには、半導体装置9626、半導体装置9627、および半導体装置9628以外の半導体装置を図示しているが、それらの半導体装置については、以下に記載する半導体装置9626、半導体装置9627、および半導体装置9628の説明を参酌すればよい。
 接続端子9629は、マザーボード9630のスロット9631に挿すことができる形状を有しており、接続端子9629は、PCカード9621とマザーボード9630とを接続するためのインターフェースとして機能する。接続端子9629の規格としては、例えば、PCIeなどが挙げられる。
 接続端子9623、接続端子9624、接続端子9625は、例えば、PCカード9621に対して電力供給、信号入力などを行うためのインターフェースとすることができる。また、例えば、PCカード9621によって計算された信号の出力などを行うためのインターフェースとすることができる。接続端子9623、接続端子9624、接続端子9625のそれぞれの規格としては、例えば、USB(Universal Serial Bus)、SATA(Serial ATA)、SCSI(Small Computer System Interface)などが挙げられる。また、接続端子9623、接続端子9624、接続端子9625から映像信号を出力する場合、それぞれの規格としては、HDMI(登録商標)などが挙げられる。
 半導体装置9626は、信号の入出力を行う端子(図示しない。)を有しており、当該端子をボード9622が備えるソケット(図示しない。)に対して差し込むことで、半導体装置9626とボード9622を電気的に接続することができる。
 半導体装置9627は、複数の端子を有しており、当該端子をボード9622が備える配線に対して、例えば、リフロー方式のはんだ付けを行うことで、半導体装置9627とボード9622を電気的に接続することができる。半導体装置9627としては、例えば、FPGA(Field Programmable Gate Array)、GPU、CPUなどが挙げられる。半導体装置9627として、例えば、電子部品4730を用いることができる。
 半導体装置9628は、複数の端子を有しており、当該端子をボード9622が備える配線に対して、例えば、リフロー方式のはんだ付けを行うことで、半導体装置9628とボード9622を電気的に接続することができる。半導体装置9628としては、例えば、記憶装置、情報処理装置などが挙げられる。半導体装置9628として、例えば、電子部品4700を用いることができる。
 計算機9600は並列計算機としても機能できる。計算機9600を並列計算機として用いることで、例えば、人工知能の学習、および推論に必要な大規模の計算を行うことができる。
 上記の各種電子機器などに、本発明の一態様の半導体装置を用いることにより、電子機器の小型化、高速化、または低消費電力化を図ることができる。また、本発明の一態様の半導体装置は低消費電力が少ないため、回路からの発熱を低減することができる。よって、当該発熱によるその回路自体、周辺回路、およびモジュールへの悪影響を低減できる。また、本発明の一態様の半導体装置を用いることにより、高温環境下においても動作が安定した電子機器を実現できる。よって、電子機器の信頼性を高めることができる。
 続いて、計算機9600に適用可能なコンピュータシステムの構成例について説明する。図22は、コンピュータシステム1000の構成例を説明する図である。コンピュータシステム1000はソフトウェア(Software)とハードウェア(Hardware)を含んで構成される。なお、コンピュータシステムが含むハードウェアを情報処理装置という場合がある。
 コンピュータシステム1000を構成するソフトウェアとしては、デバイスドライバを含むオペレーティングシステム、ミドルウェア、各種の開発環境、AIに関係するアプリケーションプログラム(AI Application)、AIに無関係なアプリケーションプログラムなどがある。
 デバイスドライバには、補助記憶装置、表示装置、およびプリンタなどの外部接続機器を制御するためのアプリケーションプログラムなどが含まれる。
 コンピュータシステム1000を構成するハードウェアは、第1演算処理装置、第2演算処理装置、および第1記憶装置などを有する。また、第2演算処理装置は、第2記憶装置を有する。
 第1演算処理装置としては、例えば、Noff OS CPUなどの中央演算処理装置を用いるとよい。Noff OS CPUは、OSトランジスタを用いた記憶手段(例えば、不揮発性メモリ)を有し、動作が必要ない場合には、必要な情報を記憶手段に保持して、中央演算処理装置への電力供給を停止する機能を有する。第1演算処理装置としてNoff OS CPUを用いることで、コンピュータシステム1000の消費電力を低減できる。
 第2演算処理装置としては、例えば、GPU、FPGAなどを用いることができる。なお、第2演算処理装置として、AI OS Acceleratorを用いることが好ましい。AI OS AcceleratorはOSトランジスタを用いて構成され、積和演算回路などの演算手段を有する。AI OS Acceleratorは一般のGPUなどよりも消費電力が少ない。第2演算処理装置としてAI OS Acceleratorを用いることで、コンピュータシステム1000の消費電力を低減できる。
 第1記憶装置および第2記憶装置として本発明の一態様の半導体装置を有することが好ましい。本発明の一態様の半導体装置は、例えば、3D OS NAND型の記憶装置を有してもよいため、この場合、3D OS NAND型の記憶装置はキャッシュ、メインメモリ、およびストレージとして機能することができる。また、3D OS NAND型の記憶装置を用いることで非ノイマン型のコンピュータシステムの実現が容易になる。
 3D OS NAND型の記憶装置は、Siトランジスタを用いた3D NAND型の記憶装置よりも消費電力が少ない。記憶装置として3D OS NAND型の記憶装置を用いることで、コンピュータシステム1000の消費電力を低減できる。加えて、3D OS NAND型の記憶装置は、ユニバーサルメモリとして機能できるため、コンピュータシステム1000を構成するための部品点数を低減できる。
 ハードウェアを構成する半導体装置を、OSトランジスタを含む半導体装置で構成することで、中央演算処理装置、演算処理装置、および記憶装置を含むハードウェアのモノリシック化が容易になる。ハードウェアをモノリシック化することで、小型化、軽量化、薄型化だけでなく、さらなる消費電力の低減が容易となる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態10)
 本実施の形態では、実施の形態9で説明したコンピュータシステムとは異なる、コンピュータシステムについて、説明する。
 初めに、従来のコンピュータシステムについて、図23を用いて説明する。図23は、右側にコンピュータシステム2000の構成例を示しており、左側にコンピュータノード2100、及びストレージノード2200の記憶階層の一例を示している。
 コンピュータシステム2000は、複数のコンピュータノード2100と、ストレージノード2200と、を有する。
 コンピュータシステム2000は、一例として、複数のコンピュータノード2100と、ストレージノード2200と、がネットワーク2900を介して、それぞれのノード同士で互いに電気的に通信が可能な構成を有している。
 コンピュータノード2100は、一例として、プロセッサ(例えばCPU、GPU、Noff OS CPUなど)2110と、メインメモリ2120と、ストレージメモリ2130と、を有する。また、ストレージノード2200は、一例として、プロセッサ2210と、メインメモリ2220と、ストレージメモリ2230を有する。
 また、コンピュータノード2100に含まれているプロセッサ2110は、一例として、コア2111と、レジスタ2112と、キャッシュメモリ2113と、を有する。同様に、ストレージノード2200に含まれているプロセッサ2210は、一例として、コア2211と、レジスタ2212と、キャッシュメモリ2213と、を有する。
 レジスタ2112、及び/又はレジスタ2212としては、例えば、フリップフロップを適用することができる。また、キャッシュメモリ2113、及び/又はキャッシュメモリ2213としては、例えば、SRAMを適用することができる。
 また、コンピュータノード2100に含まれているメインメモリ2120としては、例えば、DRAMなどを適用することができる。また、コンピュータノード2100に含まれているストレージメモリ2130としては、例えば、NAND型の記憶装置、ハードディスクドライブ(HDD)などを適用することができる。
 図23に示す記憶階層において、最上層には、コア2111に含まれている記憶領域が位置する。続いて、上層から、フリップフロップ、SRAM、gap領域、DRAM、SCM(ストレージクラスメモリ)(gap領域)、NAND型の記憶装置(ハードディスクドライブ)が順に位置している。
 実施の形態4で述べたとおり、記憶階層は、上層に位置する記憶装置ほど速い動作速度が求められ、下層に位置する記憶装置ほど大きな記憶容量と高い記録密度が求められる。特に、最下層に位置する記憶装置では、長期間、データを保持することが求められている。
 次に、本発明の一態様に係るコンピュータシステムについて、図24Aを用いて説明する。図24Aは、図23と同様に、右側にコンピュータシステム2000Aの構成例を示しており、左側にコンピュータノード2500A(コンピュータノード2500B)の記憶階層の一例を示している。
 図24Aコンピュータシステム2000Aは、一例として、複数のコンピュータノード2500Aと、全体管理ホスト2400と、を有する。
 コンピュータシステム2000Aは、一例として、複数のコンピュータノード2500Aが全体管理ホスト2400を介して、それぞれのノード同士で互いに電気的に通信が可能な構成を有している。そのため、全体管理ホスト2400は、一例として、複数のコンピュータノード2500Aに対してのデータ、命令などを含む信号の送受信を行う機能を有する。なお、コンピュータシステム2000Aは、全体管理ホスト2400と複数のコンピュータノード2500Aとを有するネットワークと呼称することができる。
 コンピュータノード2500Aは、例えば、実施の形態4で説明した図15のモノリシックICであるとすることができる。コンピュータノード2500Aとして、図15のモノリシックICを適用することによって、モノリシックICに含まれている構成要素同士を電気的に接続する配線が短くなるため、信号の送信に必要な消費電力を低くすることができる。
 コンピュータノード2500Aは、一例として、コンピュータノード2500Bのブロック図の構成とすることができる。コンピュータノード2500Bは、一例として、プロセッサ2600と、記憶装置2700と、を有する。
 プロセッサ2600としては、例えば、図23に示したコンピュータノード2100に含まれているプロセッサ2110に適用できるプロセッサを用いることができる。
 記憶装置2700は、図23のコンピュータノード2100に含まれているメインメモリ2120と、ストレージメモリ2130と、のそれぞれの機能を有する記憶装置である。具体的には、記憶装置2700としては、例えば、実施の形態1で説明した情報処理装置50とすることができる。
 実施の形態1で説明したとおり、情報処理装置50は、NAND型のストリングを複数含んでいる記憶回路を有しており、一部のストリングを情報処理装置50におけるキャッシュメモリとして扱いを変更する機能を有する。つまり、情報処理装置50を記憶装置2700に適用することで、図23のコンピュータノード2100におけるメインメモリ2120の機能を記憶装置2700で動作させることができる。このため、図24Aのコンピュータノード2500Bは、図23のコンピュータノード2100と異なり、DRAMに相当するメインメモリ2120を設けない構成とすることができる。
 記憶装置2700としては、例えば、3D OS NAND型の記憶装置とすることができる。また、3D OS NAND型の記憶装置は、一例として、キャッシュ部2711と、記憶部2712と、を有する。なお、キャッシュ部2711は、例えば、実施の形態1の動作方法例で説明したストリングST2、ストリングST3に相当する。また、記憶部2712は、例えば、実施の形態1の動作方法例で説明したストリングST1に相当する。
 また、記憶装置2700としては、例えば、3D OS NAND型の記憶装置とした場合、コンピュータノード2500Bにおける記憶階層は、図24Aの左側に示したとおりとなる。コンピュータノード2500Bにおける記憶階層は、図23のコンピュータノード2100の記憶階層において、NAND型の記憶装置/HDDからDRAMまでの階層が、3D OS NAND型の記憶装置に置き換わった構成となる。なお、図24の記憶階層は、便宜的に、キャッシュ部2711と記憶部2712との相当する層のそれぞれに「3D OS NANDメモリ」と図示しているが、これらの記憶階層は1つの階層にまとめたものとしてもよい。
 また、コンピュータノード2500A(コンピュータノード2500B)に含まれている回路、例えば、プロセッサ、記憶装置はOSトランジスタを有する構成とすることが好ましい。OSトランジスタは、チャネル形成領域にシリコンを有するトランジスタと比較して、温度変化によって、トランジスタ特性、電界効果移動度などが変化しにくいため、コンピュータノード2500A(コンピュータノード2500B)に含まれている回路にOSトランジスタを用いることによって、コンピュータノード2500A(コンピュータノード2500B)を駆動による発熱に強い装置にすることができる。
 また、本発明の一態様に係るコンピュータシステムは、図24Aに示す構成に限定されない。本発明の一態様に係るコンピュータシステムは、状況に応じて、図24Aに示す構成を変更したものとしてもよい。
 例えば、図24Aのコンピュータノード2500A(コンピュータノード2500B)において、プロセッサ2600(CPU)に備わっているフリップフロップをNOSRAM(Nonvolatile Oxide Semiconductor Random Access Memory)(登録商標)に置き換えてもよい。なお、図24Bのコンピュータシステム2000Bでは、フリップフロップをNOSRAMに置き換えた構成を示しているが、SRAMをNOSRAMに置き換えた構成としてもよく、又はSRAM及びフリップフロップをNOSRAMに置き換えた構成としてもよい。
 NOSRAMとは、例えば、図25A乃至図25Dに示す、メモリセルを有する記憶装置である。当該メモリセルは、2トランジスタ1容量素子のゲインセル型のメモリセルであって、長時間、データの保持が可能な記憶素子である。
 図25Aに示すメモリセル1440は、トランジスタM2と、トランジスタM3と、容量C2と、を有する。なお、トランジスタM2は、フロントゲート(単にゲートと呼ぶ場合がある。)、及びバックゲートを有する。
 また、トランジスタM2、及びトランジスタM3のそれぞれは、OSトランジスタとすることが好ましい。なお、OSトランジスタのチャネル形成領域に含まれる金属酸化物については、実施の形態6で説明している。
 トランジスタM2の第1端子は、容量C2の第1端子と電気的に接続され、トランジスタM2の第2端子は、配線WBLLと電気的に接続され、トランジスタM2のゲートは、配線WLと電気的に接続され、トランジスタM2のバックゲートは、配線BGLLと電気的に接続されている。容量C2の第2端子は、配線CLと電気的に接続されている。トランジスタM3の第1端子は、配線RBLLと電気的に接続され、トランジスタM3の第2端子は、配線SLと電気的に接続され、トランジスタM3のゲートは、容量C2の第1端子と電気的に接続されている。
 配線WBLLは、書き込みビット線として機能し、配線RBLLは、読み出しビット線として機能し、配線WLは、ワード線として機能する。配線CLは、容量C2の第2端子に所定の電位を印加するための配線として機能する。例えば、データ保持の最中において、配線CLには、低レベル電位(基準電位という場合がある)が印加されていることが好ましく、データの書き込み時、及びデータの読み出し時において、配線CLには、高レベル電位が印加されていることが好ましい。
 配線BGLLは、トランジスタM2のバックゲートに電位を印加するための配線として機能する。配線BGLLに任意の電位を印加することによって、トランジスタM2のしきい値電圧を増減することができる。
 データの書き込み方法としては、初めに、配線SLに高レベル電位を印加する。次に、配線WLに高レベル電位を印加し、トランジスタM2をオン状態にし、配線WBLLと容量C2の第1端子との間を導通状態にすることによって行われる。具体的には、トランジスタM2がオン状態のときに、配線WBLLに記録する情報に対応する電位が印加されることによって、容量C2の第1端子、及びトランジスタM3のゲートに該電位が書き込まれる。その後、配線WLに低レベル電位を印加し、トランジスタM2をオフ状態にすることによって、容量C2の第1端子の電位、及びトランジスタM3のゲートの電位を保持する。
 データの読み出し方法としては、初めに、配線SLに高レベル電位を印加する。トランジスタM3のソース−ドレイン間に流れる電流、及びトランジスタM3の第1端子の電位は、トランジスタM3のゲートの電位、及びトランジスタM3の第2端子の電位によって決まるため、トランジスタM3の第1端子に接続されている配線RBLLの電位を読み出すことによって、容量C2の第1端子(又はトランジスタM3のゲート)に保持されている電位を読み出すことができる。つまり、容量C2の第1端子(又はトランジスタM3のゲート)に保持されている電位から、このメモリセルに書き込まれている情報を読み出すことができる。
 また、図24BのNOSRAMに適用できるメモリセルは、メモリセル1440に限定されない。状況によって、回路構成の変更を行うことができる。
 例えば、先の実施の形態で述べた半導体装置が有するメモリセルは、図25Bに示すようなメモリセルの構成でもよい。メモリセル1450は、トランジスタM2のバックゲートが、配線BGLLでなく、配線WLと電気的に接続される構成となっている。このような構成にすることによって、トランジスタM2のバックゲートに、トランジスタM2のゲートと同じ電位を印加することができるため、トランジスタM2がオン状態のときにおいて、トランジスタM2に流れる電流を増加することができる。
 また、例えば、先の実施の形態で述べた半導体装置が有するメモリセルは、バックゲートを有さないトランジスタM2で構成されたメモリセルであってもよい。そのメモリセルの回路構成例を図25Cに示す。メモリセル1460は、メモリセル1440のトランジスタM2からバックゲートを設けていない構成となっている。なお、該半導体装置にメモリセル1460を適用することによって、トランジスタM2はバックゲートを有さないため、該半導体装置の作製工程をメモリセル1440、及びメモリセル1450よりも短縮することができる。
 また、例えば、配線WBLLと配線RBLLを一本の配線BLとしてまとめた構成であってもよい。そのメモリセルの回路構成例を図25Dに示す。メモリセル1470は、メモリセル1440の配線WBLLと配線RBLLを一本の配線BLとして、トランジスタM2の第2端子、及びトランジスタM3の第1端子が、配線BLと電気的に接続されている構成となっている。つまり、メモリセル1470は、書き込みビット線と、読み出しビット線と、を1本の配線BLとして動作する構成となっている。
 なお、図25A乃至図25Dに示したそれぞれのメモリセルは、マトリクス状に配置することで、記憶装置として機能することができる。例えば、図25Aのメモリセル1440をマトリクス状に配置した場合、図25Eに示す記憶装置を構成することができる。
 図25Eに示す記憶装置は、セルアレイCAと、回路WBDと、回路CDと、回路WDと、回路RBDと、を有する。
 セルアレイCAは、例えば、上述した通り、マトリクス状に配置された複数のメモリセル1440を有する。
 回路WBDは、配線WBLLに電気的に接続されている。回路WBDは、例えば、セルアレイCAに含まれているメモリセルへのデータを書き込むための、書き込み回路として機能する。
 回路WDは、配線WLに電気的に接続されている。回路WDは、例えば、データを書き込むメモリセルを選択するための、選択回路として機能する。
 回路RBDは、配線RBLLと、配線SLと、に電気的に接続されている。回路RBDは、例えば、セルアレイCAに含まれているメモリセルからデータを読み出すための、読み出し回路として機能する。
 回路CDは、配線CLに電気的に接続されている。回路CDは、例えば、データを読み出すメモリセルを選択するための、選択回路として機能する。
 なお、図25Eに示す記憶装置の回路構成は、一例であって、その回路構成は適宜変更することができる。
 また、本発明の一態様に係るコンピュータシステムとしては、図23に示すコンピュータシステム2000の構成を変更したものとしてもよい。
 例えば、図26に示すコンピュータシステム2000Cは、図23のコンピュータシステム2000において、プロセッサ2110(プロセッサ2210)とストレージメモリ2130(ストレージメモリ2230)との間を、DRAMに相当するメインメモリ2120(メインメモリ2220)を介さずに電気的に接続されている構成となっている。
 特に、ストレージメモリ2130(ストレージメモリ2230)としては、図24Aのコンピュータシステム2000Aで説明した、記憶装置2700、つまり実施の形態1で説明した情報処理装置50とすることが好ましい。
 コンピュータノード2100(ストレージノード2200)を図26に示す構成にすることによって、DRAMに相当するメインメモリ2120(メインメモリ2220)を介さずに、プロセッサ2110(プロセッサ2210)と記憶装置2700(ストレージメモリ2130、又はストレージメモリ2230)とを電気的に接続することができ、メインメモリ2120(メインメモリ2220)無しで、コンピュータシステム2000Cを動作させることができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
ST1、ST2、ST3:ストリング、L[1]、L[2]、L[n]:メモリセル、M[1]、M[2]、M[n]:メモリセル、N[1]、N[2]、N[n]:メモリセル、SL1:配線、SL2:配線、SL3:配線、BL1:配線、BL2:配線、BL3:配線、ISG:信号、OSG:信号、DT:データ、STP1:ステップ、STP2:ステップ、STP3:ステップ、STP4:ステップ、STP5:ステップ、STP6:ステップ、STP7:ステップ、STP8:ステップ、MC[1]:メモリセル、MC[2]:メモリセル、MC[n]:メモリセル、MC[1,1]:メモリセル、MC[j,1]:メモリセル、MC[n,1]:メモリセル、MC[1,i]:メモリセル、MC[j,i]:メモリセル、MC[n,i]:メモリセル、MC[1,m]:メモリセル、MC[j,m]:メモリセル、MC[n,m]:メモリセル、N1:ノード、N2:ノード、RWL[1]:配線、RWL[2]:配線、RWL[j]:配線、RWL[n]:配線、WWL[1]:配線、WWL[2]:配線、WWL[j]:配線、WWL[n]:配線、WBL:配線、WBL[1]:配線、WBL[i]:配線、WBL[m]:配線、RBL:配線、RBL[1]:配線、RBL[i]:配線、RBL[m]:配線、BGL:配線、BGL[1]:配線、BGL[i]:配線、BGL[m]:配線、WTr:トランジスタ、RTr:トランジスタ、CS:容量、BLK_1:ブロック、BLK_h:ブロック、BLK_k:ブロック、BLK_2:ブロック、BLK_3:ブロック、MC[1]_1:メモリセル、MC[j]_1:メモリセル、MC[n]_1:メモリセル、MC[1]_h:メモリセル、MC[j]_h:メモリセル、MC[n]_h:メモリセル、MC[1]_k:メモリセル、MC[j]_k:メモリセル、MC[n]_k:メモリセル、MC[2]_1:メモリセル、MC[3]_1:メモリセル、MC[1]_2:メモリセル、MC[2]_2:メモリセル、MC[3]_2:メモリセル、MC[1]_3:メモリセル、MC[2]_3:メモリセル、MC[3]_3:メモリセル、RWL[1]_1:配線、RWL[j]_1:配線、RWL[n]_1:配線、RWL[1]_h:配線、RWL[j]_h:配線、RWL[n]_h:配線、RWL[1]_k:配線、RWL[j]_k:配線、RWL[n]_k:配線、RWL[2]_1:配線、RWL[3]_1:配線、RWL[1]_2:配線、RWL[2]_2:配線、RWL[3]_2:配線、RWL[1]_3:配線、RWL[2]_3:配線、RWL[3]_3:配線、WWL[1]_1:配線、WWL[j]_1:配線、WWL[n]_1:配線、WWL[1]_h:配線、WWL[j]_h:配線、WWL[n]_h:配線、WWL[1]_k:配線、WWL[j]_k:配線、WWL[n]_k:配線、WWL[2]_1:配線、WWL[3]_1:配線、WWL[1]_2:配線、WWL[2]_2:配線、WWL[3]_2:配線、WWL[1]_3:配線、WWL[2]_3:配線、WWL[3]_3:配線、RBL_1:配線、RBL_h:配線、RBL_k:配線、RBL_2:配線、RBL_3:配線、WBL_1:配線、WBL_h:配線、WBL_k:配線、WBL_2:配線、WBL_3:配線、LN1:配線、LN2:配線、BTr_1:トランジスタ、BTr_h:トランジスタ、BTr_k:トランジスタ、BTr_2:トランジスタ、BTr_3:トランジスタ、STr_1:トランジスタ、STr_h:トランジスタ、STr_k:トランジスタ、STr_2:トランジスタ、STr_3:トランジスタ、BD:マザーボード、BSH:バス配線、SBT:半導体基板、LGC:回路層、STR:記憶層、OSC:回路層、ME1:導電体、ME2:導電体、ME3:導電体、LT1[1]:ラッチ回路、LT1[2]:ラッチ回路、LT1[3]:ラッチ回路、LT1[z]:ラッチ回路、LT2[1]:ラッチ回路、LT2[2]:ラッチ回路、LT2[3]:ラッチ回路、LT2[z]:ラッチ回路、DA:データ、CLK:配線、ENL:配線、STG[1]:ストリング、STG[2]:ストリング、STG[3]:ストリング、STG[z]:ストリング、STG:ストリング、M2:トランジスタ、M3:トランジスタ、C2:容量、WBLL:配線、RBLL:配線、SL:配線、BL:配線、WL:配線、CL:配線、BGLL:配線、CA:セルアレイ、WBD:回路、WD:回路、CD:回路、RBD:回路、10:演算処理装置、11:レジスタ、20:SRAM、30:メインメモリ、40:ストレージ、50:情報処理装置、60:インターフェース、70:演算処理装置、80:記憶装置、90:配線、100:記憶部、111:絶縁体、112:絶縁体、113:絶縁体、114:絶縁体、115:絶縁体、116:絶縁体、117:絶縁体、121:絶縁体、122:絶縁体、131:絶縁体、132:絶縁体、133:絶縁体、141:半導体、142:半導体、143:半導体、151:導電体、152:導電体、153:導電体、154:導電体、155:導電体、156:導電体、200:制御部、211:絶縁体、212:絶縁体、213:絶縁体、214:絶縁体、215:絶縁体、216:絶縁体、221:導電体、222:導電体、223:導電体、231:半導体、232:半導体、240:絶縁体、241:絶縁体、242:絶縁体、243:絶縁体、250:導電体、251:導電体、252:導電体、253:導電体、300:トランジスタ、311:基板、313:半導体領域、314a:低抵抗領域、314b:低抵抗領域、315:絶縁体、316:導電体、320:絶縁体、322:絶縁体、324:絶縁体、326:絶縁体、328:導電体、330:導電体、350:絶縁体、352:絶縁体、354:絶縁体、356:導電体、360:絶縁体、382:絶縁体、384:絶縁体、386:導電体、700:トランジスタ、800:トランジスタ、900:トランジスタ、1000:コンピュータシステム、1196:記憶部、1197:コントローラ、1198:バスインターフェース、1440:メモリセル、1450:メモリセル、1460:メモリセル、1470:メモリセル、2000:コンピュータシステム、2000A:コンピュータシステム、2000B:コンピュータシステム、2000C:コンピュータシステム、2100:コンピュータノード、2110:プロセッサ、2111:コア、2112:レジスタ、2113:キャッシュメモリ、2120:メインメモリ、2130:ストレージメモリ、2200:ストレージノード、2210:プロセッサ、2211:コア、2212:レジスタ、2213:キャッシュメモリ、2220:メインメモリ、2230:ストレージメモリ、2400:全体管理ホスト、2500A:コンピュータノード、2500B:コンピュータノード、2600:プロセッサ、2700:記憶装置、2711:キャッシュ部、2712:記憶部、2900:ネットワーク、4700:電子部品、4702:プリント基板、4704:実装基板、4710:半導体装置、4714:ワイヤ、4730:電子部品、4731:インターポーザ、4732:パッケージ基板、4733:電極、4735:半導体装置、4800:半導体ウェハ、4800a:チップ、4801:ウェハ、4801a:ウェハ、4802:回路部、4803:スペーシング、4803a:スペーシング、5200:携帯ゲーム機、5201:筐体、5202:表示部、5203:ボタン、5300:デスクトップ型情報端末、5301:本体、5302:ディスプレイ、5303:キーボード、5400:ICD本体、5401:バッテリー、5402:ワイヤ、5403:ワイヤ、5404:アンテナ、5405:鎖骨下静脈、5406:上大静脈、5500:情報端末、5510:筐体、5511:表示部、5700:自動車、5800:電気冷凍冷蔵庫、5801:筐体、5802:冷蔵室用扉、5803:冷凍室用扉、5900:情報端末、5901:筐体、5902:表示部、5903:操作ボタン、5904:操作子、5905:バンド、6240:デジタルカメラ、6241:筐体、6242:表示部、6243:操作ボタン、6244:シャッターボタン、6246:レンズ、6300:ビデオカメラ、6301:第1筐体、6302:第2筐体、6303:表示部、6304:操作キー、6305:レンズ、6306:接続部、7520:本体、7522:コントローラ、9600:計算機、9610:ラック、9620:計算機、9621:PCカード、9622:ボード、9623:接続端子、9624:接続端子、9625:接続端子、9626:半導体装置、9627:半導体装置、9628:半導体装置、9629:接続端子、9630:マザーボード、9631:スロット

Claims (8)

  1.  プロセッサと、メモリと、を有するコンピュータシステムであって、
     前記プロセッサは、記憶部を有し、
     前記記憶部は、チャネル形成領域に金属酸化物を有するトランジスタを有し、
     前記プロセッサと、前記メモリと、は、互いに重畳するように、位置しており、
     前記プロセッサと、前記メモリとの間には、DRAMが接続されない、
     コンピュータシステム。
  2.  プロセッサと、メモリと、を有するコンピュータシステムであって、
     前記プロセッサは、記憶部を有し、
     前記記憶部は、チャネル形成領域に金属酸化物を有するトランジスタを有し、
     前記プロセッサと、前記メモリと、は、互いに重畳するように、位置している、
     コンピュータシステム。
  3.  プロセッサを含むコンピュータノードを有し、
     前記プロセッサは、記憶部を有し、
     前記記憶部は、第1トランジスタと、第2トランジスタと、容量と、を有し、
     前記第1トランジスタと、前記第2トランジスタと、のそれぞれは、チャネル形成領域に金属酸化物を有し、
     前記第1トランジスタの第1端子は、前記第2トランジスタのゲートに電気的に接続され、
     前記第2トランジスタのゲートは、前記容量の第1端子に電気的に接続されている、
     コンピュータシステム。
  4.  請求項3において、
     前記プロセッサは、SRAMを有し、かつフリップフロップを有さない、
     コンピュータシステム。
  5.  コンピュータノードを有し、
     前記コンピュータノードは、プロセッサと、3次元構造のNAND型の記憶装置と、を有し、
     前記3次元構造のNAND型の記憶装置は、金属酸化物がチャネル形成領域に含まれているトランジスタを有し、
     前記コンピュータノードは、DRAMを有さない、
     コンピュータシステム。
  6.  演算処理装置と、記憶装置と、複数の配線と、を有し、
     前記記憶装置は複数のストリングを有し、
     前記複数のストリングの一つは、前記複数の配線の一つを介して
     前記演算処理装置と電気的に接続された情報処理装置の駆動方法であって、
     シリアル伝送によって入力された第1データを、
     複数の第2データに変換し、
     前記複数の第2データを前記複数の配線毎に分配し、
     トリガー信号に応じて前記複数の第2データを前記複数のストリングに同時に供給する前記情報処理装置の動作方法。
  7.  請求項6において、
     前記ストリングは、複数のメモリセルを有し、
     前記メモリセルは、酸化物半導体を含む前記情報処理装置の動作方法。
  8.  請求項6または請求項7において、
     前記記憶装置は、NAND型の記憶装置である前記情報処理装置の動作方法。
PCT/IB2020/060503 2019-11-22 2020-11-09 コンピュータシステム、及び情報処理装置の動作方法 WO2021099879A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021558028A JPWO2021099879A1 (ja) 2019-11-22 2020-11-09
US17/773,887 US20220375521A1 (en) 2019-11-22 2020-11-09 Computer system and method for operating data processing device
CN202080079582.0A CN114730582A (zh) 2019-11-22 2020-11-09 计算机系统及信息处理装置的工作方法
KR1020227018723A KR20220103973A (ko) 2019-11-22 2020-11-09 컴퓨터 시스템 및 정보 처리 장치의 동작 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-211795 2019-11-22
JP2019211795 2019-11-22
JP2019220177 2019-12-05
JP2019-220177 2019-12-05

Publications (1)

Publication Number Publication Date
WO2021099879A1 true WO2021099879A1 (ja) 2021-05-27

Family

ID=75981168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/060503 WO2021099879A1 (ja) 2019-11-22 2020-11-09 コンピュータシステム、及び情報処理装置の動作方法

Country Status (5)

Country Link
US (1) US20220375521A1 (ja)
JP (1) JPWO2021099879A1 (ja)
KR (1) KR20220103973A (ja)
CN (1) CN114730582A (ja)
WO (1) WO2021099879A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151383A (ja) * 2009-12-25 2011-08-04 Semiconductor Energy Lab Co Ltd 半導体装置
JP2017502444A (ja) * 2013-12-02 2017-01-19 シリコン ストーリッジ テクノロージー インコーポレイテッドSilicon Storage Technology, Inc. 構成可能なピンを備える三次元フラッシュnorメモリシステム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151383A (ja) * 2009-12-25 2011-08-04 Semiconductor Energy Lab Co Ltd 半導体装置
JP2017502444A (ja) * 2013-12-02 2017-01-19 シリコン ストーリッジ テクノロージー インコーポレイテッドSilicon Storage Technology, Inc. 構成可能なピンを備える三次元フラッシュnorメモリシステム

Also Published As

Publication number Publication date
US20220375521A1 (en) 2022-11-24
CN114730582A (zh) 2022-07-08
KR20220103973A (ko) 2022-07-25
JPWO2021099879A1 (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
US11843059B2 (en) Semiconductor device and electronic device
JP7391874B2 (ja) 半導体装置
WO2021144661A1 (ja) 半導体装置、半導体装置の駆動方法、および電子機器
US20220350571A1 (en) Information processing device
WO2021090092A1 (ja) 記憶装置、記憶装置の動作方法、情報処理装置、情報処理システム、および電子機器
WO2021099879A1 (ja) コンピュータシステム、及び情報処理装置の動作方法
WO2021094844A1 (ja) 情報処理装置、および情報処理装置の動作方法
WO2021099885A1 (ja) 半導体装置および電子機器
US20220399355A1 (en) Semiconductor device and electronic device
US11985827B2 (en) Semiconductor device, driving method of semiconductor device, and electronic device
WO2023144652A1 (ja) 記憶装置
WO2023144653A1 (ja) 記憶装置
WO2023148571A1 (ja) 半導体装置
WO2021059079A1 (ja) 半導体装置、記憶装置、及び電子機器
WO2023047229A1 (ja) 半導体装置、記憶装置、及び電子機器
WO2022064318A1 (ja) 半導体装置、半導体装置の駆動方法、および電子機器
WO2022084802A1 (ja) 半導体装置、および半導体装置の駆動方法
WO2023187544A1 (ja) 半導体装置、記憶装置、及び電子機器
WO2022029534A1 (ja) 半導体装置の駆動方法
KR20240052666A (ko) 반도체 장치
KR20230003476A (ko) 반도체 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889343

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558028

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227018723

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889343

Country of ref document: EP

Kind code of ref document: A1